EP0016242A1 - Gasentladungs-Überspannungsableiter mit betriebssicherem Verhalten - Google Patents

Gasentladungs-Überspannungsableiter mit betriebssicherem Verhalten Download PDF

Info

Publication number
EP0016242A1
EP0016242A1 EP79100974A EP79100974A EP0016242A1 EP 0016242 A1 EP0016242 A1 EP 0016242A1 EP 79100974 A EP79100974 A EP 79100974A EP 79100974 A EP79100974 A EP 79100974A EP 0016242 A1 EP0016242 A1 EP 0016242A1
Authority
EP
European Patent Office
Prior art keywords
surge arrester
outer electrodes
gas discharge
short
arrester according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP79100974A
Other languages
English (en)
French (fr)
Inventor
Gerhard Lange
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0016242A1 publication Critical patent/EP0016242A1/de
Ceased legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T1/00Details of spark gaps
    • H01T1/14Means structurally associated with spark gap for protecting it against overload or for disconnecting it in case of failure

Definitions

  • the invention relates to a gas discharge surge arrester with fail-safe behavior, in which the gas discharge path is electrically short-circuited in the event of overload.
  • thermal overload is meant to mean an overload which arises, for example, when a gas discharge surge arrester burns in the glow area for more than ten seconds. The low current per se heats the entire arrester in such a way that the housing seals are endangered.
  • the short-circuit behavior before the gas discharge surge arrester is destroyed is known as a fail-safe behavior and is described in the event of an internal short circuit, for example in DE-PS 2 101 417. Due to the special design of the inner electrodes, they fuse if the current is too high after the gas discharge path is ignited before the housing can become leaky due to heating.
  • an external short-circuit mechanism is known, for example, from DGM 75 33 725.
  • Impermissible Heating of the gas discharge surge arrester causes a soft solder pill to melt on one of the outer electrodes. This causes a short-circuit spring to short-circuit the outer electrodes.
  • the maximum portable thermal power loss should not lead to a short circuit if possible.
  • the so-called short-circuit characteristic is adapted to the respective needs, i.e. the short circuit only occurs when the thermal power loss is just before the so-called destruction line.
  • the present invention has for its object to optimize the fail-safe behavior in such a way that the performance of the gas discharge surge arrester and its holder or a magazine with several gas discharge surge arresters can be fully utilized, but that a safe short circuit electrical and thermal overload is guaranteed.
  • Such a combination of an internal and external short circuit allows an ideal short circuit behavior.
  • the short-circuit reaction takes place according to the ideal short-circuit characteristic, regardless of whether a fast electrical or a slow thermal overload is the cause.
  • the performance of the gas discharge surge arrester is fully exploited.
  • the short circuit can be placed close to the line of destruction. It is possible to adapt the short-circuit point to the individual circumstances of the place of use.
  • the short-circuiting bracket is firmly connected to one of the outer electrodes and is held against its own spring force from the other outer electrode by a melting body which is in thermal connection on the gas-filled housing and by thermal overloading of the housing Soften the spring force of the shorting bar releases.
  • the melting body is a soft solder pill, which is located at a defined distance from the outer electrodes on the intermediate insulator or that the melting body is made of plastic and is located on the housing at a defined distance between the electrodes.
  • the melting body can also be a plastic ring placed around the housing.
  • the defined distance of the melting body from the outer electrodes allows an optimal adaptation of the maximum thermal load capacity.
  • the melting body reacts to the heating of this outer electrode with a delay.
  • the short-circuiting bracket consists at least partially of a bimetal which, by thermal connection with the gas-filled housing, can short-circuit the outer electrodes before its thermal overload. With the bimetal, the short circuit is canceled again after the thermal overload has ended. This has the advantage that the gas discharge surge arrester becomes functional again, unless an internal short circuit has also occurred.
  • the shorting bar lies in thermal connection on the intermediate insulator at a point with a defined distance from the outer electrodes.
  • the defined distance again allows adaptation by means of the time delay of the short circuit over the defined length of the heat conduction from the electrodes to the thermal connection point with the shorting bar.
  • the shorting bar can be firmly connected to one of the two outer electrodes.
  • Fig. 1 denotes a tubular ceramic or glass housing wall of a so-called button arrester, which is located as an insulator between two cup-shaped electrodes 2 and 3 at the tube ends.
  • the electrodes 2 and 3 are gas-tightly bonded to the end faces of the housing wall 1 at the cup edges and form with you a noble gas-filled gas discharge space.
  • the bowl bottoms protrude axially into the interior of the housing wall 1 and each carry on their inner side a welded-on metal plate 4 or 5, which serve as inner electrodes with a fail-safe behavior, as described in DE-PS 21 01 417 is.
  • a supply wire 6 or 7 is welded onto the outer sides of the cup bases.
  • cup edges form the outer electrodes in the sense of the present description of the external short circuit.
  • a shorting bar 8 is welded onto the outer edge of the electrode 2 and extends over the edge along the housing wall to the outer edge of the other electrode 3. It is resilient against the other electrode 3 and is held by this electrode 3 by a melting pill 9 made of metal or plastic. This melting pill. 9 sits at a point on the housing wall 1 where its distance from one electrode edge 3 is approximately half of its distance from the other electrode edge 2.
  • FIG. 2 The axial top view of FIG. 2 shows the one outer electrode 2, the lead wire 6 and the shorting bar 8, which rests on two fastening tongues with four welding spots on the outer edge of the electrode 2.
  • the two inner electrodes 4 and 5 fuse together and thereby form a permanent short circuit before a defect due to heat development on the seal between the housing wall 1 and the electrodes 2 and 3 can occur.
  • a warming for example, by a longer glow discharge, where an internal short circuit cannot occur, but which Sealing between the housing wall and the electrodes 2 and 3 can be dangerous, with a time delay corresponding to the distance of the melting pill 9 from the outer electrode 3 and the thermal conductivity of the housing wall 1, that the melting cap 9 reaches its melting point and yields to the spring pressure of the shorting bar 8.
  • the contact end of the shorting bar 8 springs against the outer electrode 3 and short-circuits the two outer electrodes 2 and 3.
  • FIG. 3 contains a longitudinal view from the outside of a housing wall 1 and outer electrodes 2 and 3, which are designed without connecting wires.
  • the internal shorting mechanism corresponds to that of FIG. 1 and is omitted for the sake of simplicity.
  • a plastic ring 10 is placed around the housing wall 1, again with a defined distance from the outer electrode 3.
  • the function of the plastic ring 10 corresponds to that of the melting pill 9.
  • the shorting bar 8 is not with two tongues on the outer electrode 2 attached, but in a production-technically simpler version as a further sheet metal strip across the outer electrode 2, as shown in FIG. 4 in the axial top view.
  • FIG. 5 again shows an arrester with housing wall 1 and two outer electrodes 2 and 3 in an external longitudinal view.
  • the inner short circuit mechanism can again correspond to that of FIG. 1.
  • the outer short-circuiting mechanism is brought about by a bimetallic strip which is in thermal connection with the housing wall 1.
  • the bimetallic strip 11 extends along the arrester and is approximately in the middle held by a metallic clip 12 on the housing wall 1.
  • the ends of the bimetallic strip 11 move towards the outer electrodes 2 and 3 and close them briefly, shown in broken lines in FIG. 5.
  • the short circuit is canceled again when the bimetallic strip 11 stretches again. From the axial top view in FIG. 6, the clamp fit of the clasp 12 on the housing wall 1 can be seen.
  • the 7 also contains an external longitudinal view of an arrester with housing wall 1, external electrodes 2 and 3 and with an internal short-circuit mechanism, not shown.
  • the outer short-circuit mechanism consists of a single bimetallic strip 13 which is fixedly connected to the outer electrode 2 and lies transversely over the outer edge thereof. It extends bent over the edge along the housing wall 1 to the other outer electrode 3, where it touches its radial outer edge when heated and thereby short-circuits the two outer electrodes 2 and 3. After cooling, the contact is opened again so that the arrester is functional again, unless an internal short-circuit has occurred.
  • the combination of an internal and external short circuit according to the invention is not limited to these exemplary embodiments. It can also be used with the same advantage on multi-line arresters and on combinations of several arresters.

Landscapes

  • Fuses (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

Bei einem Gasentladungs-Überspannungsableiter mit Fail-Safe-Verhalten wird zur Optimierung der Kurzschlußkennlinie eine Kombination aus innerem und äußerem Kurzschluß vorgeschlagen. Dadurch sicheres Kurzschlußverhalten bei elektrischer und thermischer Überlastung.

Description

  • Die Erfindung betrifft einen Gasentladungs-Überspannungsableiter mit Fail-Safe-Verhalten, bei dem bei Überlastung die Gasentladungsstrecke galvanisch kurzgeschlossen wird.
  • Der Personen- und Geräteschutz gegen elektrische Überspannungen muß in vielen Anwendungsfällen mit großer Zuverlässigkeit gewährleistet sein. Abhängig vom Einsatzort können in elektrischen Leitungen Überspannungen auftreten, die das Leistungsvermögen von üblicherweise verwendeten Gasentladungs-Überspannungsableitern übersteigen. Das kann beispielsweise dann geschehen, wenn eine Starkstromleitung mit einer Nachrichtenleitung in Berührung oder in sonstige Verbindung kommt. Die die Nachrichtenleitung absichernden Gasentladungs-Überspannungsableiter sind dann überfordert. In solchen Fällen soll bereits vor oder spätestens mit der Zerstörung des Gasentladungs-Überspannungsableiters ein galvanischer Kurzschluß mit ausreichender Stromtragfähigkeit hergestellt werden. Dieser Kurzschluß verhindert, daß ein zerstörter und deswegen nicht mehr funktionsfähiger Gasentladungs-Überspannungsabliter als nurmehr vermeintlicher Schutz eine Gefährdung darstellen kann, sei es auch nur deswegen, weil er äußerlich intakt erscheint und deswegen nicht ausgewechselt wird. Ein Gasentladungs-Überspannungsableiter ist bereits schon dann nicht mehr funktionsfähig, wenn durch thermische Überlastung bzw. durch elektrische Überlastung und der daraus folgenden thermischen Überlastung die Dichtungen des Gehäuses beschädigt sind. Unter thermischer Überlastung soll im folgenden eine Überlastung gemeint sein, die beispielsweise entsteht, wenn ein Gasentladungs-Überspannungsableiter mehr als zehn Sekunden im Glimmbereich brennt. Der an sich geringe Strom erwärmt den gesamten Ableiter aber so, daß die Gehäuseabdichtungen gefährdet sind.
  • Bei der Packungsdichte von Gasentladungs-Überspannungsableitern in modernen Einrichtungen können thermische Verlustleistungen im Betrieb nur in begrenztem Umfang abgeführt werden. Ein rechtzeitiger Kurzschluß kann deswegen auch die Zerstörung von Ableiterhalternungen und Ableitermagazinen verhindern.
  • Das Kurzschlußverhalten vor der Zerstörung des Gasentladangs-Überspannungsableiters ist als Fail-Safe-Verhalten bekannt und für den Fall eines inneren Kurzschlusses, beispielsweise in der DE-PS 2 101 417, beschrieben. Durch besondere Ausführung der inneren Elektroden verschmelzen diese bei zu hohem Strom nach der Zündung der Gasentladungsstrecke, bevor das Gehäuse durch Erwärmung undicht werden kann.
  • Weiter ist ein äußerer Kurzschlußmechanismus beispielsweise aus dem DGM 75 33 725 bekannt. Bei unzulässiger Erwärmung des Gasentladungs-Überspannungsableiters wird auf einer der äußeren Elektroden eine Weichlotpille zum Schmelzen gebracht. Dadurch schließt eine Kurzschlußfeder die äußeren Elektroden kurz.
  • Die maximal tragbare thermische Verlustleistung soll möglichst noch nicht zu einem Kurzschluß führen. Im optimalen Fall ist die sogenannte Kurzschlußkennlinie den jeweiligen Bedürfnissen angepaßt, d.h. der Kurzschluß erfolgt erst dann, wenn die thermische Verlustleistung kurz vor der sogenannten Zerstörungslinie liegt.
  • Der vorliegenden Erfindung liegt die Aufgabe zugrunde, das Fail-Safe-Verhalten in der Weise zu optimieren, daß die Leistungsfähigkeit des Gasentladungs-Überspannungsableiters und seiner Halterung bzw. eines Magazins mit mehreren Gasentladungs-Überspannungsableitern voll ausgenützt werden kann, daß aber ein sicherer Kurzschluß bei elektrischer und thermischer Überlastung garantiert wird.
  • Zur Lösung dieser Aufgabe wird bei einem Gasentladungs-Überspannungsableiter der eingangs genannten Art erfindungsgemäß die Kombination folgender Merkmale vorgeschlagen:
    • _a) die die Gasentladungsstrecke bildenden inneren Elektroden sind so ausgeführt, daß sie bei elektrischer Überlastung des Gasentladungs-Überspannungsableiters vor der Zerstörung des gasgefüllten Gehäuses miteinander verschmelzen und so einen inneren Kurzschluß herbeiführen;
    • b) zwischen den durch einen Isolator voneinander getrennten äußeren Elektroden befindet sich mindestens ein Kurzschlußbügel, der bei thermischer Überlastung vor der Zerstörung des gasgefüllten Gehäuses die äußeren Elektroden kurzschließt.
  • Eine solche Kombination eines inneren und äußeren Kurzschlusses erlaubt ein ideales Kurzschlußverhalten. Die Kurzschlußreaktion erfolgt nach idealer Kurzschlußkennlinie unabhängig davon, ob eine schnelle elektrische oder eine langsame thermische Überlastung die Ursache ist. Die Leistungsfähigkeit des Gasentladungs-Überspannungsableiters wird dabei voll ausgenutzt. Der Kurzschluß kann dicht unter die Zerstörungslinie gelegt werden. Dabei besteht die Möglichkeit, den Kurzschlußpunkt den individuellen Gegebenheiten des Einsatzortes anzupassen.
  • Nach einer Ausgestaltung ist vorgesehen, daß der Kurzschlußbügel mit einer der äußeren Elektroden fest verbunden ist und gegen die eigene Federkraft von der anderen äußeren Elektrode durch einen Schmelzkörper abgehalten ist, der sich in thermischer Verbindung auf dem gasgefüllten Gehäuse befindet und bei thermischer Überlastung des Gehäuses durch Erweichen die Federkraft des Kurzschlußbugels freigibt.
  • Dabei besteht die Möglichkeit, daß der Schmelzkörper eine Weichlotpille ist, die sich in definiertem Abstand von den äußeren Elektroden auf dem dazwischenliegenden Isolator befindet oder daß.der Schmelzkörper aus Kunststoff ist und sich auf dem Gehäuse in definiertem Abstand zwischen den Elektroden befindet. Der Schmelzkörper kann auch ein um das Gehäuse gelegter Kunststoffring sein.
  • In beiden Fällen erlaubt der definierte Abstand des Schmelzkörpers von den äußeren Elektroden ein optimales Anpassen der maximalen thermischen Belastbarkeit. Die Kombination des inneren Kurzschlußverhaltens, das bei der Fertigung des Gasentladungs-Überspannungsableiters festgelegt ist, und des äußeren Kurzschlußverhaltens, das abhängig vom Einsatzort und der peripheren Bauteile angepaßt werden kann, ergibt ein ideales Kurzschlußverhalten. Je nach der Entfernung des Schmelzkörpers von der näherliegenden äußeren Elektrode reagiert der Schmelzkörper mit Verzögerung auf die Erwärmung dieser äußeren Elektrode.
  • Nach einer anderen Ausgestaltung ist vorgesehen, daß der Kurzschlußbügel zumindest teilweise aus einem Bimetall besteht, das durch thermische Verbindung mit dem gasgefüllten Gehäuse vor dessen thermischer Überlastung die äußeren Elektroden kurzschließen läßt. Mit dem Bimetall wird nach Beendigung der thermischen Überlastung der Kurzschluß wieder aufgehoben. Das hat den Vorteil, daß der Gasentladungs-Überspannungsableiter wieder funktionsfähig wird, es sei denn, daß auch ein innerer Kurzschluß stattgefunden hat.
  • Auch bei dieser Ausgestaltung besteht die Möglichkeit, daß der Kurzschlußbügel an einer Stelle mit definiertem Abstand von den äußeren Elektroden auf dem dazwischenliegenden Isolator in thermischer Verbindung aufliegt. Der definierte Abstand erlaubt wieder eine Anpassung mit Hilfe der zeitlichen Verzögerung des Kurzschlusses über die definierte Länge der Wärmeleitung von den Elektroden zu der thermischen Verbindungsstelle mit dem Kurzschlußbügel. Allerdings kann auch im Falle des Kurzschlußbügels mit dem Bimetall der Kurzschlußbügel mit einer der beiden äußeren Elektroden fest verbunden sein.
  • Anhand von in den Figuren der Zeichnung dargestellten Ausführungsbeispielen soll die Erfindung näher erläutert werden.
  • Dabei zeigen die
    • Fig. 1 einen Gasentladungs-Überspannungsableiter mit kombiniertem inneren und äußeren Kurzschlußverhalten im Längsschnitt, wobei ein möglicher innerer Elektrodenaufbau dargestellt ist und der äußere Kurzschluß über eine Schmelzpille bewerkstelligt wird, die
    • Fig. 2 dazu eine axiale Draufsicht, von den weiteren Figuren 3 bis 8 - jeweils nur der äußere Aufbau dargestellt und im folgenden abgekürzt als Ableiter bezeichnet - die
    • Fig. 3 einen Ableiter mit einem Kunststoffring als Schmelzkörper, die
    • Fig. 4 dazu eine axiale Draufsicht, die
    • Fig. 5 einen Ableiter mit einem Bimetall-Kurzschlußbügel und jeweils einem Kurzschlußkontakt an den äußeren Elektroden, die
    • Fig. 6 dazu eine axiale Draufsicht, die
    • Fig. 7 einen Ableiter mit einem Bimetall-Kurzschlußbügel, der mit einer Elektrode fest verbunden ist, und die
    • Fig. 8 dazu eine axiale Draufsicht.
  • In Fig. 1 ist mit 1 eine rohrförmige Keramik- oder Glasgehäusewand eines sogenannten Knopfableiters bezeichnet, die als Isolator zwischen zwei napfförmigen Elektroden 2 und 3 an den Rohrenden liegt. Die Elektroden 2 und 3 sind an den Napfrändern gasdicht mit den' Stirnseiten der Gehäusewand 1 verbünden und bilden mit ihr einen edelgasgefüllten Gasentladungsraum. Die Napfböden ragen axial in das Innere der Gehäusewand 1 hinein und tragen jeweils auf ihrer inneren Seite ein aufgeschweißtes Metallplättchen 4 bzw. 5, die als innere Elektroden dienen mit einem Fail-Safe-Verhalten, wie es in der DE-PS 21 01 417 beschrieben ist. Auf den äußeren Seiten der Napfböden ist jeweils ein Zuleitungsdraht 6 bzw. 7 aufgeschweißt. Die Napfränder bilden die äußeren Elektroden im Sinne der vorliegenden Beschreibung des äußeren Kurzschlusses. Zu diesem Zweck ist auf den äußeren Rand der Elektrode 2 ein Kurzschlußbügel 8 aufgeschweißt, der sich über den Rand längs der Gehäusewand zum äußeren Rand der anderen Elektrode 3 erstreckt. Er ist gegen die andere Elektrode 3 federnd ausgebildet und wird von dieser Elektrode 3 durch eine Schmelzpille 9 aus Metall oder Kunststoff abgehalten. Diese Schmelzpille. 9 sitzt an einer Stelle auf der Gehäusewand 1, wo ihre Entfernung von dem einen Elektrodenrand 3 etwa die Hälfte von ihrer Entfernung von dem anderen Elektrodenrand 2 beträgt.
  • Die axiale Draufsicht der Fig. 2 zeigt die eine äußere Elektrode 2, den Zuleitungsdraht 6 und-den Kurzschlußbügel 8, der an zwei Befestigungszungen mit vier - Schweißpunkten auf dem äußeren Rand der Elektrode 2 aufliegt.
  • Tritt ein Überlastungsstrom nach dem Zünden des Ableiters auf, dann verschmelzen die beiden inneren Elektroden 4 und 5 miteinander und bilden dadurch einen dauerhaften Kurzschluß, bevor ein Defekt durch Wärmeentwicklung an der Dichtung zwischen Gehäusewand 1 und den Elektroden 2 und 3 auftreten kann. Eine Erwärmung beispielsweise durch eine längere Glimmentladung, wo ein innerer Kurzschluß nicht entstehen kann, die aber der Abdichtung zwischen Gehäusewand und den Elektroden 2 und 3 gefährlich werden kann, bewirkt mit einer Zeitverzögerung entsprechend der Entfernung der Schmelzpille 9 von der äußeren Elektrode 3 und der Wärmeleitfähigkeit der Gehäusewand 1, daß die Schmelspille 9 ihren Schmelzpunkt erreicht und dem Federdruck des Kurzschlußbügels 8 nachgibt. Dadurch federt das Kontaktende des Kurzschlußbügels 8 gegen die äußere Elektrode 3 und schließt die beiden äußeren Elektroden 2 und 3 kurz.
  • Die Fig. 3 enthält in einer Längsansicht von außen wieder eine Gehäusewand 1 und äußere Elektroden 2 und 3, die ohne Anschlußdrähte ausgeführt sind. Der innere Kurzschlußmechanismus entspricht dem der Fig. 1 und ist der Einfachheit halber weggelassen. Statt der Schmelzpille 9 ist um die Gehäusewand 1 ein Kunststoffring 10 gelegt, wieder mit einer definierten Entfernung von der äußeren Elektrode 3. Die Funktion des Kunststoffrings 10 entspricht der der Schmelzpille 9. Als Variante ist der Kurzschlußbügel 8 nicht mit zwei Zungen an der äußeren Elektrode 2 befestigt, sondern in einer fertigungstechnisch einfacheren Version als weiterführender Blechstreifen quer über die äußere Elektrode 2, wie es in der Fig. 4 in der axialen Draufsicht dargestellt ist.
  • In der Fig. 5 ist wiederum ein Ableiter mit Gehäusewand 1 und zwei äußeren Elektroden 2 und 3 in äußerer Längsansicht dargestellt. Der innere Kurzschlußmechanismus kann wieder dem nach Fig. 1 entsprechen. Der äußere Kurzschlußmechanismus wird durch einen Bimetallstreifen bewerkstelligt, der in thermischer Verbindung mit der Gehäusewand 1 steht. Der Bimetallstreifen 11 erstreckt sich längs des Ableiters und wird etwa in der Mitte durch eine metallische Spange 12 auf der Gehäusewand 1 gehalten. Die Enden des Bimetallstreifens 11 bewegen sich bei Erwärmung zu den äußeren Elektroden 2 und 3 hin und schließen sie kurz, in der Fig. 5 gestrichelt eingezeichnet. Nach Beenden der Erwärmung wird der Kurzschluß wieder aufgehoben, wenn der Bimetallstreifen 11 sich wieder streckt. Aus der axialen Draufsicht in Fig. 6 ist der Klemmsitz der Spange 12 auf der Gehäusewand 1 zu ersehen.
  • Auch die Fig. 7 enthält eine äußere Längsansicht eines Ableiters mit Gehäusewand 1, äußeren Elektroden 2 und 3 und mit nicht dargestelltem inneren Kurzschlußmechanismus. Der äußere Kurzschlußmechanismus besteht aus einem einzigen Bimetallstreifen 13, der mit der äußeren Elektrode 2 fest verbunden ist und quer über deren äußerem Rand liegt. Er erstreckt sich über den Rand hinaus gebogen längs der Gehäusewand 1 bis zur anderen äußeren Elektrode 3, wo er bei Erwärmung deren radialen äußeren Rand berührt und dadurch die beiden äußeren Elektroden 2 und 3 kurzschließt. Nach Abkühlen wird auch hier der Kontakt wieder geöffnet, so daß der Ableiter wieder funktionsfähig ist, falls nicht ein innerer bleibender Kurzschluß stattgefunden hat.
  • Die erfindungsgemäße Kombination eines inneren und äußeren Kurzschlusses ist nicht auf diese Ausführungsbeispiele beschränkt. Sie läßt sich mit demselben Vorteil auch auf Mehrstreckenableiter und auf Kombinationen mehrerer Ableiter anwenden.

Claims (9)

1. Gasentladungs-Überspannungsableiter mit Fail-Safe-Verhaltene bei dem bei Überlastung die Gasentladungsstrecke galvanisch kurzgeschlossen wird, gekennzeichnet durch die Kombination folgender Merkmale:
a) die die Gasentladungsstrecke bildenden inneren Elektroden (4,5) sind so ausgeführt, daß sie bei elektrischer Überlastung des Gasentladungs-Überspannungsableiters vor der Zerstörung des gasgefüllten Gehäuses miteinander verschmelzen und so einen inneren Kurzschluß herbeiführen;
b) zwischen den durch einen Isolator (1) voneinander getrennten äußeren Elektroden (2,3) befindet sich mindestens ein Kurzschlußbügel (8,11,12,13), der bei thermischer Überlastung vor der Zerstörung des gasgefüllten Gehäuses die äußeren Elektroden (2,3) kurzschließt.
2. Überspannungsableiter nach Anspruch 1, dadurch gekennzeichnet, daß der Kurzschlußbügel (8) mit einer (2) der äußeren Elektroden (2,3) fest verbunden ist und gegen die eigene Federkraft von der anderen äußeren Elektrode (3) durch einen Schmelzkörper (9,10) abgehalten ist, der sich in thermischer Verbindung auf dem gasgefüllten Gehäuse befindet und bei thermischer Überlastung des Gehäuses durch Erweichen die Federkraft des Kurzschlußbügels (8) freigibt.
3. Überspannungsableiter nach Anspruch 2, dadurch gekennzeichnet, daß der Schmelzkörper (9) eine Weichlotpille ist, die sich in definiertem Abstand von den äußeren Elektroden (2,3) auf dem dazwischenliegenden Isolator (1) befindet.
4. Überspannungsableiter nach Anspruch 2, dadurch gekennzeichnet, daß der Schmelzkörper (9) aus Kunststoff ist und sich auf dem Gehäuse in definiertem Abstand zwischen den äußeren Elektroden (2,3) befindet.
5. Überspannungsableiter nach Anspruch 4, dadurch gekennzeichnet, daß der Schmelzkörper (10) ein um das Gehäuse gelegter Kunststoffring (10) ist.
6. Überspannungsableiter nach Anspruch 1, dadurch gekennzeichnet, daß der Kurzschlußbügel (11,12,13) zumindest teilweise aus einem Bimetall (11,13) besteht, das durch thermische Verbindung mit dem gasgefüllten Gehäuse vor dessen thermischer Überlastung die äußeren Elektroden (2,3) kurzschließen läßt.
7. Überspannungsableiter nach Anspruch 6, dadurch gekennzeichnet, daß der Kurzschlußbügel (11,12) an einer Stelle mit definiertem Abstand von den äußeren Elektroden (2,3) auf dem dazwischenliegenden Isolator (1) in thermischer Verbindung aufliegt.
8. Überspannungsableiter nach Anspruch 6, dadurch gekennzeichnet, daß der Kurzschlußbügel (13) mit einer (2) der äußeren Elektroden (2,3) fest verbunden ist.
9. Überspannungsableiter nach einem der Ansprüche 3 bis 7, dadurch gekennzeichnet, daß durch den Abstand der thermischen Verbindungsstelle von den äußeren Elektroden (2,3) eine zeitliche Verzögerung des äußeren Kurzschlusses nach Eintritt einer Elektrodenerwärmung bestimmt ist.
EP79100974A 1979-03-21 1979-03-30 Gasentladungs-Überspannungsableiter mit betriebssicherem Verhalten Ceased EP0016242A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19792911110 DE2911110A1 (de) 1979-03-21 1979-03-21 Gasentladungs-ueberspannungsableiter mit fail-safe-verhalten
DE2911110 1979-03-21

Publications (1)

Publication Number Publication Date
EP0016242A1 true EP0016242A1 (de) 1980-10-01

Family

ID=6066022

Family Applications (1)

Application Number Title Priority Date Filing Date
EP79100974A Ceased EP0016242A1 (de) 1979-03-21 1979-03-30 Gasentladungs-Überspannungsableiter mit betriebssicherem Verhalten

Country Status (4)

Country Link
EP (1) EP0016242A1 (de)
JP (1) JPS55128281A (de)
AU (1) AU5662280A (de)
DE (1) DE2911110A1 (de)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0027061A1 (de) * 1979-10-05 1981-04-15 Citel Blitzableitervorrichtung, welche ein äusserliches Kurzschliessen erlaubt, und entsprechende Schutzeinheit
EP0040522A1 (de) * 1980-05-16 1981-11-25 The M-O Valve Company Limited Überspannungsableiter
FR2484695A1 (fr) * 1980-06-11 1981-12-18 Tubes Lampes Elect Cie Indle Parafoudre permettant une mise en court-circuit exterieure
FR2545644A1 (fr) * 1983-05-02 1984-11-09 Int Standard Electric Corp Protecteur antisurtension
WO1987006399A1 (en) * 1986-04-09 1987-10-22 Schaltbau Gesellschaft Mbh Device for protecting a surge arrester against overheating
GB2230900A (en) * 1989-04-24 1990-10-31 Semitron Cricklade Ltd Electrical components
EP0548587A1 (de) * 1991-12-24 1993-06-30 Cerberus Ag Überspannungsschutzvorrichtung
DE19705097A1 (de) * 1997-01-31 1998-08-06 Siemens Ag Gasgefüllter Überspannungsableiter mit äußerer Kurzschlußeinrichtung
WO2019220171A1 (en) * 2018-05-14 2019-11-21 Saltek S.R.O. Voltage limiter with a short-circuiting device

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3146787A1 (de) * 1981-11-25 1983-06-01 Siemens AG, 1000 Berlin und 8000 München Ueberspannungsableiter mit aeusserer kurzschlussstrecke
JPS5911774A (ja) * 1982-07-12 1984-01-21 Kansai Electric Power Co Inc:The 電力変換装置
DE3323687C2 (de) * 1983-07-01 1986-12-18 Krone Gmbh, 1000 Berlin Überspannungsableitermagazin für Anschlußleisten der Fernmeldetechnik
JPS6026191U (ja) * 1983-07-28 1985-02-22 株式会社 白山製作所 プリント配線基板装着用三極避雷器の短絡機構
JPS6088485U (ja) * 1983-11-25 1985-06-18 新光電気工業株式会社 ガス入り避雷管
JPH0226149Y2 (de) * 1985-08-13 1990-07-17
JPS6276488U (de) * 1985-10-31 1987-05-16
JPS637933U (de) * 1986-06-30 1988-01-19
DE3820272C1 (de) * 1987-10-20 1989-04-06 Krone Ag, 1000 Berlin, De
DE19731312A1 (de) 1997-07-15 1999-01-28 Siemens Ag Überspannungsableiter mit äußerer Kurzschlußeinrichtung

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE264536C (de) *
CH152067A (de) * 1930-11-01 1932-01-15 Ruppel Sigwart Professor Vorrichtung zur Begrenzung und Ableitung von Überspannungen in Leitungsnetzen.
FR2271660A1 (en) * 1974-05-16 1975-12-12 Bloch Pimentel Jean Overvoltage cct protector - has electrode attachments fusing during prolonged arcing
US4034326A (en) * 1975-04-17 1977-07-05 Comtelco (U.K.) Limited Temperature sensitive trip device
US4056840A (en) * 1976-05-12 1977-11-01 Reliable Electric Company Line protector for communications circuit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE264536C (de) *
CH152067A (de) * 1930-11-01 1932-01-15 Ruppel Sigwart Professor Vorrichtung zur Begrenzung und Ableitung von Überspannungen in Leitungsnetzen.
FR2271660A1 (en) * 1974-05-16 1975-12-12 Bloch Pimentel Jean Overvoltage cct protector - has electrode attachments fusing during prolonged arcing
US4034326A (en) * 1975-04-17 1977-07-05 Comtelco (U.K.) Limited Temperature sensitive trip device
US4056840A (en) * 1976-05-12 1977-11-01 Reliable Electric Company Line protector for communications circuit

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0027061A1 (de) * 1979-10-05 1981-04-15 Citel Blitzableitervorrichtung, welche ein äusserliches Kurzschliessen erlaubt, und entsprechende Schutzeinheit
EP0040522A1 (de) * 1980-05-16 1981-11-25 The M-O Valve Company Limited Überspannungsableiter
FR2484695A1 (fr) * 1980-06-11 1981-12-18 Tubes Lampes Elect Cie Indle Parafoudre permettant une mise en court-circuit exterieure
FR2545644A1 (fr) * 1983-05-02 1984-11-09 Int Standard Electric Corp Protecteur antisurtension
WO1987006399A1 (en) * 1986-04-09 1987-10-22 Schaltbau Gesellschaft Mbh Device for protecting a surge arrester against overheating
GB2230900A (en) * 1989-04-24 1990-10-31 Semitron Cricklade Ltd Electrical components
EP0548587A1 (de) * 1991-12-24 1993-06-30 Cerberus Ag Überspannungsschutzvorrichtung
DE19705097A1 (de) * 1997-01-31 1998-08-06 Siemens Ag Gasgefüllter Überspannungsableiter mit äußerer Kurzschlußeinrichtung
WO2019220171A1 (en) * 2018-05-14 2019-11-21 Saltek S.R.O. Voltage limiter with a short-circuiting device

Also Published As

Publication number Publication date
AU5662280A (en) 1980-09-25
JPS55128281A (en) 1980-10-03
DE2911110A1 (de) 1980-09-25

Similar Documents

Publication Publication Date Title
EP0016242A1 (de) Gasentladungs-Überspannungsableiter mit betriebssicherem Verhalten
EP1407460B1 (de) Überspannungsableiter
DE102014215280B3 (de) Kombiniertes Überspannungsschutzgerät mit einer integrierten Funkenstrecke
DE202006020737U1 (de) Passive oder aktive Kurzschließeinrichtung für den Einsatz in Nieder- und Mittelspannungsanlagen zum Sach- und Personenschutz
DE2740695A1 (de) Funkenstreckenabsicherung
DE2339564A1 (de) Leiterschutz mit ableiter und ausfall-ueberwachungsschaltung
DE102014016830A1 (de) Überspannungsschutzanordnung mit Kurzschließereinrichtung
DE102010015814B4 (de) Überspannungsschutzelement
DE10137873C1 (de) Elektrokeramisches Bauelement
DE10044081A1 (de) Überlastschutz
DE1963478A1 (de) Halbleitergleichrichteranordnung fuer hohe Spitzenstroeme
EP1749335B1 (de) Überspannungsableiter
AT522585A4 (de) Vorrichtung zum Trennen der elektrischen Verbindung zu einer Batteriezelle im Ausgasungsfall
DE2848252A1 (de) Flachpack-halbleitervorrichtung
EP2212976B1 (de) Überspannungsableiter mit thermischem überlastschutz
EP2188876B1 (de) Schadensbegrenzende schalteinrichtung
DE60035090T2 (de) Zylindrische alkali-speicherbatterie
EP2151026B1 (de) Kurzschliesseinrichtung für überspannungsableiter
EP1648007B1 (de) Thermosicherungsschalter für Bremswiderstand
DE7907949U1 (de) Gasentladungs-ueberspannungsableiter mit fail-safe-verhalten
DE19647682C2 (de) Reservefunkenstrecke für einen gasgefüllten Überspannungsableiter und gasgefüllter Drei-Elektroden-Überspannungsableiter mit aufgesetzten Reservefunkenstrecken
EP0847118A1 (de) Überspannungsableiter
DE202021105100U1 (de) Überspannungsschutzelement
DE2729463A1 (de) Ueberspannungsableiter
DE102021124493A1 (de) Überspannungsschutzelement

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE CH FR GB IT SE

17P Request for examination filed

Effective date: 19810327

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 19820427

RIN1 Information on inventor provided before grant (corrected)

Inventor name: LANGE, GERHARD