EP0009807A1 - Verfahren zum Spalten von schweren Kohlenwasserstoffen - Google Patents

Verfahren zum Spalten von schweren Kohlenwasserstoffen Download PDF

Info

Publication number
EP0009807A1
EP0009807A1 EP79103765A EP79103765A EP0009807A1 EP 0009807 A1 EP0009807 A1 EP 0009807A1 EP 79103765 A EP79103765 A EP 79103765A EP 79103765 A EP79103765 A EP 79103765A EP 0009807 A1 EP0009807 A1 EP 0009807A1
Authority
EP
European Patent Office
Prior art keywords
hydrogenation
fraction
boiling
weight
heavy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP79103765A
Other languages
English (en)
French (fr)
Other versions
EP0009807B1 (de
Inventor
Hans-Jürgen Dr. Wernicke
Walter Dr. Kreuter
Claus Dr. Schliebener
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6051644&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0009807(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Linde GmbH filed Critical Linde GmbH
Priority to AT79103765T priority Critical patent/ATE2545T1/de
Publication of EP0009807A1 publication Critical patent/EP0009807A1/de
Application granted granted Critical
Publication of EP0009807B1 publication Critical patent/EP0009807B1/de
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G69/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process
    • C10G69/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only
    • C10G69/06Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only including at least one step of thermal cracking in the absence of hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/20C2-C4 olefins

Definitions

  • the invention relates to a process for splitting heavy hydrocarbon mixtures by hydrogenation and subsequent thermal splitting.
  • Light feedstocks are required for the splitting of hydrocarbons for the production of olefins, i.e. Hydrocarbons with a boiling point below 200 ° C, such as naphtha, are particularly suitable. They lead to high splitting yields and result in few undesirable by-products.
  • DE-OS 21 64 951 describes a process in which the insert is catalytically hydrogenated before it is thermally cleaved. This pretreatment reduces the content of aromatic compounds in the feed material, which essentially lead to the undesired cleavage products. In addition, desulphurization of the feed takes place.
  • the invention has for its object to design a method of the type mentioned so that it can be operated under particularly favorable economic conditions.
  • This object is achieved in that the hydrogenation is carried out under conditions in which only part of the hydrocarbon mixture is converted to low-boiling products, whereupon the hydrogenation product is broken down into a light and a heavy fraction and only the heavy fraction is fed to the thermal cracking.
  • the process according to the invention has the advantage, among other things, that the thermal cleavage can be carried out under particularly favorable conditions. While in known processes of DE-OS 21 64 951 the entire hydrogenation product, which comprises a relatively wide boiling range, reaches the thermal cleavage, a much narrower boiling cut is used for this in the process according to the invention, as a result of which the cleavage conditions can be better optimized.
  • the cause of the high cleavage yields is seen in the chemical structure of the hydrogenated vacuum gas oil boiling cut, which consists essentially of low isomerized paraffins and naphthenes, both of which produce high olefin yields to lead.
  • the hydrogenated vacuum gas oil boiling cut which consists essentially of low isomerized paraffins and naphthenes, both of which produce high olefin yields to lead.
  • the separated low-boiling components of the hydrogenation product which are not fed to the thermal cracking, consist of gasoline fractions which are suitable as low-sulfur gasoline or turbine fuels or can be blended with other refined products suitable as fuel.
  • these components are not already left in the heavy fraction, middle distillates are obtained which meet the requirements for heating oil of the specification EL and diesel fuel.
  • These fractions are particularly valuable due to their low sulfur content. They can also be blended with other sulfur-rich products to make them economically viable.
  • the quality of the hydrogenation product depends essentially on the reaction conditions of the hydrogenation. It is favorable to control the hydrogenation in such a way that the undesired polyaromatic compounds of the feed-carbon hydrogen mixture are largely hydrogenated, whereas the content of monoaromatic compounds is hardly changed. Since most of the monoaromatics get into the low-boiling fraction when the hydrogenation product is broken down, its motor properties are improved. In addition, such. Process management does not unnecessarily use hydrogen for the monoaromatic hydrogenation.
  • a favorable hydrogenation product results, for example, from hydrogenation under mild conditions, i.e. at temperatures between 350 and 400 ° C, a pressure between 80 and 150 bar and at space velocities of more than 1 1/1 catalyst material and hour when using conventional hydrogenation or hydrocracking catalysts.
  • gas oil as the feed hydrocarbon mixture, even space velocities of more than 2 1/1 catalyst material and hour can be maintained.
  • a hydrogenation carried out under such conditions leads to a low hydrogen consumption which, for example in a vacuum gas oil hydrogenation when 40% by weight of the hydrocarbons are converted to low-boiling components, is below 150 Nm 3 per ton of hydrocarbon mixture used.
  • Favorable hydrogenation conditions are generally present when the hydrogen consumption is between 100 and 250 Nm3 per ton of hydrocarbon.
  • the fraction with the lower-boiling components either those below 200 ° C. or the components boiling below 340 ° C. If the cut is carried out at 200 ° C, a gasoline fraction results, which in turn can be broken down into a light gasoline and a heavy gasoline fraction.
  • the cut below 340 ° C also contains kerosene and heating oil of the specification EL or diesel fuel.
  • a vacuum gas oil was used with a Boiling range between 340 and 580 ° C, whose density (at 15 ° C) was 0.913 g / ml. It is composed of 85.78% by weight of carbon, 12.14% by weight of hydrogen, 1.94% by weight of sulfur and 0.14% by weight of nitrogen. 47.8% by weight of the hydrocarbons were present as paraffins and naphthenes, 19.2% by weight as monoaromatics and 33.0% by weight as polyaromatics. The proportion of asphaltenes was below 0.05% by weight.
  • a sample of the vacuum gas oil was thermally cracked without hydrogenation. With a steam dilution of 1 kg water vapor per kg vacuum gas oil and with a dwell time of 0.2 seconds. it was implemented in a can. The outlet temperature was 830 ° C. This thermal cleavage forms a cleavage product which contains 9.3% by weight of methane, 18.5% by weight of ethylene and 10.3% by weight of propylene. 33.5% by weight of the vacuum oil used was obtained as pyrolysis heating oil boiling above 200 ° C.
  • a vacuum gas oil with the same properties as in Example 1 was hydrogenated at 380 ° C. under a pressure of 100 bar and at a space velocity of 1.2 liters per liter of catalyst material and hour.
  • a catalyst was used which contained nickel and molybdenum on an acidic support as the hydrogenation-active components.
  • a hydrogenation gave a product which contained 59.7% by weight of components boiling above 340 ° C. In addition, 40.3% by weight of products boiling below 340 ° C. were obtained, which were separated off by distillation and then further broken down. This (based on the total hydrogenation product), 2.0% by weight H 2 S, 0.2% by weight NH 3 , 0.3% by weight gaseous hydrocarbons with 1-4 carbon atoms and 37.8% by weight liquid Hydrocarbons.
  • the liquid products were in a light petroleum fraction (C 5 hydrocarbons up to 82 ° C), the 0.7 wt.% of the hydrogenation product, into a heavy gasoline fraction (82-180 ° C), which made up 6.4% by weight and into a boiling between 180 and 340 ° C fraction of kerosene and desulfurized heating oil EL (30.7% by weight).
  • a light petroleum fraction C 5 hydrocarbons up to 82 ° C
  • a heavy gasoline fraction (82-180 ° C)
  • a boiling between 180 and 340 ° C fraction of kerosene and desulfurized heating oil EL (30.7% by weight.
  • Example 2 The same feed as in Example 1 was hydrogenated under conditions that were somewhat sharper than those in Example 2. This resulted in a fraction boiling above 3400C, the properties of which are given in column (2) of Table 2.
  • This fraction was thermally cleaved under the same conditions as in the previous examples.
  • the cleavage product contained 9.1% by weight of methane in valuable components, 32.0% by weight of ethylene and 17.0% by weight of propylene.
  • the residue fraction boiling above 200 ° C made up only 7.4% by weight of the cracked gas input.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

Das Verfahren zum Spalten von schweren Kohlenwasserstoffen sieht eine hydrierende Vorbehandlung und eine nachfolgende thermische Spaltung des Einsatzes vor. Die Hydrierung wird dabei unter Bedingungen durchgeführt, bei denen nur ein Teil des Einsatzes zu leicht siedenden Komponenten umgesetzt wird. Das Hydrierprodukt wird in eine leichte und eine schwere Fraktion zerlegt, wobei nur die schwere Fraktion zwecks Gewinnung von Olefinen thermisch gespalten wird. Die leichteren Komponenten des Hydrierprodukts können als Benzin, Dieselkraftstoff oder Heizöl verwertet werden.

Description

  • Die Erfindung betrifft ein Verfahren zum Spalten von schweren Kohlenwasserstoffgemischen durch Hydrierung und nachfolgende thermische Spaltung.
  • Für die Spaltung von Kohlenwasserstoffen zur Herstellung von Olefinen sind leichte Einsatzmaterialien, d.h. Kohlenwasserstoffe mit einem Siedepunkt unterhalb von 200°C, wie beispielsweise Naphtha, besonders geeignet. Sie führen zu hohen Spaltausbeuten und ergeben wenig unerwünschte Nebenprodukte.
  • Der große Bedarf derartiger günstiger Spalteinsätze kann zu einer Verknappung oder Preissteigerung dieser Stoffe führen. Es wird deshalb seit einiger Zeit der Versuch unternommen, Verfahren zu entwickeln, die auch die günstige Verwertung eines höher siedenden Einsatzmaterials erlauben.
  • Die Verwertung höher siedender Einsätze führt grundsätzlich zu geringeren Ausbeuten an wertvollen Spaltprodukten, während gleichzeitig in zunehmenden Maße eine nur schwer-verwertbare über 200°C siedende Kohlenwasserstofffraktion anfällt. Daneben entstehen noch weitere Schwierigkeiten dadurch, daß höher siedende Einsätze zu verstärkten Koks- und Teerbildungen in der Spaltanlage führen. Diese Produkte, die sich an den Wänden der Leitungselemente, beispielsweise Rohrleitungen und Wärmetauscher, ablagern, bedingen damit eine Verschlechterung der Wärmeübertragung und führen außerdem zu Querschnitts verengungen. Es ist deshalb erforderlich, häufiger Entfernungen dieser Ablagerungen durchzuführen als bei einer Verwendung leichter Kohlenwasserstoffe.
  • Zur Lösung dieses Problems ist in der DE-OS 21 64 951 ein Verfahren beschrieben, bei dem der Einsatz vor seiner thermischen Spaltung katalytisch hydriert wird. Durch diese Vorbehandlung wird der Gehalt an aromatischen Verbindungen, die im wesentlichen zu den unerwünschten Spaltprodukten führen, im Einsatzmaterial verringert. Darüberhinaus findet auch eine Entschwefelung des Einsatzmaterials statt.
  • Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren der genannten Art so auszugestalten, daß es unter besonders günstigen wirtschaftlichen Bedingungen betrieben werden kann.
  • Diese Aufgabe wird dadurch gelöst, daß die Hydrierung unter Bedingungen durchgeführt wird, bei denen nur ein Teil des Kohlenwasserstoffgemisches zu leicht siedenden Produkten umgesetzt wird, worauf das Hydrierprodukt in eine leichte und eine schwere Fraktion zerlegt und nur die schwere Fraktion der thermischen Spaltung zugeführt wird.
  • Bei der Hydrierung eines schweren Kohlenwasserstoffgemisches werden nicht nur die schweren Bestandteile, insbesondere die polyaromatischen Verbindungen, hydriert oder hydrierend gespalten, sondern daneben erfolgt auch eine Isomerisierung von n-Alkanen und n-Alkylketten. Bei der Hydrierung wird damit einerseits zwar erst ein für eine thermische Spaltung geeignetes Produkt erzeugt, andererseits werden aber bei der Isomerisierung, die mit steigender Hydrocrackschärfe bei der Hydrierung zunimmt, gleichzeitig Produkte gebildet, die nur zu geringen Steigerungen der Spaltausbeuten führen und wegen ihres hohen Wasserstoffverbrauchs die Wirtschaftlichkeit des Verfahrens begrenzen.
  • Es wurde deshalb untersucht, ob sich bei einer Zerlegung des Hydrierprodukts in Fraktionen unterschiedlicher Siedebereiche in den einzelnen Fraktionen eine Verteilung der Komponenten erreichen läßt, bei der die eine Fraktion im Vergleich zum unzerlegten Hydrierprodukt einen verbesserten Einsatz für die thermische Spaltung und die andere Fraktion günstige Eigenschaften für einen anderen Verwertungszweck aufweist.
  • Dabei wurde gefunden, daß der Isomerisierungsgrad der höhersiedenden Bestandteile des Hydrierprodukts im Vergleich zu dem der tiefersiedenden Komponenten unerwartet gering ist.
  • Nach der Abtrennung der stärker isomerisierten leicht siedenden Komponenten führt der verbleibende schwere Siedeschnitt bei der thermischen Spaltung zu überraschend hohen Olefinausbeuten, die denen von Naphtha gleichkommen.
  • Das erfindungsgemäße Verfahren weist unter anderem den Vorteil auf, daß die thermische Spaltung unter besonders günstigen Bedingungen durchgeführt werden kann. Während nämlich bei bekannten Verfahren der DE-OS 21 64 951 das gesamte Hydrierprodukt, das einen relativ weiten Siedebereich umfaßt, in die thermische Spaltung gelangt, wird beim erfindungsgemäßen Verfahren hierzu ein wesentlich engerer Siedeschnitt verwendet, wodurch sich die Spaltbedingungen besser optimieren lassen.
  • Neben der hohen Ausbeute an wertvollen Produkten bei der thermischen Spaltung des schweren Siedeschnitts ist auch der Anteil des nur schwer verwertbaren, über 200°C siedenden Pyrolyseheizöls überraschend gering. Es lag in allen Versuchen mit hydrierten Vakuumgasölschnitten unter 20 Gew.-% der Spaltprodukte und damit unterhalb des Bereichs einer konventionellen Spaltung von atmosphärischem Gasöl. Bei der thermischen Spaltung eines unhydrierten Vakuumgasöls fallen dagegen bis zu 40 Gew.-% Pyrolyseheizöl an.
  • Die Ursache der hohen Spaltausbeuten wird in der -chemischen Struktur des hydrierten Vakuumgasöl-Siedeschnitts gesehen, die im wesentlichen aus gering isomerisier ten Paraffinen und aus Naphthenen besteht, die beide zu hohen Olefinsausbeuten führen. Um den Anteil dieser Bestandteile in der hochsiedenden Fraktion des Hydrierprodukts möglichst groß zu halten, ist es günstig, die Hydrierung unter milden Bedingungen durchzuführen. Denn werden nämlich die hochsiedenden Naphthene und Paraffine nur zu einem geringen Teil isomerisiert und damit weitgehend unverändert belassen, während aus den polyaromatischen Verbindungen, die beispielsweise in Vakuumgasöl bis zu 45 Gew.-%'ausmachen, hauptsächlich Naphthene erzeugt werden.
  • Die thermische Spaltung der im Vergleich zu herkömmlichen Spalteinsätzen schwereren Fraktion wirft keine besonderen technischen Probleme auf. Es ist jedoch erforderlich, gegenüber herkömmlichen Anlagen die Dampfverdünnung zu erhöhen.
  • Die abgetrennten niedrigsiedenden Komponenten des Hydrierprodukts, die nicht der thermischen Spaltung zugeführt werden, bestehen aus Benzinfraktionen, die sich als schwefelarme Vergaser- oder Turbinenkraftstoffe eignen oder mit anderen als Kraftstoff geeigneten Raffinerieerzeugnissen verschnitten werden können. Daneben fallen - sofern diese Komponenten nicht bereits in der schweren Fraktion belassen werden - Mitteldestillate an, die den Anforderungen an Heizöl der Spezifikation EL und Dieseltreibstoff genügen. Diese Fraktionen sind durch ihren geringen Schwefelgehalt besonders wertvoll. Sie können aber auch mit anderen schwefelreichen Erzeugnissen verschnitten werden, um diese wirtschaftlich verwertbar zu machen.
  • Selbstverständlich hängt die Qualität des Hydrierprodukts wesentlich von den Reaktionsbedingungen der Hydrierung ab. Dabei ist es günstig, die Hydrierung so zu steuern, daß die unerwünschten polyaromatischen Verbindungen des Einsatz- Kohlen wasserstoffgemisches weitgehend hydriert werden, dagegen der Gehalt an monoaromatischen Verbindungen kaum verändert wird. Da der größte Anteil der Monoaromaten bei der Zerlegung des Hydrierprodukts in die leicht siedende Fraktion gelangt, werden dessen motorische Eigenschaften verbessert. Außerdem wird bei einer derartigen. Verfahrensführung nicht unnötig Wasserstoff für die Monoaromatenhydrierung verbraucht.
  • Ein günstiges Hydrierprodukt ergibt sich beispielsweise bei einer Hydrierung unter milden Bedingungen, d.h. bei Temperaturen zwischen 350 und 400°C, einem Druck zwischen 80 und 150 bar und bei Raumgeschwindigkeiten von mehr als 1 1/1 Katalysatormaterial und Stunde bei der Verwendung von üblichen Hydrier- oder Hydrocrackkatalysatoren. Bei der Verwendung von Gasöl als Einsatz-Kohlenwasserstoffgemisch lassen sich sogar Raumgeschwindigkeiten von mehr als 2 1/1 Katalysatormaterial und Stunde einhalten.
  • Eine unter derartigen Bedingungen durchgeführte Hydrierung führt zu einem geringen Wasserstoffverbrauch, der beispielsweise bei einer Vakuumgasöl-Hydrierung bei einer Umsetzung von 40 Gew.-% der Kohlenwasserstoffe zu niedrig siedenden Komponenten unterhalb von 150 Nm3 pro Tonne Einsatz-Kohlenwasserstoffgemisch liegt. Günstige Hydrierbedingungen liegen im allgemeinen vor, wenn der Wasserstoffverbrauch zwischen 100 und 250 Nm3 je Tonne Kohlenwasserstoff liegt.
  • Bei einer derartigen Hydrierung wird stets auch ein Teil der im Kohlenwasserstoffgemisch enthaltenen Paraffine und Naphthene umgesetzt, d.h. isomerisiert oder hydrierend gespalten. Der Hauptanteil dieser Produkte gelangt bei der Zerlegung des Hydrierprodukts in die niedrig siedende Fraktion und verbessert aufgrund der Isomerisierung deren motorische Eigenschaften.
  • Es hat sich als günstig erwiesen, in die Fraktion mit den tiefersiedenden Bestandteilen entweder die unter 200°C oder die unter 340oC siedenden Bestandteile aufzunehmen. Wird der Schnitt bei 200°C durchgeführt, ergibt sich eine Benzinfraktion, die ihrerseits wiederum in eine Leichtbenzin- und in eine Schwerbenzinfraktion zerlegt werden kann. Der Schnitt unter 340°C enthält.darüberhinaus noch Kerosin und Heizöl der Spezifikation EL bzw. Dieselkraftstoff.
  • Nachfolgend wird das erfindungsgemäße Verfahren anhand einiger Beispiele näher erläutert.
  • In allen Fällen wurde von einem Vakuumgasöl mit einem Siedebereich zwischen 340 und 580°C ausgegangen, dessen Dichte (bei 15°C) 0,913 g/ml betrug. Es setzt sich zu 85,78 Gew.% aus Kohlenstoff, 12,14 Gew.% aus Wasserstoff, 1,94 Gew.% aus Schwefel und 0,14 Gew.% aus Stickstoff zusammen. 47,8 Gew.% der Kohlenwasserstoffe lagen als Paraffine und Naphthene vor, 19,2 Gew.% als Monoaromaten und 33,0 Gew.% als Polyaromaten. Der Anteil an Asphaltenen lag unter 0,05 Gew.%.
  • Beispiel 1:
  • Zunächst wurde zu Vergleichszwecken eine Probe des Vakuumgasöls ohne Hydrierung thermisch gespalten. Bei einer Dampfverdünnung von 1 kg Wasserdampf pro kg Vakuumgasöl und mit einer Verweilzeit von 0,2 Sec. wurde es in einem Spaltrohr umgesetzt. Die Austrittstemperatur lag bei 830°C. Bei dieser thermischen Spaltung bildet sich ein Spaltprodukt, das 9,3 Gew.% Methan, 18,5 Gew.% Äthylen und 10,3 Gew.% Propylen enthielt. 33,5 Gew.% des eingesetzten Vakuumöls fielen als über 200°C siedendes Pyrolyseheizöl an.
  • Beispiel 2:
  • Ein Vakuumgasöl mit den gleichen Eigenschaften wie im Beispiel 1 wurde bei 380°C unter einem Druck von 100 bar und bei einer Raumgeschwindigkeit von 1,2 Liter je Liter Katalysatormaterial und Stunde hydriert. Für die Hydrierung wurde ein Katalysator verwendet, der als hydrierwirksame Komponenten Nickel und Molybdän auf einem sauren Träger enthielt.
  • Bei einer Hydrierung wurden 145 Nm3 Wasserstoff je Tonne eingesetzten Vakuumgasöls umgesetzt.
  • Bei einer Hydrierung ergab sich ein Produkt, das zu 59,7 Gew.% über 340°C siedende Bestandteile enthielt. Darüberhinaus wurden 40,3 Gew.% unter 340°C siedende Produkte gewonnen, die destillativ abgetrennt und anschließend weiter zerlegt wurden. Dabei fielen (bezogen auf das gesamte Hydrierprodukt), 2,0 Gew.% H2S, 0,2 Gew.% NH3, 0,3 Gew.% gasförmige Kohlenwasserstoffe mit 1-4 Kohlenstoffatomen und 37,8 Gew.% flüssige Kohlenwasserstoffe an. Die flüssigen Produkte wurden in eine Leichtbenzinfraktion (C5-Kohlenwasserstoffe bis 82°C), die 0,7 Gew.% des Hydrierprodukts ausmachte, in eine Schwerbenzinfraktion (82-180°C), die 6,4 Gew.% ausmachte und in eine zwischen 180 und 340°C siedende Fraktion aus Kerosin und entschwefeltem Heizöl EL (30,7 Gew.%) zerlegt. Die wesentlichen Eigenschaften dieser drei Fraktionen sind in Tabelle 1 angegeben.
    Figure imgb0001
  • Die über 340°C siedende Fraktion, deren Eigenschaften in Tabelle 2, Spalte (1) angegeben sind, wurde als Einsatz für die thermische Spaltung verwendet. Die Spaltbedingungen waren die gleichen wie beim Beispiel 1. Es ergab sich ein Spaltprodukt, das an wertvollen Komponenten 9,2 Gew.% Methan, 26,9 Gew.% Äthylen und 14,4 Gew.% Propylen enthielt. Der Anteil der über 200°C siedenden Rückstandfraktion lag bei 18,2 Gew.%.
  • Beispiel 3:
  • Das gleiche Einsatzmaterial wie beim Beispiel 1 wurde unter Bedingungen, die etwas schärfer als die des Beispiels 2 waren, hydriert. Dabei ergab sich eine über 3400C siedende Fraktion, deren Eigenschaften in Spalte (2) der Tabelle 2 angegeben sind.
  • Diese Fraktion wurde unter den gleichen Bedingungen wie in den vorhergehenden Beispielen thermisch gespalten. An wertvollen Komponenten enthielt das Spaltprodukt 9,1 Gew.% Methan, 32, 0 Gew.% Äthylen und 17,0 Gew.% Propylen. Die über 200°C siedende Rückstandfraktion machte lediglich 7,4 Gew.% des Spaltgaseinsatzes aus.
    Figure imgb0002

Claims (5)

1. Verfahren zum Spalten von schweren Kohlenwassserstoffgemischen durch Hydrierung und nachfolgende thermische Spaltung, dadurch gekennzeichnet, daß die Hydrierung unter Bedingungen durchgeführt wird, bei denen nur ein Teil des Kohlenwasserstoffgemisches zu leicht siedenden Produkten umgesetzt wird, worauf das Hydrierprodukt in eine leichte und eine schwere Fraktion zerlegt und nur die schwere Fraktion der thermischen Spaltung zugeführt wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Hydrierung unter Bedingungen durchgeführt wird, bei denen zwischen 100 und 250 Nm3 Wasserstoff je Tonne Kohlenwasserstoff umgesetzt werden.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Hydrierprodukt in eine Fraktion mitunter 340°C und in eine Fraktion mit über 340°C siedenden Bestandteilen zerlegt wird.
4. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Hydrierprodukt in eine Fraktion mit unter 200°C und eine Fraktion mit über 200°C siedenden Bestandteilen zerlegt wird.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die leichte Fraktion einer weiteren Behandlung zugeführt wird.
EP79103765A 1978-10-06 1979-10-03 Verfahren zum Spalten von schweren Kohlenwasserstoffen Expired EP0009807B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT79103765T ATE2545T1 (de) 1978-10-06 1979-10-03 Verfahren zum spalten von schweren kohlenwasserstoffen.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2843792 1978-10-06
DE19782843792 DE2843792A1 (de) 1978-10-06 1978-10-06 Verfahren zum spalten von schweren kohlenwasserstoffen

Publications (2)

Publication Number Publication Date
EP0009807A1 true EP0009807A1 (de) 1980-04-16
EP0009807B1 EP0009807B1 (de) 1983-02-16

Family

ID=6051644

Family Applications (1)

Application Number Title Priority Date Filing Date
EP79103765A Expired EP0009807B1 (de) 1978-10-06 1979-10-03 Verfahren zum Spalten von schweren Kohlenwasserstoffen

Country Status (5)

Country Link
US (2) US4260474A (de)
EP (1) EP0009807B1 (de)
JP (1) JPS5550088A (de)
AT (1) ATE2545T1 (de)
DE (2) DE2843792A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2843792A1 (de) * 1978-10-06 1980-04-24 Linde Ag Verfahren zum spalten von schweren kohlenwasserstoffen
CN104560153A (zh) * 2013-10-24 2015-04-29 中国石油化工股份有限公司 一种利用乙烯焦油和重苯生产清洁燃料油的方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2941851A1 (de) * 1979-10-16 1981-05-14 Linde Ag, 6200 Wiesbaden Verfahren zur hydrierung schwerer kohlenwasserstoffe
US4446004A (en) * 1982-12-23 1984-05-01 Mobil Oil Corporation Process for upgrading vacuum resids to premium liquid products
US4801373A (en) * 1986-03-18 1989-01-31 Exxon Research And Engineering Company Process oil manufacturing process
US4913802A (en) * 1989-05-08 1990-04-03 Uop Process for sweetening a sour hydrocarbon fraction
US4908122A (en) * 1989-05-08 1990-03-13 Uop Process for sweetening a sour hydrocarbon fraction
US5045174A (en) * 1990-03-21 1991-09-03 Exxon Chemical Patents Inc. Process for the production of heartcut distillate resin precursors
US5215649A (en) * 1990-05-02 1993-06-01 Exxon Chemical Patents Inc. Method for upgrading steam cracker tars
US5244565A (en) * 1990-08-17 1993-09-14 Uop Integrated process for the production of distillate hydrocarbon
CA2104044C (en) * 1992-08-25 2004-11-02 Johan W. Gosselink Process for the preparation of lower olefins
ZA989153B (en) 1997-10-15 1999-05-10 Equistar Chem Lp Method of producing olefins and feedstocks for use in olefin production from petroleum residua which have low pentane insolubles and high hydrogen content
US7815791B2 (en) * 2008-04-30 2010-10-19 Exxonmobil Chemical Patents Inc. Process and apparatus for using steam cracked tar as steam cracker feed
US10711208B2 (en) * 2017-06-20 2020-07-14 Saudi Arabian Oil Company Process scheme for the production of optimal quality distillate for olefin production

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2081288A1 (en) * 1967-07-24 1971-12-03 Exxon Research Engineering Co Steam-cracking heavy petroleum feeds
DE2540622A1 (de) * 1975-09-12 1977-03-17 Texaco Development Corp Verfahren zur herstellung von niederen olefinen
BE867226A (fr) * 1977-06-17 1978-09-18 Lummus Co Hydrocraquage de produits contenant des hydrocarbures aromatiques polynucleaires
NL7805391A (nl) * 1977-06-17 1978-12-19 Lummus Co Werkwijze voor het hydrokraken van veelkernige aromaten bevattende uitgangsmaterialen.

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2871182A (en) * 1956-08-17 1959-01-27 Socony Mobil Oil Co Inc Hydrogenation and coking of heavy petroleum fractions
US3373220A (en) * 1964-08-03 1968-03-12 Phillips Petroleum Co Ethylene production
GB1361671A (en) * 1971-01-06 1974-07-30 Bp Chem Int Ltd Process for the production of gaseous olefins from petroleum distillate feedstocks
GB1383229A (en) * 1972-11-08 1975-02-05 Bp Chem Int Ltd Production of gaseous olefins from petroleum residue feedstocks
US4167533A (en) * 1978-04-07 1979-09-11 Uop Inc. Co-production of ethylene and benzene
DE2843792A1 (de) * 1978-10-06 1980-04-24 Linde Ag Verfahren zum spalten von schweren kohlenwasserstoffen

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2081288A1 (en) * 1967-07-24 1971-12-03 Exxon Research Engineering Co Steam-cracking heavy petroleum feeds
DE2540622A1 (de) * 1975-09-12 1977-03-17 Texaco Development Corp Verfahren zur herstellung von niederen olefinen
BE867226A (fr) * 1977-06-17 1978-09-18 Lummus Co Hydrocraquage de produits contenant des hydrocarbures aromatiques polynucleaires
NL7805391A (nl) * 1977-06-17 1978-12-19 Lummus Co Werkwijze voor het hydrokraken van veelkernige aromaten bevattende uitgangsmaterialen.
DE2822889A1 (de) * 1977-06-17 1979-01-04 Lummus Co Verfahren zur herstellung von leichten olefinen und einkernigen aromaten aus ausgangsmaterialien der thermischen crackung
FR2394600A1 (fr) * 1977-06-17 1979-01-12 Lummus Co Procede de production d'olefines legeres et d'hydrocarbures aromatiques mononucleaires par un hydrotraitement catalytique suivi d'un craquage thermique

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HYDROCARBON PROCESSING, Band 58, Nr. 61, Juni 1979, Seiten 109-112 Houston, U.S.A. S. GOETZMANN et al.: "Hydroconversion upgrades heavy olefin feedstocks" * Abbildungen 1, 2; Tabel 3 * *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2843792A1 (de) * 1978-10-06 1980-04-24 Linde Ag Verfahren zum spalten von schweren kohlenwasserstoffen
CN104560153A (zh) * 2013-10-24 2015-04-29 中国石油化工股份有限公司 一种利用乙烯焦油和重苯生产清洁燃料油的方法
CN104560153B (zh) * 2013-10-24 2016-05-18 中国石油化工股份有限公司 一种利用乙烯焦油和重苯生产清洁燃料油的方法

Also Published As

Publication number Publication date
JPS5550088A (en) 1980-04-11
ATE2545T1 (de) 1983-03-15
EP0009807B1 (de) 1983-02-16
DE2964830D1 (en) 1983-03-24
US4310409A (en) 1982-01-12
US4260474A (en) 1981-04-07
DE2843792A1 (de) 1980-04-24

Similar Documents

Publication Publication Date Title
EP0009809B1 (de) Verfahren zur Erzeugung von Olefinen
DE2601875C2 (de) Gesamtverfahren zur Erzeugung von unter Normalbedingungen gasförmigen Olefinen mittels Dampfcracken eines hydrierten Erdöleinsatzmaterials
DE2805179C2 (de)
DE3490353C2 (de) Herstellung von Brennstoffen, insbesondere Düsen- und Dieselbrennstoffen
DE2215664C3 (de)
EP0009807B1 (de) Verfahren zum Spalten von schweren Kohlenwasserstoffen
DE2941851C2 (de)
DE2164951B2 (de) Verfahren zur Herstellung gasförmiger Olefine
DE3207069A1 (de) Krackverfahren unter anwendung eines wasserstoffabgebenden loesungsmittels zur qualitaetsverbesserung von hochsiedenden, kohlenstoffhaltigen fluessigkeiten
DE2927251C2 (de)
DE2721504A1 (de) Verfahren zur herstellung von olefinen
EP0102594B1 (de) Verfahren zur Herstellung von Olefinen
EP0009236B1 (de) Verfahren zum Spalten von Kohlenwasserstoffen
DE2840986A1 (de) Verfahren zur aufarbeitung der bei der spaltung von kohlenwasserstoffen entstehenden ueber 200 grad siedenden kohlenwasserstoff-fraktion
DE2051475C2 (de) Verfahren zum Umwandeln eines einen Rückstand enthaltenden Kohlenwasserstofföls durch Hydrocrackung und hydrierende Raffination
DE1668774A1 (de) Verfahren zur Herstellung olefinischer Kohlenwasserstoffe
DE2937376C2 (de)
DE1062859B (de) Verfahren zur Umwandlung eines Benzins in einen verbesserten Motortreibstoff
DE1770267A1 (de) Verfahren zur Entschwefelung von Erdoelprodukten
US3827970A (en) Jet fuel process
DE977225C (de) Verfahren zur Herstellung eines schweren Heizoels
DE2133565C2 (de) Verfahren zum Hydrokracken von Kohlenwasserstoffölen
DE1186573B (de) Verfahren zur Umwandlung einer benzinfreien schweren Kohlenwasserstoffoelbeschickung
AT234251B (de) Verfahren zur Herstellung von rohem Fliegerbenzin
AT204156B (de) Verfahren zur Herstellung von Treibstoff für Düsen- oder Turbinenmaschinen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE DE FR GB IT NL SE

17P Request for examination filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE DE FR GB IT NL SE

REF Corresponds to:

Ref document number: 2545

Country of ref document: AT

Date of ref document: 19830315

Kind code of ref document: T

REF Corresponds to:

Ref document number: 2964830

Country of ref document: DE

Date of ref document: 19830324

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19831031

Year of fee payment: 5

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: BASF AKTIENGESELLSCHAFT

Effective date: 19831104

26 Opposition filed

Opponent name: THE LUMMUS COMPANY

Effective date: 19831115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19841003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19841004

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19841009

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19841106

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19841231

Year of fee payment: 6

GBPC Gb: european patent ceased through non-payment of renewal fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19851008

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19851031

Year of fee payment: 7

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 19851206

BERE Be: lapsed

Owner name: LINDE A.G.

Effective date: 19871031

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state
EUG Se: european patent has lapsed

Ref document number: 79103765.8

Effective date: 19851007