EP0009467B1 - Magnetfilter - Google Patents

Magnetfilter Download PDF

Info

Publication number
EP0009467B1
EP0009467B1 EP79810096A EP79810096A EP0009467B1 EP 0009467 B1 EP0009467 B1 EP 0009467B1 EP 79810096 A EP79810096 A EP 79810096A EP 79810096 A EP79810096 A EP 79810096A EP 0009467 B1 EP0009467 B1 EP 0009467B1
Authority
EP
European Patent Office
Prior art keywords
magnetic
roller
flow channel
magnetic filter
fact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP79810096A
Other languages
English (en)
French (fr)
Other versions
EP0009467A2 (de
EP0009467A3 (en
Inventor
Hans Streuli
Joseph Rüedi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hans Streuli AG
Original Assignee
Hans Streuli AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hans Streuli AG filed Critical Hans Streuli AG
Priority to AT79810096T priority Critical patent/ATE237T1/de
Publication of EP0009467A2 publication Critical patent/EP0009467A2/de
Publication of EP0009467A3 publication Critical patent/EP0009467A3/xx
Application granted granted Critical
Publication of EP0009467B1 publication Critical patent/EP0009467B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/28Magnetic plugs and dipsticks
    • B03C1/284Magnetic plugs and dipsticks with associated cleaning means, e.g. retractable non-magnetic sleeve
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/10Magnetic separation acting directly on the substance being separated with cylindrical material carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/10Magnetic separation acting directly on the substance being separated with cylindrical material carriers
    • B03C1/12Magnetic separation acting directly on the substance being separated with cylindrical material carriers with magnets moving during operation; with movable pole pieces
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M175/00Working-up used lubricants to recover useful products ; Cleaning
    • C10M175/0058Working-up used lubricants to recover useful products ; Cleaning by filtration and centrifugation processes; apparatus therefor

Definitions

  • the invention relates to a magnetic filter, consisting of a rotatably mounted magnetic roller with a scraper, which is covered at the bottom by a jacket, wherein a flow channel with a variable cross section for the liquid to be filtered is formed between the roller and the jacket Flow channel flows.
  • the magnetic filter is used to remove magnetically conductive and non-conductive dirt particles from coolants and lubricants so that they can be used again.
  • the degree of cleanliness of the coolants and lubricants is a decisive factor in the manufacturing precision and the surface quality of the machined machine parts. Improving the quality of the magnetic filter leads to an increase in the service life of tools, system parts and the lubricants and coolants.
  • a known magnetic roller separator for magnetizable parts contained in dusty material is described in DE-B-1 135 842.
  • the roller which is covered by a jacket, is set into high revolutions, so that centrifugal forces are set in order to throw off non-magnetized parts which may adhere to the roller surface, while the magnetic parts are separated off by means of a scraper.
  • the roller is inserted in a vibrating bed driven by a vibrator, the vibrations of which vibrate the jacket and thus narrow and widen the flow channel at a high frequency. This causes a strong circulation of the dusty material and a good attraction of the magnetic parts to the roller.
  • Another magnetic separator is known from FR-A-2 134 229. The purpose of this is to magnetically separate larger machined metal parts from a polishing compound. It is also not suitable for filtering magnetic non-magnetic parts out of a liquid.
  • the change in the flow channel cross-section to adapt to different amounts of liquid should be finely adjustable so that a calm, turbulence-free flow can always be generated in the flow channel.
  • a magnetic filter which has a control arrangement with an electrical signal transmitter, the measuring part of which protrudes into the container and, depending on the level of the liquid in the container, intermittently switches a drive motor for the magnetic roller on and off, and that to change the flow channel cross section slider protruding into the flow channel or a movable jacket part known per se is provided.
  • this ensures that after the first phase of calming down and filtering out the larger parts, the medium to be cleaned is directed in the direction of the magnets, and on the other hand, magnetic induction is amplified as the chip approaches the magnets.
  • a reduction in the channel cross section results in an increase in the flow resistance, resulting in a backflow, so that the level and thus the influencing characteristic of the filter corresponds approximately to that of the full load quantity even with small quantities.
  • the electrically operated level switch e.g. B. a proximity switch or a capacitive compact limit switch that responds to level differences of 1 mm to 1.5 mm, that is, has a very narrow control band.
  • a float switch known per se have not proven successful, since such float switches only respond at a level difference of 4 mm to 5 mm, which is not precise enough for the present purpose.
  • the level switch is used for fine adjustment of the magnetic filter. It switches the magnetic roller on and off depending on the level of the liquid.
  • the magnetic roller transports the material to be separated out to the scraper at a low speed, while the filter beards have enough time to regenerate.
  • the magnetic filter according to the invention has proven itself well. So it was z. B. possible to almost completely filter out the fine abrasion resulting from the processing of gray cast iron, consisting of iron and graphite, which is not possible with conventional magnetic filters.
  • the magnetic filter has a stable aluminum housing 1, in which a horizontal magnetic roller 2 is rotatably mounted.
  • the roller 2 is constructed from fine-pole, powerful permanent magnets, which are arranged at narrow intervals and generate a strong magnetic field across the entire width of the roller.
  • the roller drive takes place via a double worm gear 4 by an electric motor 3.
  • a curved sheet metal jacket 5 is arranged below the magnetic roller 2, at a distance a from its surface, which envelops the lower part of the roller 2.
  • a flow channel 6 for the liquid to be filtered is formed between the roll surface and the sheet metal jacket 5.
  • the sheet metal jacket 5 consists of a part 5a fixed to the housing and a pivotable part 5b, the latter being fastened to the fixed part 5a by means of a hinge 8 parallel to the roller axis 7.
  • the jacket could also consist of two castings.
  • a handle 9 which is arranged outside the housing 1 and is connected to the adjustable part 5b via two articulated levers 10, 11, is used to adjust the pivotable jacket part 5b.
  • a constant flow area i.e. H. at a constant gap height a
  • both jacket parts 5a, 5b are arranged coaxially to the magnetic roller 2.
  • the movable jacket part 5b can now be adjusted by means of the handle 9 such that the gap narrows continuously in the direction of flow, a wedge-shaped tapering flow cross section being formed in the region of the movable jacket part 5b.
  • This setting of the movable jacket part is shown in dashed lines in the figures, wherein the handle 9 can alternatively be arranged on one or the other side of the housing.
  • a known, inclined scraper plate 14 is attached to the top of the housing 1 and lies with its front edge 15 on the roller surface.
  • a pre-filtering chamber 13 made of aluminum is arranged in front of the magnetic roller, in which a dirt discharge basket can be used.
  • the sloping baffle 16 in the prefiltration chamber 13 serves to calm the inflowing liquid.
  • the medium to be filtered must flow into the flow channel 6 in a laminar and uniform manner over the entire width, since turbulence affects the filter efficiency. Due to the calming in the prefiltration chamber 13, a certain sedimentation takes place, in particular, specifically heavy parts such as grinding wheel abrasion, chips, etc. are deposited.
  • the dirt discharge basket is an important cleaning aid, since sedimentation can be removed quickly and easily using this basket; time-consuming cleaning is spared.
  • the medium flows out of the antechamber 13 through the baffle 16 and then smoothly through under the magnetic roller 2.
  • the flow gap can now be narrowed more or less in a wedge shape in the direction of flow, as required.
  • the larger iron particles are excreted first and the effectiveness of the filtration in the micron range in the constricted areas is significantly increased.
  • the outflow can be backed up to the inlet height by a riser pipe or by increasing the adjustable baffles.
  • the adjustable scraper plate 14 is arranged to rise slightly. The dirt is pushed further and further back on the scraper plate and then falls largely dry into a designated dirt container.
  • a filter system can be immediately adapted to a changed operating condition or application.
  • iron particles are practically always completely and, thanks to the wetting effect, non-ferrous substances largely removed continuously from the coolant and lubricant (oils, water, emulsions).
  • the magnetic filter can be provided with an electronic control for the drive.
  • this enables the system to be operated as a precoat filter, that is, filtering out non-magnetizable material.
  • a capacitive compact limit switch 17 protrudes with its measuring parts 18 into the liquid in the pre-filtering chamber 13. It is designed for fine regulation and responds to the smallest changes in the flow resistance or the liquid level and automatically switches the drive motor 3 on and off in a narrow control band. This eliminates the need for any manual re-regulation when changing the degree of contamination of the liquid to be filtered.
  • the basic mode of operation corresponds to that of the magnetic filter without signal transmitter, only the magnetic roller does not turn when it is started up.
  • the magnetizable parts immediately build up into a beard-shaped sieve in the flow wedge, which leads directly to the floating of non-magnetizable parts and thus forms a dense filter layer.
  • the degree of filtering can be infinitely adjusted in the capacitive contact limit switch. If the flow resistance in the filter exceeds the predetermined value, a control command triggers a forward rotation of the magnetic roller. If a small part of the filter layer is removed, the flow resistance is reduced, the motor is switched off and the magnetic roller is fixed again.
  • This modern type of electronic capacitive control can work in a narrow control band with short cycle intervals in order to keep the filter efficiency always within narrow limits.
  • the belt can also be moved up or down almost as desired.
  • the measuring point can be inside or outside the filter housing, depending on the medium.
  • an electrically magnetizable roller is provided instead of the magnetic roller.
  • a slide regulatingly penetrate into the channel with a fixed jacket instead of the electrical signal transmitter, a membrane switch or a proximity switch could be used, which control the electric motor as a function of the liquid level. Depending on the type of medium, photocell control would also be conceivable.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Filtration Of Liquid (AREA)
  • Networks Using Active Elements (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Description

  • Die Erfindung bezieht sich auf einen Magnetfilter, bestehend aus einer drehbar gelagerten Magnetwalze mit Abstreifer, die unten von einem Mantel umhüllt ist, wobei zwischen der Walze und dem Mantel ein Durchflußkanal mit variierbarem Querschnitt für die zu filtrierende Flüssigkeit gebildet ist, welche über einen Behälter dem Durchflußkanal zufließt.
  • Der Magnetfilter dient dazu, magnetisch leitende und nichtleitende Schmutzteilchen aus Kühl- und Schmierflüssigkeiten zu entfernen, so daß diese wieder verwendet werden können. Der Sauberkeitsgrad der Kühl- und Schmierflüssigkeiten ist ein ausschlaggebender Faktor bei der Fertigungspräzision und der Oberflächengüte der bearbeiteten Maschinenteile. Eine Qualitätsverbesserung beim Magnetfilter führt zur Erhöhung der Standzeit von Werkzeugen, Anlageteilen und der Schmier- und Kühlflüssigkeiten.
  • Automatische Magnetfilter sind in der modernen Technik seit langem bekannt, z. B. aus der US-A-2 736 432 und der CH-A-459 107. Die in der Praxis gebräuchlichsten Automaten sind mit einer langen Magnetwalze, die aus mehreren Magnetfeldern besteht, versehen. Die durch einen Motor mit Reduziergetriebe angetriebene Magnetwalze ist in einem Gehäuse gelagert, welches die Walze von unten umschließt. Das zu reinigende Medium wird üblicherweise oberhalb der Achse über die in Achsrichtung des Magnetkörpers verlaufenden Durchflußöffnung der Anzugskraft der Magnetwalze zugeleitet. In gleicher Weise ist der Austritt auf der gegenüberliegenden Seite angeordnet, jedoch normalerweise etwas tiefer, um einen guten Durchfluß zu gewährleisten. Die magnetisch angezogenen, in der zu filtrierenden Flüssigkeit enthaltenen Verunreinigungen bauen sich in Form von Bärten an der Magnetwalze auf, wobei große Späne schneller angezogen werden als kleine. Die magnetische Induktion fällt mit der Vergrößerung der Distanz zwischen den Magneten und dem einzelnen Span ab. Vorwiegend kleinste Späne, die auf der Außenseite, d. h. von der Walzenoberfläche am weitesten entfernt, im zu reinigenden Medium im Kanal mitfließen, haben oft während des Durchflusses nicht genügend Zeit, bis zur magnetischen Oberfläche der Walze zu gelangen.
  • Wird die Durchflußmenge bei einem solchen Filter reduziert, so fällt das Niveau am Eintritt in den Durchflußkanal ab, die beaufschlagte Fläche auf der Magnetwalze wird kleiner und damit auch die Leistungsfähigkeit des Filters. Bei noch kleineren Mengen plätschert das zu reinigende Medium über die Einlaufkante, damit Turbulenzen im Durchlaufkanal erzeugend und damit den Wirkungsgrad des Magnetfilters zusätzlich reduzierend.
  • Ein bekannter Magnetwalzenscheider für in staubförmigem Gut enthaltene, magnetisierbare Teile ist in der DE-B-1 135 842 beschrieben.
  • Die von einem Mantel umhüllte Walze wird in hohe Umdrehungen versetzt, so daß sich Fliehkräfte einstellen, um evtl. an der Walzenoberfläche haftende, nichtmagnetisierte Teile abzuschleudern, währenddem die magnetischen Teile über einen Abstreifer abgeschieden werden.
  • Die Walze ist in einem durch einen Rüttler angetriebenen Schwingbett eingesetzt, dessen Schwingungen den Mantel in Vibrationen versetzen und so den Durchflußkanal mit hoher Frequenz verengen und wieder erweitern. Dadurch wird eine starke Umwälzung des staubförmigen Gutes und eine gute Anziehung der magnetischen Teile an die Walze bewirkt.
  • Infolge der Vibrationen wird jedoch der Aufbau des Bartes aus magnetischen Verunreinigungen als Anschwemmfilter für nichtmagnetische Teile verhindert.
  • Das Ausfiltrieren von nichtmagnetischen Verschmutzungen aus einer Flüssigkeit ist mit diesem Magnetabscheider nicht möglich.
  • Ein weiterer Magnetabscheider ist aus der FR-A-2 134 229 bekannt. Dieser bezweckt die magnetische Trennung größerer bearbeiteter Metallteile aus einer Politurmasse. Er ist ebenfalls nicht geeignet zum Ausfiltrieren magnetischer nichtmagnetischer Teile aus einer Flüssigkeit.
  • Es ist Aufgabe der Erfindung, die Nachteile der bekannten Magnetabscheider zu vermeiden und einen Magnetfilter der eingangs erwähnten Gattung zu schaffen mit hohem Wirkungsgrad auch in bezug auf das Ausfiltrieren nichtmagnetisierbarer Teile. Es soll möglich sein, den Filter so zu betreiben, daß ein »Bart« aus magnetischen Verunreinigungen im Durchflußkanal aufgebaut und auch bei unterschiedlichen Flüssigkeitsmengen erhalten wird, der als Anschwemmfilter für die nichtmagnetischen Teile dient. Die Veränderung des Durchflußkanalquerschnittes in Anpassung an unterschiedliche Flüssigkeitsmengen soll fein regulierbar sein, so daß immer eine ruhige, turbulenzfreie Strömung im Durchflußkanal erzeugbar ist.
  • Die Lösung dieser Aufgabe erfolgt durch einen Magnetfilter, der eine Steueranordnung mit elektrischem Signalgeber aufweist, dessen Meßteil in den Behälter hineinragt und in Abhängigkeit vom Niveau der Flüssigkeit im Behälter einen Antriebsmotor für die Magnetwalze intermittierend ein- und ausschaltet, und daß zur Veränderung des Durchflußkanalquerschnittes ein in den Durchflußkanal regulierbar hineinragender Schieber oder ein an sich bekannter, beweglicher Mantelteil vorgesehen ist.
  • Dadurch wird zum einen erreicht, daß nach der ersten Phase der Beruhigung und der Ausfilterung der größeren Teile das zu reinigende Medium in Richtung der Magnete gelenkt wird und zum anderen die magnetische Induktion während der Annäherung des Spanes an die Magnete verstärkt wird. Eine Verminderung des Kanalquerschnittes ergibt eine Erhöhung des Durchflußwiderstandes, resultierend in einem Rückstau, so daß auch bei kleinen Mengen das Niveau und damit die Einflußcharakteristik des Filters ungefähr derjenigen der Vollastmenge entspricht.
  • Aus diesem Grund ist es auch wichtig, daß das Niveau des Sees möglichst konstant gehalten wird. Dazu dient der elektrisch betätigbare Niveauschalter, z. B. ein Annäherungsschalter oder ein kapazitiver Kompaktgrenzschalter, der auf Niveauunterschiede von 1 mm bis 1,5 mm anspricht, also ein sehr schmales Regelband aufweist. Versuche mit einem an sich bekannten Schwimmerschalter haben sich nicht bewährt, da solche Schwimmerschalter erst bei 4 mm bis 5 mm Niveauunterschied ansprechen, was für den vorliegenden Zweck zuwenig präzise ist.
  • Der Niveauschalter dient zur Feinregulierung des Magnetfilters. Er schaltet die Magnetwalze in Abhängigkeit des Niveaus der Flüssigkeit ein und aus. Die Magnetwalze transportiert das auszuscheidende Material mit kleiner Geschwindigkeit zum Abstreifer, wobei die Filterbärte genügend Zeit haben, sich zu regenerieren.
  • In der Praxis hat sich der erfindungsgemäße Magnetfilter gut bewährt. So war es z. B. möglich, den bei der Bearbeitung von Grauguß entstehenden feinen Abrieb, bestehend aus Eisen und Graphit, fast vollständig auszufiltrieren, was bei herkömmlichen Magnetfiltern nicht möglich ist.
  • Anhand der Zeichnungen werden nachstehend Ausführungsbeispiele der Erfindung näher erläutert. Es zeigt
    • Fig. 1 einen Längsschnitt durch einen Magnetfilter und
    • Fig. eine Draufsicht auf den Magnetfilter gemäß Fig. 1.
  • Der Magnetfilter weist ein stabiles Aluminiumgehäuse 1 auf, in welchem eine horizontale Magnetwalze 2 drehbar gelagert ist. Die Walze 2 ist aus feinpoligen, leistungsstarken Permanentmagneten aufgebaut, die in schmalen Abständen angeordnet sind und über die ganze Walzenbreite ein starkes Magnetfeld erzeugen. Der Walzenantrieb erfolgt über ein Doppelschneckengetriebe 4 durch einen Elektromotor 3.
  • Unterhalb der Magnetwalze 2, im Abstand a von deren Oberfläche, ist ein gewölbter Blechmantel 5 angeordnet, der den unteren Teil der Walze 2 umhüllt. Dadurch wird zwischen der Walzenoberfläche und dem Blechmantel 5 ein Durchflußkanal 6 für die zu filtrierende Flüssigkeit gebildet. Der Blechmantel 5 besteht aus einem gehäusefesten Teil 5a und einem verschwenkbaren Teil 5b, welch letzterer mittels eines zur Walzenachse 7 parallelen Scharniers 8 am festen Teil 5a befestigt ist. Statt aus Blech könnte der Mantel auch aus zwei Gußteilen bestehen.
  • Zur Verstellung des verschwenkbaren Mantelteiles 5b dient ein außerhalb des Gehäuses 1 angeordneter Handgriff 9, welcher über zwei Gelenkhebel 10, 11 mit dem verstellbaren Teil 5b verbunden ist. Bei konstantem Durchflußquerschnitt, d. h. bei konstanter Spalthöhe a, sind beide Mantelteile 5a, 5b koaxial zur Magnetwalze 2 angeordnet.
  • Mittels des Handgriffes 9 kann nun der bewegliche Mantelteil 5b so eingestellt werden, daß sich der Spalt in Durchflußrichtung kontinuierlich verengt, wobei im Bereich des beweglichen Mantelteiles 5b ein sich keilförmig verjüngender Durchflußquerschnitt entsteht. Diese Einstellung des beweglichen Mantelteiles ist in den Figuren gestrichelt eingetragen, wobei der Handgriff 9 alternativ auf der einen oder der anderen Gehäuseseite angeordnet sein kann.
  • Statt der manuellen Verstellung wäre es auch möglich, den Durchflußquerschnitt automatisch zu regulieren, z. B. in nicht näher dargestellter Weise mit motorischem Antrieb in Funktion der gemessenen Durchflußmenge.
  • Ein an sich bekanntes, geneigtes Abstreifblech 14 ist oben am Gehäuse 1 befestigt und liegt mit seiner vorderen Kante 15 auf der Walzenoberfläche auf.
  • Der Magnetwalze ist eine Vorfiltrierkammer 13 aus Aluminium vorgelagert, in welcher ein Schmutzaustragkorb eingesetzt werden kann. Die schräge Schikane 16 in der Vorfiltrierkammer 13 dient dazu, die einströmende Flüssigkeit zu beruhigen.
  • Das zu filtrierende Medium muß nämlich laminar und gleichmäßig über die ganze Breite verteilt in den Durchflußkanal 6 einströmen, da Turbulenzen den Filterwirkungsgrad beeinträchtigen. Durch die Beruhigung in der Vorfiltrierkammer 13 findet eine gewisse Sedimentierung statt, insbesondere werden spezifisch schwere Teile wie Schleifscheibenabrieb, Späne, usw. abgelagert. Eine wesentliche Reinigungshilfe bringt der Schmutzaustragkorb mit sich, da die Sedimentierung durch diesen Korb einfach und schnell entfernt werden kann; eine aufwendige Reinigung bleibt erspart.
  • Aus der Vorkammer 13 fließt das Medium durch die Schikane 16 und dann ruhig unter der Magnetwalze 2 durch. Der Durchflußspalt läßt sich nun in Fließrichtung, je nach Bedarfsfall, stärker oder schwächer keilförmig verengen. Dadurch werden die größeren Eisenteilchen zuerst ausgeschieden und die Wirksamkeit der Ausfiltrierung im Mikronbereich in den verengten Stellen wesentlich erhöht. Um eine erhöhte Reinigung zu erreichen, kann der Ausfluß auf die Einlaufhöhe zurückgestaut werden durch ein Steigrohr oder durch Erhöhung der verstellbaren Schikanen.
  • Damit die im ausgefilterten Material noch enthaltene Flüssigkeit in den Behälter zurückfließen kann, ist das verstellbare Abstreifblech 14 leicht ansteigend angeordnet. Der Schmutz wird auf dem Abstreifblech immer weiter nach hinten geschoben und fällt dann weitgehend trocken in einen dafür vorgesehenen Schmutzbehälter.
  • Durch die stufenlose Veränderung des Durchflußkeiles kann für jeden Bedarfsfall bezüglich gewünschter Filterleistung und Durchflußmenge eine optimale Position gefunden werden. Eine Filteranlage kann sofort einer veränderten Betriebsbedingung oder Anwendung angepaßt werden. So werden Eisenteilchen praktisch immer vollständig und, dank der Netzwirkung, Nichteisenstoffe zum größten Teil kontinuierlich aus der Kühl- und Schmierflüssigkeit (Öle, Wasser, Emulsionen) entzogen.
  • Statt die Magnetwalze 2 kontinuierlich rotieren zu lassen, kann der Magnetfilter mit einer elektronischen Steuerung für den Antrieb versehen sein. Dies ermöglicht neben der Arbeitsweise als reiner Magnetfilter einen Betrieb der Anlage als Anschwemmfilter, also ein Ausfiltern von nicht-magnetisierbarem Material. In Verbindung mit der Verstellvorrichtung, d. h. durch Veränderung des Durchflußkeiles, kann mit der Walzensteuerung praktisch jeder gewünschte Filterwirkungsgrad erzielt werden. Ein kapazitiver Kompaktgrenzschalter 17 ragt mit seinen Meßteilen 18 in die Flüssigkeit in der Vorfiltrierkammer 13. Er ist für Feinregulierung ausgelegt und spricht auf kleinste Veränderungen des Durchflußwiderstandes bzw. des Flüssigkeitsniveaus an und schaltet den Antriebsmotor 3 in einem engen Regelband automatisch ein und aus. Damit erübrigt sich jedes manuelle Neuregulieren bei Veränderung des Verschmutzungsgrades der zu filtrierenden Flüssigkeit.
  • Die grundsätzliche Arbeitsweise entspricht derjenigen des Magnetfilters ohne Signalgeber, nur dreht sich die Magnetwalze bei Inbetriebsetzung noch nicht. Sofort bauen sich die magnetisierbaren Teile zu einem bartförmigen Sieb im Durchflußkeil auf, was unmittelbar zur Anschwemmung von nicht-magnetisierbaren Teilen führt und damit eine dichte Filterschicht bildet.
  • Der Grad der Ausfilterung kann stufenlos im kapazitiven Kontaktgrenzschalter eingestellt werden. Übersteigt der Durchflußwiderstand im Filter den vorbestimmten Wert, so löst ein Steuerbefehl eine Vorwärtsdrehung der Magnetwalze aus. Ist ein kleiner Teil der Filterschicht ausgetragen, so reduziert sich der Durchflußwiderstand, der Motor wird ausgeschaltet, und die Magnetwalze steht wieder fest. Diese moderne Art von elektronischer Kapazititivsteuerung kann in einem schmalen Regelband arbeiten mit kurzen Taktintervallen, um damit den Filterwirkungsgrad stets in engen Grenzen zu halten. Das Band läßt sich außerdem fast beliebig nach oben oder unten verschieben. Die Meßstelle kann sich innerhalb oder außerhalb des Filtergehäuses befinden, je nach Medium.
  • Bei weiteren Ausführungsformen wird statt der Magnetwalze eine elektrisch magnetisierbare Walze vorgesehen. Zur Veränderung des Durchflußkanalquerschnittes wäre es auch möglich, bei festem Mantel einen Schieber regulierbar in den Kanal eindringen zu lassen. Schließlich könnten statt des elektrischen Signalgebers auch ein Membranschalter oder ein Annäherungsschalter Verwendung finden, die in Abhängigkeit des Flüssigkeitsniveaus den Elektromotor steuern. Je nach Art des Mediums wäre auch eine Photozellensteuerung denkbar.

Claims (5)

1. Magnetfilter, bestehend aus einer drehbar gelagerten Magnetwalze mit Abstreifer, die unten von einem Mantel umhüllt ist, wobei zwischen der Walze und dem Mantel ein Durchflußkanal mit variierbarem Querschnitt für die zu filtrierende Flüssigkeit gebildet ist, welche über einen Behälter dem Durchflußkanal zufließt, dadurch gekennzeichnet, daß der Magnetfilter eine Steueranordnung mit elektrischem Signalgeber (17) aufweist, dessen Meßteil (18) in den Behälter hineinragt und in Abhängigkeit vom Niveau der Flüssigkeit im Behälter einen Antriebsmotor (3) für die Magnetwalze (2) intermittierend ein- und ausschaltet, und daß zur Veränderung des Durchflußkanalquerschnittes ein in den Durchflußkanal regulierbar hineinragender Schieber oder ein an sich bekannter, beweglicher Manteilteil (5b) vorgesehen ist.
2. Magnetfilter nach Anspruch 1, dadurch gekennzeichnet, daß der elektrische Signalgeber (17) ein Annäherungsschalter oder kapazitiver Kompaktgrenzschalter ist.
3. Magnetfilter nach Anspruch 1, dadurch gekennzeichnet, daß der Behälter eine Schikane (16) aufweist zur Beruhigung der Flüssigkeit vor dem Meßteil (18) und vor dem Einlauf in den Durchflußkanal (6).
4. Magnetfilter nach Anspruch 1, dadurch gekennzeichnet, daß der bewegliche Mantelteil (5b) über eine Gelenkhebelanordnung (10, 11) mit einem Betätigungshebel (9) verbunden ist.
5. Magnetfilter nach Anspruch 1, dadurch gekennzeichnet, daß der Mantel (5) aus zwei gebogenen Blech- oder Gußstücken (5a, 5b) besteht, die mittig über ein Scharnier (8) miteinander verbunden sind, und die in einer Stellung konstanten Durchflußquerschnittes koaxial zur Magnetwalze (2) angeordnet sind.
EP79810096A 1978-09-21 1979-09-17 Magnetfilter Expired EP0009467B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT79810096T ATE237T1 (de) 1978-09-21 1979-09-17 Magnetfilter.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH989278 1978-09-21
CH9892/78 1978-09-21

Publications (3)

Publication Number Publication Date
EP0009467A2 EP0009467A2 (de) 1980-04-02
EP0009467A3 EP0009467A3 (en) 1980-04-30
EP0009467B1 true EP0009467B1 (de) 1981-09-23

Family

ID=4356812

Family Applications (1)

Application Number Title Priority Date Filing Date
EP79810096A Expired EP0009467B1 (de) 1978-09-21 1979-09-17 Magnetfilter

Country Status (5)

Country Link
US (1) US4293410A (de)
EP (1) EP0009467B1 (de)
JP (1) JPS5597262A (de)
AT (1) ATE237T1 (de)
DE (1) DE2960898D1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006013256B4 (de) * 2006-03-21 2008-11-20 Jostarndt Patentanwalts-Ag Vorrichtung und Verfahren zum Entfernen von Partikeln aus einer Flüssigkeit

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4888113A (en) * 1986-11-21 1989-12-19 Holcomb Robert R Magnetic water treatment device
ES2264899B1 (es) 2005-07-12 2008-01-01 Centro De Investigacion De Rotacion Y Torque Aplicada, S.L. Filtro para capturar emisiones contaminantes.
USH2238H1 (en) 2006-07-26 2010-05-04 The United States Of America As Represented By The Secretary Of The Navy Magnetic particle separator
DE102009035416A1 (de) 2009-07-31 2011-02-10 Siemens Aktiengesellschaft Verfahren zur Abtrennung von magnetisierbaren Partikeln aus einer Suspension und zugehörige Vorrichtung
AU2013356694B2 (en) * 2012-12-04 2018-05-31 Evoqua Water Technologies Llc Magnetic drum inlet slide and scraper blade
US9242251B2 (en) 2013-01-30 2016-01-26 Wheelabrator Group, Inc. Magnetic separator with dynamic baffle system
CN107297277A (zh) * 2017-07-01 2017-10-27 太仓英达锅炉设备有限公司 吸附式润滑油净化装置
CN107769753A (zh) * 2017-09-20 2018-03-06 戴承萍 一种可重构滤波器及复数滤波器
KR20200064055A (ko) * 2017-10-13 2020-06-05 스미도모쥬기가이 파인테크 가부시키가이샤 쿨런트처리장치
CN108889999A (zh) * 2018-07-12 2018-11-27 王军 一种用于在槽内部执行铣削加工的铣削装置
CN110090500B (zh) * 2019-05-17 2021-04-13 佛山市顺德区棋德莱电器有限公司 一种自动启动的排风扇

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2564515A (en) * 1946-09-11 1951-08-14 Vogel Walter Magnetic separator for obtaining magnetic particles from liquids
US2607478A (en) * 1948-09-29 1952-08-19 Jeffrey Mfg Co Magnetic separator
US2736432A (en) * 1951-02-08 1956-02-28 Houdaille Hershey Of Indiana I Magnetic clarifier
US2856070A (en) * 1955-02-07 1958-10-14 Colorado Iron Works Co Multiple stage separator
US2934140A (en) * 1956-08-28 1960-04-26 Beloit Iron Works Adjustable stock inlet for paper making machines
DE1135842B (de) * 1960-02-22 1962-09-06 Spodig Heinrich Magnetwalzenscheider, insbesondere fuer in staubfoermigem Gut enthaltene magnetisierbaren Teile
DE1137402B (de) * 1960-03-24 1962-10-04 Beteiligungs & Patentverw Gmbh Magnetscheider
US3321360A (en) * 1963-10-09 1967-05-23 Cons Papers Inc Method and apparatus for supplying stock to papermaking machine
DE1197823B (de) * 1964-11-02 1965-08-05 Deutsche Edelstahlwerke Ag Magnetwalzen-Abscheider
DE1266254B (de) * 1967-09-19 1968-04-18 Spodig Heinrich Permanentmagnetscheider
US3522883A (en) * 1968-04-26 1970-08-04 Electronic Memories & Magnetic Dewatering device for wet magnetic drum separator
FR2134229A1 (en) * 1971-04-28 1972-12-08 Cogepris Magnetic sepn - of components from abrasive mixture after polishing operation
US3837216A (en) * 1973-04-30 1974-09-24 Shinohara Seiki Kk Method and apparatus for measuring the concentration of solid contaminants contained in liquids
SE409954B (sv) * 1976-06-11 1979-09-17 Mineral Processing Dev Magnetseparator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006013256B4 (de) * 2006-03-21 2008-11-20 Jostarndt Patentanwalts-Ag Vorrichtung und Verfahren zum Entfernen von Partikeln aus einer Flüssigkeit

Also Published As

Publication number Publication date
EP0009467A2 (de) 1980-04-02
JPS5597262A (en) 1980-07-24
EP0009467A3 (en) 1980-04-30
ATE237T1 (de) 1981-10-15
US4293410A (en) 1981-10-06
DE2960898D1 (en) 1981-12-10

Similar Documents

Publication Publication Date Title
DE69211276T2 (de) Verfahren und Schleifvorrichtung
EP0009467B1 (de) Magnetfilter
DE2408715C2 (de) Spülvorrichtung für die elektroerosive Bearbeitung elektrisch leitender Werkstoffe
DE69922515T2 (de) Zentrifugenkupplung mit steuermechanismus und flügelbauweise
DE2356697C2 (de) Vorrichtung zum Abscheiden von Schlammflocken aus einer Trägerflüssigkeit
DE10029239B4 (de) Vorrichtung zum Bearbeiten von magnetischen Bauteilen und Vorrichtung zur Behandlung von Abfallflüssigkeit
EP0355632B1 (de) Verfahren zum Aufbereiten der Bearbeitungsflüssigkeit einer Elektroerosionsmaschine
DE69826533T2 (de) Abscheider
DE2701872A1 (de) Vorrichtung zum trennen von festkoerperteilchen von fluessigkeiten
EP1697018A1 (de) Vorrichtung zum kontinuierlichen filtern von materialgemischen
DE3134861C2 (de) Magnetfilter
DE69829452T2 (de) Gleitschleifvorrichtung
EP0355633B1 (de) Vorrichtung zum Aufbereiten der Bearbeitungsflüssigkeit einer Elektroerosionsmaschine
DE2711854A1 (de) Reinigungsgeraet zum abscheiden von magnetischen und nichtmagnetischen partikeln aus fluessigkeiten
DE4117682A1 (de) Vorrichtung zum filtrieren einer verunreinigten loesung und einer bearbeitungsfluessigkeit bei einer werkstueckbearbeitungsmaschine
DE2805108B2 (de) Maschine zum beidseitigen Schleifen oder Polieren von Blechen mit Magnetpulver
DE2832903C2 (de) Rührwerksmühle - Lager
DE69308594T2 (de) Einrichtung zur sink-schwimmscheidung von festen partikeln
CH694550A5 (de) Draht-Elektroerosionsmaschine.
EP1640052A1 (de) Vorrichtung zum Trennen von Feststoffpartikeln aus einer Flüssigkeit
EP0581153B1 (de) Spaltfilter
DE19721629C1 (de) Aufstromsortierer
DE3222585C2 (de) Filter
DE102006013256B4 (de) Vorrichtung und Verfahren zum Entfernen von Partikeln aus einer Flüssigkeit
WO1999047234A1 (de) Mehrstufige filtervorrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT NL SE

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT NL SE

17P Request for examination filed
ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT NL SE

REF Corresponds to:

Ref document number: 237

Country of ref document: AT

Date of ref document: 19811015

Kind code of ref document: T

REF Corresponds to:

Ref document number: 2960898

Country of ref document: DE

Date of ref document: 19811210

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19840816

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19840820

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19840930

Year of fee payment: 6

Ref country code: NL

Payment date: 19840930

Year of fee payment: 6

Ref country code: BE

Payment date: 19840930

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19850807

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19850918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19850930

BERE Be: lapsed

Owner name: HANS STREULI A.G.

Effective date: 19850917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19860401

GBPC Gb: european patent ceased through non-payment of renewal fee
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19860530

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19860917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19881118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19890601

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19890907

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19900930

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed

Ref document number: 79810096.2

Effective date: 19860729

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT