EP0012723B1 - Procédé d'examen mécanique de la qualité d'impression d'une épreuve et dispositif pour sa mise en action - Google Patents

Procédé d'examen mécanique de la qualité d'impression d'une épreuve et dispositif pour sa mise en action Download PDF

Info

Publication number
EP0012723B1
EP0012723B1 EP79810177A EP79810177A EP0012723B1 EP 0012723 B1 EP0012723 B1 EP 0012723B1 EP 79810177 A EP79810177 A EP 79810177A EP 79810177 A EP79810177 A EP 79810177A EP 0012723 B1 EP0012723 B1 EP 0012723B1
Authority
EP
European Patent Office
Prior art keywords
values
point
stage
maximum
threshold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP79810177A
Other languages
German (de)
English (en)
Other versions
EP0012723A1 (fr
Inventor
Kurt Ehrat
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gretag AG
Original Assignee
Gretag AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gretag AG filed Critical Gretag AG
Priority to AT79810177T priority Critical patent/ATE1561T1/de
Publication of EP0012723A1 publication Critical patent/EP0012723A1/fr
Application granted granted Critical
Publication of EP0012723B1 publication Critical patent/EP0012723B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F33/00Indicating, counting, warning, control or safety devices
    • B41F33/0036Devices for scanning or checking the printed matter for quality control
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D7/00Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
    • G07D7/06Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency using wave or particle radiation
    • G07D7/12Visible light, infrared or ultraviolet radiation
    • G07D7/121Apparatus characterised by sensor details

Definitions

  • the invention relates to a method for the mechanical assessment of the print quality of a printed product by point-by-point comparison of the test specimen to be assessed with a template, with the formation of the difference values between the reflectance values of the individual pixels of the test specimen and the reflectance values of the pixels of the template and corresponding to the specimen pixels Processing and evaluation of the difference values obtained in this way according to certain criteria, the evaluation comprising a final threshold value decision, and a device for carrying it out.
  • Such a method is e.g. B. described in FR-A-2 196494 and in DE-A-2 620 611.
  • one of the difficulties with such an automatic assessment method is to distinguish tolerable errors from intolerable errors in order to avoid incorrect assessments of the test object.
  • z. B. smaller remission value differences between the test specimen and the template are eliminated by means of a minimum threshold correction, so that these small errors do not even enter into the further evaluation.
  • the definition of this minimum threshold is critical. So there are z. B. in banknotes zones in which even the smallest color deviations are perceived by the eye as an error, and on the other hand zones, e.g. B.
  • DE-A-2 620 611 states that the minimum threshold should not be the same over the entire image area, but could also be chosen locally, for example in the area of a watermark. Although this procedure already gives very good results, i. H. a relatively low frequency of misjudgements, it has been shown that these measures are not always sufficient.
  • the invention is therefore based on the object of improving a method and a device of the type defined at the outset in such a way that it works more reliably and leads to fewer misjudgments of the test specimens, which is less complex with the same quality requirements and achieves the above objectives with as little effort as possible .
  • the reference printed products used are preferably those which are subject to the largest possible deviations which are still tolerable.
  • the errors should be of various types (positioning errors, register errors, tinting errors) in order to be able to record the effects of all errors that occur in practice on the machine test.
  • the device shown is identical to the device described in DE-A-2 620 767, DE-A-2 620 765 and DE-A-2 620 611, with the exception of a few additional stages which are yet to be explained. It comprises three photoelectric scanning devices (scanners) 1 - for point-by-point photoelectric scanning of the reflectance values of a test specimen and two sub-image templates (1, 2), a relative position determination stage 4 for determining the relative positions between the test specimen and the individual sub-image templates, two displacement stages 5 and 6 for taking into account or compensating for the relative positions mentioned (register deviations), a combination stage 7 for electronically combining the image contents of the two partial image templates, a subtracting stage 8 in which the differences in the reflectance values of corresponding pixels from the test object and combined templates are formed, a tint correction stage 9, a minimum threshold correction stage 10, an error evaluation stage 11 operating according to the error recovery method described in DE-A-2 620 611 and a threshold decision stage 12 which, depending on the result of a p point-by-point decision about
  • the device shown fully corresponds to that described in the cited documents.
  • the device shown also comprises two variable correction stages 13 and 14 with a transmitter stage 15 for setting the desired correction course, a position transmitter stage 16, via which the displacement stages 5 and 6 can be controlled in the same way as via the relative position determination stage 4, but independently of this, an electronic one Switch 17, a fault image memory 18 comprising a plurality of partial memories, a maximum value detection stage 19 and two threshold value memories 20 and 21 for the positive and negative threshold values, on the basis of which the threshold value decision stage 12 makes its good / bad decision.
  • test object and the template are known with reference to some stationary coordinate system (usually the scanning pattern of the test object).
  • some stationary coordinate system usually the scanning pattern of the test object.
  • the directly determined or stored sample values of the two templates are then shifted in the shift stages 5 and 6 by the coordinates dx, dx assigned to them by conversion so that all the pixels of the two templates match those of the respective test object. How this is done in detail is described in detail in the aforementioned DE-A-2 620 767.
  • the correction levels 13 and 14 are inactive during the normal inspection of the printed products, i. that is, they have no influence on the reflectance values.
  • the remission values of the three sub-templates that have been shifted or corrected in this way are then linked to one another in the combination stage 7 by simple multiplication and then result in the overall template, which is compared in stage 8 with the respective test item point by point.
  • the reflectance value difference ⁇ l form a difference image of the test object compared to the composite template.
  • These reflectance value differences ⁇ l are first subjected to a tint correction in stage 9, an average value being formed from the difference values of a certain surrounding area of each pixel and subtracted from the difference value of the respective pixel. This tint correction is intended to avoid incorrect assessments due to minor tint deviations of the test specimen.
  • stage 10 in which all those tint-corrected difference values which do not exceed a predetermined minimum threshold are eliminated, so that they are no longer included in the further evaluation.
  • More about tint and minimum threshold correction can be found in DE-A-2 620 611, in which the following Starbucksberg evaluation stage 11 is also described in detail.
  • An essential feature of the Stephenberg method is that the difference values of the individual picture elements are not considered in isolation, but always in connection with the difference values of the environment points, whereby the respective environment points are still given a distance-dependent weight.
  • the difference values processed in this way then ultimately lead to the decision “good” or “bad” in step 13 ′ by means of threshold value detection.
  • the threshold values required for this - one positive and one negative value per pixel - are located in the threshold value memories 20 and 21. Their detection or formation is described below.
  • the method according to the invention is based on the fact that even “good”, that is, in a visual inspection for test subjects who are found to be good, do not exactly match the template (s), but instead lead to certain remission value differences ⁇ l when comparing in stage 8.
  • the size of these remission value differences, their sign and their distribution over the entire image area depend on what was still considered permissible during the visual inspection and what was not.
  • most image errors are caused by register errors between the individual prints, by position errors in the watermarks and by color fluctuations.
  • Other sources of error are image distortion and positioning errors between the test object and the previous day (s). The deviations permitted for each type of error are defined.
  • the effects that all these approved errors have on the reflectance value differences in each individual pixel are now examined and the threshold values relevant for the error decision are determined in such a way that test specimens whose deviations from the template are still within the permissible range are actually be rated as "good”.
  • This setting of the threshold values is, of course, very critical, since it is very difficult to draw the line between "good” test specimens, ie test specimens with tolerable errors, and "bad” test specimens, because the effects of the different types of error on the remission value differences are very different. So it can e.g. B. may well happen that a tolerable register error causes a greater remission difference than an intolerable error in the watermark position.
  • an analysis is now carried out of test specimens which are subject to all possible but still just at the limit of the tolerable errors and the maximum positive and maximum negative reflectance value difference resulting from all these errors is determined for each pixel.
  • an “error image” composed of the individual difference values in each pixel is generated and stored in a separate partial memory of the error image memory 18 via the corresponding switch 17.
  • the maximum value selection device 19 looks for the maximum positive and the maximum negative difference value for each pixel from the individual partial memories and stores them in images in the two threshold value memories 20 and 21. These stored maximum difference values are thus directly used as individual threshold values for the good / bad Decision used in level 12. (If necessary, the maximum difference values can also be increased by a certain safety margin using an additive constant.)
  • test objects would first have to be checked visually and then examined on the device.
  • error analysis is considerably simplified by not examining actual test objects, but electronically simulating such test objects and examining the simulated test objects. The maximum tolerable errors can then be conveniently set, and a few simulated test objects are sufficient to record practically all contingencies.
  • the register errors and position deviations are simulated using the position encoder stage 16 and the shift stages 5 and 6 controlled by it. For this purpose, either an almost ideally good printed product or one with medium register errors etc. is clamped as a test object and the relative positions compared to the template or templates determined by means of the relative position determination level 4.
  • the template (s) are then successively shifted by the maximum tolerable distance in the four directions of the scanning grid and the shifted template (s) is compared with the test object, which in this case actually has a template function.
  • the templates are shifted, of course not objectively, but only consist of an assignment of the reflectance values to pixels shifted by one or more pixel distances or a distance-dependent inter or extrapolation of the remission values in the individual pixels.
  • the reflectance value differences which arise during these successive image comparisons, the totalities of which each represent an error image of the simulated test specimens concerned, are then stored in the error image memory 18 and processed further as described.
  • the simulation of faulty test objects can of course also be carried out entirely without a real test object by electronically creating an ideal test object from the templates, storing it and then using it as a comparison standard.
  • the best way to simulate position errors of the watermark is to use two templates, one of which contains no watermark and the other only contains the watermark.
  • the two correction stages 13 and 14 and the variation transmitter stage 15 controlling them are provided for the simulation of tinting errors caused by printing ink or paper. These correction levels calculate the measured reflectance values supplied to them. B. according to the linear relationship
  • I R means the reflectance value for any reference white.
  • the conversion or correction of the reflectance values can be carried out both for the neutral emission (overall brightness) and for one or more color emission values. Accordingly, it simulates positive or negative neutral density deviations in one case conditions and in the other case corresponding color deviations from the comparison standard.
  • the entire quality inspection can be carried out both in one channel (black and white) and in multiple channels (e.g. three basic colors).
  • the factor a in the above conversion formula can be set via the variation encoder stage 15.
  • the factor a is of course zero, so that the remission values pass the correction levels unchanged.
  • the method described above for obtaining the decision threshold values can of course also be used for such printed products; only a single template is used to check them, and in this case even more easily, since the number of possible errors is also lower.
  • a mechanical or optical simulation by physically moving or rotating the test specimen and previous day (s) or by inserting filters etc. into the scanning beam path can also be used
  • the definitive decision on errors only takes place after a longer and relatively complex preparation of the remission differences in stages 9, 10 and 11.
  • the principle according to the invention of the individual evaluation threshold for each individual pixel also allows the error decision to be made at an earlier stage, for example after the tint correction level 9 or already directly after the comparison level 8, in which case the following stages would of course be superfluous.
  • the fault patterns of the simulated test specimens would also have to be obtained at the appropriate points, i.e. after the tint correction or directly after the difference has been formed, and the threshold values have been derived from them.
  • the error decision is made directly in the difference field after the comparison level, whereby a test object is rated as bad or faulty if the remission value difference in a pixel or a predetermined number of pixels exceeds or exceeds the individual, possibly increased by the safety margin, positive or negative threshold value .
  • the quality inspection method according to the invention has a further advantage in that the individual error thresholds can be kept very "up to date”. So if z. For example, a new production lot is available, some "good” test items from this lot are examined and their fault patterns compared to the templates are formed. If these error images contain larger errors than the previous error images, the relevant threshold values are replaced by the difference values in the relevant places of the new error images.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Inking, Control Or Cleaning Of Printing Machines (AREA)
  • Image Processing (AREA)
  • Facsimile Image Signal Circuits (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • General Factory Administration (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Inspection Of Paper Currency And Valuable Securities (AREA)
  • Facsimiles In General (AREA)

Claims (14)

1. Procédé d'examen mécanique de la qualité d'impression d'une épreuve, par une comparaison ponctuelle de l'objet examiné devant être estimé avec un fond en formant Ies`valeurs différentielles entre les valeurs de réflectance, obtenues par balayage photoélectrique ponctuel, des points d'image individuels de l'objet examiné et les valeurs de réflectance des points d'image du fond correspondant aux points d'image de l'objet examiné, avec traitement et exploitation, selon des critères déterminés, des valeurs différentielles ainsi obtenues, cette exploitation comportant une décision finale en comparaison de valeurs de seuil, sur la base des valeurs de seuil associées individuellement aux points d'image individuels, procédé caractérisé par le fait que, pour chaque point d'image, on utilise à chaque fois une valeur de seuil positive et une valeur de seuil négative, lesdites valeurs de seuil étant obtenues au moyen d'une analyse d'un nombre de produits imprimés ou épreuves, de référence réels ou simulés, comportant des erreurs tolérables visuellement, et étant sélectionnées d'autant plus grandes que les écarts maximaux positifs ou négatifs entre les points d'image considérés du fond et des produits imprimés de référence, résultant du contrôle mécanisé de ces produits imprimés de référence immédiatement avant la décision en comparaison de valeurs de seuil, sont grands.
2. Procédé selon la revendication 1, caractérisé par le fait que, en guise de valeurs de seuil pour chaque point d'image, on utilise à chaque fois immédiatement le plus grand écart positif et le plus grand écart négatif entre les points d'image considérés de la référence et des fonds.
3. Procédé selon la revendication 1, caratérisé par le fait que, en guise des valeurs de seuil, on utilise les plus grands écarts positifs et les plus grands écarts négatifs augmentés à chaque fois d'une valeur constante.
4. Procédé selon l'une_des revendications 1 à 3, caractérisé par le fait que, en guise de produits imprimés de référence, on utilise des produits simulés électroniquement ou des produits réels affectés électroniquement d'erreurssimulées.
5. Procédé selon la revendication 4, caractérisé par le fait que des erreurs de position et de registre sont simulées par un décalage électronique relatif entre l'objet examiné et le ou les fonds.
6. Procédé selon la revendication 4, caractérisé par le fait que des erreurs de nuance sont simulées par une correction ou une conversion linéaire des valeurs de réflectance dans un ou plusieurs canaux de couleur.
7. Procédé selon l'une des revendications précédentes, caractérisé par le fait que, pour chaque point d'image, on ajoute algébriquement, à la valeur différentielle de réflectance qui lui est associée, les valeurs différentielles de réflectance des points d'image qui l'entourent, avec une pondération dépendant de l'éloignement, et par le fait que la décision en comparaison des valeurs de seuil se produit en tenant compté de ces valeurs ajoutées.
8. Procédé selon l'une des revendications 1 à 6, caractérisé par le fait que les valeurs de réflectance obtenues lors du balayage photoélectrique sont soumises à un filtrage en passe-bas, et par le fait que la décision en comparaison des valeurs de seuil a directement lieu à l'aide des différences des valeurs. de réflectance vormées lors de la comparaison ponctuelle fonds-objet à examiner.
9. Dispositif pour la mise en oeuvre du procédé selon la revendication 1, comportant un étage de balayage (3) pour balayer photoélectriquement par points successifs l'objet à examiner, un étage comparateur (8) qui compare les valeurs de réflectance obtenues par le balayage ponctuel de l'objet à examiner aux valeurs de réflectance correspondantes d'un fond et qui forme alors pour chaque paire de points d'image mutuellement correspondants de l'objet examiné et du fond la différence entre les valeurs de réflectance, et un étage d'interprétation (12), dans lequel les valeurs différentielles de chaque point d'image individuel sont soumises à une comparaison avec des valeurs de seuil, directement ou après traitement dans un étage de traitement (9­11), procédé caractérisé par le fait qu'il est prévu un étage d'analyse (18-21) qui, pouvant être activé pour une phase de préparation, constate pour chaque point d'image individuel les plus grandes valeurs différentielles positives et les plus grandes valeurs différentielles négatives qui se présentent à chaque fois dans des points d'image mutuellement correspondants pour un certain nombre de balayages, et qui mémorise pour l'étage d'interprétation
(12), en guise de valeur de seuil positive et de valeur de seuil négative, ces deux valeurs maximales ou bien deux valeurs dépassant absolument lesdites valeurs maximales d'une valeur constante, et par le fait que, lors de la phase d'examen consécutive à la phase de préparation, l'étage d'interprétation (12) compare les différences positives à la valeur de seuil positive et les différences négatives à la valeur de seuil négative.
10. Dispositif selon la revendication 8, caractérisé par le fait que l'étage d'analyse présente un étage (19) de sélection des valeurs maximales et à chaque fois une mémoire (20, 21) pour les deux valeurs maximales.
11. Dispositif selon la revendication 9 ou 10, caractérisé par le fait qu'il est prévu un étage de simulation (13 à 16) au moyen duquel, lors de la phase de préparation, il est possible de simuler certaines erreurs sur des produits imprimés, ou bien de simuler les produits imprimés eux- mêmes.
12. Dispositif selon la revendication 11, caractérisé par le fait que l'étage de simulation comprend. un indicateur (16) de variation de position pour simuler un décalage relatif entre un objet à examiner et un ou plusieurs fonds.
13. Dispositif selon la revendication 11 ou 12, caractérisé par le fait que l'étage de simulation comprend un indicateur ou émetteur de variation (15) et au moins un étage de conversion (13, 14) pour simuler des écarts de nuance.
EP79810177A 1978-12-18 1979-12-12 Procédé d'examen mécanique de la qualité d'impression d'une épreuve et dispositif pour sa mise en action Expired EP0012723B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT79810177T ATE1561T1 (de) 1978-12-18 1979-12-12 Verfahren zur maschinellen beurteilung der druckqualitaet eines druckerzeugnisses sowie vorrichtung zu dessen durchfuehrung.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH12832/78 1978-12-18
CH1283278 1978-12-18

Publications (2)

Publication Number Publication Date
EP0012723A1 EP0012723A1 (fr) 1980-06-25
EP0012723B1 true EP0012723B1 (fr) 1982-09-15

Family

ID=4386786

Family Applications (1)

Application Number Title Priority Date Filing Date
EP79810177A Expired EP0012723B1 (fr) 1978-12-18 1979-12-12 Procédé d'examen mécanique de la qualité d'impression d'une épreuve et dispositif pour sa mise en action

Country Status (6)

Country Link
US (1) US4303832A (fr)
EP (1) EP0012723B1 (fr)
JP (1) JPS5583840A (fr)
AT (1) ATE1561T1 (fr)
CA (1) CA1127868A (fr)
DE (1) DE2963696D1 (fr)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0067898B1 (fr) * 1981-06-22 1986-04-02 Kabushiki Kaisha Toshiba Système d'identification de billets de banque
JPS5829085A (ja) * 1981-07-24 1983-02-21 富士通株式会社 紙幣鑑別方式
US4545031A (en) 1981-09-17 1985-10-01 Kita Electrics Co., Ltd. Photo-electric apparatus for monitoring printed papers
US4587434A (en) * 1981-10-22 1986-05-06 Cubic Western Data Currency note validator
NL8202920A (nl) * 1982-07-20 1984-02-16 Tno Inrichting voor het herkennen en onderzoeken van bladvormige voorwerpen zoals bankbiljetten of dergelijke.
US4811408A (en) * 1987-11-13 1989-03-07 Light Signatures, Inc. Image dissecting document verification system
US4924507A (en) * 1988-02-11 1990-05-08 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Real-time optical multiple object recognition and tracking system and method
DE4005558A1 (de) * 1990-02-22 1991-09-19 Roland Man Druckmasch Verfahren zur prozessdiagnose einer rotationsdruckmaschine anhand von remissionen von vollton- und rastertonfeldern
US5912988A (en) * 1996-12-27 1999-06-15 Xytec Corporation Image processing method and apparatus for distortion compensation
JP3488603B2 (ja) * 1997-09-16 2004-01-19 株式会社東芝 電子透かしを利用したコピープロテクトシステム
DE102009023963A1 (de) * 2009-06-05 2010-12-09 Robert Bosch Gmbh Verfahren zum Bestimmen eines Qualitätsmaßes für ein von einer Bearbeitungsmaschine bearbeitetes Produkt
JP5678595B2 (ja) * 2010-11-15 2015-03-04 株式会社リコー 検査装置、検査方法、検査プログラム、及びそのプログラムを記録した記録媒体
JP2019203690A (ja) * 2016-09-26 2019-11-28 株式会社日立産機システム 印字検査装置および印字検査方法
CN110501335B (zh) * 2019-08-23 2021-10-26 北京印刷学院 一种星标印品质量的检测与表征方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3275985A (en) * 1962-06-14 1966-09-27 Gen Dynamics Corp Pattern recognition systems using digital logic
AT311097B (de) * 1972-03-21 1973-10-25 Gao Ges Automation Org Verfahren zur Messung des Verschmutzungsgrades von Banknoten od.dgl.
FR2196494B1 (fr) * 1972-07-28 1979-08-03 Titn
DE2650706A1 (de) * 1975-11-06 1977-05-18 Eduard Dr Ing Krochmann Verfahren und einrichtung zur automatischen fotoelektrischen durchfuehrung des vergleichs von ebenen werkstuecken, bedruckten blaettern oder urkunden mit einem urmuster
CH615031A5 (fr) * 1976-04-30 1979-12-28 Gretag Ag
IT1068657B (it) * 1976-11-03 1985-03-21 Nuovo Pignone Spa Metodo perfezionato per il controllo di banconote ed apparecchiature per realizzarlo
US4179685A (en) * 1976-11-08 1979-12-18 Abbott Coin Counter Company, Inc. Automatic currency identification system
GB1592449A (en) * 1976-12-01 1981-07-08 Ferranti Ltd Optical inspection apparatus
JPS5379594A (en) * 1976-12-24 1978-07-14 Hitachi Ltd Surface inspecting apparatus of objects

Also Published As

Publication number Publication date
DE2963696D1 (en) 1982-11-04
EP0012723A1 (fr) 1980-06-25
JPS5583840A (en) 1980-06-24
CA1127868A (fr) 1982-07-20
US4303832A (en) 1981-12-01
ATE1561T1 (de) 1982-09-15

Similar Documents

Publication Publication Date Title
EP0012724B1 (fr) Procédé mécanisé d'estimation de la qualité d'impression d'un produit imprimé ainsi que dispositf pour sa mise en oeuvre
DE2620765C2 (fr)
DE10314071B3 (de) Verfahren zur qualitativen Beurteilung eines Materials mit mindestens einem Erkennungsmerkmal
DE2853509C2 (de) Einrichtung zur Herstellung von Farbauszügen
DE4012608C2 (fr)
EP0012723B1 (fr) Procédé d'examen mécanique de la qualité d'impression d'une épreuve et dispositif pour sa mise en action
DE2620611C2 (fr)
EP0020494A1 (fr) Procede de reproduction de modeles originaux qui sont explores, en ce qui concerne leur teneur en couleur, selon un procede a trois composantes.
EP0475897B1 (fr) Méthode pour la production de copies photographiques en couleur
DE2853511A1 (de) Verfahren zur herstellung von farbauszuegen
EP1578609B1 (fr) Procede et dispositif de controle en temps reel d'images imprimees
DE102017105704B3 (de) Verfahren zur Überprüfung einer Druckform, insbesondere eines Tiefdruckzylinders
DE102019208257A1 (de) Druckqualitätsanalyse mit neuronalen Netzen
EP0950310A1 (fr) Comment determiner les donnees geometriques de documents soumis au scanner
DE3831688C2 (fr)
WO2005106792A2 (fr) Procede pour comparer une image avec au moins une image reference
DE3110517C2 (de) Verfahren und Schaltungsanordnung zur partiellen elektronischen Korrektur der Strukturierung bei der Farbbildreproduktion
DE2853510C2 (de) Einrichtung zur Herstellung von Farbauszügen insbesondere für den Textildruck
WO2005013206A1 (fr) Procede de specification de l'impression et du controle de la qualite d'impression de papiers de valeur
DE19914913A1 (de) Verfahren zur Ermittlung von Überfüllungsparametern
DE2620767A1 (de) Verfahren und vorrichtung zur pruefung der druckqualitaet von druckbildern, insbesondere banknoten
DE102008033171A1 (de) Verfahren und Vorrichtung zur Inline-Qualitätssicherung an Druckmaschinen
DE4023314A1 (de) Verfahren zur kontrolle und steuerung der qualitaet von druckerzeugnissen
DE2857830C2 (de) Einrichtung zur Herstellung von Farbauszügen
DE1447945C3 (de) Schaltung zur elektronischen Herstellung korrigierter Farbauszüge

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed
AK Designated contracting states

Designated state(s): AT CH DE FR GB IT NL

ITF It: translation for a ep patent filed

Owner name: FIAMMENGHI - DOMENIGHETTI

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT CH DE FR GB IT NL

REF Corresponds to:

Ref document number: 1561

Country of ref document: AT

Date of ref document: 19820915

Kind code of ref document: T

REF Corresponds to:

Ref document number: 2963696

Country of ref document: DE

Date of ref document: 19821104

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19831104

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19841107

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19841129

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19861125

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19871231

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19881212

Ref country code: AT

Effective date: 19881212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19890701

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19890831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19890901

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19891231

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT