EP0002504B1 - Schaltungsanordnung zur Signalsicherung in Lichtsignalanlagen - Google Patents

Schaltungsanordnung zur Signalsicherung in Lichtsignalanlagen Download PDF

Info

Publication number
EP0002504B1
EP0002504B1 EP19780101602 EP78101602A EP0002504B1 EP 0002504 B1 EP0002504 B1 EP 0002504B1 EP 19780101602 EP19780101602 EP 19780101602 EP 78101602 A EP78101602 A EP 78101602A EP 0002504 B1 EP0002504 B1 EP 0002504B1
Authority
EP
European Patent Office
Prior art keywords
voltage
lamp
signal
test voltage
transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP19780101602
Other languages
English (en)
French (fr)
Other versions
EP0002504A1 (de
Inventor
Franz Baumgartl
Heinrich Brunner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0002504A1 publication Critical patent/EP0002504A1/de
Application granted granted Critical
Publication of EP0002504B1 publication Critical patent/EP0002504B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/097Supervising of traffic control systems, e.g. by giving an alarm if two crossing streets have green light simultaneously

Definitions

  • the invention relates to a circuit arrangement for signal protection in light signal systems, a transformer being switched on in the lamp circuit in parallel with the lamp switch, on the secondary side of which a test voltage proportional to the difference between the mains voltage and the lamp voltage can be tapped and via logic circuits with the test voltage from a other lamp circuit is comparable.
  • a transformer is looped into the circuit of the relevant signal lamp in series with the lamp switch.
  • a test voltage only arises when the lamp switch is closed, i.e. the lamp is switched on.
  • the high-resistance primary winding of the transformer could also be arranged parallel to the lamp switch for monitoring the release lamps. In this case, a test voltage only results when the lamp switch is open, since when the lamp is switched on, the transformer is short-circuited by the lamp switch.
  • This latter arrangement thus checks whether the lamp switch is closed; a test voltage is only given when the switch is open. A short circuit via the lamp switch is also recognized. However, if there is a high-impedance cable connection between the lamp switch and the lamp, through which, for example, a third of the mains voltage is applied to the lamp, this is not recognized in the known circuits, because the transformer continues to detect a voltage, albeit lower, at the lamp switch and delivers a test voltage accordingly. At the same time, however, a third of the mains voltage can cause a release lamp to light up so strongly that it is interpreted by the road users as a release signal and can lead to dangerous traffic situations.
  • the object of the invention is to improve a circuit arrangement for signal protection of the type mentioned at the outset in such a way that an incorrect voltage on a signal lamp can be detected and evaluated even at a minimum value to be determined.
  • this object is achieved in a circuit arrangement of the type mentioned at the outset in that the rectifier arrangement on the secondary side of the transformer is followed by a threshold switch which only passes the test voltage on to the output when a predetermined setpoint is exceeded.
  • the circuit arrangement according to the invention determines when the voltage across the lamp itself, for example due to a high-resistance cable connection, exceeds a value which makes it possible to detect that the lamp is lit. In this case, the test voltage is no longer switched through to the output. This takes advantage of the fact that as the lamp voltage rises, the voltage at the transformer or at the lamp switch becomes lower as a difference to the mains voltage.
  • the test circuit is completely independent of its own power supply, since it only works with the voltage in the lamp circuit.
  • a zener diode can be provided as the threshold switch, which ignites a thyristor tetrode via a transistor, which then switches the test voltage on to the output.
  • a capacitor is expediently provided in parallel with the base-emitter path of the transistor, which controls the transistor beyond the zero crossing. In this case, the thyristor tetrode also remains switched on beyond the zero crossing, so that the test signal is constantly present at the output as long as the peak value of the test voltage does not fall below the setpoint.
  • FIG. 1 shows on the right a normal lamp circuit for a signal lamp SL, for example the green lamp of a traffic signal generator.
  • the AC line voltage of, for example, 220 V is switched on to the signal lamp SL via a lamp switch LS, which can also be a triac.
  • the high-resistance primary winding of a transformer TR is parallel to the lamp switch LS. As long as the lamp switch LS is open, flows through the primary winding of the transformer TR and over the negligible cold resistance of the signal lamp SL such a low current that the lamp does not light up. Almost the entire mains voltage is present at the transformer TR.
  • test voltage Up is tapped via the secondary winding of the transformer TR and via the rectifier arrangement GR, which is proportional to the voltage at the primary winding of the transformer TR.
  • this test voltage Up is evaluated as a signal that the lamp switch is open and the signal lamp SL is not burning.
  • a low voltage can be applied to the lamp, which already lights up the signal lamp at a third of the mains voltage (70 V).
  • the voltage at the transformer TR is thereby reduced by a third, but a test voltage Up still appears at the output of the rectifier arrangement GR.
  • the lamp switch is therefore still opened and the signal lamp SL is reported as de-energized.
  • the safety logic does not recognize from the reduced test voltage that there is an incorrect voltage at the signal lamp SL.
  • the test voltage Up is not directly fed to the output A and thus to the test logic. Rather, the test voltage Up is applied to the Zener diode D1.
  • This Zener diode D1 is chosen so high that it can only be reached by the test voltage Up when there are no appreciable fault voltages on the signal lamp SL. As soon as the signal lamp SL lights up weakly due to an incorrect voltage, the voltage difference between the mains voltage and the error voltage applied to the transformer TR is reduced so much that the test voltage Up can no longer switch through the Zener diode D1.
  • the course of the test voltage Up is shown in FIG. 2. It is assumed that with a mains voltage of 220 V secondary, after the rectifier arrangement GR, an unscreened DC voltage with a peak value of +17 V is produced as the test voltage.
  • the zener diode has, for example, a breakdown voltage of +11 V. If the amplitude of the test voltage Up now reaches a voltage value greater than + 11 V (in FIG. 2, point X), the zener diode D1 becomes conductive. As a result, the capacitor C is charged and the transistor T1 is turned on via the resistor R2.
  • the control electrode GA of the thyristor tetrode T5 is driven via the conductive transistor T1 and the resistor R1, and the anode-cathode path of T5 becomes low-resistance.
  • the thyristor tetrode T5 remains low-resistance until the anode current becomes zero; only then must a new control take place.
  • the Zener diode D1 blocks. Now, however, the capacitor C charged during the time t1 (FIG. 2) is discharged via the resistor R2 and the base-emitter path from T1 (time t2). In this case, the transistor T1 is turned on beyond the zero crossing of Up. As a result, the thyristor tetrode T5 remains open until the next zero crossing.
  • the resistor R4 serves to limit the current
  • the Zener diode D2 serves to limit the voltage.
  • a transistor logic is connected downstream of output A, which is not shown in detail since it corresponds to the known prior art. Such logic is shown, for example, in DT-AS 20 42 573.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Description

  • Die Erfindung bezieht sich auf eine Schaltungsanordnung zur Signalsicherung in Lichtsignalanlagen, wobei jeweils in den Lampenstromkreis parallel zum Lampenschalter ein Übertrager eingeschaltet ist, an dessen Sekundärseite über eine Gleichrichteranordnung eine der Differenz aus Netzspannung und Lampenspannung proportionale Prüfspannung abgreifbar und über logische Schaltungen mit der Prüfspannung aus einem anderen Lampenstromkreis vergleichbar ist.
  • Bei Verkehrssignalanlagen muß vor allem verhindert werden, daß zueinander feindliche Verkehrsflüsse jeweils gleichzeitig ein Freigabesignal erhalten. Bei üblichen Lichtsignalanlagen könnte es aufgrund von Kabelschlüssen vorkommen, daß die Signalgeber in der einen Fahrtrichtung programmgemäß ein Freigabesignal zeigen, während in der dazu feindlichen Fahrtrichtung anstelle des Haltesignals oder zusätzlich zu diesem ebenfalls ein Freigabesignal aufleuchtet. Ein solcher Signalzustand muß ebenso verhindert werden wie das Aufleuchten des programmgemäßen Freigabesignals auf einer Nebenfahrtrichtung, wenn das Haltesignal in der Hauptfahrtrichtung ausgefallen ist.
  • Bei einer bekannten Überwachungseinrichtung (DT-AS 20 42 573) ist jeweils ein Übertrager in den Stromkreis der betreffenden Signallampe in Reihe mit dem Lampenschalter eingeschleift. Eine Prüfspannung ergibt sich in diesem Fall nur dann, wenn der Lampenschalter geschlossen, also die Lamp eingeschaltet ist. Für die Überwachung der Freigabelampen könnte man auch die hochohmige Primärwicklung des Übertragers parallel zum Lampenschalter anordnen. Eine Prüfspannung ergibt sich in diesem Fall nur bei geöffnetem Lampenschalter, da beim Einschalten der Lampe der Übertrager durch den Lampenschalter kurzgeschlossen wird.
  • Diese letztgenannte Anordnung prüft also, ob der Lampenschalter geschlossen ist; eine Prüfspannung wird nur bei geöffnetem Schalter abgegeben. Ein Kurzschluß über den Lampenschalter wird ebenso erkannt. Tritt aber zwischen Lampenschalter und Lampe ein hochohmiger Kabelschluß auf, durch den beispielsweise ein Drittel der Netzspannung an der Lampe anliegt, so wird dies bei den bekannten Schaltungen nicht erkannt, denn der Übertrager stellt nach wie vor am Lampenschalter eine, wenn auch geringere, Spannung fest und gibt dementsprechend eine Prüfspannnung ab. Gleichwohl kann aber bereits ein Drittel der Netzspannung eine Freigabelampe so stark zum Aufleuchten bringen, daß dies von den Verkehrsteilnehmern als Freigabesignal gewertet wird und zu gefährlichen Verkehrssituationen führen kann.
  • Aufgabe der Erfindung ist es, eine Schaltungsanordnung zur Signalsicherung der eingangs erwähnten Art so zu verbessern, daß eine Fehlspannung an einer Signallampe bereits bei einem festzulegenden Mindestwert erkannt und ausgewertet werden kann.
  • Erfindungsgemäß wird diese Aufgabe bei einer Schaltungsanordnung der eingangs erwähnten Art dadurch erreicht, daß der Gleichrichteranordnung an der Sekundärseite des Übertragers ein Schwellwertschalter nachgeschaltet ist, der die Prüfspannung jeweils erst beim Überschreiten eines vorgegebenen Sollwertes an den Ausgang weiterscha!tet.
  • Durch die erfindungsgemäße Schaltungsanordnung wird jeweils festgestellt, wenn die Spannung an der Lampe selbst, beispielsweise durch einen hochohmigen Kabelschluß, einen Wert überschreitet, der ein Aufleuchten der Lampe erkennbar macht. In diesem Fall wird keine Prüfspannung mehr zum Ausgang durchgeschaltet. Damit nutzt man die Tatsache aus, daß mit dem Ansteigen der Lampenspannung die Spannung am Übertrager bzw. am Lampenschalter als Differenz zur Netzspannung geringer wird. Die Prüfschaltung ist im übrigen völlig unabhängig von einer eigenen Stromversorgung, da sie nur mit der Spannung im Lampenstromkreis arbeitet.
  • Als Schwellwertschalter kann eine Zenerdiode vorgesehen sein, welche über einen Transistor eine Thyristor-Tetrode zündet, welche, dann die Prüfspannung zum Ausgang weiterschaltet. Um ein Abschalten der Thyristor-Tetrode an den Nullstellen der ungesiebten Prüfspannung zu verhindern, wird zweckmäßigerweise parallel zur Basis-Emitter-Strecke des Transistors ein Kondensator vorgesehen, der den Transistor über den Nulldurchgang hinaus durchsteuert. In diesem Fall bleibt auch die Thyristor-Tetrode über den Nulldurchgang hinaus eingeschaltet, so daß am Ausgang ständig das Prüfsignal anliegt, solange der Scheitelwert der Prüfspannung nicht unter den Sollwert sinkt.
  • Die Erfindung wird nachfolgend an einem Ausführungsbeispiel anhand der Zeichnung näher erläutert.
  • Es zeigt
    • Fig. 1 eine erfindungsgemäße Schaltungsanordnung zur Signalsicherung,
    • Fig. 2 den Verlauf der Prüfspannung in Fig. 1 bei ausgeschalteter Signallampe.
  • Die Fig. 1 zeigt rechts einen normalen Lampenstromkreis für eine Signallampe SL, etwa die Grünlampe eines Verkehrssignalgebers. Über einen Lampenschalter LS, der auch ein Triac sein kann, wird die Netzwechselspannung von beispielsweise 220 V-an die Signallampe SL angeschaltet. Parallel zum Lampenschalter LS liegt die hochohmige Primärwicklung eines Übertragers TR. Solange der Lampenschalter LS offen ist, fließt über die Primärwicklung des Übertragers TR und über den vernachlässigbaren Kaltwiderstand der Signallampe SL ein so geringer Strom, daß die Lampe nicht aufleuchtet. Am Übertrager TR liegt also nahezu die gesamte Netzspannung an. Über die Sekundärwicklung des Übertragers TR und über die Gleichrichteranordnung GR wird eine Prüfspannung Up abgegriffen, die der Spannung an der Primärwicklung des Übertragers TR proportional ist. Bei herkömmlichen Schaltungen wird diese Prüfspannung Up als Signal dafür ausgewertet, daß der Lampenschalter geöffnet ist und die Signallampe SL nicht brennt.
  • Durch einen hochohmigen Kabelschluß RN kann jedoch an der Lampe eine niedrige Spannung anliegen, die bereits bei einem Drittel der Netzspannung (70 V) die Signallampe zum Aufleuchten bringt. Die Spannung am Übertrager TR verringert sich dadurch zwar um ein Drittel, aber trotzdem erscheint noch eine Prüfspannung Up am Ausgang der Gleichrichteranordnung GR. Der Lampenschalter wird also bei herkömmlichen Schaltungen weiterhin als geöffnet und die Signallampe SL als stromlos gemeldet. Die Sicherungslogik erkennt an der erniedrigten Prüfspannung nicht, daß an der Signallampe SL eine Fehlspannung anliegt. Nach der Erfindung wird nun` die Prüfspannung Up nicht unmittelbar dem Ausgang A und damit der Prüflogik zugeführt. Vielmehr liegt die Prüfspannung Up an der Zenerdiode D1. Die Durchbruchspannung dieser Zenerdiode D1 ist so hoch gewählt, daß sie von der Prüfspannung Up nur erreicht wird, wenn keine nennenswerten Fehlspannungen an der Signallampe SL anliegen. Sobald nämlich durch eine Fehlspannung die Signallampe SL schwach aufleuchtet, verringert sich die am Übertrager TR anliegende Spannungs-differenz aus Netzspannung und Fehlerspannung so stark, daß die Prüfspannung Up die Zenerdiode D1 nicht mehr durchschalten kann.
  • Der Verlauf der Prüfspannung Up ist in Fig. 2 dargestellt. Es wird angenommen, daß bei einer Netzspannung von 220 V- sekundär nach der Gleichrichteranordnung GR eine ungesiebte Gleichspannung mit einem Scheitelwert von +17 V als Prüfspannung entsteht. Die Zenerdiode hat in diesem Fall beispielsweise eine Durchbruchspannung von +11 V. Erreicht nun die Amplitude der Prüfspannung Up einen Spannungswert größer als + 11 V (in Fig. 2, Punkt X), so wird die Zenerdiode D1 leitend. Dadurch wird der Kondensator C aufgeladen, und über den Widerstand R2 wird der Transistor T1 durchgesteuert. Über den leitenden Transistor T1 und den Widerstand R1 wird dieSteuerelektrode GA der Thyristor-Tetrode T5 angesteuert, und die Anoden-Kathoden-Strecke von T5 wird niederohmig. Die Thyristor-Tetrode T5 bleibt niederohmig, bis der Anodenstrom zu Null wird; erst dann muß eine neue Ansteuerung erfolgen.
  • Sinkt die Prüfspannung Up wieder unter 11 V, so sperrt die Zenerdiode D1. Nun wird jedoch der während der Zeit t1 (Fig. 2) aufgeladene Kondensator C über den Widerstand R2 und die Basis-Emitter-Strecke von T1 entladen (Zeit t2). Dabei wird über den Nulldurchgang von Up hinaus der Transistor T1 durchgesteuert. Das hat/zur Folge, daß auch die Thyristor-Tetrode T5 bis zum nächsten Nulldurchgang aufgesteuert bleibt. Der Widerstand R4 dient zur Strombegrenzung, die Zenerdiode D2 zur Spannungsbegrenzung.
  • Bei einer Fehlspannung von mehr als 70 V sinkt die Spannung am Übertrager TR auf weniger als 150 V. Dadurch erreicht die Spannung Up an der Zenerdiode D1 deren Schwellenwert von -11 Volt nicht mehr. Der Kondensator C wird nicht mehr aufgeladen und der Transistor T1 bleibt gesperrt. Da die Thyristor-Tetrode T5 nicht angesteuert wird, bleibt sie hochohmig. Die Prüfspannung Up wird also nicht mehr zum Ausgang A durchgeschaltet. In der nachfolgenden Auswertelogik wird dieser Zustand als Aufleuchten der Signallampe SL gewertet, was gegebenenfalls zum Abschalten der Anlage führt. Der Leckstrom von T1 wird durch den Ableitwiderstand R3 ausgeglichen.
  • Dem Ausgang A ist eine Transistorlogik nachgeschaltet, die nicht im einzelnen dargestellt ist, da sie dem bekannten Stand der Technik entspricht. Eine solche Logik ist beispielsweise in der DT-AS 20 42 573 dargestellt.

Claims (3)

1. Schaltungsanordnung zur Signalsicherung in Lichtsignalanlagen, wobei jeweils in den Lampenstromkreis parallel zum Lampenschalter (LS) ein Übertrager (TR) eingeschaltet ist, an dessen Sekundärseite über eine Gleichrichteranordnung (GR) eine der Differenz aus Netzspannung und Lampenspannung proportionale Prüfspannung (Up) abgegriffen und über logische Schaltungen mit der Prüfspannung aus einem anderen Lampenstromkreis verglichen wird, dadurch gekennzeichnet, daß am Ausgang der Gleichrichteranordnung ein Schwellenwertschalter (D1) vorgesehen ist, der die Prüfspannung (Up) erst beim Überschreiten eines vorgegebenen Sollwertes an der Ausgang (A) weiterschaltet.
2. Schaltungsanordnung nach Anspruch 1, dadurch gekennzeichnet, daß als Schwellenwertschalter eine Zenerdiode (D1) vorgesehen ist, welche über einen Transistor (T1) eine Thyristor-Tetrode (T5) durchsteuert.
3. Schaltungsanordnung nach Anspruch 2, dadurch gekennzeichnet, daß parallel zur Basis-Emitter-Strecke des Transistors (T1) ein Kondensator (C) vorgesehen ist.
EP19780101602 1977-12-19 1978-12-07 Schaltungsanordnung zur Signalsicherung in Lichtsignalanlagen Expired EP0002504B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2756493 1977-12-19
DE19772756493 DE2756493C2 (de) 1977-12-19 1977-12-19 Schaltungsanordnung zur Signalsicherung in Lichtsignalanlagen

Publications (2)

Publication Number Publication Date
EP0002504A1 EP0002504A1 (de) 1979-06-27
EP0002504B1 true EP0002504B1 (de) 1980-11-26

Family

ID=6026511

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19780101602 Expired EP0002504B1 (de) 1977-12-19 1978-12-07 Schaltungsanordnung zur Signalsicherung in Lichtsignalanlagen

Country Status (3)

Country Link
EP (1) EP0002504B1 (de)
AT (1) AT374023B (de)
DE (1) DE2756493C2 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3206345A1 (de) * 1982-02-22 1983-09-01 Siemens AG, 1000 Berlin und 8000 München Lichtsignalanlage, insbesondere verkehrssignalanlage
DE3541549A1 (de) * 1985-11-25 1987-05-27 Stuehrenberg Rolf Verfahren und vorrichtung zur signalsicherung in lichtzeichenanlagen

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1194295B (de) * 1962-05-21 1965-06-03 Franz Baumgartner Fabrik Elek Lichtelektrisches Kontrollsystem fuer Signallampen in Verkehrssignalanlagen
DE1303440B (de) * 1964-11-21 1971-12-02 Franz Baumgartner Fabrik Elektrischer Apparate
US3648233A (en) * 1968-07-03 1972-03-07 Gulf & Western Industries Load control error detector
DE1944996A1 (de) * 1969-09-05 1971-03-11 Siemens Ag Meldelampenschaltung mit UEberwachungsstromkreis
DE2042573C3 (de) * 1970-08-27 1974-12-19 Siemens Ag, 1000 Berlin Und 8000 Muenchen Überwachungseinrichtung für ohmsche Verbraucher an Wechselspannung, vorzugsweise Signallampen für den Straßenverkehr
US3706983A (en) * 1971-01-18 1972-12-19 Buckbee Mears Co Lamp circuit

Also Published As

Publication number Publication date
EP0002504A1 (de) 1979-06-27
DE2756493A1 (de) 1979-06-21
DE2756493C2 (de) 1987-03-19
AT374023B (de) 1984-03-12
ATA902178A (de) 1983-07-15

Similar Documents

Publication Publication Date Title
EP0060992A2 (de) Prüf- und Auswerteschaltung für Näherungsschalter in Maschinensteuerungen
DE3347458C2 (de)
DE3049741C2 (de) Einrichtung zur Versorgung und zur Überwachung des richtigen Arbeitens eines Eisenbahnsignals
EP0172454B1 (de) Überwachungseinrichtung für Verkehrssignalanlagen
EP0002504B1 (de) Schaltungsanordnung zur Signalsicherung in Lichtsignalanlagen
DE1673960A1 (de) Schaltungsanordnung zur UEberwachung eines physikalischen Zustandes
DE3531001A1 (de) Ueberwachungseinrichtung fuer niederspannungssignallampen
DE19532677B4 (de) Überwachungsschaltung für wenigstens eine Versorgungsspannung
DE1810707C3 (de) Einrichtung zur Schalterstellungsanzeige in elektrischen Schaltanlagen
DE2809993C3 (de) Flammenwächterschaltung zur Überwachung einer Brennerflamme
CH663077A5 (de) Selbstueberwachender flammenwaechter.
DE955070C (de) Schutzschaltung fuer elektrische Verbraucheranlagen, insbesondere Beleuchtungsanlagen in Untertagebetrieben
DE2457807C3 (de) Einrichtung zur Umschaltung eines Stufentransformators mittels Halbleiter-Wechselstromsteller
DE3101967C2 (de) Eigensicherer Flammenwächter
EP0258214B1 (de) Einrichtung zur kontrolle von elektrischen verbrauchern in kraftfahrzeugen
DE1907057C3 (de) Schaltungsanordnung zum Überwachen einer durch einen Blinkgeber getasteten, wechselstromgespeisten Signallampenstromkreises für Eisenbahnsicherungsanlagen
DE4143097C3 (de) Anordnung und Anzeige zur Ortsbestimmung defekter Lampen in Flugplatzbefeuerungsanlagen mit digitalem Lampen-"Intakt"-Signal
DE3107090C2 (de)
DE3434474C2 (de) Schaltungsanordnung zur Geschwindigkeitsüberwachung für zumindest einen Motor
DE2002325C (de) Überstrom-Schutzschaltung für eine im Normalbetrieb einen kapazitiven Reihenschwingkreis speisende Wechselrichter-
DE1933942C (de) Anordnung zur elektronischen Über wachung der Sicherungselemente von paral lelgeschalteten Verbraucherstromkreisen
DE2832149C2 (de) Schaltungsanordnung für ein Gerät zur elektrischen Betäubung eines Tieres
EP0404143A1 (de) Schaltungsanordnung zur Überwachung von Wechselstromverbrauchern in Eisenbahnsignalanlagen
DE2826863B2 (de) Fahrtrichtungsanzeigeanordnung für ein Zweirad-Kraftfahrzeug
DE3117188C2 (de) Schaltungsanordnung zur Überwachung von Lichtsignalstromkreisen in Eisenbahnanlagen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): CH FR NL SE

17P Request for examination filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): CH FR NL SE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19841220

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19841231

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19861231

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19871208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19880701

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19880831

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19910322

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19911231

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed

Ref document number: 78101602.7

Effective date: 19880912

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT