EP0000698A1 - Vorrichtung zur Herstellung von hexagonalem Phosphorpentoxid - Google Patents

Vorrichtung zur Herstellung von hexagonalem Phosphorpentoxid Download PDF

Info

Publication number
EP0000698A1
EP0000698A1 EP7878100295A EP78100295A EP0000698A1 EP 0000698 A1 EP0000698 A1 EP 0000698A1 EP 7878100295 A EP7878100295 A EP 7878100295A EP 78100295 A EP78100295 A EP 78100295A EP 0000698 A1 EP0000698 A1 EP 0000698A1
Authority
EP
European Patent Office
Prior art keywords
cooling
combustion chamber
chamber
condensation chamber
phosphorus pentoxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP7878100295A
Other languages
English (en)
French (fr)
Other versions
EP0000698B1 (de
Inventor
Gerhard Dr. Hartlapp
Werner Kowalski
Robert Queck
Theo Dahmen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoechst AG
Original Assignee
Hoechst AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoechst AG filed Critical Hoechst AG
Publication of EP0000698A1 publication Critical patent/EP0000698A1/de
Application granted granted Critical
Publication of EP0000698B1 publication Critical patent/EP0000698B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/12Oxides of phosphorus

Definitions

  • the present invention relates to a device for producing hexagonal phosphorus pentoxide, consisting of a water-cooled combustion chamber for phosphorus, which is followed by a cooled condensation chamber for the hexagonal phosphorus pentoxide (P 4 0 10 ).
  • Phosphorus pentoxide occurs in several solid modifications.
  • the hexagonal shape is used almost exclusively for technical purposes.
  • the polymeric glass-like modifications are inert and therefore entirely undesirable.
  • phosphorus pentoxide is obtained by burning elemental yellow phosphorus.
  • the resulting phosphorus pentoxide vapor is condensed on cooled surfaces.
  • this method has been carried out using devices which consist of a combustion chamber equipped with a phosphorus combustion nozzle and which is cooled from the outside by sprinkling with water.
  • This combustion chamber is connected to a condensation chamber which carries an exhaust pipe and a discharge device for P 2 O 5 (US Pat. No. 1,700,708).
  • this device has the disadvantage that it is not possible to produce hexagonal P205 in a targeted manner since part of the F 2 O 5 formed is already condensed in the combustion chamber. Since this condensation takes place within a very wide temperature range, products are obtained which consist of a mixture of the various modifications of P 2 O 5 .
  • DT-PS 1 300 527 It is also known from DT-PS 1 300 527 to use a device for the simultaneous production of hexagonal phosphorus pentoxide and polyphosphoric acid, which consists of a cooled combustion chamber, which at the same time represents the condensation chamber for the P 2 O 5 , which is connected via an exhaust pipe with a reaction tower Connection is established in which the exhaust gases of the combined combustion / condensation chamber are absorbed by circulating phosphoric acid to form polyphosphoric acid.
  • the devices used to carry out the known methods also have the disadvantage in common that direct heat transfer by radiation from the very hot phosphor flame to material already deposited cannot be prevented. In a short time, this leads to an at least partial conversion of the crystalline P 2 O 5 into glassy products.
  • a device for the production of hexagonal phosphorus pentoxide which consists of a coolable combustion chamber 1 which is equipped with a two-component combustion nozzle 2 for elementary phosphorus and one via a shut-off device 7 with a Collection container 8 for phosphorus pentoxide connected condensation chamber 4 is connected downstream, which carries an exhaust pipe 9.
  • This preferably horizontally arranged combustion chamber 1 is provided on its inner wall with cooling tubes 10 and connected to the condensation chamber 4 via a gas cooler 3, the gas cooler 3 consisting of a cooling tube system 5 , which ends in the manner of an open dip tube above the bottom of the condensation chamber 4, the walls of which are provided with a cooling device 6.
  • the cooling tubes 10 in the combustion chamber 1 and the cooling tube system 5 of the gas cooler 3 advantageously consist of spiral-wound tube bundles, which are expediently made of stainless steel.
  • condensation chamber 4 and gas cooler 3 are dimensioned such that the diameter of the condensation chamber 4 is a multiple of the diameter of the cascooler 3.
  • FIG. 1 A preferred embodiment of the device according to the invention is shown schematically in FIG. 1 below.
  • FIG. 2 shows an enlarged section which shows the deposition of the polymeric phosphorus pentoxide in the gussets formed by the tubes 5.
  • the combustion chamber 1 in which yellow phosphorus is burned in a two-substance nozzle 2 with a gas containing O 2 , consists of several sections of water-cooled stainless steel tubes 10 with an outer protective jacket.
  • the use of a combustion chamber 1 consisting of tube bundles 10 has the advantage that intensive cooling is ensured in all sections of this chamber by the forced guidance of the cooling water.
  • x is deposited as a result of cooling glassy polymeric phosphoric p entoxid (P 2 0 5) in the interstices, forming the tubes together. This is desirable here because the cooling tubes underneath are protected by this layer.
  • the outside wall temperature of the cooled pipes can thus be kept below 100 ° C; on the other hand, the surface temperature of the protective layer made of (P205) x is approximately 650 ° C.
  • the temperatures in front of the phosphor nozzle reach up to 2000 ° C. These high temperatures ensure complete oxidation of the P 4 to P 4 0 10 and do not need to be reduced by using a large excess of air or oxygen.
  • the O 2 content in the exhaust gas can rather be reduced to near the stoichiometric value, preferably down to ⁇ 2% 0 2 . This is important for the later Ab separation of the P 4 0 10 from the gas flow because the separation is better, the less exhaust gas has to leave the condensation chamber 4 again.
  • the amount of exhaust gas can be further reduced and the degree of separation improved accordingly if the dry air usually used for combustion is enriched with pure oxygen to about 40 volume% O 2 .
  • the gaseous P 4 0 10 leaves the combustion chamber at a temperature of 800 to 900 ° C.
  • this hot gas flows through the spirally turned and water-cooled tube bundle 5 made of stainless steel, which is arranged vertically as an “immersion tube”.
  • Additional polymeric phosphorus pentoxide is deposited on the cooled pipe surface.
  • the 800 to 900 ° C hot gas from the combustion chamber 1 heats this layer up to approx. 650 ° C.
  • the (P 2 O 5 ) x starts to evaporate again.
  • the layer here on the wall of the first cooling section is in evaporation equilibrium with the hot gas flowing past from the combustion chamber, ie the layer only reaches a certain thickness. Following the course of the temperature, it is only weakly formed in the upper part of the cooling device 3 at the connection to the combustion chamber 1, only weakly with a falling temperature.
  • the gas containing P 4 0 10 is cooled from the combustion chamber 1 to a temperature of 650 to 400 ° C. It has then been cooled down to such an extent that it can be suddenly cooled to ⁇ 300 ° C. when it enters the condensation chamber 4.
  • this pre-cooling in which one separates the polymeric phosphorus pentoxides for the formation of the above-described equilibrium state, it is achieved that there are no transition states with condensation of other phosphorus pentoxide modifications in the subsequent condensation chamber 4, but that the P 4 O 10 is only reflected in the desired hexagonal modification.
  • the hexagonal product is then deposited on these cooled surfaces of the condensation chamber 4, which have a wall temperature of 100 ° C. It collects in the lower part of the condensation chamber 4 and is discharged into a collecting container 8 via a lock 7. Based on the phosphorus used, the yield of hexagonal F4010 is more than 90%.
  • the degree of separation can be increased to more than 94% by using a combustion gas which is enriched with oxygen up to approx. 40 volume% 0 2 .
  • the exhaust gas that emerges from the condensation chamber 4 through the nozzle 9 has a temperature of 100 to 120 ° C.
  • the relatively small amounts of exhaust gas which only have a minimal content of P 4 0 10 , can then be cleaned without great effort, if necessary, by washing with water, phosphoric acid or the like before they are passed into the atmosphere.
  • the advantage of the device according to the invention is essentially that it prevents the direct heat radiation of the phosphorus flame onto deposited P 2 O 5 and also enables a targeted cooling of the reaction product, with a relatively large temperature difference in and in a relatively small space in the first cooling phase the second phase in a relatively large space a relatively small temperature difference is achieved.
  • the gas containing F 4 O 10 expands into the cooled condensation chamber 4, which surrounds the cooling device 3 over a wide area, which results in a further sudden cooling of the gas.
  • Hexagonal loose P 4 0 10 settles on the cooled walls of the condensation chamber 4 .
  • Pneumatic tapping devices knock the product off the walls. It collects in the lower part. the condensation chamber 4. 355 kg of phosphorus pentoxide are discharged here every hour.
  • the product is free of suboxides, reacts spontaneously with water and is free of glass-like impurities in the polymeric form of P 2 O 5 .
  • the yield based on the elemental phosphorus used, is 91%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Treating Waste Gases (AREA)

Abstract

Die vorliegende Erfindung betrifft eine Vorrichtung zur Herstellung von hexagonalem Phosphorpentoxid, bestehend aus einer Verbrennungskammer (1), die an ihrer Innenwand mit Kühlrohren (10) versehen ist und ferner über einen Gaskühler (3) mit einer Kondensationskammer (4) in Verbindung steht, wobei der Gaskühler (3) aus einem Kühlrohrsystem (5) besteht, das in der Art eines offenen Tauchrohres oberhalb des Bodens der Kondensationskammer (4) endet, deren Wände mit einer Kühlvorrichtung (6) versehen sind.

Description

  • Die vorliegende Erfindung betrifft eine Vorrichtung zur Herstellung von hexagonalem Phosphorpentoxid, bestehend aus einer wassergekühlten Verbrennungskammer für Phosphor, der eine gekühlte Kondensationskammer für das hexagonale Phosphorpentoxid (P4010) nachgeschaltet ist.
  • Phosphorpentoxid tritt in mehreren festen Modifikationen auf. Für technische Zwecke kommt fast ausschließlich die hexagonale Form zur Anwendung. Insbesondere die polymeren glasartigen Modifikationen sind reaktionsträge und darum durchweg unerwünscht.
  • Man gewinnt Phosphorpentoxid technisch durch Verbrennen von elementarem gelben Phosphor. Der entstehende Phosphorpentoxid-Dampf wird an gekühlten Flächen kondensiert.
  • Zur Durchführung dieses Verfahrens benutzte man bislang Vorrichtungen, die aus einer mit einer Phosphorverbrennungsdüse bestückten Brennkammer bestehen, die durch Berieseln mit Wasser von außen gekühlt wird. Diese Brennkammer ist mit einen Kondensationsraum verbunden, der einen Abgasstutzen sowie eine Austragsvorrichtung für P2O5 trägt (US-PS 1 700 708). Diese Vorrichtung hat jedoch den Nachteil, daß damit eine gezielte Herstellung von hexagonalem P205 nicht möglich ist, da bereits in der Brennkammer ein Teil des entstandenen F2O5 kondensiert wird. Da diese Kondensation innerhalb eines sehr weiten Temperaturbereiches erfolgt, fallen dabei Produkte an, die aus einem Gemisch der verschiedenen Modifikationen des P2O5 bestehen.
  • Bekannt ist ferner aus der DT-PS 1 300 527 zur gleichzeitigen Herstellung von hexagonalem Phosphorpentoxid und Polyphosphorsäure eine Vorrichtung einzusetzen, die aus einer gekühlten Brennkammer besteht, welche gleichzeitig die Kondensationskammer für das P2O5 darstellt, die über eine Abgasleitung mit einem Reaktionsturm in Verbindung steht, in welchem die Abgase der kombinierten Brenn-/Kondensationskammer von im Kreislauf geführter Phosphorsäure unter Bildung von Polyphosphorsäure absorbiert werden.
  • Nachteilig an dieser Vorrichtung ist u.a., daß sie nur dann verwendbar ist, wenn die P205 - Herstellung mit der Gewinnung von Polyphosphorsäure gekoppelt ist.
  • Bekanntlich ist die Verbrennungswärme von elementarem Phosphor außerordentlich hoch. Damit an den Wänden der kombinierten Brenn-/Kondensationskammer eine Abscheidung von hexagonalem Phosphorpentoxid überhaupt erreicht werden kann, muß aufgrund der um die Phosphorverbrennungsdüse herum herrschenden hohen Temperaturen, die Kammer sehr groß dimensioniert sein und die Verbrennung des Phosphors mit einem großen Luftüberschuß (20 bis-50 Gewichts%) erfolgen. .
  • Dies hat zur Folge, daß dabei zwangsläufig große Abgasmengen mit einer relativ hohen Temperatur (380 bis 410°C) anfallen, was aufwendige Absorptionsvorrichtungen notwendig macht, da in der Brenn-/Kondensationskammer nur etwa 43 % des entstandenen Phosphorpentoxides abgeschieden und. der Rest aus dieser Kammer ausgetragen wird.
  • Insbesondere dann, wenn die Herstellung von Phosphorpentoxid nicht unmittelbar mit der Gewinnung von Ortho- oder Polyphosphorsäure gekoppelt ist, stellt dies sowohl verfahrenstechnisch als auch wirtschaftlich einen großen Nachteil dar.
  • Die zur Durchführung der bekannten Arbeitsweisen verwendeten Vorrichtungen haben außerdem den Nachteil gemeinsam, daß eine direkte Wäremübertragung durch Strahlung von der sehr heißen Phosphorflamme auf bereits abgeschiedenes Material nicht verhindert werden kann. Dies führt in kurzer Zeit zu einer zumindest teilweisen Umwandlung des kristallinen P2O5 in glasige Produkte.
  • Überraschenderweise wurde nun gefunden, daß sich diese Nachteile überwinden lassen, wenn man zur Herstellung von hexagonalem Phosphorpentoxid eine Vorrichtung einsetzt, die aus einer kühlbaren Verbrennungskammer 1 besteht, die mit einer Zweistoffverbrennungsdüse 2 für elementaren Phosphor bestückt ist und der eine über ein Absperrorgan 7 mit einem Auffangbehälter 8 für Phosphorpentoxid verbundene Kondensationskammer 4 nachgeschaltet ist, die einen Abgasstutzen 9 trägt.Diese vorzugsweise horizontal angeordnete Verbrennungskammer 1 ist an ihrer Innenwand mit Kühlrohren 10 versehen und über einen Gaskühler 3 mit der Kondensationskammer 4 verbunden, wobei der Gaskühler 3 aus einem Kühlrohrsystem 5 besteht, das in der Art eines offenen Tauchrohres oberhalb des Bodens der Kondensationskammer 4 endet, deren Wände mit einer Kühlvorrichtung 6 versehen sind.
  • Die Kühlrohre 10 in der Verbrennungskammer 1 und das Kühlrohrsystem 5 des Gaskühlers 3 bestehen vorteilhafterweise aus spiralförmig gewundenen Rohrbündeln, die zweckmäßigerweise aus Edelstahl gefertigt sind.
  • Wichtig ist auch, daß Kondensationskammer 4 und Gaskühler 3 so dimensioniert sind, daß der Durchmesser der Kondensationskammer 4 ein Mehrfaches des Durchmessers des Caskühlers 3 beträgt.
  • Durch die erfindungsgemäße Vorrichtung ergeben sich eine Reihe von Vorteilen:
    • 1) das erhaltene Produkt besteht aus der hexagonalen Form des P4010 und enthält keine polymeren Anteile;
    • 2) die Ausbeute beträgt mehr als 90 %;
    • 3) die Dimensionen der Anlage können relativ klein gehalten werden.
  • Eine bevorzugte Ausgestaltung der erfindungsgemäßen Vorrichtung ist in der nachfolgenden Figur 1 schematisch dargestellt.
  • Figur 2 zeigt einen vergrößerten Ausschnitt,der die Abscheidung des polymeren Phosphorpentoxides in den von den Rohren 5 gebildeten Zwickeln darstellt.
  • Die Verbrennungskammer 1, in der gelber Phosphor in einer Zweistoffdüse 2 mit einem 02-haltigen Gas verbrannt wird, besteht aus mehreren Abschnitten wassergekühlter Edelstahlrohre 10 mit einem äußeren Schutzmantel. Die Verwendung einer aus Rohrbündeln 10 bestehenden Verbrennungskammer 1 hat den Vorteil, daß in allen Abschnitten dieser Kammer durch die Zwangsführung des Kühlwassers eine intensive Kühlung gewährleistet ist. An der Innenwand der Rohrbündel 10 wird in den Zwickeln, welche die Rohre miteinander bilden, infolge der Kühlung glasartiges polymeres Phosphor- pentoxid (P205)x abgeschieden. Dies ist hier erwünscht, weil durch diese Schicht die darunterliegenden Kühlrohre geschützt werden. Die Außenwandtemperatur der gekühlten Rohre läßt sich so unter 100°C halten; hingegen beträgt die Oberflächentemperatur der Schutzschicht aus (P205)x etwa 650°C. Die Temperaturen vor der Phosphordüse reichen bis zu 2000°C. Diese hohen Temperaturen gewährleisten eine vollständige Oxidation des P4 zu P4010 und brauchen nicht durch Verwendung eines großen Luft- bzw. Sauerstoffüberschusses herabgesetzt werden. Der O2-Gehalt im Abgas kann vielmehr bis nahe dem stöchiometrischen Wert, vorzugsweise bis auf ~ 2 % 02 gesenkt werden. Dies ist wichtig für die spätere Abscheidung des P4010 aus dem Gasstrom, weil die Abscheidung umso besser ist, je weniger Abgas die Kondensationskammer 4 wieder verlassen muß.
  • Die Abgasmenge kann weiter verringert, der Abscheidegrad entsprechend verbessert werden, wenn die gewöhnlich zur Verbrennung verwendete trockene Luft mit reinem Sauerstoff auf ca. 40 Volumen% O2 angereichert wird.
  • Das gasförmige P4010 verläßt die Verbrennungskammer mit einer Temperatur von 800 bis 900°C.
  • In der Kühlvorrichtung 3 durchströmt dieses heiße Gas die vertikal als "Tauchrohr" angeordnete spiralförmige gedrehten und wassergekühlten Rohrbündel 5 aus Edelstahl.
  • Hier spielt sich folgender Vorgang ab:
  • An der gekühlten Rohrfläche scheidet sich weiteres polymeres Phosphorpentoxid ab. Das 800 bis 900°C heiße Gas aus der Verbrennungskammer 1 erhitzt diese Schicht bis auf ca. 650°C. Bei dieser Temperatur beginnt das (P2O5)x wieder zu verdampfen. Die hier an der Wand des ersten Kühlabschnittes befindliche Schicht steht im Verdampfungsgleichgewicht mit dem vorbeistreichenden heißen Gas aus der Brennkammer, d.h. die Schicht erreicht nur eine bestimmte Stärke. Dem Temperaturverlauf folgend ist sie im oberen Teil der Kühlvorrichtung 3 an der Verbindung zur Verbrennungskammer 1, nur schwach, nach unten hin mit fallender Temperatur stärker ausgebildet.
  • In dieser Kühlvorrichtung 3 erfolgt die Abkühlung des P4010-haltigen Gases aus der Verbrennungskammer 1 auf eine Temperatur von 650 bis 400°C. Es ist dann soweit abgekühlt worden, daß es beim Eintritt in die Kondensationskammer 4 schlagartig auf< 300°C abgekühlt werden kann. Durch diese Vorkühlung,bei der man die Abscheidung des polymeren Fhosphorpentoxides zur Ausbildung des oben beschriebenen Gleichgewichtszustandes gezielt in Kauf nimmt, wird erreicht, daß es in der nachfolgenden Kondensationskammer 4 nicht zu Übergangszuständen mit Kondensationen von anderen Phosphorpentoxidmodifikationen kommt, sondern daß sich das P4O10 hier nur in der gewünschten hexagonalen Modifikation niederschlägt.
  • An diesen gekühlten Flächen der Kondensationskammer 4, die einer Wandtemperatur von 100°C haben, schlägt sich dann das hexagonale Produkt nieder. Es sammelt sich im unteren Teil der Kondensationskammer 4 an und wird über eine Schleuse 7 in einen Auffangbehälter 8 ausgetragen. Bezogen auf den eingesetzten Phosphor'beträgt die Ausbeute an hexagonalem F4010 mehr als 90 %. Durch Verwendung eines Verbrennungsgases, das mit Sauerstoff bis ca. 40 Volumen% 02 angereichert ist, läßt sich der Abscheidegrad auf mehr als 94 % steigern. Das Abgas, das aus der Kondensationskammer 4 durch den Stutzen 9 austritt, besitzt eine Temperatur von 100 bis 120°C. Die relativ geringen Abgasmengen, die nur noch einen minimalen Gehalt an P4010 aufweisen, lassen sich dann ohne großen Aufwand, falls erforderlich, durch Waschen mit Wasser, Phosphorsäure oder dergleichen reinigen, bevor sie in die Atmosphäre geleitet werden.
  • Der Vorteil der erfindungsgemäßen Vorrichtung besteht also im wesentlichen darin, daß sie die direkte Wärmestrahlung der Phosphorflamme auf abgeschiedenes P2O5 verhindert und außerdem eine gezielte Abkühlung des Reaktionsproduktes ermöglicht, wobei in der ersten Abkühlungsphase in einem relativ kleinen Raum eine relativ große Temperaturdifferenz und in der zweiten Phase in einem relativ großen Raum eine relativ geringe Temperaturdifferenz erzielt wird.
  • Beispiel
  • Pro Stunde werden 100 1 (170 kg) elementarer, flüssiger, gelber Phosphor von ca. 75°C in einer Brennkammer 1, deren gekühlte Wände aus Edelstahlrohrbündeln 10 bestehen, mit trockener Luft von 5,0 bar verbrannt. Die 02-Bestimmung im Abgas ergibt einen Wert von 2,0 % 02. Das P4O10- haltige Gas wird mit einer Temperatur von 900°C in die Gaskühlvorrichtung 3, die ebenfalls aus wassergekühlten Bündeln von Edelstahlrohren 5 besteht, geleitet. An deren Wänden setzt sich polymeres Phosphorpentoxid ab. Dadurch wird der Anfang der Kühlvorrichtung 3 soweit isoliert, daß die Temperatur des glasartigen Belages auf deren Wand auf ca. 650°C steigt. Zum Ende des Kühlrohres nimmt die Temperatur des Belages bis auf 400°C ab.
  • Das F4O10-haltige Gas expandiert in die gekühlte Kondensationskammer 4, welche die Kühlvorrichtung 3 weiträumig umschließt, was eine weitere schlagartige Abkühlung des Gases zur Folge hat. An den gekühlten Wänden der Kondensationskammer 4 setzt sich hexagonales lockeres P4010 ab. Mit Hilfe pneumatischer Klopfvorrichtungen wird das Produkt von den Wänden abgeklopft. Es sammelt sich im unteren Teil. der Kondensationskammer 4. Stündlich werden hier 355 kg Phosphorpentoxid ausgetragen. Das Produkt ist frei von Suboxiden, reagiert spontan mit Wasser und ist frei von glasartigen Verunreinigungen der polymeren Form des P2O5.
  • Die Ausbeute, bezogen auf den eingesetzten elementaren Phosphor, beträgt 91 %.

Claims (5)

1. Vorrichtung zur Herstellung von Phosphorpentoxid, bestehend aus einer kühlbaren Verbrennungskammer (1), die mit einer Zweistoffverbrennungsdüse (2) für elementaren Phosphor bestückt und der eine über ein Absperrorgan (7) mit einem Auffangbehälter (8) für Phosphorpentoxid verbundene Kondensationskammer (4) nachgeschaltet ist, die einen Abgasstutzen (9) trägt, dadurch gekennzeichnet, daß zur Herstellung von hexagonalem Phosphorpentoxid die Verbrennungskammer (1) an ihrer Innenwand mit Kühlrohren (10) versehen ist,und daß die Verbrennungskammer (1) über einen Gaskühler (3) mit der Kondensationskammer (4) in Verbindung steht, wobei der Gaskühler (3) aus einem Kühlrohrsystem (5) besteht, das in der Art eines offenen Tauchrohres oberhalb des Bodens der Kondensationskammer (4) endet, deren Wände mit einer Kühlvorrichtung (6) versehen sind.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet,daß die Verbrennungskammer (1) horizontal angeordnet ist.
3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Kühlrohre (10) in der Verbrennungskammer (1) und das Kühlrohrsystem (5) des Gaskühlers (3) aus spiralförmig gewundenen 'Rohrbündeln besteht.
4. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, daß die Rohrbündel aus Edelstahl gefertigt sind.
5. Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der Durchmesser der Kondensationskammer (4) ein Mehrfaches des Durchmessers des Gaskühlers (3) beträgt.
EP78100295A 1977-08-16 1978-07-03 Vorrichtung zur Herstellung von hexagonalem Phosphorpentoxid Expired EP0000698B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2736765 1977-08-16
DE19772736765 DE2736765A1 (de) 1977-08-16 1977-08-16 Vorrichtung zur herstellung von hexagonalem phosphorpentoxid

Publications (2)

Publication Number Publication Date
EP0000698A1 true EP0000698A1 (de) 1979-02-21
EP0000698B1 EP0000698B1 (de) 1981-08-05

Family

ID=6016444

Family Applications (1)

Application Number Title Priority Date Filing Date
EP78100295A Expired EP0000698B1 (de) 1977-08-16 1978-07-03 Vorrichtung zur Herstellung von hexagonalem Phosphorpentoxid

Country Status (7)

Country Link
US (1) US4219533A (de)
EP (1) EP0000698B1 (de)
JP (1) JPS5443195A (de)
AT (1) AT377957B (de)
CA (1) CA1097034A (de)
DE (2) DE2736765A1 (de)
IT (1) IT1106883B (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0242678A2 (de) * 1986-04-25 1987-10-28 Hoechst Aktiengesellschaft Verfahren zur Herstellung von Phosphorpentoxid mit verminderter Reaktivität

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3033109A1 (de) * 1980-09-03 1982-04-22 Hoechst Ag, 6000 Frankfurt Verfahren zur herstellung von phosphorpentoxid unter ausnutzung der reaktionswaerme
DE3315630A1 (de) * 1983-04-29 1984-10-31 Hoechst Ag, 6230 Frankfurt Verfahren und vorrichtung zur herstellung von phosphorpentoxid unter ausnutzung der reaktionswaerme
US4713228A (en) * 1983-05-23 1987-12-15 Fmc Corporation Heat recovery in the manufacture of phosphorus acids
DE3926105A1 (de) * 1989-08-08 1991-02-14 Metallgesellschaft Ag Vorrichtung zum katalytischen umsetzen eines h(pfeil abwaerts)2(pfeil abwaerts)s und so(pfeil abwaerts)2(pfeil abwaerts) enthaltenden gasgemisches nach dem clausverfahren
CL2009002061A1 (es) * 2008-11-12 2010-04-30 Un proceso para la produccion de p4o6, donde se hace reaccionar oxigeno y un gas inerte con fosforo gaseoso o liquido, en una reaccion exotermica en una unidad de reaccion, remocion del calor creado alimentando p4o6 y/o productos secundarios, neutralizacion y separacion del producto de reaccion.
KR20130041183A (ko) * 2010-07-08 2013-04-24 솔베이(소시에떼아노님) LiPO2F2의 제조법 및 결정형 LiPO2F2
AU2011291580B2 (en) 2010-08-18 2015-08-20 Monsanto Technology Llc Early applications of encapsulated acetamides for reduced injury in crops
WO2020106677A1 (en) * 2018-11-19 2020-05-28 Monsanto Technology Llc Phosphorus oxide and phosphoric acid production processes

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU179752A1 (ru) * Научно исследовательский институт удобрени , инсектофунгици Способ получения фосфорного ангидрида
GB197863A (en) * 1922-07-06 1923-05-24 Richard Threlfall Improved manufacture of phosphorus pentoxide
US2132360A (en) * 1936-05-19 1938-10-04 American Agricultural Chem Co Vaporizing and oxidizing phosphorus
US2532322A (en) * 1946-06-01 1950-12-05 Tennessee Valley Authority Phosphorus combustion furnace
FR1292032A (fr) * 1961-06-12 1962-04-27 Stauffer Chemical Co Procédé et appareillage pour le traitement de l'anhydride phosphorique
FR1305386A (fr) * 1961-04-11 1962-10-05 Stauffer Chemical Co Procédé de préparation d'anhydride phosphorique

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1478750A (en) * 1922-02-09 1923-12-25 Gulf Refining Co Process of and apparatus for condensation
US1700708A (en) * 1925-10-22 1929-01-29 Firm I G Farbenindustrie Ag Production of phosphorus pentoxide and phosphoric acid
DE2109350A1 (de) * 1971-02-27 1972-10-26 Metallgesellschaft AG, 6000 Frankfurt; Deutsche Babcock & Wilcox-AG, 4200 Oberhausen Verfahren zur Gewinnung von Phosphorpentoxid

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU179752A1 (ru) * Научно исследовательский институт удобрени , инсектофунгици Способ получения фосфорного ангидрида
GB197863A (en) * 1922-07-06 1923-05-24 Richard Threlfall Improved manufacture of phosphorus pentoxide
US2132360A (en) * 1936-05-19 1938-10-04 American Agricultural Chem Co Vaporizing and oxidizing phosphorus
US2532322A (en) * 1946-06-01 1950-12-05 Tennessee Valley Authority Phosphorus combustion furnace
FR1305386A (fr) * 1961-04-11 1962-10-05 Stauffer Chemical Co Procédé de préparation d'anhydride phosphorique
FR1292032A (fr) * 1961-06-12 1962-04-27 Stauffer Chemical Co Procédé et appareillage pour le traitement de l'anhydride phosphorique

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0242678A2 (de) * 1986-04-25 1987-10-28 Hoechst Aktiengesellschaft Verfahren zur Herstellung von Phosphorpentoxid mit verminderter Reaktivität
EP0242678A3 (en) * 1986-04-25 1989-02-01 Hoechst Aktiengesellschaft Process for the preparation of phosphorus pentoxide with reduced reactivity

Also Published As

Publication number Publication date
DE2860894D1 (en) 1981-11-05
IT7850721A0 (it) 1978-08-11
ATA590878A (de) 1984-10-15
JPS5443195A (en) 1979-04-05
IT1106883B (it) 1985-11-18
EP0000698B1 (de) 1981-08-05
CA1097034A (en) 1981-03-10
US4219533A (en) 1980-08-26
DE2736765A1 (de) 1979-03-01
JPS5510527B2 (de) 1980-03-17
AT377957B (de) 1985-05-28

Similar Documents

Publication Publication Date Title
EP0000698B1 (de) Vorrichtung zur Herstellung von hexagonalem Phosphorpentoxid
DE3940347A1 (de) Verfahren zur herstellung von eisenwhiskers
EP0046865B1 (de) Verfahren zur Herstellung von Phosphorpentoxid unter Ausnutzung der Reaktionswärme
DE2106306C3 (de) Verfahren zur Herstellung von Aluminiumfluorid
EP0053793B1 (de) Verfahren zum Herstellen von Keten
EP0021381B1 (de) Verfahren zur Rückgewinnung von Pyrolyseenergie bei der Herstellung von Vinylchlorid durch thermische Spaltung von 1,2-Dichlorethan
EP0242678B1 (de) Verfahren zur Herstellung von Phosphorpentoxid mit verminderter Reaktivität
DE2132427A1 (de) Verfahren zur Herstellung von Siliciumtetrafluorid
DE1442971A1 (de) Verfahren und Vorrichtung zum Konzentrieren und Reinigen von durch nassen Aufschlussgewonnener Phosphorsaeure
DE1519712A1 (de) Verfahren und Vorrichtung zur Konzentrierung waessriger Loesungen und Suspensionen
DE1542592C3 (de) Verfahren zur Herstellung von Superphosphorsäure
DE2333185C3 (de) Verfahren zur Herstellung von Olefinen durch thermische Spaltung von Kohlenwasserstoffen
EP1027318B1 (de) Verfahren zur reinigung von formaldehyd
DE2264306C3 (de) Verfahren zur Herstellung von Ammoniumpolyphosphat
EP0000173B1 (de) Verfahren zur Herstellung von Chlorsulfonsäure
DE2823749C3 (de) Verfahren zur Rückgewinnung des Magnesiumbisulfits
DE2617595C2 (de) Verfahren zum Gewinnen eines Feststoffes aus der Dampfphase eines Dampf-Gas-Gemisches und Vorrichtung zu dessen Durchführung
DE1567941C (de) Verfahren zur Herstellung von trockenem Natriumsulfat oder trockenem Eisen (II)sulfat
DE1300527B (de) Verfahren zur gleichzeitigen Herstellung von hexagonalem Phosphor-saeureanhydrid und Polyphosphorsaeure
DE1159403B (de) Verfahren und Vorrichtung zur Herstellung von Polyphosphorsaeure
DE968033C (de) Verfahren zur Herstellung von Alkalitripolyphosphat und Alkalitripolyphosphatgemischen
DE1075572B (de) Vorrichtung zur Herstellung von Salpetersäure durch Adsorption von nitrosen Gasen
DE1567731C (de) Verfahren und Vorrichtung zur Abgasbehandlung bei der kontinuierlichen Phosphorsäurekonzentration in einer Tauchbrenner-Verdampfungsanlage
DE2733738A1 (de) Verfahren und vorrichtung zur auftrennung von mischgasen
DE3115808A1 (de) Trockenloeschverfahren fuer kosk und anlage fuer dessen verwirklichung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): CH DE FR GB NL

17P Request for examination filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): CH DE FR GB NL

REF Corresponds to:

Ref document number: 2860894

Country of ref document: DE

Date of ref document: 19811105

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19920611

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19920615

Year of fee payment: 15

Ref country code: CH

Payment date: 19920615

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19920731

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19930703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19930731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19940201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19930703

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19940331

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19970922

Year of fee payment: 20

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT