EP0004294A1 - Dach für Gebäude, insbesondere für industrielle Bauten - Google Patents

Dach für Gebäude, insbesondere für industrielle Bauten Download PDF

Info

Publication number
EP0004294A1
EP0004294A1 EP79100579A EP79100579A EP0004294A1 EP 0004294 A1 EP0004294 A1 EP 0004294A1 EP 79100579 A EP79100579 A EP 79100579A EP 79100579 A EP79100579 A EP 79100579A EP 0004294 A1 EP0004294 A1 EP 0004294A1
Authority
EP
European Patent Office
Prior art keywords
filling
roof
trapezoidal sheets
skin
sheets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP79100579A
Other languages
English (en)
French (fr)
Inventor
Werner Zackerts
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RAG AG
Original Assignee
Ruhrkohle AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ruhrkohle AG filed Critical Ruhrkohle AG
Publication of EP0004294A1 publication Critical patent/EP0004294A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04DROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
    • E04D13/00Special arrangements or devices in connection with roof coverings; Protection against birds; Roof drainage ; Sky-lights
    • E04D13/16Insulating devices or arrangements in so far as the roof covering is concerned, e.g. characterised by the material or composition of the roof insulating material or its integration in the roof structure
    • E04D13/1606Insulation of the roof covering characterised by its integration in the roof structure
    • E04D13/1643Insulation of the roof covering characterised by its integration in the roof structure the roof structure being formed by load bearing corrugated sheets, e.g. profiled sheet metal roofs
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04DROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
    • E04D13/00Special arrangements or devices in connection with roof coverings; Protection against birds; Roof drainage ; Sky-lights
    • E04D13/16Insulating devices or arrangements in so far as the roof covering is concerned, e.g. characterised by the material or composition of the roof insulating material or its integration in the roof structure
    • E04D13/1606Insulation of the roof covering characterised by its integration in the roof structure
    • E04D13/1668Insulation of the roof covering characterised by its integration in the roof structure the insulating material being masses or granules applied in situ

Definitions

  • the invention relates to a roof, in particular industrial roof, with a covering made of corrugated sheets, preferably trapezoidal sheets, which are covered on the outside with a thermal insulation layer and a skin made of bituminous sheets.
  • Such roofs are suitable for covering larger halls, e.g. Machine halls, warehouses or office buildings.
  • the trapezoidal sheets ensure the necessary strength due to the strength achieved by the beads, even with thinner material.
  • the thermal insulation layer is protected by its covering through the roof skin, which advantageously consists of bituminous roofing membranes.
  • the trapezoidal sheets can e.g. connected with rivets and thus secured.
  • a thermal insulation layer in the form of is usually first placed on the trapezoidal sheets individual sheets or prefabricated parts, for example made of polystyrene, applied. Then the skin is put on, which is composed of individual, eg bituminous, plastic sealing sheets; Finally, the whole thing is weighed down with a pile of gravel, so that the skin cannot stand out.
  • a prerequisite for such a structure is, however, that the roof has only a very slight or no slope. In the case of larger areas, additional iron or reinforced concrete beams must be used for stabilization.
  • the thermal insulation material and the sealing membrane do not lie on the entire surface, which is why such roofs are not considered to be storm-proof. The movement of the corrugated sheets can cause defects in the roof skin.
  • the poor fastening options for the thermal insulation elements and the roofing membranes also mean that the trapezoidal sheets can easily damage the insulation layer and the skin.
  • the invention seeks to remedy this.
  • the invention as characterized in the claims, solves the problem of designing a roof of the type described in such a way that it can be designed for prescribed wind suction loads with a simple construction made of flame-retardant or non-flammable materials.
  • the advantage that can be achieved by the invention is that, through the filling of the beads of the trapezoidal sheets and the arrangement of the thermal insulation layer and the skin on the filling, the point connection with the filling and / or the trapezoidal sheets, a full-surface support for the thermal insulation layer and the roof skin is obtained and the mere absorption of considerably larger wind suction loads is thereby achieved; in addition, a composite effect of the load-bearing filling material with the metal sheets is achieved, the webs of trapezoidal sheets against damage, for example from bulges backs up. Since such mechanical types can be used as point connections, they in turn prevent damage to the roof.
  • the fillings can be parts of a continuous support and advantageously consist of lightweight cellar concrete with a bulk density of approx. 1,000 kp / m 3.
  • the non-combustible lightweight cellar concrete also has a heat-insulating effect, so that, if necessary, the cell lightweight - The layer of heat insulation material to be applied can be reduced accordingly.
  • the costs caused by the lightweight cellular concrete can be at least partially offset by this.
  • Cell lightweight concrete is self-sufficient to the extent that, despite the additional stress caused by the trapezoidal sheets, further substructures are generally not required.
  • the load-bearing capacity can be increased by reinforcement made of cellular lightweight concrete, which also considerably reduces the vibrations that otherwise occur in such roofs.
  • Trapezoidal sheet metal ribs which are perforated in the webs and mounted diagonally - as reinforcement on the trapezoidal sheets, are often less complex, but statistically sufficient.
  • other hollow profiles arranged crosswise or diagonally which can also be arranged in reverse, are also possible. When laid crosswise, a grid is created in the concrete so that the sheets can be subjected to considerably higher loads.
  • the ribs are light, so that the advantage achieved with the composite effect is not canceled out by an additional weight load.
  • Trapezoidal sheet metal ribs can be 40 mm high, for example.
  • the ribs can be installed at 45 °.
  • the connection of the Wär medämmimplantation and the roof skin can be easily achieved by gas concrete nails and washers.
  • the beads can be filled more easily with lightweight cellular concrete if they point upwards in the diagonally arranged sheet metal ribs. Ribs laid diagonally over trapezoidal sheets with inward-facing beads can also be easily filled.
  • the layer can be 40 mm thick when using lightweight cellular concrete; it then also forms a sufficient abutment for receiving the gas concrete nails or dowels with which the thermal insulation layer and the roof skin are mechanically connected.
  • the sheets show little deflection because they have better stability due to the composite effect of the diagonally laid sheets. Bumps or other damage to the sheet metal are practically impossible with supports made of lightweight cellular concrete. You can also create sloping roofs according to this principle, whereby the support, especially if it consists of lightweight cellular concrete, can also be used for thermal insulation and for fastening additional sealing agents. A particular advantage of such a roof is that it is considered storm-proof.
  • the beads 3 projecting inward are provided with a filling 2 consisting of lightweight cellular concrete.
  • the top of the concrete also serves as a full-surface support for the thermal insulation elements 5 to be laid on the sheets.
  • a roof skin made of plastic sealing sheets 6 is applied to the thermal insulation elements 5 laid; first, the thermal insulation elements 5 and the plastic sealing membrane 6 are loosely laid. Only then are both mechanically connected to the trapezoidal sheets 1 using commercially available holders 16 and screws 9. Leaks at the connection point are avoided by the following sealing film 15, which is welded to the plastic sealing membrane 6.
  • the gravel also acts as a reflective layer.
  • Fig. 1 in this embodiment, only the inwardly facing beads 3 to their upper edge, ie filled up to the height of the beads 4 pointing outwards.
  • the outward-facing bead 4 and the surface of the lightweight cellular concrete 2 then form a continuous surface onto which the thermal insulation elements 5 are applied simply and lying flat and fastened with holders 16 and screws 9 and washers 8. This avoids cavities.
  • FIG. 2 shows a roof reinforced by reinforcement with a continuous support connecting the fillings 2.
  • a trapezoidal sheet 10 laid with the bead 11 upwards serves as reinforcement.
  • This trapezoidal sheet 10 has bores 14 in the webs 12, so that the foam concrete can flow well into the free spaces.
  • FIG. 3 makes it clear how the trapezoidal sheets 10 are laid diagonally over the trapezoidal sheets 1, so that a net which substantially strengthens the overall construction is created.
  • the e.g. 40 mm high trapezoidal sheet metal ribs 10 which have 12 holes 14 in the webs, mounted at 45 ° on the trapezoidal sheet metal 1, after which the entire construction is then filled with lightweight cellular concrete 2, with a bulk density of approx. 1,000 kp / m ' .
  • thermal insulation elements 5 or only the plastic sealing sheets 6 are loosely placed and mechanically fastened in the concrete with dowels or gas concrete nails 7, barbs 17 and washers 8. *
  • FIG. 4 shows a so-called inverted roof, the plastic sealing membrane 6 being placed directly on the lightweight cellular concrete 2 and the beads 4.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Building Environments (AREA)
  • Roof Covering Using Slabs Or Stiff Sheets (AREA)

Abstract

Bei einem Dach, insbesondere Industriedach, mit einer Eindeckung aus mit Sicken (3) versehenen, vorzugsweise Trapezblechen (1) die außen mit einer Wärmedämmschicht (5) sowie einer Haut (6) aus bituminösen Bahnen abgedeckt sind, sind zum Zwecke der Auslegung auf vorgeschriebene Windsoglasten unter Beibehaltung eines einfachen Aufbaus aus schwer entflammbaren bzw. unbrennbaren Werkstoffen die Sicken (3) der Trapezbleche (1) mit einer Füllung (2) versehen, auf der die Wärmedämmschicht (5) sowie die Haut (6) angeordnet sind, die mit der Füllung (2) und/oder den Trapezblechen (1) punktweise vorteilhaft durch Gasbetonnägel (7) mit Unterlegscheiben (8) verbunden sind. Die einzelnen Füllungen (2) können Teile einer durchgehenden Auflage sein und bestehen zweckmäßig aus Zellen-Leicht-Beton. Ferner kann zur weiteren Verstärkung eine Bewehrung aus diagonal angeordneten Blechrippen (10) vorgesehen sein, die aus Trapezblechen bestehen können, welche unter 45° auf den mit der Füllung (2) versehenen Trapezblechen (1) mit nach oben weisender Sicke (11) befestigt sind. Die Haut (6) kann auch unmittelbar auf der Füllung (2) angeordnet sein, worauf die Wärmedämmschicht und auf dieser eine Zellen-Leicht-Beton-Auflage (13) oder eine Kiesschicht folgen.

Description

  • Die Erfindung betrifft ein Dach, insbesondere Industriedach mit einer Eindeckung aus mit Sicken versehenen, vorzugsweise Trapezblechen, die außen mit einer Wärmedämmschicht sowie einer Haut aus bituminösen Bahnen abgedeckt sind.
  • Solche Dächer eignen sich zur Abdeckung größerer Hallen, wie z.B. Maschinenhallen, Lagerhallen oder auch Bürobauten. Die Trapezbleche sorgen hierbei wegen ihrer durch die Sicken erzielten Festigkeit auch bei dünnerem Material für die notwendige Festigkeit. Die Wärmedämmschicht wird durch ihre Abdeckung durch die Dachhaut geschützt, die vorteilhaft aus bituminösen Dachbahnen besteht. Die Trapezbleche können z.B. mit Nieten verbunden und damit abgesichert werden.
  • Beim Aufbau eines solchen Daches wird üblicherweise auf die Trapezbleche zunächst eine Wärmedämmschicht in Form von einzelnen Bahnen oder vorgefertigten Teilen, z.B. aus Styropor, aufgebracht. Dann wird die Haut aufgelegt, die aus einzelnen, z.B. bituminösen Kunststoff-Dichtungsbahnen zusammengesetzt wird; schließlich beschwert man das Ganze mit einer Kiesschüttung, so daß sich die Haut nicht abheben kann. Voraussetzung für einen solchen Aufbau ist allerdings, daß das Dach nur eine sehr geringe bzw. gar keine Neigung hat. Bei größeren Flächen müssen zur Stabilisierung weitere Eisen- oder Eisenbetonträger eingesetzt werden. Ferner liegen das Wärmedämm-Material und die Dichtungsbahn nicht vollflächig auf, weshalb solche Dächer nicht als sturmgesichert gelten. Die Bewegung der gesickten Bleche kann Mängel in der Dachhaut verursachen. Trotz einer relativ aufwendigen Konstruktion führen ferner die schlechten Befestigungsmöglichkeiten für die Wärmedämmelemente und die Dachbahnen dazu, daß die Trapezbleche die Dämmschicht und die Haut leicht beschädigen können.
  • Hier will die Erfindung Abhilfe schaffen. Die Erfindung, wie sie in den Ansprüchen gekennzeichnet ist, löst die Aufgabe, ein Dach der bezeichneten Art so auszubilden, daß es bei einfachem Aufbau aus schwer entflammbaren bzw. unbrennbaren Werkstoffen auf vorgeschriebene Windsoglasten ausgelegt werden kann.
  • Der durch die Erfindung erzielbare Vorteil besteht darin, daß durch die Füllung der Sicken der Trapezbleche und die Anordnung der Wärmedämmschicht sowie der Haut auf der Füllung, die punktweise Verbindung mit der Füllung und/ oder den Trapezblechen eine vollflächige Auflage für die Wärmedämmschicht und die Dachhaut gewonnen und allein dadurch schon die Aufnahme erheblich größerer Windsoglasten erreicht wird; außerdem erzielt man eine Verbundwirkung des tragfähigen Füllmaterials mit den Blechen, die bei Trapezblechen deren Stege gegen Beschädigungen, z.B. Ausbeulen sichert. Da man als punktweise Verbindungen solche mechanischer Art verwenden kann, verhindern sie ihrerseits Beschädigungen des Daches.
  • Die Füllungen können Teile einer durchgehenden Auflage sein und bestehen vorteilhaft aus Zellen-Leicht-Beton mit einer Rohdichte von ca. 1.000 kp/m3. Der nicht brennbare Zellen-Leicht-Beton wirkt zusätzlich wärmedämmend, so daß gegebenenfalls die auf den Zellen-Leicht-Beton aufzubringende Schicht aus Wärmedämmstoff entsprechend verringert werden kann. Die durch den Zellen-Leicht-Beton verursachten Kosten lassen sich hierdurch wenigstens teilweise wieder ausgleichen. Zellen-Leicht-Beton ist soweit in sich selbst tragfähig, daß trotz der zusätzlichen Belastung durch die Trapezbleche weitere Unterkonstruktionen in der Regel nicht erforderlich sind.
  • Erforderlichenfalls läßt sich die Tragfähigkeit durch eine Bewehrung aus Zellen-Leicht-Beton erhöhen, wodurch auch die sonst in derartigen Dächern auftretenden Schwingungen erheblich verringert werden.
  • Wenig aufwendig, aber statistisch ausreichend sind häufig Trapezblechrippen, die in den Stegen gelocht und diago- - nal als Bewehrung auf die Trapezbleche montiert sind. Außer diagonalen Trapezblechen kommen auch andere, kreuzweise oder diagonal angeordnete Hohlprofile infrage, die auch umgekehrt angeordnet werden können. Bei kreuzweiser Verlegung entsteht ein Gitter im Beton, so daß die Bleche erheblich höher belastet werden können. Die Rippen sind leicht, so daß der mit der Verbundwirkung erreichte Vorteil nicht durch eine zusätzliche Gewichtsbelastung wieder aufgehoben wird.
  • Trapezblechrippen können z.B. 40 mm hoch sein. Die Rippen können unter 45° montiert werden. Die Verbindung der Wärmedämmelemente und der Dachhaut kann einfach durch Gasbetonnägel und Unterlegscheiben erreicht werden. Die Sicken können leichter mit Zellen-Leicht-Beton verfüllt werden, wenn sie bei den diagonal angeordneten Blechrippen nach oben weisen. Diagonal über Trapezblechen verlegte Rippen mit nach innen weisenden Sicken lassen sich ebenfalls leicht verfüllen. Die Auflage kann bei Verwendung von Zellen-Leicht-Beton 40 mm stark sein; sie bildet dann auch ein ausreichendes Widerlager für die Aufnahme der Gasbetonnägel oder von Dübeln, mit denen die Wärmedämmschicht und die Dachhaut mechanisch verbunden werden.
  • In heißeren Regionen verlegt man u.U. die Wärmedämmschicht zum Schutz der Dichtungsbahnen auf diesen. Dann folgen auf den Beton zunächst die Dachhaut, dann die Wärmedämmschicht und schließlich eine weitere Beton- bzw. eine Kiesschicht. Eine Beschädigung der z.B. aus Styropor bestehenden Wärmedämmelemente ist dadurch ausgeschlossen. Ein derartiges Dach kann auch ohne Schwierigkeiten für andere Zwecke verwendet werden, weil die gegen extreme Temperaturen empfindliche Dachhaut zusätzlich geschützt ist. Eine mechanische Befestigung der Dachhaut und der Wärmedämmelemente erübrigt sich hierbei in der Regel.
  • Weitere Vorteile bestehen darin, daß die Bleche eine geringe Durchbiegung zeigen, weil sie durch die Verbundwirkung der diagonal verlegten Bleche eine bessere Stabilität aufweisen. Ausbeulungen oder sonstige Beschädigungen der Bleche sind bei Auflagen aus Zellen-Leicht-Beton praktisch unmöglich. Mann kann auch geneigte Dächer nach diesem Prinzip erstellen, wobei die Auflage, insbesondere wenn sie aus Zellen-Leicht-Beton besteht, auch zur Wärmedämmung und zur Befestigung zusätzlicher Abdichtungsmittel dienen kann. Ein besonderer Vorteil eines solchen Daches ist, daß es als sturmgesichert gilt.
  • Im folgenden wird die Erfindung anhand von lediglich ein Ausführungsbeispiel darstellenden Zeichnungen näher erläutert. Es zeigt
    • Fig. einen Schnitt durch ein erfindungsgemäßes Dach mit gefüllten Sicken,
    • Fig. 2 einen Schnitt durch ein Dach mit einer diagonal angebrachten Trapezblechrippe,
    • Fig. 3 eine Draufsicht auf ein Dach mit diagonal aufgebrachten Trapezblechrippen und
    • Fig. 4 einen Schnitt durch ein Dach mit einer unmittelbar auf den Sicken aufgebrachten Dachhaut.
  • Nach der Verlegung der z.B. korrosionsgeschützten Trapezbleche 1 werden die nach innen vorstehenden Sicken 3 mit einer aus Zellen-Leicht-Beton bestehenden Füllung 2 versehen. Nach dem Abbinden dient auch die Oberseite des Betons als vollflächige Auflage für die auf den Blechen zu verlegenden Wärmedämmelemente 5. Auf die verlegten Wärmedämmelemente 5 wird eine Dachhaut aus Kunststoff-Dichtungsbahnen 6 aufgebracht; zunächst sind die Wärmedämmelemente 5 und die Kunststoff-Dichtungsbahn 6 lose verlegt. Erst anschließend werden beide mit handelsüblichen Haltern 16 und Schrauben 9 mechanisch mit den Trapezblechen 1 verbunden. Undichtigkeiten vermeidet an der Verbindungsstelle die folgende Abdichtungsfolie 15, die mit der Kunststoff-Dichtungsbahn 6 verschweißt wird. Zusätzlich oder statt der mechanischen Befestigung ist es insbesondere bei Flachdächern auch möglich, zur Beschwerung anschließend eine Kiesschüttung aufzubringen. Der Kies wirkt dabei gleichzeitig als Reflexionsschicht. Wie in Fig. 1 dargestellt, werden bei dieser Ausführungsform nur die nach innen weisenden Sicken 3 bis zu ihrer Oberkante, d.h. bis zur Höhe der nach außen weisenden Sicken 4 aufgefüllt. Hierdurch bilden dann die nach außen weisende Sicke 4 und die Oberfläche des Zellen-Leicht-Betons 2 eine durchgehende Fläche, auf die die Wärmedämmelemente 5 einfach und sattaufliegend aufgebracht und mit Haltern 16 und Schrauben 9 sowie Unterlegscheiben 8 befestigt werden. Hierdurch werden Hohlräume vermieden.
  • Figur 2 zeigt ein durch eine Bewehrung verstärktes Dach mit einer die Füllungen 2 verbindenden durchgehenden Auflage. Als Bewehrung dient ein mit der Sicke 11 nach oben verlegtes Trapezblech 10. Dieses Trapezblech 10 weist in den Stegen 12 Bohrungen 14 auf, so daß der Schaumbeton gut in die Freiräume einfließen kann.
  • Figur 3 macht dabei deutlich, wie die Trapezbleche 10 diagonal über die Trapezbleche 1 verlegt sind, so daß ein die Gesamtkonstruktion wesentlich verstärkendes Netz entsteht. Nach dem Verlegen der Trapezbleche 1, bei denen ein Korrosionsschutz bedarfsweise vorgesehen sein kann, werden die z.B. 40 mm hohen Trapezblechrippen 10, die in den Stegen 12 Bohrungen 14 aufweisen, unter 45° auf die Trapezbleche 1 montiert, wonach dann die gesamte Konstruktion mit Zellen-Leicht-Beton 2, von einer Rohdichte von ca. 1.000 kp/m' ausgefüllt wird. Hierdurch entsteht eine Verbundwirkung von Stahl und Beton, die eine höhere Stabilität des Gesamtdaches gewährleistet. Nach der Abbindezeit des Zellen-Leicht-Betons 2, werden wie üblich Wärmedämmelemente 5 oder nur die Kunststoff-Dichtungsbahnen 6 lose aufgelegt und mit Dübeln oder Gasbetonnägeln 7, Widerhaken 17 und Unterlegscheiben 8 mechanisch in dem Beton befestigt. *
  • Figur 4 zeigt schließlich ein sogenanntes Umkehrdach, wobei die Kunststoff-Dichtungsbahn 6 unmittelbar auf den Zellen-Leicht-Beton 2 und die Sicken 4 aufgelegt ist.
  • Darüber liegt dann eine Schicht aus Wärmedämm-Material 5 und schließlich aus Zellen-Leicht-Beton 13, so daß eine zusätzliche Sicherung durch Gasbetonnägel oder sonstige Halter entfällt. Derartige Dächer sind für heiße Regionen mit geringen Niederschlägen gedacht.

Claims (7)

1. Dach, insbesondere Industriedach, mit einer Eindeckung aus mit Sicken versehenen, vorzugsweise Trapezblechen, die außen mit einer Wärmedämmschicht sowie einer Haut aus bituminösen Bahnen abgedeckt sind, dadurch gekennzeichnet , daß die Sicken (3) der Trapezbleche (1) mit einer Füllung (2) versehen und die Wärmedämmschicht (5) sowie die Haut (6) auf der Füllung (2) angeordnet sowie mit der Füllung und/oder den Trapezblechen punktweise verbunden sind.
2. Dach nach Anspruch 1, dadurch - gekennzeichnet , daß die Füllungen (2) in den Sicken (3) der Trapezbleche (1) Teile einer durchgehenden Auflage sind.
3. Dach nach Anspruch 1 oder 2, dadurch gekennzeichnet , daß die Füllung (2) aus Zellen-Leicht-Beton mit einer Rohdichte von ca. 1.000 kp/m' besteht.
4. Dach nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet , daß diagonal angeordnete gesickte Blechrippen (10) als Bewehrung vorgesehen sind.
5. Dach nach Anspruch 4, dadurch gekennzeichnet , daß die Blechrippen (10) aus Trapezblechen bestehen, die unter 45° auf den mit der Füllung (2) versehenen Trapezblechen (1) mit nach oben weisender Sicke (11) befestigt sind.
6. Dach nach den Ansprüchen 1 bis 5, dadurch gekennzeichnet , daß zur Verbindung der Wärmedämmschicht (5) und der Haut (6) Gasbetonnägel (7) mit Unterlegscheiben (8) dienen.
7. Dach nach Anspruch 1, dadurch gekennzeichnet , daß auf der Füllung (2) die Haut (6) auf dieser die Wärmedämmschicht (5) und auf der Wärmedämmschicht eine Zellen-Leicht-Beton-Auflage (13) oder eine Kiesschicht angeordnet ist.
EP79100579A 1978-03-22 1979-02-26 Dach für Gebäude, insbesondere für industrielle Bauten Withdrawn EP0004294A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19782812450 DE2812450A1 (de) 1978-03-22 1978-03-22 Dach fuer gebaeude, insbesondere fuer industrielle bauten
DE2812450 1978-03-22

Publications (1)

Publication Number Publication Date
EP0004294A1 true EP0004294A1 (de) 1979-10-03

Family

ID=6035128

Family Applications (1)

Application Number Title Priority Date Filing Date
EP79100579A Withdrawn EP0004294A1 (de) 1978-03-22 1979-02-26 Dach für Gebäude, insbesondere für industrielle Bauten

Country Status (2)

Country Link
EP (1) EP0004294A1 (de)
DE (1) DE2812450A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0187356A2 (de) * 1985-01-08 1986-07-16 Deutsche Pittsburgh Corning GmbH Dachelement mit hoher Luftschalldämmung

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3004615C2 (de) * 1980-02-08 1986-03-13 Hoesch Ag, 4600 Dortmund Stahlleichtdach
US4389826A (en) * 1980-09-02 1983-06-28 Kelly Thomas L Plate bonded system on top of rubber and method of preparing same
US4736560A (en) * 1986-12-01 1988-04-12 Engineered Construction Components (America) Peel rivet
WO2005075758A1 (en) * 2004-02-06 2005-08-18 Corus Bausysteme Gmbh Method of insulating a roof against sound penetration and/or emanation
DE102015013086A1 (de) 2015-10-01 2017-04-06 Jutta Regina Giller Attika für Gebäude

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3208189A (en) * 1960-08-15 1965-09-28 Inland Steel Products Company Side lap vapor vent
DE2162386A1 (de) * 1971-12-16 1973-06-20 Akzo Gmbh Verfahren zum eindecken von flachdaechern
US3866372A (en) * 1973-06-18 1975-02-18 Dynamit Nobel Ag Mounting element and method for a loosely laid synthetic resin film and roof construction containing same
DE2501668A1 (de) * 1975-01-17 1976-07-22 Kurt Hofmeister Einrichtung zur sturmsicherung von auf metall-trapezdachflaechen verlegten daemmplatten und der darueberliegenden dachhaut
DE2553741A1 (de) * 1975-11-29 1977-06-02 Peter Dipl Kfm Reck Sickenfueller fuer trapezbleche zur versteifung und sicken0berbrueckung

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3208189A (en) * 1960-08-15 1965-09-28 Inland Steel Products Company Side lap vapor vent
DE2162386A1 (de) * 1971-12-16 1973-06-20 Akzo Gmbh Verfahren zum eindecken von flachdaechern
US3866372A (en) * 1973-06-18 1975-02-18 Dynamit Nobel Ag Mounting element and method for a loosely laid synthetic resin film and roof construction containing same
DE2501668A1 (de) * 1975-01-17 1976-07-22 Kurt Hofmeister Einrichtung zur sturmsicherung von auf metall-trapezdachflaechen verlegten daemmplatten und der darueberliegenden dachhaut
DE2553741A1 (de) * 1975-11-29 1977-06-02 Peter Dipl Kfm Reck Sickenfueller fuer trapezbleche zur versteifung und sicken0berbrueckung

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0187356A2 (de) * 1985-01-08 1986-07-16 Deutsche Pittsburgh Corning GmbH Dachelement mit hoher Luftschalldämmung
EP0187356A3 (de) * 1985-01-08 1986-10-08 Deutsche Pittsburgh Corning GmbH Dachelement mit hoher Luftschalldämmung

Also Published As

Publication number Publication date
DE2812450A1 (de) 1979-09-27

Similar Documents

Publication Publication Date Title
WO1994000650A1 (de) Dachelement
EP0077872B1 (de) Abdeckeinrichtung
EP1728928A2 (de) Mobile Hochwasserschutzeinrichtung
DE1658861A1 (de) Verbindung vorfabrizierter Stahlbetonbauteile
KR870001888B1 (ko) 조립식 건축물
EP0004294A1 (de) Dach für Gebäude, insbesondere für industrielle Bauten
DE3419658A1 (de) Flachdach
DE602005000344T2 (de) Verfahren zur Herstellung eines wärmegedämmten Dachs, und wärmegedämmtes Dach
DE2721799A1 (de) Sparrenloses gebaeude bzw. sparrenloser teil eines gebaeudes
AT238908B (de) Bauweise mit schachbrettartig versetzten, mindestens geschoßhohen Tragelementen
DE4416027A1 (de) Leichtbauplatte
DE4217934A1 (de) Armiertes Leichtbauelement
AT238906B (de) Lichtband für Hallendächer
AT509378B1 (de) Gebäude
DE4419135C2 (de) Flachdacheindeckung aus Kunststoffplatten
DE2059976A1 (de) Grundwasserisolation ohne Verwendung einer als Isolationstraeger dienenden Betonwanne
DE1709352A1 (de) Quadratisches, plattenartiges bauelement mit nach aussen kuppelfoermiger woelbung
DE4430505C2 (de) Punktgestützte Stahlbetondecke aus Fertigplatten mit statisch mitwirkender Ortbetonschicht und Verfahren zur Errichtung derselben
DE2727495A1 (de) Raeumliches dachelement
DE1784660C3 (de) Dachunterspannbahn
DE10038326A1 (de) Dachgeschoß für ein Gebäude
DE2700903C3 (de) Dachkonstruktion für Gebäude
DE3313638A1 (de) Gebaeudeverkleidung
DE3441837A1 (de) Vorgefertigte baukonstruktion
DE10241865A1 (de) Perimeter-Frostschürze und deren Verfahren zur Anwendung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): CH DE FR GB NL SE

17P Request for examination filed
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19810716

RIN1 Information on inventor provided before grant (corrected)

Inventor name: ZACKERTS, WERNER