EP0009809A1 - Verfahren zur Erzeugung von Olefinen - Google Patents
Verfahren zur Erzeugung von Olefinen Download PDFInfo
- Publication number
- EP0009809A1 EP0009809A1 EP79103767A EP79103767A EP0009809A1 EP 0009809 A1 EP0009809 A1 EP 0009809A1 EP 79103767 A EP79103767 A EP 79103767A EP 79103767 A EP79103767 A EP 79103767A EP 0009809 A1 EP0009809 A1 EP 0009809A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- fraction
- components
- vacuum
- boiling
- vacuum residue
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 22
- 239000000203 mixture Substances 0.000 claims abstract description 15
- 239000010426 asphalt Substances 0.000 claims abstract description 12
- 238000004227 thermal cracking Methods 0.000 claims abstract description 6
- 238000000638 solvent extraction Methods 0.000 claims abstract description 3
- 238000005984 hydrogenation reaction Methods 0.000 claims description 36
- 238000009835 boiling Methods 0.000 claims description 32
- 229930195733 hydrocarbon Natural products 0.000 claims description 24
- 150000002430 hydrocarbons Chemical class 0.000 claims description 18
- 239000004215 Carbon black (E152) Substances 0.000 claims description 15
- -1 C 6 hydrocarbons Chemical class 0.000 claims description 6
- 238000005292 vacuum distillation Methods 0.000 claims description 4
- 238000006243 chemical reaction Methods 0.000 claims description 3
- 229910001385 heavy metal Inorganic materials 0.000 claims description 3
- 230000004992 fission Effects 0.000 claims description 2
- 239000012454 non-polar solvent Substances 0.000 claims description 2
- 239000002904 solvent Substances 0.000 claims description 2
- 238000000926 separation method Methods 0.000 claims 1
- 150000001336 alkenes Chemical class 0.000 abstract description 5
- 238000002156 mixing Methods 0.000 abstract description 3
- 238000004519 manufacturing process Methods 0.000 abstract description 2
- 238000009903 catalytic hydrogenation reaction Methods 0.000 abstract 1
- 239000000047 product Substances 0.000 description 24
- 239000003921 oil Substances 0.000 description 15
- 239000007789 gas Substances 0.000 description 13
- 238000003776 cleavage reaction Methods 0.000 description 11
- 230000007017 scission Effects 0.000 description 11
- 239000003502 gasoline Substances 0.000 description 7
- 239000003054 catalyst Substances 0.000 description 6
- 230000002349 favourable effect Effects 0.000 description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 238000000605 extraction Methods 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 238000006317 isomerization reaction Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000011593 sulfur Substances 0.000 description 4
- 229910052717 sulfur Inorganic materials 0.000 description 4
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- 239000010779 crude oil Substances 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 238000004517 catalytic hydrocracking Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000002283 diesel fuel Substances 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000010626 work up procedure Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G69/00—Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process
- C10G69/02—Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only
- C10G69/06—Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only including at least one step of thermal cracking in the absence of hydrogen
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/10—Feedstock materials
- C10G2300/107—Atmospheric residues having a boiling point of at least about 538 °C
Definitions
- the invention relates to a method for splitting hydrocarbon mixtures with a hydrogenating treatment and a subsequent thermal splitting.
- Light feedstocks that is to say hydrocarbons with a boiling point below 200 ° C., such as naphtha, are particularly suitable for the cracking of hydrocarbons for the production of olefins. They lead to high splitting yields and result in few undesirable by-products.
- DE-OS 21 64 951 describes a process in which the insert is catalytically hydrogenated before it is thermally cleaved. This pretreatment reduces the aromatic compounds in the feed, which essentially lead to the undesired cleavage products. In addition, the feed material is desulfurized.
- the invention has for its object to design a method of the type mentioned so that it can be operated under particularly favorable economic conditions.
- the hydrocarbon mixture is an atmospheric residue oil, from which a vacuum gas oil and a vacuum residue are formed in a vacuum distillation, that the asphalt components are separated from the vacuum residue and the asphalt-free vacuum residue is blended with the vacuum gas oil and fed to the hydrogenating treatment, and that the hydrogenation product is at least partially thermally split.
- the asphalt components are separated by means of solvent extraction.
- the extracted vacuum residue contains up to 40% by weight of paraffinic and naphthenic components which give high olefin yields during thermal cleavage.
- This fraction also has aromatics, essentially polyaromatics, which can be processed to cleavable components in the course of a hydrogenation.
- extraction residue which can be used as bitumen or can also serve as a hydrogen source for the hydrogenation if it is converted to a gas mixture via partial oxidation.
- the extraction of the vacuum residue can be carried out with non-polar solvents.
- C 3 to C 6 hydrocarbons are used for this.
- the yield of extracted vacuum residue, but also the content of heavy metal, asphalt, sulfur and nitrogen in this fraction increases with the number of carbon atoms in the solvent hydrocarbon used.
- the quality of the extracted vacuum residue after its blending with the vacuum gas oil determining the choice of the extracting agent for the particular hydrocarbon mixture used.
- the content of asphalt components and heavy metals should approximately correspond to the maximum permissible content of these components, below which the hydrogenation for normal catalyst run times (1 to 2 years) does not yet have any significant adverse effects on the hydrogenation reactions.
- permissible maximum levels are, for example, 0.05% by weight for asphalt components and in the order of magnitude of 2 to 3 ppm by weight for vanadium.
- the hydrogenating treatment of the blend of the vacuum gas oil and the extracted vacuum residue is carried out under reaction conditions in which only some of the hydrocarbons are converted into low-boiling products.
- the hydrogenation product is then broken down into a light and a heavy fraction, with only the heavy fraction being fed to the thermal breakdown.
- This embodiment of the process is based on the knowledge that not only the heavy constituents, in particular the polyaromatic compounds, are hydrogenated or hydrolyzed in the hydrogenation of a heavy hydrocarbon mixture, but also that isomerization of n-alkanes and n-alkyl chains also takes place.
- a product suitable for thermal cleavage is produced on the one hand, but on the other hand, in the isomerization, which increases with increasing hydrocracking sharpness during the hydrogenation, products are formed at the same time which only lead to slight increases in the cleavage yields and because of their high hydrogen consumption limit the economics of the process.
- This procedure has the advantage, among other things, that the thermal cleavage can be carried out under particularly favorable conditions. Because the gap insert has a limited boiling range compared to the known method of DE-OS 21 64 951 the gap conditions can be optimized better. In addition to the high yield of valuable products in the thermal cleavage of the heavy boiling section, this procedure also surprisingly lowers the proportion of pyrolysis residues which are difficult to utilize and boil above 200 ° C.
- the separated low-boiling components of the hydrogenation product consist of gasoline fractions which are suitable as low-sulfur gasoline or turbine fuels or can be blended with other refined products suitable as fuel. In addition - if these components are not already left in the heavy fraction - middle distillates are obtained which meet the requirements for heating oil of the specification EL and. of diesel fuel are sufficient. These fractions are particularly valuable due to their low sulfur content. They can also be blended with other sulfur-rich products in order to upgrade them economically.
- the quality of the hydrogenation product depends essentially on the reaction conditions for 3 hydrogenation. It is advantageous to control the hydrogenation in such a way that the undesired polyaromatic compounds of the hydrocarbon mixture used are largely hydrogenated, whereas the content of monoaromatic compounds is hardly changed. Since most of the monoaromatics get into the low-boiling fraction when the hydrogenation product is broken down, its motor properties are improved. In addition, hydrogen is not unnecessarily used for the monoaromatic hydrogenation in such a process.
- a favorable hydrogenation product results, for example, from the blending of vacuum gas oil and the extracted vacuum residue during hydrogenation under mild conditions, i.e. at temperatures between 350 and 400 ° C, a pressure between 80 and 150 bar and at space velocities of more than 0.7 1/1 catalyst material and hour when using conventional hydrogenation or hydrocracking catalysts.
- the cut is carried out at 200 ° C, a gasoline fraction results, which in turn can be broken down into a light gasoline and a heavy gasoline fraction.
- the cut below 340 ° C also contains kerosene and heating oil of the specification EL or diesel fuel.
- the vacuum residue was then treated with an extracting agent which consisted of 35 mol% of propane and 65 mol% of butane.
- the process was carried out in a countercurrent extraction column under a pressure of 30 bar, the temperatures in the sump being 45 ° C. and in the top of the column 75 ° C.
- This fraction was then hydrogenated.
- the mixture was passed at a pressure of 80 bar and at a temperature of 400 ° C at an hourly space velocity of 0.8 liters of hydrogenation per liter of catalyst material over a catalyst which contained nickel and molybdenum on an acidic carrier as hydrogenation-active components.
- a catalyst which contained nickel and molybdenum on an acidic carrier as hydrogenation-active components.
- 275 Nm 3 of hydrogen were consumed per ton of hydrogenation insert.
- the hydrogenation product contained 2.2% by weight of H 2 S, 0.1% by weight of NH 3 , 2.4% by weight of C 1 -e 4 hydrocarbons, and 30.4% by weight of a gasoline fraction with liquid constituents C 5 - and heavier hydrocarbons with a boiling end of 200 ° C, 45.1% by weight of a fraction boiling between 200 and 340 ° C and 19.8% by weight of components boiling above 340 ° C.
- the insert was diluted with 0.8 parts by weight of water vapor per part by weight of hydrocarbon and with a residence time of 0.2 seconds. passed through the reactor.
- the outlet temperature was 830 ° C.
- the cleavage product contained valuable components of 9.5% by weight of methane, 28.1% by weight of ethylene and 14.8% by weight of propylene.
- the residue fraction boiling above 200 ° C only made up 12.3% by weight of the cracking insert.
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Abstract
Description
- Die Erfindung betrifft ein Verfahren zum Spalten von Kohlenwasserstoffgemischen mit einer hydrierenden Behandlung und einer nachfolgenden thermischen Spaltung.
- Für die Spaltung von Kohlenwasserstoffen zur Herstellung von Olefinen sind leichte Einsatzmaterialien, das heißt, Kohlenwasserstoffe mit einem Siedepunkt unterhalb von 200 °C, wie beispielsweise Naphtha, besonders geeignet. Sie führen zu hohen Spaltausbeuten und ergeben wenig unerwünschte Nebenprodukte.
- Der große Bedarf derartiger günstiger Spalteinsätze kann zu einer Verknappung oder Preissteigerung dieser Stoffe führen. Es wird deshalb seit einiger Zeit der Versuch unternommen, Verfahren zu entwickeln, die auch die günstige Verwertung eines höher siedenden Einsatzmaterials erlauben.
- Die Verwendung höher siedender Einsätze führt grundsätzlich zu geringeren Ausbeuten an wertvollen Spaltprodukten, während gleichzeitig in zunehmendem Maße eine nur schwer verwertbare über 200 °C siedende Kohlenwasserstofffraktion anfällt. Danben entstehen noch weitere Schwierigkeiten dadurch, daß höher siedende Einsätze zu verstärkten Koks- und Teerbildungen in der Spaltanlage führen. Diese Produkte, die sich an den Wänden der Leitungselemente, beispielsweise Rohrleitungen und Wärmetauscher, ablagern, bedingen damit eine Verschlechterung der Wärmeübertragung und führen außerdem zu Querschnittsverengungen. Es ist deshalb erforderlich, eine gegenüber einer Verwendung leichter Kohlenwasserstoffe häufigere Entfernung dieser Ablagerungen durchzuführen.
- Zur Lösung dieses Problems ist in der DE-OS 21 64 951 ein Verfahren beschrieben, bei dem der Einsatz vor seiner thermischen Spaltung katalytisch hydriert wird. Durch diese Vorbehandlung werden die aromatischen VerbindungenTim Einsatzmaterial, die im wesentlichen zu den unerwünschten Spaltprodukten führen, verringert. Darüber hinaus findet auch eine Entschwefelung des Einsatzmaterials statt.
- Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren der genannten Art so auszugestalten, daß es unter besonders günstigen wirtschaftlichen Bedingungen betrieben werden kann.
- Diese Aufgabe wird dadurch gelöst, daß das Kohlenwasserstoffgemisch ein atmosphärisches Rückstandsöl ist, aus dem in einer Vakuumdestillation ein Vakuumgasöl und ein Vakuumrückstand gebildet werden, daß aus dem Vakuumrückstand die Asphaltbestandteile abgetrennt und der asphaltfreie Vakuumrückstand mit dem Vakuumgasöl verschnitten und der hydrierenden Behandlung zugeführt wird und daß das Hydrierprodukt mindestens teilweise thermisch gespalten wird.
- Während bisher für die thermische Spaltung üblicherweise nur atmosphärische Siedeschnitte des Rohöls verwendet wurden, zeigt das erfindungsgemäße Verfahren eine Möglichkeit auf, auch die noch schwereren Rohölkomponenten für die thermische Spaltung zu nutzen.
- Zur Aufarbeitung des Vakuumrückstandes ist es erforderlich, zunächst die Asphaltbestandteile aus dieser Fraktion zu entfernen, da diese Komponenten sich anderenfalls in starkem Maße an Anlagenteilen und auf dem Hydrierkatalysator absetzen würden.
- Gemäß einer besonderen Ausbildung des Erfindungsgedankens erfolgt die Abtrennung der Asphaltbestandteile mittels einer Lösungsmittelextraktion.
- Es hat sich gezeigt, daß extrahierter Vakuumrückstand bis zu 40 Gew-% paraffinische und naphthenische Komponenten enthält, die bei der thermischen Spaltung hohe Olefinausbeuten liefern. Weiterhin weist diese Fraktion Aromaten, im wesentlichen Polyaromaten auf, die im Rahmen einer Hydrierung zu spaltbaren Komponenten aufbereitet werden können.
- Aufgrund der chemischen Struktur des extrahierten Vakuumrückstands erscheint es erstrebenswert, zur Maximierung der Spaltausbeute bei minimalem Rohstoffeinsatz auch diese Fraktion zu nutzen. Wie in Versuchen festgestellt wurde, ergeben sich weder in der Hydrierung noch in der nachfolgenden thermischen Spaltung größere technische Probleme, die auf den hohen Siedebeginn des extrahierten Vakuumrückstands zurückzuführen sind. Vielmehr hat sich gezeigt, daß bei einer Vermischung dieser Fraktion mit dem bei der Vakuumdestillation gewonnen Vakummgasöl insgesamt eine Fraktion entsteht, deren weitere Verarbeitung unter im wesentlichen üblichen Bedingungen erfolgen kann. Lediglich bei der thermischen Spaltung kann es erforderlich sein, mit höheren Dampverdünnungen als bei leichten Einsätzen zu arbeiten.
- Bei der Behandlung des Vakuumrückstands fällt ein Extraktionsrückstand an, der als Bitumen verwendbar ist oder auch als Wasserstoffquelle für die Hydrierung dienen kann, falls er über eine partielle Oxidation zu einem Gasgemisch umgesetzt wird.
- Die .Extraktion des Vakuumrückstands kann mit unpolaren Lösungsmitteln durchgeführt werden. In einer günstigen Weiterbildung des erfindungsgemäßen Verfahrens werden hierzu C3- bis C6-Kohlenwasserstoffe verwendet. Dabei nimmt die Ausbeute an extrahiertem Vakuumrückstand, aber auch der Gehalt an Schwermetall, Asphaltstoffen, Schwefel und Stickstoff in dieser Fraktion mit der Zahl der Kohlenstoffatome im verwendeten Lösungsmittel-Kohlenwasserstoff zu.
- Es ist somit möglich, durch die Wahl des Extraktionsmittels die Qualität des extrahierten Vakuumrückstands zu beeinflussen. Hiervon wird in weiterer Ausbildung des erfindungsgemäßen Verfahrens Gebrauch gemacht, wobei die Qualität des extrahierten Vakuumrückstands nach deren Verschnitt mit dem Vakuumgasöl die Wahl des Extraktionsmittels für das jeweilige Einsatzkohlenwasserstoffgemisch bestimmt. Nach dem Verschnitt der beiden Fraktionen soll der Gehalt an Asphaltbestandteilen und Schwermetallen etwa dem zulässigen Höchstgehalt dieser Komponenten entsprechen, unter dem bei der Hydrierung für übliche Katalysatorlaufzeiten (1 bis 2 Jahre) noch keine wesentlichen Beeinträchtigungen der Hydrierreaktionen entstehen. Derartige zulässige Höchstgehalte liegen beispielsweise bei Asphaltbestandteilen um 0,05 Gew-% und bei Vanadium in der Größenordnung von 2 bis 3 Gew.ppm.
- In einer günstigen Weiterbildung des erfindungsgemäßen Verfahrens wird die hydrierende Behandlung des Verschnitts des Vakuumgasöls und des extrahierten Vakuumrückstands unter Reaktionsbedingungen durchgeführt, bei denen nur ein Teil der Kohlenwasserstoffe zu leicht siedenden Produkten umgesetzt werden. Anschließend wird dann das Hydrierprodukt in eine leichte und eine schwere Fraktion zerlegt, wobei nur die schwere Fraktion der thermischen Spaltung zugeführt wird.
- Diese Ausgestaltung des Verfahrens basiert auf der Erkenntnis, daß bei der Hydrierung eines schweren Kohlerwasserstoffgemisches nicht nur die schweren Bestandteile, insbesondere die polyaromatischen Verbindungen, hydriert oder hydrierend gespalten werden, sondern daß daneben auch eine Isomerisierung von n-Alkanen und n-Alkylketten erfolgt. Bei der Hydrierung wird damit einerseits zwar erst ein für die thermische Spaltung geeignetes Produkt erzeugt, andererseits werden aber bei der Isomerisierung, die mit steigender Hydrocrackschärfe bei der Hydrierung zunimmt, gleichzeitig Produkte gebildet, die nur zu geringen Steigerungen der Spaltausbeuten führen und wegen ihres hohen Wasserstoffverbrauchs die Wirtschaftlichkeit des Verfahrens begrenzen.
- Es wurde deshalb untersucht, ob sich bei einer Zerlegung des Hydrierprodukts in Fraktionen unterschiedlicher Siedebereiche in den einzelnen Fraktionen eine Verteilung der Komponenten erreichen läßt, bei der die eine Fraktion im Vergleich zum unzerlegten Hydrierprodukt einen verbesserten Einsatz für die thermische Spaltung und die andere Fraktion günstige Eigenschaften für einen anderen Verwertungszweck aufweist.
- Dabei wurde gefunden, daß der Isomerisierungsgrad der höhersiedenden Bestandteile des Hydrierprodukts im Vergleich zu dem der tiefersiedenden Komponenten unerwartet gering ist. Nach einer Abtrennung der leicht siedenden Komponenten führt der verbleibende schwere Siedeschnitt bei der thermischen Spaltung zu überraschend hohen Olefinausbeuten, die denen von Naphtha gleichkommen.
- Diese Verfahrensführung weist unter anderem den Vorteil auf, daß die thermische Spaltung unter besonders günstigen Bedingungen durchgeführt werden kann. Weil nämlich der Spalteinsatz einen gegenüber dem bekannten Verfahren der DE-OS 21 64 951 begrenzten Siedebereich hat, lassen sich die Spaltbedingungen besser optimieren. Darüber hinaus ist bei dieser Verfahrensweise neben der hohen Ausbeute an wertvollen Produkten bei der thermischen Spaltung des schweren Siedeschnitts auch der Anteil der nur schwer verwertbaren, über 200 °C siedenden Pyrolyserückstände überraschend gering.
- Die Ursache der hohen Spaltausbeuten wird in der chemischen Struktur dieser Fraktion gesehen, die im wesentlichen aus gering isomerisierten Paraffinen und aus Naphthenen besteht, die beide zu hohen Olefinausbeuten führen. Um den Anteil dieser Bestandteile in der hochsiedenden Fraktion des Hydrierprodukts möglichst groß zu halten, ist es günstig, die Hydrierung unter milden Bedingungen durchzuführen. Dann werden nämlich die hochsiedenden Paraffine und Naphthene nur zu einem geringen Teil isomerisiert und damit weitgehend unverändert belassen, während aus den polyaromatischen Verbindungen, die beispielsweise im Verschnitt aus Vakuumgasöl und extrahiertem Vakuumrückstand bis zu 50 Gew-% ausmachen, hauptsächlich Naphthene erzeugt werden.
- Die abgetrennten niedrigsiedenden Komponenten des Hydrierprodukts, die nicht der thermischen Spaltung zugeführt werden, bestehen aus Benzinfraktionen, die sich als schwefelarme Vergaser- oder Turbinenkraftstoffe eignen oder mit anderen als Kraftstoff geeigneten Raffinerieerzeugnissen verschnitten werden können. Daneben fallen - sofern diese Komponenten nicht bereits in der schweren Fraktion belassen werden - Mitteldestillate an, die den Anforderungen an Heizöl der Spezifikation EL und. an Dieseltreibstoff genügen. Diese Fraktionen sind durch ihren geringen Schwefelgehalt besonders wertvoll. Sie können aber auch mit anderen schwefelreichen Erzeugnissen verschnitten werden, um diese wirtschaftlich aufzuwerten.
- Selbstverständlich hängt die Qualität des Hydrierprodukts wesentlich von den Reaktionsbedingungen 3er Hydrierung ab. Dabei ist es günstig, die Hydrierung so zu steuern, daß die unerwünschten polyaromatischen Verbindungen des Einsatz-Kohlenwasserstoffgemisches weitgehend hydriert werden, dagegen der Gehalt an monoaromatischen Verbindungen kaum verändert wird. Da der größte enteil der Monoaromaten bei der Zerlegung des Hydrierprodukts in die leicht siedende Fraktion gelangt, werden dessen motorische Eigenschaften verbessert. Außerdem wird bei einer derartigen Verfahrensführung nicht unnötig Wasserstoff für die Monoaromatenhydrierung verbraucht.
- Ein günstiges Hydrierprodukt ergibt sich beispielsweise aus dem Verschnitt von Vakuumgasöl und extrahiertem Vakuumrückstand bei einer Hydrierung unter milden Bedingungen, d.h. bei Temperaturen zwischen 350 und 400 °C, einem Druck zwischen 80 und 150 bar und bei Raumgeschwindigkeiten von mehr als 0,7 1/1 Katalysatormaterial und Stunde bei der Verwendung von üblichen Hydrier- oder Hydrocrackkatalysatoren.
- Bei einer derartigen Hydrierung wird .stets auch ein Teil der im Kohlenwasserstoffgemisch enthaltenen Paraffine und Naphthene umgesetzt, d.h. isomerisiert oder hydrierend gespalten. Der Hauptanteil dieser Produkte gelangt bei der Zerlegung des Hydrierprodukts in die niedrig siedende Fraktion und verbessert aufgrund der Isomerisierung deren motorische Eigenschaften.
- Es hat sich als günstig erwiesen, in die Fraktion mit den tiefsiedenden Bestandteilen entweder die unter 200 °C oder die unter 340 °C siedenden Bestandteile aufzunehmen. Wird der Schnitt bei 200 °C durchgeführt, ergibt sich eine Benzinfraktion, die ihrerseits wiederum in eine Leichtbenzin- und in eine Schwerbenzinfraktion zerlegt werden kann. Der Schnitt unter 340 °C enthält darüber hinaus noch Kerosin und Heizöl der Spezifikation EL bzw. Dieselkraftstoff.
- Nachfolgend wird das erfindungsgemäße Verfahren anhand eines Beispiels näher erläutert.
- Ausgegangen wurde von einem Rohöl, von dem nach Abtrennung der atmosphärischen Siedeschnitte 51 Gew-% als atmosphärischer Rückstand anfielen. Davon waren 29 Gew-% Vakuumgasöl und 22 Gew-% Vakuumrückstand. Diese beiden Fraktionen wurden in einer Vakuumdestillation isoliert. Charakteristische Eigenschaften des dabei gewonnenen Vakuumgasöls und des Vakuumrückstands sind in Tabelle 1, Spalten (1) (Vakuumgasöl) bzw. (2) (Vakuumrückstand) enthalten.
- -Der Vakuumrückstand wurde anschließend mit einem Extraktionsmittel behandelt, das zu 35 Mol-% aus Propan und 65 Mol-% aus Butan bestand. Es wurde in einer Gegenstromextraktionssäule unter einem Druck von 30 bar gearbeitet, wobei die Temperaturen im Sumpf 45 °C und im Kopf der Säule 75 °C betrugen.
- Unter diesen Bedingungen wurde aus dem Vakuumrückstand ein Extraktionsrückstand gebildet, der 41 Gew-% ausmachte, während 59 Gew-% als extrahierter Vakuumrückstand abgezogen und mit dem Vakuumgasöl verschnitten wurden. Der Verschnitt, der zu 69 Gew-% aus Vakuumgasöl und 31 Gew-% aus extrahiertem Vakuumrückstand zusammengesetzt ist, weist charakteristische Eigenschaften auf, die in Tabelle 1, Spalte (3) angegeben sind.
- Diese Fraktion wurde anschließend hydriert. Dazu wurde das Gemisch bei einem Druck von 80 bar und bei einer Temperatur von 400 °C mit einer stündlichen Raumgeschwindigkeit von 0,8 Liter Hydriereinsatz je Liter Katalysatormaterial über einen Katalysator geführt, der als hydrierwirksame Komponenten Nickel und Molybdän auf einem sauren Träger enthielt. Bei der Hydrierung wurden je Tonne Hydriereinsatz 275 Nm3 Wasserstoff verbraucht.
- Das Hydrierprodukt enthielt 2,2 Gew-% H2S, 0,1 Gew-%- NH3, 2,4 Gew-% C1-e4-Kohlenwasserstoffe, ferner an flüssigen Bestandteilen 30,4 Gew-% einer Benzinfraktion mit C5- und schwereren Kohlenwasserstoffen mit einem Siedeende von 200 °C, 45,1-Gew-% einer zwischen 200 und 340 °C siedenden Fraktion und 19,8 Gew-% über 340 °C siedende Komponenten.
- Die wesentlichen Eigenschaften der Benzinfraktion (C5 -200 °C) sind in Tabelle 2, Spalte (1), angegeben.
-
- Zur Spaltung in einem beheizten Spaltrohr wurde der Einsatz mit 0,8 Gewichtsteilen Wasserdampf je Gewichtsteil Kohlenwasserstoff verdünnt und mit einer Verweilzeit von 0,2 Sec. durch den Reaktor geführt. Die Austrittstemperatur betrug 830 °C. Das Spaltprodukt enthielt an wertvollen Komponenten 9,5 Gew-% Methan, 28,1 Gew-% Äthylen und 14,8 Gew-% Propylen. Die über 200 °C siedende Rückstandsfraktion machte lediglich 12,3 Gew-% des Spalteinsatzes aus.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT79103767T ATE678T1 (de) | 1978-10-06 | 1979-10-03 | Verfahren zum spalten von schweren kohlenwasserstoffen. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE2843793 | 1978-10-06 | ||
DE19782843793 DE2843793A1 (de) | 1978-10-06 | 1978-10-06 | Verfahren zum spalten von schweren kohlenwasserstoffen |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0009809A1 true EP0009809A1 (de) | 1980-04-16 |
EP0009809B1 EP0009809B1 (de) | 1982-02-10 |
Family
ID=6051645
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP79103767A Expired EP0009809B1 (de) | 1978-10-06 | 1979-10-03 | Verfahren zur Erzeugung von Olefinen |
Country Status (5)
Country | Link |
---|---|
US (1) | US4257871A (de) |
EP (1) | EP0009809B1 (de) |
JP (1) | JPS5550089A (de) |
AT (1) | ATE678T1 (de) |
DE (2) | DE2843793A1 (de) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2843793A1 (de) * | 1978-10-06 | 1980-04-24 | Linde Ag | Verfahren zum spalten von schweren kohlenwasserstoffen |
US10704007B2 (en) | 2013-12-06 | 2020-07-07 | Basf Se | Composition and method of forming the same |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57212294A (en) * | 1981-06-25 | 1982-12-27 | Asahi Chem Ind Co Ltd | Pyrolysis of heavy hydrocarbon oil |
NL8105660A (nl) * | 1981-12-16 | 1983-07-18 | Shell Int Research | Werkwijze voor de bereiding van koolwaterstofoliedestillaten. |
JPS6072989A (ja) * | 1983-09-30 | 1985-04-25 | Res Assoc Residual Oil Process<Rarop> | 重質油の熱分解方法 |
US4522710A (en) * | 1983-12-09 | 1985-06-11 | Exxon Research & Engineering Co. | Method for increasing deasphalted oil production |
CA2104044C (en) * | 1992-08-25 | 2004-11-02 | Johan W. Gosselink | Process for the preparation of lower olefins |
ZA989153B (en) | 1997-10-15 | 1999-05-10 | Equistar Chem Lp | Method of producing olefins and feedstocks for use in olefin production from petroleum residua which have low pentane insolubles and high hydrogen content |
WO2007047657A1 (en) * | 2005-10-20 | 2007-04-26 | Exxonmobil Chemical Patents Inc. | Hydrocarbon resid processing |
WO2007117919A2 (en) | 2006-03-29 | 2007-10-18 | Shell Oil Company | Improved process for producing lower olefins from heavy hydrocarbon feedstock utilizing two vapor/liquid separators |
KR101356947B1 (ko) * | 2006-03-29 | 2014-02-06 | 셀 인터나쵸나아레 레사아치 마아츠샤피 비이부이 | 저급 올레핀의 생산방법 |
US7815791B2 (en) * | 2008-04-30 | 2010-10-19 | Exxonmobil Chemical Patents Inc. | Process and apparatus for using steam cracked tar as steam cracker feed |
US9458390B2 (en) * | 2009-07-01 | 2016-10-04 | Exxonmobil Chemical Patents Inc. | Process and system for preparation of hydrocarbon feedstocks for catalytic cracking |
WO2011090532A1 (en) | 2010-01-22 | 2011-07-28 | Exxonmobil Chemical Patents Inc. | Integrated process and system for steam cracking and catalytic hydrovisbreaking with catalyst recycle |
US8399729B2 (en) | 2010-07-09 | 2013-03-19 | Exxonmobil Chemical Patents Inc. | Integrated process for steam cracking |
US20110180456A1 (en) * | 2010-01-22 | 2011-07-28 | Stephen Mark Davis | Integrated Process and System for Steam Cracking and Catalytic Hydrovisbreaking with Catalyst Recycle |
US8361311B2 (en) | 2010-07-09 | 2013-01-29 | Exxonmobil Chemical Patents Inc. | Integrated vacuum resid to chemicals conversion process |
SG185809A1 (en) | 2010-07-09 | 2013-01-30 | Exxonmobil Chem Patents Inc | Integrated vacuum resid to chemicals coversion process |
WO2012005861A1 (en) | 2010-07-09 | 2012-01-12 | Exxonmobil Chemical Patents Inc. | Integrated process for steam cracking |
US9181146B2 (en) | 2010-12-10 | 2015-11-10 | Exxonmobil Chemical Patents Inc. | Process for the production of xylenes and light olefins |
US8921633B2 (en) | 2012-05-07 | 2014-12-30 | Exxonmobil Chemical Patents Inc. | Process for the production of xylenes and light olefins |
US9181147B2 (en) | 2012-05-07 | 2015-11-10 | Exxonmobil Chemical Patents Inc. | Process for the production of xylenes and light olefins |
US8937205B2 (en) | 2012-05-07 | 2015-01-20 | Exxonmobil Chemical Patents Inc. | Process for the production of xylenes |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3748261A (en) * | 1971-12-14 | 1973-07-24 | Universal Oil Prod Co | Two-stage desulfurization with solvent deasphalting between stages |
FR2205566A1 (de) * | 1972-11-08 | 1974-05-31 | Bp Chemical Ltd | |
US3855113A (en) * | 1972-12-21 | 1974-12-17 | Chevron Res | Integrated process combining hydrofining and steam cracking |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2871182A (en) * | 1956-08-17 | 1959-01-27 | Socony Mobil Oil Co Inc | Hydrogenation and coking of heavy petroleum fractions |
US3288703A (en) * | 1964-01-02 | 1966-11-29 | Chevron Res | Residuum conversion process to obtain lower boiling products by hydrocaracking |
FR1600622A (de) * | 1968-05-10 | 1970-07-27 | ||
US3720729A (en) * | 1970-11-02 | 1973-03-13 | Lummus Co | Pyrolysis of hydrotreated feedstocks |
GB1361671A (en) * | 1971-01-06 | 1974-07-30 | Bp Chem Int Ltd | Process for the production of gaseous olefins from petroleum distillate feedstocks |
FR2380337A1 (fr) * | 1977-02-11 | 1978-09-08 | Inst Francais Du Petrole | Procede de vapocraquage de charges lourdes precede d'un hydrotraitement |
DE2721504A1 (de) * | 1977-05-12 | 1978-11-16 | Linde Ag | Verfahren zur herstellung von olefinen |
US4167533A (en) * | 1978-04-07 | 1979-09-11 | Uop Inc. | Co-production of ethylene and benzene |
DE2843793A1 (de) * | 1978-10-06 | 1980-04-24 | Linde Ag | Verfahren zum spalten von schweren kohlenwasserstoffen |
-
1978
- 1978-10-06 DE DE19782843793 patent/DE2843793A1/de not_active Withdrawn
-
1979
- 1979-10-01 JP JP12670179A patent/JPS5550089A/ja active Pending
- 1979-10-03 DE DE7979103767T patent/DE2962096D1/de not_active Expired
- 1979-10-03 EP EP79103767A patent/EP0009809B1/de not_active Expired
- 1979-10-03 AT AT79103767T patent/ATE678T1/de not_active IP Right Cessation
- 1979-10-09 US US06/082,454 patent/US4257871A/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3748261A (en) * | 1971-12-14 | 1973-07-24 | Universal Oil Prod Co | Two-stage desulfurization with solvent deasphalting between stages |
FR2205566A1 (de) * | 1972-11-08 | 1974-05-31 | Bp Chemical Ltd | |
US3855113A (en) * | 1972-12-21 | 1974-12-17 | Chevron Res | Integrated process combining hydrofining and steam cracking |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2843793A1 (de) * | 1978-10-06 | 1980-04-24 | Linde Ag | Verfahren zum spalten von schweren kohlenwasserstoffen |
US10704007B2 (en) | 2013-12-06 | 2020-07-07 | Basf Se | Composition and method of forming the same |
Also Published As
Publication number | Publication date |
---|---|
EP0009809B1 (de) | 1982-02-10 |
JPS5550089A (en) | 1980-04-11 |
ATE678T1 (de) | 1982-02-15 |
DE2843793A1 (de) | 1980-04-24 |
DE2962096D1 (en) | 1982-03-18 |
US4257871A (en) | 1981-03-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0009809B1 (de) | Verfahren zur Erzeugung von Olefinen | |
DE69117776T2 (de) | Verfahren zur aufarbeitung von dampfcrackteerölen | |
DE2215664C3 (de) | ||
DE3490353C2 (de) | Herstellung von Brennstoffen, insbesondere Düsen- und Dieselbrennstoffen | |
DE3207069C2 (de) | Krackverfahren unter Anwendung eines wasserstoffabgebenden Lösungsmittels zur Qualitätsverbesserung von hochsiedenden, kohlenstoffhaltigen Flüssigkeiten | |
DE2941851C2 (de) | ||
DE2601875A1 (de) | Gesamtverfahren zur erzeugung von unter normalbedingungen gasfoermigen olefinen | |
DE2051447A1 (de) | Verfahren zur Herstellung von Benzin hoher Oktanzahl | |
DE2215665B2 (de) | Verfahren zum Herstellen von Benzin und raffinierten flüssigen Kohlenwasserstoffen | |
EP0009807B1 (de) | Verfahren zum Spalten von schweren Kohlenwasserstoffen | |
DE2721504A1 (de) | Verfahren zur herstellung von olefinen | |
DE1443763A1 (de) | Verfahren zur Gewinnung von Aromaten oder Krackprodukten | |
DE1770952A1 (de) | Integriertes Dampferackverfahren | |
DE2840986C2 (de) | Verfahren zur Aufarbeitung der bei der Spaltung von Kohlenwasserstoffen entstehenden über 200 °C siedenden Kohlenwasserstoff-Fraktionen | |
EP0009236B1 (de) | Verfahren zum Spalten von Kohlenwasserstoffen | |
DE1263209B (de) | Verfahren zum Herabsetzen des Schwefelgehaltes und des Stockpunktes von schwerem Vakuumgasoel | |
DE1909840A1 (de) | Verfahren zur Aufarbeitung von Schwerbenzin | |
DE2806854A1 (de) | Verfahren zum spalten von kohlenwasserstoffen | |
DE3780305T2 (de) | Verfahren zur produktion von maximum-mitteldistillaten mit minimalem wasserstoffverbrauch. | |
DE1668774A1 (de) | Verfahren zur Herstellung olefinischer Kohlenwasserstoffe | |
DE2937376C2 (de) | ||
DE1062859B (de) | Verfahren zur Umwandlung eines Benzins in einen verbesserten Motortreibstoff | |
DE69302595T2 (de) | Verfahren zur Aufarbeitung eines Kohlenwasserstoffeinsatzes | |
DE1200459B (de) | Verfahren zum Vergueten von schweren Kohlenwasserstoffen | |
DE1770267A1 (de) | Verfahren zur Entschwefelung von Erdoelprodukten |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): AT BE DE FR GB IT NL SE |
|
17P | Request for examination filed | ||
ITF | It: translation for a ep patent filed | ||
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Designated state(s): AT BE DE FR GB IT NL SE |
|
REF | Corresponds to: |
Ref document number: 678 Country of ref document: AT Date of ref document: 19820215 Kind code of ref document: T |
|
REF | Corresponds to: |
Ref document number: 2962096 Country of ref document: DE Date of ref document: 19820318 |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
26 | Opposition filed |
Opponent name: THE LUMMUS COMPANY Effective date: 19821109 Opponent name: BASF AKTIENGESELLSCHAFT Effective date: 19821106 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19830930 Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19841003 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19841004 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19841009 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19841106 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19841231 Year of fee payment: 6 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 19851008 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19851031 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Effective date: 19861003 |
|
BERE | Be: lapsed |
Owner name: LINDE A.G. Effective date: 19861031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19870501 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19870630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19870701 |
|
RDAG | Patent revoked |
Free format text: ORIGINAL CODE: 0009271 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT REVOKED |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
27W | Patent revoked |
Effective date: 19870711 |
|
GBPR | Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state | ||
EUG | Se: european patent has lapsed |
Ref document number: 79103767.4 Effective date: 19851007 |
|
APAC | Appeal dossier modified |
Free format text: ORIGINAL CODE: EPIDOS NOAPO |
|
APAC | Appeal dossier modified |
Free format text: ORIGINAL CODE: EPIDOS NOAPO |