EP0000507B1 - Verfahren zur Herstellung von Hydrogelen in Form kugelförmiger Perlen grösseren Durchmessers - Google Patents

Verfahren zur Herstellung von Hydrogelen in Form kugelförmiger Perlen grösseren Durchmessers Download PDF

Info

Publication number
EP0000507B1
EP0000507B1 EP78100375A EP78100375A EP0000507B1 EP 0000507 B1 EP0000507 B1 EP 0000507B1 EP 78100375 A EP78100375 A EP 78100375A EP 78100375 A EP78100375 A EP 78100375A EP 0000507 B1 EP0000507 B1 EP 0000507B1
Authority
EP
European Patent Office
Prior art keywords
water
hydrogel
weight
vinyl
insoluble
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP78100375A
Other languages
English (en)
French (fr)
Other versions
EP0000507A1 (de
Inventor
Karl Friedrich Müller
Sonia Jaworiw Heiber
Walter Lawrence Plankl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Novartis AG
Original Assignee
Ciba Geigy AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ciba Geigy AG filed Critical Ciba Geigy AG
Publication of EP0000507A1 publication Critical patent/EP0000507A1/de
Application granted granted Critical
Publication of EP0000507B1 publication Critical patent/EP0000507B1/de
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/20Esters of polyhydric alcohols or phenols, e.g. 2-hydroxyethyl (meth)acrylate or glycerol mono-(meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F291/00Macromolecular compounds obtained by polymerising monomers on to macromolecular compounds according to more than one of the groups C08F251/00 - C08F289/00

Definitions

  • the present invention relates to a process for the production of uniform, spherical beads with a diameter of up to 5 mm, which consist of a cross-linked, water-insoluble hydrogel.
  • Hydrogels have been described since 1956 (US-A-2 976 576) and since that time a large number of patents have been published which focus on the production and use of hydrogels which are based primarily on 2-hydroxyethyl methacrylates and to a lesser extent on N. -Vinylpyrrolidonen based.
  • these hydrogels are cross-linked, water-swelling polymers which are prepared by copolymerizing 2-hydroxyethyl methacrylates with a small amount of ethylene or butylene dimethacrylates. These compounds mentioned are used as polymeric, inert carriers for active substances which are released slowly and controllably by these carriers.
  • Such substances can be pharmaceuticals (US-A-: 3,574,826, 3,577,512, 3,551,556, 3,520,949, 3,576,760, 3,641,237, 3,660,563), agricultural chemicals (US-A-3,576,760) or flavorings (U.S.-A-3,567,118 and 3,697,643).
  • US-A- 3,574,826, 3,577,512, 3,551,556, 3,520,949, 3,576,760, 3,641,237, 3,660,563
  • agricultural chemicals US-A-3,576,760
  • flavorings U.S.-A-3,567,118 and 3,697,643
  • Hydrogen granules are preferably produced by polymerization in suspension. This is carried out by suspending a liquid monomer phase in a non-solvent with vigorous stirring and with the aid of a protective colloid as a stabilizer and polymerizing the stirred suspension obtained in a conventional manner. The polymerization is induced catalytically by heat or with the help of free radicals. This method produces uniformly shaped spherical beads in a one-step process and is mainly used in the production of polystyrenes, polyvinyl chlorides, polyacrylates and polyvinyl acetates (cf. E. Farber: Encyclopedie der Polymerjudicialen und -technologie, Vol. 13, pages 552-571 (1970 ), Interscience, New York).
  • HEMA 2-hydroxyethyl methacrylate
  • a suspending agent is not necessarily specified as a necessary part of the recipe. However, it can be shown that without such a suspending agent, no usable particles or beads are obtained, but only large agglomerations of the polymer.
  • water-soluble polymers such as. B. polyvinylpyrrolidones and hydroxyethyl celluloses are excellent suspending agents for polymerization in suspension.
  • certain poorly soluble, inorganic compounds such as. As calcium sulfate, barium sulfate, calcium phosphate, magnesium phosphate, calcium carbonate and magnesium hydroxide can also be used.
  • magnesium hydroxide as suspension stabilizers for the polymerization of vinyl monomers is described in US Pat. No. 2,801,992, but with the express reference that an excess of alkali metal or hydroxyl ions must be present. Magnesium hydroxide in the absence of excess hydroxyl ions (alkali) is ineffective as a suspension stabilizer.
  • FR-A-2 276 063 relates to the preparation of water-insoluble crosslinked hydrophilic gels by polymerizing either a hydrophilic polymer from water-soluble monomeric monoolefins or a hydrophobic copolymer water-soluble monoolefins with 1-70% water-insoluble monomeric monoolefins with a hydrophobic polymer which has two olefinic end groups and a molecular weight of 400-8000, 30-90% of the former component and 10-70% of the latter.
  • the polymerization temperatures are preferably between 40 and 150 ° C.
  • water-soluble monomers preference is given to using acrylic or methacrylic acid or its esters, amides, imides or monoolefin salts, and as hydrophobic polymers to those having polytetramethylene oxide chains and two terminal olefinic groups.
  • catalysts By adding catalysts, beads can also be obtained at 90 ° C. with rapid stirring of the mixture, but they are very small and therefore technically uninteresting.
  • the gels can be used as carriers for pharmaceutically active substances.
  • hydrogel granules were of a very irregular shape and a very porous surface.
  • the beads shaped in this way are also of such a small size (for example 0.3 mm in diameter) that they have no practical value for the slow release of active agents.
  • the preferred pearl sizes for controllable delivery of oral medication are between 0.6mm and 1.5mm.
  • the present invention therefore relates to a process for producing substantially uniform, spherical beads up to the size of 5 mm in diameter from a crosslinked, water-insoluble hydrogel by polymerization in suspension of (A) 95-30% by weight, based on the hydrogel, at least a water-soluble monoolefinic monomer which can be replaced by up to 70% by weight, based on the total amount of monomers, of at least one water-insoluble monoolefinic monomeric compound, the hydrogel containing at most 60% by weight of the water-insoluble monomeric compound and at least 5 %
  • the total monomer consists of a hydroxy-substituted hydrophilic vinyl monomer, with (B) 5 to 70% by weight, based on the hydrogel, of a terminally diolefinic, crosslinking compound having a molecular weight of 400-8000 in the presence of a polymerization initiator in a concentrated, aqueous inorganic salt solution and a suspending agent els and by treating the hydrogel with an acid
  • the process is characterized in that the suspension medium used is 0.01-5% by weight, based on the hydrogel, of at least one water-insoluble, gelatinous, water-binding, inorganic metal hydroxide or metal hydroxy salt in the absence of excess alkali and free hydroxyl ions.
  • water-soluble monomers substituted by hydroxy water-soluble derivatives of acrylic and / or methacrylic acid, such as, for. B. hydroxyalkyl esters in which the alkyl radical contains 2-4 carbon atoms, for example 2-hydroxyethyl, 3-hydroxypropyl, 2-hydroxypropyl or 2,3-dihydroxypropyl ester, furthermore ethoxylated and polyethoxylated hydroxyalkyl esters of acrylic or methacrylic acid such as esters of alcohols of the formula wherein m is 2 to 5 and n is 1 to 20, or esters of analog alcohols in which part of the ethylene oxide unit has been replaced by propylene oxide units.
  • Suitable esters are furthermore, for example, the 3- (dimethylamino) -2-hydroxypropyl esters.
  • Another class of suitable derivatives of such acids are their water-soluble amides or imides which are substituted by lower hydroxyalkyl groups in which a lower alkyl group contains 2-4 carbon atoms, e.g. N- (hydroxymethyl) acrylamide and methacrylamide, N- (3-hydroxypropyl) acrylamide, N- (2-hydroxyethyl) methacrylamide and N- [1,1-dimethyl-2- (hydroxymethyl) -3-oxabutyl) -acrylamide; water-soluble hydrazine derivatives, such as. B. trialkylaminomethacrylimides, e.g. B. trimethylaminomethacrylimide and dimethyl (2-hydroxypropyl) aminomethacrylamide and the corresponding derivatives of acrylic acid.
  • B. trialkylaminomethacrylimides e.g. B. trimethylaminomethacrylimide and dimethyl (2-hydroxypropyl) aminomethacrylamide and the corresponding derivatives of acrylic acid.
  • Water-soluble monomers which require a comonomer for the polymerization are also suitable, e.g. Hydroxyalkyl esters of maleic and fumaric acid, in which the alkyl radical has 2-4 carbon atoms, such as. B. di- (2-hydroxyethyl) maleate and alkoxylated hydroxyalkyl maleates, hydroxyalkyl monomaleates, such as. B. 2-hydroxyethyl monomaleate and alkoxylated hydroxyalkyl monomaleate with vinyl ethers, vinyl esters, styrene or generally monomers which easily copolymerize with maleates or fumarates; Hydroxyalkyl vinyl ether, such as. B. 2-hydroxyethyl vinyl ether, 4-hydroxybutyl vinyl ether with maleates, fumarates or generally all monomers that easily copolymerize with vinyl ethers.
  • Hydroxyalkyl esters of maleic and fumaric acid in which the alkyl radical has 2-4 carbon atoms
  • hydroxyalkyl acrylates and methacrylates such as. B. _2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl acrylate, 2-hydroxypropyl methacrylate, 2,3-dihydroxypropyl methacrylate. Most preferably as a monomer can be called 2-hydroxyethyl methacrylate.
  • Water-soluble comonomers which contain no hydroxyl groups are acrylic and methacrylic acids and alkyl ethers of polyethoxylated hydroxyalkyl testers, such as esters of alcohols of the formula wherein m is 2 to 5 and n is 4 to 20.
  • Dialkylaminoalkyl esters and amides such as e.g. 2- (dimethylamino) ethyl acrylate and methacrylates, as well as the corresponding amides.
  • the amides substituted by lower oxaalkyl or lower dialkylaminoalkyl groups such as e.g. the N- (1,1-dimethyl-3-oxabutyl) acrylamide; water-soluble hydrazine derivatives, e.g. Trialkylaminomethacrylimides, e.g.
  • Trimethylamino methacrylimides and the corresponding derivatives of acrylic acid monoolefinic sulfonic acids and their salts, such as sodium ethylene sulfonate, sodium styrene sulfonate and 2-acrylamido-2-methylpropane sulfonic acid; N- [2-dimethylamino) ethyl acrylamine and methacrylamide in question.
  • Another class of water-soluble monomers are mono-olefinic derivatives of monocyclic, heterocyclic, nitrogen-containing monomers, such as e.g. N-vinylpyrrole, N-vinyl succinimide, N-vinyl-2-pyrrolidone, 1-vinyl-imidazole, 1-vinyl-indole, 2-vinyl-imidazole, 4 (5) -vinylimidazole, 2-vinyl-1-methylimidazole , 5-vinyl-pyrazoline, 3-methyl-5-isopropenyl-pyrazole, 5-methylene hydantoin, 3-vinyl-2-oxazolidone, 2- and 4-vinyl pyridine, 5-vinyl-2-methyl pyridine, 2-vinyl pyridine 1-oxide, 3-isopropenylpyridine, 2- and 4-vinyl-piperidine, 2- and 4-vinyl-quinoline, 2,4-dimethyl-6-vinyl-s-triazine
  • Preferred among these monomers mentioned, which can be used in an amount of 0-15% by weight of the total monomers, are: acrylic acid, methacrylic acid, 2-vinyl-pyridine, 4-vinyl-pyridine, 2- (dimethylamino) ethyl methacrylate, N- [2-dimethylamino) ethyl] methacrylate, N- [2- (dimethylamino) ethyl] methacrylamide and sodium styrene sulfonate.
  • water-soluble monomers are 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl acrylate, 2-hydroxypropyl methacrylate, 3-hydroxypropyl acrylate, 3-hydroxypropyl methacrylate, 2,3-dihydroxypropyl acrylate, 2,3-dihydroxypropyl methacrylate, N-vinyl-2- pyrrolidone and N-methylolacrylamide.
  • Suitable hydrophobic comonomers which can be incorporated into the reaction mixture are e.g. B. water-insoluble olefinic monomers, such as alkyl acrylates or methacrylates, in which alkyl has 1 to 18 carbon atoms, for. B. methyl and ethyl methacrylate or acrylate; Vinyl esters derived from alkane carboxylic acids with 1-5 C atoms, e.g. B. vinyl acetate, vinyl propionate or vinyl benzoate; Acrylonitrile, styrene and vinyl alkyl ether, in which the alkyl group of the ether chain has 1-5 C atoms, e.g. B. (methyl, ethyl, propyl, butyl or amyl) vinyl ether.
  • B. water-insoluble olefinic monomers such as alkyl acrylates or methacrylates, in which alkyl has 1 to 18 carbon atoms, for. B. methyl and
  • Preferred compounds are alkyl acrylates or methacrylates in which the alkyl radical has 1 to 18 carbon atoms.
  • Other preferred compounds are the vinyl alkyl ethers in which the alkyl radical has 1 to 5 carbon atoms.
  • the olefinic part is preferably an acyl radical of a lower a, ⁇ -mono-unsaturated aliphatic monocarboxylic or dicarboxylic acid or vinyloxy radicals.
  • These vinyl parts can be crosslinked by a macromolecular chain with repeated ester, amide or urethane groups, but in particular ether groups.
  • the molecular weight of the chain can preferably vary between 600 and 5000, and very particularly between 1500 and 3000.
  • component (B) corresponds to the formulas or wherein a is 1 or 2 and R is a polycondensate chain containing hydrocarbon residues bound by ether, ester, amide, urethane or urea residues
  • R 2 is hydrogen, methyl or -CH 2 COOR 4 , wherein R 4 is hydrogen or an alkyl group having 1 to 10 carbon atoms
  • R 3 is hydrogen or -COOR 4 with the condition that at least one of the radicals R 2 or R 3 is hydrogen
  • X is oxo, -COO- or -CONR 5 -, in which R 5 is hydrogen or alkyl having up to 5 carbon atoms and Y is a direct bond or the radical -R 6 -Z 1 -CO-NH-R 7 -NH-CO-Z 2 -, in which R 6 is bound to X and represents a branched or straight-chain alkylene radical having up to 7 carbon atoms
  • Z is oxo or -NR S
  • R I in particular denotes a polypropylene oxide or a polytetramethylene oxide chain, or a chain which consists of a polyethylene oxide-polypropylene oxide copolymer block, but it can also mean a chain derived from dicarboxylic acids, diols, diamines or diisocyanates, which are obtained by known polycondensation processes.
  • R1 can also mean a chain containing a polysiloxane.
  • the terminal residues of the compound of formula B correspond to the definitions of R 2 and R 3 , and, if X means -COO- or -CONR s -, the acyl residue is derived from acrylic or methacrylic acid or the monoalkyl esters from malein -, Fumaric or itaconic acid, or of monoalkyl esters of these acids with straight or branched chain alkanols with 1 to 10 carbon atoms, such as methanol, ethanol, propanol, butanol, diisobutyl alcohol or decanol, or, if X is oxygen, with the vinyloxy radical of vinyl ethers.
  • diesters of macromolecular diols in which two hydroxyl groups on the polycondensate R, in opposite terminated or almost terminated positions are bonded, with a, ⁇ -unsaturated acids.
  • diesters can be prepared from the macromolecular diols mentioned by known acylation processes, using reactive functional derivatives of suitable acids, for example acrylic or methacrylic acid chloride, or of monoalkyl esters of maleic, fumaric or itaconic acid.
  • Compounds of formula B with the amide group X are diamides which are obtained from macromolecular diamines by known acylation processes, for example by using the abovementioned acid chlorides or anhydrides.
  • the macromolecular diamines are e.g. B. prepared from the corresponding macromolecular diols with twice the molar amount of alkyleneimine, such as propyleneimine.
  • the macromolecular bis-maleic acid acids are obtained in accordance with the described reaction by using maleic anhydride as an acylating agent for macromolecular diamines with heating or reaction with dewatering agents to produce macromolecular bis-maleimido compounds of the formula B 2 .
  • R e.g. B. be one of the macromolecular polycondensate chains, which are mentioned as components of the compounds according to formula B.
  • Y can also mean a divalent radical -R 6 -Z 1 -CONH-R 7 -NH-CO-Z 1 .
  • R 6 z. methylene, propylene, trimethylene, tetramethylene, pentamethylene, neopentylene (2,2-dimethyltrimethylene), 2-hydroxytrimethylene, 1,1-dimethyl-2- (1-oxoethyl) trimethylene or 1- (dimethyleneaminomethyl) ethylene and in particular Ethylene.
  • the divalent radical R 7 is derived from an organic diisocyanate and is an aliphatic radical such as alkylene, for example ethylene, tetramethylene, hexamethylene, 2,2,4-trimethylhexamethylene, 2,4,4-trimethylhexamethylene, fumaroyldiethylene or 1-carboxypentamethylene; a cycloaliphatic radical, for example 1,4-cyclohexylene or 2-methyl-1,4-cyclohexylene; an aromatic radical, such as m-phenylene, p-phenylene, Z-methyl-m-pnenylene, T, z-, T, 3-, 1, b-, T, 6-, T; / -, 1,8- , 2,3- and 2,7-naphthylene, 4-chloro-1,2- and 4-chloro-1,8-naphthylene, 1-methyl-2,4-, 1-methyl-2,7-, 4th -Methyl-1,2-, 6-methyl-1
  • R is derived in particular from diols and diamines with a molecular weight of approximately 200-8000.
  • Suitable such diols are polyethylene oxide diols with a molecular weight of 500-3000, polypropylene oxide diols with a molecular weight of 500-3000, poly-n-butylene oxide diols with a molecular weight of 500-3000, poly.
  • polyester diols with a molecular weight of 500-3000 which are obtained by known methods of polycondensation from diols and Dicarboxylic acid such as B. can be obtained from propylene glycol, ethylene glycol, butanediol or 3-thia-pentanediol and adipic acid, terephthalic acid, phthalic acid or maleic acid, which may also contain diols of the above-mentioned types of polyethers.
  • diamines with a molecular weight of 500-4000 in particular the bis-aminopropyl ethers of the above-mentioned diols, such as e.g. the bis-3-aminopropyl ether of polyethylene oxide and polypropylene oxide diol.
  • a preferred embodiment of the present process consists in compound (B), in which R, a polyethylene oxide, polypropylene oxide or polytetramethylene oxide chain with a molecular weight of 600-4000 or a chain, which is obtained by condensation of an aliphatic, alicyclic or aromatic dicarboxylic acid or a corresponding diisocyanate with an aliphatic diol or diamine.
  • the preferred compounds (B) consist of polyalkylene ether glycols, in particular polytetramethylene oxide glycols with a molecular weight of about 600 to about 4000, in particular 1500-3000, first saturated with 2,4-toluene diisocyanate or isophorone diisocyanate and with 2 moles of a hydroxyalkyl acrylate or methacrylate end saturated, in which "alkyl” means a radical with 2-4 carbon atoms.
  • R 1 is derived from a polysiloxane containing diols, triols or dithiols.
  • These polysiloxanes with di or poly functions can have 2 different structures: or wherein R 8 is a straight or branched alkylene chain with 1-7 C atoms or a - (CH 2 CHO) n group, R 9 wherein n is 1 to 20, R 9 is hydrogen or methyl, and X is a number of 3 to 120 and Y is 2 or 3.
  • polysiloxane compounds are preferably end-saturated with isophorone diisocyanate or 2,4-toluenediisocyanate and reacted with an excess of 2-hydroxyethyl methacrylate, 2-hydroxyethyl acrylate or 2-hydroxypropyl acrylate.
  • (C) means a vinyl ether containing an active hydrogen atom, such as. B. a hydroxyalkyl vinyl ether or an aminoalkyl vinyl ether. If X represents the -COO or -CONR s group, then (C) is an acrylate, methacrylate, maleate, fumarate, itaconate or a corresponding amide which contains an active hydrogen atom in the alkyl group.
  • the mixture of monomers (A) and macromolecular compounds (B) contains 20-100% of a hydroxy-substituted vinyl monomer and 0-40% of a water-insoluble vinyl monomer, in particular 40-100% of a hydroxy-substituted vinyl monomer and no water-insoluble monomer.
  • the free radical polymerization is initiated by means of a catalyst which can generate free peroxy or alkyl radicals in a sufficiently high concentration in order to bring about the polymerization of the vinyl monomer used at the synthesis temperature.
  • catalysts are preferably peroxide or azo catalysts which have a half-life of at least 20 minutes at the polymerization temperature.
  • Suitable catalysts are diisopropyl peroxidicarbonates, tert-butyl perctoate, benzoyl peroxide, decanoyl peroxide, lauroyl peroxide, succinic acid peroxide, methyl ethylene ketone peroxide, tert-butyl peroxyacetate, propionyl peroxide, 2,4-dichlorobenzyl peroxide, tert.-butyl peroxyl, peroxyl butoxide, peroxypyl peroxide, 5-dimethyl-2,5-bis (2-ethylhexanoyl-peroxy) hexane, p-chlorobenzoyl peroxide, tert-butyl peroxy butyrate, tert-butyl peroxymaleic acid, tert-butyl peroxy isopropyl carbonate, bis- (1-hydroxy -cyclohexyl) -peroxide; the azo compounds are: 2,2'-azo
  • the amount of the catalyst can be between 0.01-1% by weight of the monomer (A) and the macromolecular compound (B). It is preferably between 0.03-0.3% by weight.
  • the suspension medium used is dissolved at the end of the suspension polymerization by adding an acid, for example hydrochloric acid.
  • the hydrogel beads are isolated by filtration.
  • the process according to the invention is normally carried out in a reaction vessel which is provided with a reflux condenser, nitrogen flow, heat regulator and, most importantly, with a stirrer of special design which allows good mixing at low speed.
  • the anchor-like glass stirrers which are connected to a stirrer motor, the speed of which can be easily regulated, are preferably used in the laboratory.
  • the aqueous solution of the salt is first placed in the reaction vessel with a soluble magnesium or aluminum salt. The solution is then heated to the polymerization temperature and the gelatinous metal hydroxide is then precipitated by adding a calculated amount of an aqueous base. After this step, the stirring speed is reduced if necessary to obtain beads of a given size.
  • the mixture (A) and (B), which already contains the catalyst in solution, is now added and the reaction hold under nitrogen at constant temperature and stirring speeds for at least 3 hours.
  • the mixture is then heated under reflux at 100 ° C for 1 hour.
  • the reaction mixture is then cooled to room temperature and enough organic acid such as acetic acid or mineral acid is added to dissolve the metal hydroxide.
  • the pearls are now filtered off, washed off the surface salt water, then soaked in water or alcohols to extract unreacted monomers, and dried.
  • any water-soluble inorganic salt of a concentration of 5-25% by weight can be used as the aqueous salt solution; in practice, however, an inexpensive, commercially available chloride or sulfate of an alkali or alkaline earth metal is used, for example sodium chloride, potassium sulfate, magnesium chloride and magnesium sulfate. These can be used individually or as a mixture in a concentration that approaches the solubility limit in water. As a general rule, the higher the salt concentration, the lower the amount of water-soluble monomers that are dissolved in the aqueous phase and, at the same time, the more uniform the spherical hydrogel bead.
  • Sodium chloride is very particularly preferably used in a concentration of 20% by weight in water.
  • the metal hydroxides used as suspending agents of the present process can be prepared by adding, preferably in situ, to an aqueous solution of a water-soluble metal salt (chloride, nitrate, sulfate, etc.) alkali, usually 1N sodium hydroxide solution, in the amount, however does not exceed the stoichiometric amount necessary for the formation of the metal hydroxide or a metal hydroxide salt where not all valences of the metal ion are saturated with hydroxyl groups.
  • a water-soluble metal salt chloride, nitrate, sulfate, etc.
  • the metal hydroxides of magnesium, aluminum, zirconium, iron, nickel, chromium, zinc, lead, calcium, cobalt, copper, tin, gallium, manganese, strontium, barium, uranium, titanium, lanthanum, thorium and cerium are suitable for use as Suspension agent to be used for the present process.
  • hydroxides of certain transition metals such as -. B. manganese, iron and chromium are excellent suspending agents, but are not necessarily the hydroxides of choice since they could conflict with free radical polymerization through electron transfer reactions. The inherent color also hinders the use, since this is undesirable in the hydrogel beads.
  • the degree of swelling (DS) in water is determined by swelling a certain weight of pearls until equilibrium is reached; the swollen and dried pearls are weighed.
  • the average particle size (M.P.S.) is expressed as the number in millimeters at which the particle size distribution curve obtained by sieving the total amount of beads through a series of sieves with mesh sizes of 8-50 mesh intersects the 50% line.
  • the temperature degrees Celsius degrees and the percentages mean percentages by weight.
  • a smooth-walled 1000m1 plastic flask is equipped with a reflux condenser, nitrogen inlet tube, thermometer, which is connected to a heat controller, a separating grille and an anchor-like stirrer, which is driven by an adjustable motor. A slow stream of nitrogen is passed through the entire reaction.
  • the stirring speed is reduced to 150 revolutions / min and a mixture of monomer (A) and the macromolecular compound (B), in which 0.2 g of tert-butyl peroctoate as the initial catalyst for the preparation free radicals is added.
  • the mixture of (A) and (B) is prepared by terminally providing 60 g (about 0.024 mol) of a polytetramethylene oxide glycol (average molecular weight 2000) with isophorone diisocyanate, dissolving it in 140 g (1.08 mol) of 2-hydroxyethyl methacrylate (HEMA) and 72 React for hours at room temperature.
  • HEMA 2-hydroxyethyl methacrylate
  • the reaction mixture which has a pH of 7.8, is stirred under nitrogen at 150 revolutions / min for 3 hours at 80 °. The temperature is then raised to 100 ° for 1 hour and cooled to room temperature. Then 10ml conc. Hydrochloric acid was added to dissolve the magnesium hydroxide as a suspending agent.
  • the reaction mixture is filtered through a very fine-walled cloth and the then isolated beads are washed with 2000 ml of water and immersed in 500 ml of ethanol overnight to remove remaining monomers.
  • the beads obtained are filtered through a bag made of polyester cloth. The sewn-in sack and the contents are dried in a tumble dryer. Uniform spherical beads are obtained in a yield of 193 g (96.5% of theory) with an average diameter of 1.02 ⁇ 0.3 mm, which have a degree of swelling in water of 37% (DS H2O ).
  • Example 2 The procedure is the same as described in Example 1, but using (A) 47.5 g of HEMA and 5 g of N-vinylpyrrolidone (NVP) and (B) 47.5 g of the polytetramethylene oxide glycol used in Example 1. Hydrogel beads with an average size of 1.1 mm and a degree of swelling DS in H 2 0 of 21% are obtained.
  • An increase in the amount of NVP in the hydrogel causes an increase in the degree of swelling.
  • the mixture of monomers (A) and macromolecular compound (B) is prepared by dissolving and neutralizing 96 g of polytetramethylene oxide glycol (average molecular weight approx. 2000), which is saturated at the end with isophorone diisocyanate, in 64 g of 2-hydroxyethyl methacrylate and 40 g of acrylic acid before the polymerization begins .
  • Uniform spherical beads are obtained which have an average diameter of 1.02 mm ⁇ 0.2 mm in a yield of 180 g (90% of theory).
  • the degree of swelling depends on the pH, a degree of swelling of 65.4% being obtained at pH 3 and a degree of swelling of 75.8% at pH 8.
  • the mixture of (A) and (B) used is prepared by dissolving 84 g of polytetramethylene oxide glycol (average molecular weight 2000), finally saturated with isophorone diisocyanate, in 56 g of 2-hydroxyethyl methacrylate and 60 g of N- (2-dimethylamino) ethyl methacrylate.
  • Hydrogel beads are prepared in an analogous manner to that described in Example 1 by adding 24 g of polytetramethylene oxide glycol (MW 2000), which is saturated with isophorone diisocyanate, in 42 g of 2-hydroxyethyl methacrylate, 54 g of N as a mono mixture of (A) and (B) -Vinyl-2-pyrrolidone and 80g methoxypolyethylene glycol methacrylate, which contains an average of 9 ethoxy units. Uniform round beads are obtained with an average diameter of 0.72 mm and a degree of swelling (DS HZ o) of 27.2%.
  • DS HZ o degree of swelling
  • hydrogel beads are prepared by adding 33.3 g of a 60% aqueous solution of N-methylolacrylamide with 171 of a mixture of 40% polytetramethylene C. oxide glycol (MW 2000), finally saturated with 2 moles of isophorone diisocyanate , and 60% 2-hydroxyethyl methacrylate and receives 180g (85% of theory) of uniform round beads with a diameter of 1.10mm and a degree of swelling (DS H2O ) of 32%.
  • a gelatinous precipitate of magnesium hydroxide forms with the addition of 123 ml of 1N sodium hydroxide solution with vigorous stirring.
  • the mixture (A) + (B) used in this example is prepared by using 107.5 g of polydimethylsiloxane diol of the formula available from Dow Corning as Q 4-3667, saturated at the end with isophorone diisocyanate, dissolved in 107.5 g of 2-hydroxyethyl methacrylate.
  • Uniform, spherical beads (200 g, 93% of theory) are obtained which have an average diameter of 1.66 ⁇ 0.5 mm and a degree of swelling DS H2O of 28.1%.
  • a smooth-winded 1000m1 plastic flask is equipped with a reflux condenser, nitrogen inlet tube, thermometer, which is equipped with a temperature controller, a separating grille and an anchor-like stirrer, which is driven by an adjustable motor.
  • the contents of the flask are filtered through a fine mesh cheese cloth, as described above, washed with 21 water and soaked in 500 ml of ethanol overnight to extract the remaining monomers. As described in Example 1, the beads are filtered and dried. 180 g of uniform, round beads with an average diameter of 0.85 mm are obtained. The degree of swelling is pH-dependent and is 30.7% at pH 1 (DSp H 1 ) and 51.1% at pH 8.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Medicinal Preparation (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)

Description

  • Die vorliegende Erfindung betrifft ein Verfahren für die Herstellung einheitlicher, kugelförmiger Perlen mit einem Durchmesser bis zu 5mm, welche aus einem vernetzten, wasserunlöslichen Hydrogel bestehen.
  • Hydrogele werden seit dem Jahre 1956 (US-A-2 976 576) beschrieben, und seit dieser Zeit ist eine grosse Anzahl von Patenten veröffentlicht worden, die die Herstellung und Verwendung von Hydrogelen, welche vorwiegend auf 2-Hydroxyäthylmethacrylaten und im geringeren Umfang auf N-Vinylpyrrolidonen basieren. Bezeichnenderweise sind diese Hydrogele vernetzte, in Wasser aufquellende Polymere, welche durch Copolymerisation von 2-Hydroxyäthylmethacrylaten mit einer geringen Menge an Äthylen- oder Butylendimethacrylaten hergestellt werden. Diese erwähnten Verbindungen werden als polymere, inerte Träger für aktive Substanzen verwendet, welche langsam und kontrollierbar freigegeben werden von diesen Trägerstoffen. Solche Substanzen können Arzneimittel (US-A-: 3 574 826, 3 577 512, 3 551 556, 3 520 949, 3 576 760, 3641 237, 3 660 563), Agrarchemikalien (US-A-3 576 760) oder Aromastoffe (US-A- 3 567 118 und 3 697 643) sein. Die Verwendung dieser Hydrogele zur Herstellung von Antibeschlagschichten in feuchter Umgebung, Körperimplantaten und Wundverbänden wurden in den US-A- 3 577 516, 3 695 921, 3512183 und 3 674 901 beschrieben. Auch die weit verbreiteten weichen Kontaktlinsen werden aus diesem Material gemäss US-A-3 488 111 und 3 660 545 hergestellt.
  • Die Verwendung von arzneimittelhaltigen Hydrogelgranulaten in oraler Applikationsform ist bereits im US-A- 3 551 556 vorgeschlagen worden.
  • Hydrogengranulate werden bevorzugt durch Polymerisation in Suspension hergestellt. Diese wird ausgeführt, indem man eine flüssige monomere Phase in einem nicht lösenden Mittel unter starkem Rühren und mit Hilfe eines Schutzkolloides als Stabilisator suspendiert und die erhaltene gerührte Suspension auf konventionelle Weise polymerisiert. Die Polymerisation wird durch Wärme oder mit Hilfe von freien Radikalen katalytisch induziert. Diese Methode ergibt einheitlich geformte kugelförmige Perlen in einem einstufigen Verfahren und wird mehrheitlich bei der Herstellung von Polystyrolen, Polyvinylchloriden, Polyacrylaten und Polyvinylacetaten verwendet (vgl. E. Farber: Encyclopedie der Polymerwissenschaften und -technologie, Vol. 13, Seiten 552-571 (1970), Interscience, New York).
  • Im US-A- 3 390 050 wird die Polymerisation in Suspension von wasserlöslichen Monomeren in Gegenwart grosser Mengen aktiver Wirkstoffe beschrieben. Dieses Verfahren ist jedoch ungeeignet für die Herstellung von Hydrogelperlen für oral zu verabreichende Arzneimittel, da es unmöglich ist, das erhaltene Polymere zu reinigen, ohne das Arzneimittel herauszulaugen.
  • Die meisten Referenzen einer Polymerisation in Suspension eines 2-Hydroxyäthylmethacrylates weisen auf Silikonöl oder auf ein organisches Medium, wie z. B. Mineralöl oder Xylol als unlösliche Phase (US-A-: 3 567 118, 3 674 826, 3 575 123, 3 577 518, 3 678 822, 3 583 957) hin. Diese Verfahren ergeben im allgmeinen Teilchen mit sehr irregulären, unvollendeten porösen Oberflächen, die ungeeignet sind für eine Verwendung, in der die Diffusion als Arbeitsmechanismus eher eine Rolle spielt als die Adsorption und Desorption. Neben diesen Faktoren würde auch die Aufarbeitung des Polymeren im technischen Massstab ein Problem erbringen.
  • Die Polymerisation von 2-Hydroxyäthylmethacrylat (HEMA) in Suspension in Gegenwart von 0,5-2% an kurzkettigen Vernetzungsmitteln (eine Verbindung, die gewöhnlicherweise «Hydron» genannt wird), wobei eine wässrige Salzlösung als Medium benutz wird, wird im US-A- 3 689 634 beschrieben, wobei jedoch ein Suspensionsmittel nicht unbedingt als notwendiger Bestandteil des Rezeptes angegeben wird. Es kann jedoch gezeigt werden, dass ohne solch ein Suspensionsmittel keine brauchbaren Teilchen oder Perlen erhalten werden, sondern nur grosse Zusammenballungen des Polymeren.
  • Es ist jedoch bekannt, dass gewisse wasserlösliche Polymere, wie z. B. Polyvinylpyrrolidone und Hydroxyäthylzellulosen ausgezeichnete Suspensionsmittel für eine Polymerisation in Suspension sind. Es ist auch bekannt, dass gewisse schwer lösliche, anorganische Verbindungen, wie z. B. Calciumsulfat, Bariumsulfat, Calciumphosphat, Magnesiumphosphat, Calciumcarbonat und Magnesiumhydroxid auch verwendet werden können.
  • Die Verwendung von Magnesiumhydroxid als Suspensionsstabilisatoren für die Polymerisation von Vinylmonomeren wird im US-A- 2 801 992 beschrieben, jedoch mit dem ausdrücklichen Hinweis, dass ein Überschuss an Alkali- oder Hydroxylionen vorhanden sein muss. Magnesiumhydroxid in Abwesenheit von überschüssigen Hydroxylionen (Alkali) ist unwirksam als Suspensionsstabilisator.
  • Während der Überschuss von Alkali- und freien Hydroxylionen bei einigen Suspensions-Polymerisations-Systemen keine schädlichen Nebenreaktionen hervorruft, so gibt es doch viele Vinylmonomere, wie z. B. Acrylsäureester, Vinylacetate und ähnliche, welche unerwünschten durch Basen katalysierte Hydrolysen in solch einem System mit hohem pH-Wert unterworfen sind.
  • Die FR-A-2 276 063 betrifft die Herstellung wasserunlöslicher vernetzter hydrophiler Gele durch Polymerisation entweder eines hydrophilen Polymers aus wasserlöslichen monomeren Monoolefinen oder eines hydrophoben Copolymers aus wasserlöslichen Monoolefinen mit 1-70% wasserunlöslichen monomeren Monoolefinen mit einem hydrophoben Polymer, welches zwei olefinische Endgruppen und ein Molekulargewicht von 400-8000 aufweist, wobei von der erstgenannten Komponente 30-90%, von der zweitgenannten 10-70% eingesetzt werden.
  • Die Polymerisationstemperaturen liegen dabei vorzugsweise zwischen 40 und 150° C. Als wasserlösliche Monomere werden bevorzugt Acryl- oder Methacrylsäure oder deren Ester, Amide, Imide oder Monoolefinsalze, als hydrophobe Polymere solche mit Polytetramethylenoxidketten und zwei endständigen olefinischen Gruppen verwendet. Durch Zusatz von Katalysatoren lassen sich bei 90° C unter schnellem Rühren der Mischung auch Perlen erhalten, die jedoch sehr klein und daher technisch uninteressant sind.
  • Die Gele können als Träger für pharmazeutisch wirksame Stoffe verwendet werden.
  • Man fand bei der Verwendung von anorganischen Stoffen oder von wasserlöslichen Polymeren als Suspensionsmittel heraus, dass die Hydrogelgranulate von sehr unregelmässiger Form und einer sehr porösen Oberfläche waren. Die auf diese Weise geformten Perlen sind zudem ebenfalls von einer so kleinen Grösse (beispielsweise 0,3mm Durchmesser), dass sie keinen praktischen Wert für die langsame Freigabe von aktiven Mitteln aufweisen.
  • Die bevorzugten Perlengrössen für eine kontrollierbare Abgabe oraler Medikamente liegen zwischen 0,6mm und 1,5mm.
  • Es zeigte sich nun, dass man mit Hilfe eines Herstellungsverfahrens, das weitgehend demjenigen der FR-A 2 276 063 entspricht, jedoch unter Verwendung ganz bestimmter Suspensionsmittel überraschenderweise brauchbare Perlen erhält. Nach dem erfindungsgemässen Verfahren werden einheitliche, kugelförmige Hydrogelperlen bis zu einer Grösse von 5mm Durchmesser erhalten. Diese sind für eine Anzahl pharmazeutischer und industrieller Verwendungen geeignet.
  • Die vorliegende Erfindung betrifft daher ein Verfahren zur Herstellung von im wesentlichen einheitlichen, kugelförmigen Perlen bis zur Grösse von 5mm Durchmesser aus einem vernetzten, wasserunlöslichen Hydrogel durch Polymerisation in Suspension von (A) 95-30 Gew.-%, bezogen auf das Hydrogel, mindestens eines wasserlöslichen monoolefinischen Monomeren, das bis zu 70 Gew.-%, bezogen auf die Totalmenge der Monomeren, durch mindestens eine wasserunlösliche monoolefinische monomere Verbindung ersetzt sein kann, wobei das Hydrogel höchstens 60 Gew.-% der wasserunlöslichen monomeren Verbindung enthält und wobei mindestens 5 Gew.-% des Gesamtmonomers aus einem hydroxysubstituierten hydrophilen Vinylmonomeren besteht, mit (B) 5 bis 70 Gewichts-%, bezogen auf das Hydrogel, einer endständig diolefinischen, vernetzenden Verbindung mit einem Molekulargewicht von 400-8000 in Gegenwart eines Polymerisationsanregers in einer konzentrierten, wässrigen anorganischen Salzlösung und eines Suspensionsmittels und durch Behandlung des Hydrogels mit einer Säure. Das Verfahren ist dadurch gekennzeichnet, dass man als Suspensionsmittel 0,01-5 Gewichts-%, basierend auf das Hydrogel, mindestens eines wasserunlöslichen, gallertartigen, wasserbindenden, anorganischen Metallhydroxides oder Metallhydroxysalzes in Abwesenheit von überschüssigem Alkali und freien Hydroxylionen verwendet.
  • Wie schon angedeutet sind die Ausgangsstoffe aus der FR-A-2 276 063 bekannt.
  • Als wasserlösliche, durch Hydroxy substituierte Monomere sind folgende geeignet: wasserlösliche Derivate der Acryl- und/oder Methacrylsäure, wie z. B. Hydroxyalkylester, worin der Alkylrest 2-4 C-Atome enthält, beispielsweise 2-Hydroxyäthyl, 3-Hydroxypropyl-, 2-Hydroxypropyl- oder 2,3-Dihydroxypropylester, ferner äthoxylierte und polyäthoxylierte Hydroxyalkylester der Acryl-oder Methacrylsäure wie Ester von Alkoholen der Formel
    Figure imgb0001
    worin m 2 bis 5 und n 1 bis 20 bedeuten, oder Ester von analogen Alkoholen, in denen ein Teil der Äthylenoxid-Einheit durch Propylenoxid-Einheiten ersetzt ist. Ferner sind geeignete Ester beispielsweise die 3-(Dimethylamino)-2-hydroxypro- pylester.
  • Eine andere Klasse von geeigneten Derivaten solcher Säuren sind ihre wasserlöslichen Amide oder Imide, die durch niedrige Hydroxyalkylgruppen substituiert sind, worin ein niederer Alkylrest 2-4 Kohlenstoffatome enthält, z.B. N-(Hydroxymethyl)-acrylamid und -methacrylamid, N-(3-Hydroxypropyl)-acrylamid, N-(2-Hydroxyäthyl)-methacrylamid und N-[1,1-Dimethyl-2-(hydroxymethyl)-3-oxabutyl)-acrylamid; wasserlösliche Hydrazinderivate, wie z. B. Trialkylaminomethacrylimide, z. B. Trimethylaminomethacrylimid und Dimethyl-(2-hydroxypropyl)-aminomethacryl- amid und die entsprechenden Derivate der Acrylsäure.
  • Ferner sind auch wasserlösliche Monomere, die zur Polymerisation ein Comonomeres benötigen, geeignet, wie z.B. Hydroxyalkylester der Malein-und Fumarsäure, worin der Alkylrest 2-4 Kohlenstoffatome aufweist, wie z. B. Di-(2-hydroxyäthyl)-maleat und alkoxylierte Hydroxyalkylmaleate, Hydroxyalkylmonomaleate, wie z. B. 2-Hydroxyäthylmonomaleat und alkoxyliertes Hydroxyalkyl-monomaleat mit Vinyläthern, Vinylestern, Styrol oder allgemein Monomere, die mit Maleaten oder Fumaraten leicht copolymerisieren; Hydroxyalkyl-vinyläther, wie z. B. 2-Hydroxyäthylvinyläther, 4-Hydroxybutylvinyl-äther mit Maleaten, Fumaraten oder allgemein alle Monomere, die leicht copolymerisieren mit Vinyiäthern.
  • Besonders wertvoll als wasserlösliche Monomere sind Hydroxyalkylacrylate und -methacrylate, wie z. B. _2-Hydroxyäthylacrylat, 2-Hydroxyäthyl-methacrylat, 2-Hydroxypropyl-acrylat, 2-Hydroxypropyl-methacrylat, 2,3-Dihydroxypropylmethacrylat. Am bevorzugtesten als Monomeres kann das 2-Hydroxyäthyl-methacrylat bezeichnet werden.
  • Wasserlösliche Comonomere, die keine Hydroxygruppen enthalten, sind Acryl- und Methacrylsäuren und Alkyläther von polyäthoxylierten Hydroxyalkytestem, wie Ester von Alkoholen der Formel
    Figure imgb0002
    worin m 2 bis 5 und n 4 bis 20 bedeutet.
  • Geeignet sind Dialkylaminoalkylester und -amide, wie z.B. 2-(Di-methylamino)-äthylacrylat und -methacrylate, als auch die entsprechenden Amide.
  • Ferner kommen die durch niedrige Oxaalkyl-oder niedrige Dialkylamino-alkylgruppen substituierten Amide, wie z.B. das N-(1,1-Dimethyl-3-oxa- butyl)-acrylamid; wasserlösliche Hydrazinderivate, wie z.B. Trialkylaminomethacrylimide, z.B. Trimethylamino-methacrylimide und die entsprechenden Derivate der Acrylsäure; monoolefinische Sulfonsäuren und ihre Salze, wie Natrium- äthylen-sulfonat, Natriumstyrolsulfonat und 2-Acrylamido-2-methylpropan-sulfonsäure; N-[2-Di- methylamino)-äthyll-acrylamin und -methacrylamid in Frage.
  • Eine weitere Klasse von wasserlöslichen Monomeren sind mono-olefinische Derivate von monocyclischen, heterocyclischen, stickstoffhaltigen Monomeren, wie z.B. N-Vinylpyrrol, N-Vinyl-succinimid, N-Vinyl-2-pyrrolidon, 1-Vinyl-imidazol, 1-Vinyl-indol, 2-Vinyl-imidazol, 4(5)-Vinylimidazol, 2-Vinyl-1-methylimidazol, 5-Vinyl-pyrazolin, 3-Methyl-5-isopropenyl-pyrazol, 5-Methylenhydantoin, 3-Vinyl-2-oxazolidon, 2- und 4-Vinylpyridin, 5-Vinyl-2-methylpyridin, 2-Vinyl-pyridin-1-oxid, 3-Isopropenylpyridin, 2- und 4-Vinyl-piperidin, 2- und 4-Vinyl-chinolin, 2,4-Dimethyl-6-vinyl-s-triazin, 4-Acryl-morpholin. Besonders hervorzuheben ist das N-Vinyl-2-pyrrolidon.
  • Bevorzugt unter diesen genannten Monomeren, die in einem Umfang von 0-15 Gewichts-% der totalen Monomeren benutzt werden können, sind: die Acrylsäure, Methacrylsäure, 2-Vinyl-pyridin, 4-Vinyl-pyridin, 2-(Dimethylamino)-äthyl-methacrylat, N-[2-Dimethylamino)-äthyl]-methacrylat, N-[2-(Dimethylamino)-äthyl]-methacrylamid und Natriumstyrol-sulfonat.
  • Besonders wertvoll als wasserlösliche Monomere sind 2-Hydroxyäthylacrylat, 2-Hydroxyäthyl- methacrylat, 2-Hydroxypropylacrylat, 2-Hydroxypropylmethacrylat, 3-Hydroxypropylacrylat, 3-Hydroxypropylmethacrylat, 2,3-Dihydroxypropylacrylat, 2,3-Dihydroxypropylmethacrylat, N-Vinyl-2-pyrrolidon und N-Methylolacrylamid.
  • Geeignete hydrophobe Comonomere, welche in das Reaktionsgemisch eingebaut werden können, sind z. B. wasserunlösliche olefinische Monomere, wie Alkylacrylate oder -methacrylate, in welchen Alkyl 1 bis 18 C-Atome aufweist, z. B. Methyl- und Äthylmethacrylat oder -acrylat; von Alkancarbonsäuren mit 1-5 C-Atomen abgeleitete Vinylester, z. B. Vinylazetat, Vinylpropionat oder Vinylbenzoat; Acrylnitril, Styrol und Vinylalkyläther, in denen die Alkylgruppe der Ätherkette 1-5 C-Atome aufweist, z. B. (Methyl-, Äthyl-, Propyl-, Butyl- oder Amyl)-vinyläther.
  • Bevorzugte Verbindungen sind Alkylacrylate oder -methacrylate, in denen der Alkylrest 1 bis 18 C-Atome aufweist. Andere bevorzugte Verbindungen sind die Vinylalkyläther, in denen der Alkylrest 1 bis 5 C-Atome aufweist.
  • In denen endständig diolefinischen, vernetzenden makromolekularen Verbindungen (B) ist der olefinische Teil vorzugsweise ein Acylrest einer niederen a, β-mono-ungesättigten aliphatischen Monocarbon- oder Dicarbonsäure oder Vinyloxyreste. Diese Vinylteile können durch eine makromolekulare Kette mit wiederholten Ester-, Amid-oder Urethangruppen, insbesondere aber Äthergruppen vernetzt sein. Das Molekulargewicht der Kette kann vorzugsweise zwischen 600 und 5000, und ganz besonders zwischen 1500 und 3000 variieren. Demgemäss entspricht der Bestandteil (B) den Formeln
    Figure imgb0003
    oder
    Figure imgb0004
    worin a 1 oder 2 bedeutet und R, eine Polykondensatkette bedeutet, die Kohlenwasserstoffreste enthält, die durch Äther-, Ester-, Amid-, Urethan- oder Harnstoffreste gebunden sind, R2 ist Wasserstoff, Methyl oder -CH2COOR4, worin R4 Wasserstoff oder eine Alkylgruppe mit 1 bis zu 10 C-Atomen bedeutet, R3 ist Wasserstoff oder -COOR4 mit der Bedingung, dass mindestens einer der Reste R2 oder R3 Wasserstoff ist, X ist Oxo, -COO- oder -CONR5-, worin R5 Wasserstoff oder Alkyl mit bis zu 5 C-Atomen ist und Y eine direkte Bindung oder den Rest -R6-Z1-CO-NH-R7-NH-CO-Z2- bedeutet, worin R6 an X gebunden ist und einen verzweigten oder geradkettigen Alkylenrest mit bis zu 7 C-Atomen bedeutet, Z, ist Oxo oder -NRS, Z2 ist ZI oder ein Schwefelatom und R7 ist der zweiwertige Rest eines aliphatischen, alicyclischen oder aromatischen Diisocyanats mit der Bedingung, dass wenn X Oxo bedeutet, Y keine direkte Bindung ist und R2 und R3 Wasserstoff bedeuten. Das Symbol a bedeutet vorzugsweise 1.
  • In den Verbindungen der Formeln B, und B2 bedeutet RI insbesondere eine Polypropylenoxid-oder eine Polytetramethylenoxidkette, oder eine Kette, die aus einem Polyäthylenoxid-polypropylenoxid Copolymerenblock besteht, aber es kann auch eine von Dicarbonsäuren, Diolen, Diaminen oder Diisocyanaten abgeleitete Kette bedeuten, die durch bekannte Polykondensationsverfahren erhalten werden. R1 kann auch eine ein Polysiloxan enthaltende Kette bedeuten. Die endständigen Reste der Verbindung der Formel B, entsprechen den Definitionen von R2 und R3, und, wenn X -COO- oder -CONRs- bedeutet, leitet sich der Acylrest ab von der Acryl- oder Methacrylsäure oder den Monoalkylestern von der Malein-, Fumar- oder Itaconsäure, oder von Monoalkylestern dieser Säuren mit gerad- oder verzweigtkettigen Alkanolen mit 1 bis 10 C-Atomen, wie z.B. Methanol, Äthanol, Propanol, Butanol, Diisobutylalkohol oder Decanol, oder, wenn X Sauerstoff bedeutet, mit dem Vinyloxyrest von Vinyläthern. Verbindungen der Formel B1, worin Y eine direkte Bindung ist, sind Diester von makromolekularen Diolen, worin zwei Hydroxygruppen an die Polykondensatkette R, in gegenüberliegend endständigen oder nahezu endständigen Stellungen gebunden sind, mit a, β-ungesättigten Säuren. Solche Diester können aus den genannten makromolekularen Diolen durch bekannte Acylierungsverfahren hergestellt werden, indem reaktionsfähige funktionelle Derivate von geeigneten Säuren, z.B. Acryl- oder Methacrylsäurechlorid, oder von Monoalkylester von Malein-, Fumar- oder Itaconsäure verwendet werden. Verbindungen der Formel B, mit der Amidgruppe X sind Diamide, welche aus makromolekularen Diaminen durch bekannte Acylierungsverfahren erhalten werden, z.B. durch Verwendung der oben genannten Säurechloride oder -anhydride. Die makromolekularen Diamine werden z. B. hergestellt aus den entsprechenden makromolekularen Diolen mit der doppelt molaren Menge an Alkylenimin, wie z.B. Propylenimin. Die makromolekularen Bis-maleinamidsäuren werden erhalten gemäss der beschriebenen Reaktion durch Verwendung von Maleinsäureanhydrid als Acylierungsmittel für makromolekulare Diamine unter Erwärmen oder Umsetzung mit Entwässerungsmitteln zur Herstellung von makromolekularen Bis-maleinimidoverbindungen der Formel B2. In diesen Verbindungen kann R, z. B. eine der makromolekularen Polykondensatketten sein, die als Bestandteile der Verbindungen gemäss Formel B, genannt werden.
  • Nach der Definition von Formel B1 kann Y ferner einen zweiwertigen Rest -R6-Z1-CONH-R7-NH-CO-Z1 bedeuten. Darin ist R6 z. B. Methylen, Propylen, Trimethylen, Tetramethylen, Pentamethylen, Neopentylen (2,2-Dimethyltrimethylen), 2-Hydroxytrimethylen, 1,1-Dimethyl-2-(1-oxoäthyl)-trimethylen oder 1-(Dimethylenaminomethyl)-äthylen und insbesondere Äthylen. Der zweiwertige Rest R7 leitet sich von einem organischen Diisocyanat ab und ist ein aliphatischer Rest wie Alkylen, z.B. Äthylen, Tetramethylen, Hexamethylen, 2,2,4-Trimethylhexamethylen, 2,4,4-Trimethylhexamethylen, Fumaroyldiäthylen oder 1-Carboxypentamethylen; ein cycloaliphatischer Rest, z.B. 1,4-Cyclohexylen oder 2-Methyl-1,4-cyclohexylen; ein aromatischer Rest, wie m-Phenylen, p-Phenylen, Z-Metnyl-m-pnenylen, T,z-, T,3-, 1,b-, T,6-, T;/-, 1,8-, 2,3- und 2,7-Naphthylen, 4-Chlor-1,2- und 4-Chlor-1,8-naphthylen, 1-Methyl-2,4-, 1-Methyl-2,7-, 4-Methyl-1,2-, 6-Methl-1,3- und 7-Methyl-1,3-naphthylen, 1,8-Dinitro-2,7-naphthylen, 4,4'-Diphenylen, 3,3'-Dichlor-4,4'-diphenylen, 3,3'-Dime- thoxy-,4,'-diphenylen, 2,2'-Dimethyl- und 3,3'-Dimethyl-4,4'-diphenylen, 2,2'-Dichlor-5,5'-dime- thoxy-4,4'-diphenylen, Methylen-di-p-phenylen, Methylen-bis-(3-chlorphenylen), Äthylendi-p-phenylen oder Hydroxydi-phenylen.
  • Wenn im Formelteil B, das Symbol Y keine direkte Bindung ist, muss R6 immer mit X verbunden sein.
  • Es sind deshalb Verbindungen der Formel B1, in denen Y den genannten zweiwertigen Rest bedeutet, Bisvinyläther, wenn X Sauerstoff bedeutet, oder Bis-acrylate, Bis-methacrylate, Bis-maleate, Bis-fumarate und Bis-itaconate, wenn X -COO-oder -CONR5 ist.
  • R, wird insbesondere von Diolen und Diaminen mit einem Molekulargewicht von etwa 200-8000 abgeleitet. Geeignete solche Diole sind Polyäthylenoxiddiole eines Molekulargewichtes 500-3000, Polypropylenoxiddiole von einem Molekulargewicht von 500-3000, Poly-n-butylen-oxiddiole von einem Molekulargewicht von 500-3000, Poly- . (blockäthylen-oxid-co-propylenoxid)diole von einem Molekulargewicht von 500-3000, worin die Prozentangabe von Äthylenoxideinheiten zwischen 10 und 90% variieren kann, oder Polyesterdiole von einem Molekulargewicht von 500-3000, welche nach bekannten Methoden der Polykondensation aus Diolen und Dicarbonsäure, wie z. B. aus Propylenglykol, Äthylenglykol, Butandiol oder 3-Thia-pentandiol und Adipinsäure, Terephthalsäure, Phthalsäure oder Maleinsäure erhalten werden, welche auch Diole der oben genannten Polyäthertypen enthalten können.
  • In gleicher Weise geeignet sind Diamine mit einem Molekulargewicht von 500-4000, insbesondere die Bis-amino-propyläther der oben genannten Diole, wie z.B. die Bis-3-aminopropyl- äther des Polyäthylenoxids und Polypropylenoxiddiols. _
  • Eine bevorzugte Ausführungsform des vorliegenden Verfahrens besteht in der Verbindung (B), in welchem R, eine Polyäthylenoxid-, Polypropylenoxid- oder Polytetramethylenoxidkette mit einem Molekulargewicht von 600-4000 oder eine Kette bedeutet, die man durch Kondensation einer aliphatischen, alicyclischen oder aromatischen Dicarbonsäure oder eines entsprechenden Diisocyanates mit einem aliphatischen Diol oder Diamin erhält.
  • Die bevorzugten Verbindungen (B) bestehen aus Polyalkylenätherglykolen, insbesondere Polytetramethylenoxidglykolen von einem Molekulargewicht von etwa 600 bis ungefähr 4000, insbesondere 1500-3000, zuerst abgesättigt mit 2,4-Toluol-diisocyanat oder isophoron-diisocyanat und mit 2 Mol eines Hydroxyalkylacrylates oder -Methacrylates endabgesättigt, worin «Alkyl» einen Rest mit 2-4 C-Atomen bedeutet.
  • Andere bevorzugte makromolekulare Verbindungen (B1) sind solche, in denen R1 von einem Polysiloxan, welches Diole, Triole oder Dithiole enthält, abgeleitet wird. Diese mit Di- oder Polyfunktionen versehenen Polysiloxane können 2 verschiedene Strukturen aufweisen:
    Figure imgb0005
    oder
    Figure imgb0006
    worin R8 eine gerade oder verzweigte Alkylenkette mit 1-7 C-Atomen oder eine -(CH2CHO)n-Gruppe, R9 worin n 1 bis 20 ist, R9 Wasserstoff oder Methyl ist, bedeutet, und X eine Zahl von 3 bis 120 und Y 2 oder 3 bedeuten.
  • Diese Polysiloxanverbindungen werden bevorzugt mit Isophorondiisocyanat oder 2,4-Toluoldiisocyanat endabgesättigt und mit einem Überschuss 2-Hydroxyäthylmethacrylat, 2-Hydroxyäthylacrylat oder 2-Hydroxypropylacrylat umgesetzt.
  • Verbindungen der Formel Bl, in der Y einen zweiwertigen Rest -R8Z1CONHR7-NH-CO-Z2-bedeutet, werden in einer 2-stufigen Reaktion erhalten, wobei man zuerst makromolekulare Diole oder Diamine, z.B. Verbindungen, die 2 Hydroxy-oder Aminogruppen an der Polykondensatkette haben, R, in gegenüberliegender End- oder fast in Endstellung, mit mindestens der zweifachen molaren Menge an aliphatischen, cycloaliphatischen oder aromatischen Diisocyanaten, die zwei Isocyanatgruppen enthalten, die an den Rest R7 gebunden sind, umsetzt, und zweitens die so erhaltenen makromolekularen Diisocyanate mit einer Verbindung der Formel
    Figure imgb0007
    worin R2, R3, X, Re und Z1 die oben angegebenen Bedeutungen für B1 haben, reagieren lässt.
  • Wenn X Sauerstoff bedeutet, dann bedeutet (C) einen Vinytäther, der ein aktives Wasserstoffatom enthält, wie z. B. einen Hydroxyalkylvinyläther oder einen Aminoalkylvinyläther. Wenn X die -COO- oder -CONRs-Gruppe bedeutet, dann ist (C) ein Acrylat, Methacrylat, Maleat, Fumarat, ltaconat oder ein entsprechendes Amid, welche ein aktives Wasserstoffatom in der Alkylgruppe enthalten.
  • Vorzugsweise enthält dàs Gemisch der Monomeren (A) und makromolekularen Verbindungen (B) 20-100% eines hydroxysubstituierten Vinylmonomeren und 0-40% eines wasserunlöslichen Vinylmonomeren, insbesondere 40-100% eines hydroxysubstituierten Vinylmonomeren und kein wasserunlösliches Monomer.
  • Die freie Radikal-Polymerisation wird mittels eines Katalysators, der freie Peroxy- oder Alkylradikale in genügend hoher Konzentration erzeugen kann, eingeleitet, um die Polymerisation des angewendeten Vinylmonomeren bei der Symthesetemperatur herbeizuführen. Diese Katalysatoren sind vorzugsweise Peroxid- oder Azokatalysatoren, die eine Halbwertzeit von mindestens 20 Minuten bei der Polymerisationstemperatur aufweisen. Beispiele von geeigneten Katalysatoren sind Diisopropylperoxidicarbonate, tert.-Butylpe- roktoat, Benzoylperoxid, Decanoylperoxid, Lauroylperoxid, Bernsteinsäureperoxid, Methyl-äthylenketonperoxid, tert.-Butylperoxyazetat, Propionylperoxid, 2,4-Dichlorbenzylperoxid, tert.-Butyl- peroxypivalat, Pelargonylperoxid, 2,5-Dimethyl-2,5-bis(2-äthylhexanoyl-peroxy)-hexan, p-Chlorbenzoylperoxid, tert.-Butylperoxybutyrat, tert.-Bu- tylperoxymaleinsäure, tert.-Butyl-peroxyisopro- pylcarbonat, bis-(1-Hydroxy-cyclohexyl)-peroxid; die Azoverbindungen sind: 2,2'-Azo-bis-isobutyronitril, 2,2'-Azo-bis-(2,4-dimethylvaleronitril), 1,1'-Azo-bis-(cyclohexancarbonitril), 2,2'-Azo-bis-(2,4-Dimethyl-4-methoxyvaleronitril).
  • Die Menge des Katalysators kann zwischen 0,01-1 Gewichts-% des Monomeren (A) und der makromolekularen Verbindung (B). Vorzugsweise beträgt sie zwischen 0,03-0,3 Gewichts-%.
  • Das verwendete Suspensionsmittel wird am Ende der Suspensionspolymerisation durch Zugabe einer Säure, beispielsweise von Salzsäure, aufgelöst. Die Hydrogelperlen werden durch Filtration isoliert.
  • Die obenerwähnten Monomeren oder Polymeren Verbindungen, Katalysatoren sowie ihre Mengenverhältnisse sind alle in der FR-A 2 276 063 beschrieben.
  • Das erfindungsgemässe Verfahren wird normalerweise in einem Reaktionsgefäss, welches mit Rückflusskühler, Stickstoffdurchfluss, Wärmeregulator und äusserst wichtig mit einem Rührer besonderer Gestaltung, der eine gute Vermischung bei niedriger Geschwindigkeit zulässt, versehen ist, durchgeführt. Vorzugsweise werden im Labor die ankerähnlichen Glasrührer, die mit einem Rührmotor verbunden sind, dessen Geschwindigkeit leicht regulierbar ist, verwendet. Für eine typische Synthese wird die wässrige Lösung des Salzes zuerst in das Reaktionsgefäss mit einem löslichen Magnesium- oder Aluminiumsalz vorgelegt. Die Lösung wird dann auf die Polymerisationstemperatur erhitzt und das gallertartige Metallhydroxid wird dann durch Zugabe einer berechneten Menge einer wässrigen Base ausgefällt. Nach diesem Schritt wird die Rührgeschwindigkeit, wenn notwendig, gedrosselt, um Perlen gegebener Grösse zu erhalten. Niedrige Geschwindigkeiten führen zu grösseren Perlen und höhere Geschwindigkeiten zu kleineren Perlen. Das Gemisch (A) und (B), welches den Katalysator bereits gelöst enthält, wird nun zugefügt und die Umsetzung unter Stickstoff bei konstanter Temperatur und Rührgeschwindigkeiten während mindestens 3 Stunden gehalten. Danach wird während 1 Stunde bei 100° C unter Rückfluss erhitzt. Das Reaktionsgemisch wird dann auf Raumtemperatur abgekühlt und genügend organische Säure, beispielsweise Essigsäure, oder Mineralsäure wird hinzugefügt, um das Metallhydroxid zu lösen. Die Perlen werden nun abfiltriert, vom oberflächlichen Salzwasser abgewaschen, dann im Wasser oder Alkoholen eingeweicht, um nicht umgesetzte Monomere zu extrahieren, und getrocknet.
  • Als wässrige Salzlösung kann jedes wasserlösliche anorganische Salz einer Konzentration von 5-25 Gewichts-% verwendet werden; in der Praxis verwendet man jedoch ein billiges, käufliches Chlorid oder Sulfat eines Alkali- oder Erdalkalimetalls, beispielsweise Natriumchlorid, Kaliumsulfat, Magnesiumchlorid und Magnesiumsulfat. Diese können einzeln oder auch als Gemisch in einer Konzentration, die an die Löslichkeitsgrenze in Wasser herankommt, verwendet werden. Als allgemeine Regel gilt, je höher die Salzkonzentration, umso niedriger ist die Menge von wasserlöslichen Monomeren, welche in der wässrigen Phase gelöst ist, und gleichzeitig umso einheitlicher ist die kugelförmige Hydrogelperle. Ganz besonders bevorzugt wird Natriumchlorid in einer Konzentration von 20 Gewichts-% in Wasser verwendet.
  • Die als Suspensionsmittel verwendeten Metallhydroxide des vorliegenden Verfahrens können hergestellt werden, indem man, vorzugsweise in situ, zu einer wässrigen Lösung eines wasserlöslichen Metallsalzes (Chlorid, Nitrat, Sulfat etc.) Alkali, gewöhnlich 1-n Natronlauge, in der Menge hinzufügt, die jedoch die stöchiometrische Menge nicht übersteigt, die für die Bildung des Metallhydroxids oder eines Metallhydroxidsalzes, wo nicht alle Wertigkeiten des Metallions mit Hydroxylgruppen abgesättigt sind, notwendig ist.
  • Vorzugsweise sind die Metallhydroxide von Magnesium, Aluminium, Zirkonium, Eisen, Nickel, Chrom, Zink, Blei, Calcium, Kobalt, Kupfer, Zinn, Gallium, Mangan, Strontium, Barium, Uran, Titan, Lanthan, Thorium und Cer geeignet, um als Suspensionsmittel für das vorliegende Verfahren verwendet zu werden.
  • Die Hydroxide gewisser Übergangsmetalle, wie - z. B. Mangan, Eisen und Chrom sind ausgezeichnete Suspensionsmittel, sind jedoch nicht unbedingt die Hydroxide der Wahl, da sie mit der freien Radikalpolymerisation durch Elektronentransferreaktionen in Konflikt geraten könnten. Auch die Eigenfarbe behindert die Verwendung, da diese in den Hydrogelperlen unerwünscht ist.
  • Als bevorzugtes Suspensionsmittel gilt Magnesium- oder Aluminiumhydroxid oder Magnesiumhydroxysalz oder Aluminiumhydroxysalz, wie die basischen Chloride.
  • Der Quellungsgrad (DS) in Wasser wird bestimmt, indem man eine bestimmte Gewichtsmenge von Perlen bis zum Eintreten eines Gleichgewichtes quellen lässt; man wiegt die gequollenen und die getrockneten Perlen.
    Figure imgb0008
  • Die Durchschnittsgrösse der Teilchen (M.P.S.) wird als die Zahl in Millimeter angegeben, bei der die Verteilungskurve der Teilchengrösse, erhalten durch Sieben der Gesamtmenge von Kügelchen durch eine Reihe von Sieben mit Maschengrössen von 8-50 mesh, die 50%-Linie durchschneidet.
  • In den folgenden Beispielen bedeuten die Temperaturgrade Celsiusgrade und die Prozentangaben Gewichtsprozente.
  • Beispiel 1:
  • Ein glattwandiger 1000m1 Kunststoffkolben wird mit einem Rückflusskühler, Stickstoffeinleitröhrchen, Thermometer, welches mit einem Wärmeregler verbunden ist, einem Trenngitter und einem ankerähnlichen Rührer, der durch einen regulierbaren Motor angetrieben wird, versehen. Ein langsamer Stickstoffstrom wird während der ganzen Reaktion durchgeleitet.
  • In den Kolben werden 360g einer 20% wässrigen Natriumchloridlösung und 23,0g festes Magnesiumchlorid-Hexahydrat vorgelegt. Die Lösung wird langsam bei schnellem Rühren auf 80° erhitzt. Zu dieser Lösung werden tropfenweise 123ml (0,123Mol) einer 1-n Natronlauge hinzugegeben, wobei ein feiner, gallertartiger Niederschlag von Magnesiumhydroxid im Reaktionskolben anfällt.
  • Nachdem die Gesamtmenge an Natronlauge, hinzugefügt worden ist, wird die Rührgeschwindigkeit auf 150 Umdrehungen/Min reduziert und ein Gemisch aus Monomer (A) und der makromolekularen Verbindung (B), worin 0,2g tert.-Butyl- peroktoat als Initialkatalysator für die Herstellung freier Radikale gelöst wird, hinzugefügt. Das Gemisch aus (A) und (B) wird hergestellt, indem man 60g (etwa 0,024Mol) eines Polytetramethylenoxid-glykols (Durchschnittsmolekulargewicht 2000) endständig mit Isophorondiisocyanat versehen, in 140g (1,08Mol) 2-Hydroxyäthylmethacrylat (HEMA) löst und 72 Stunden lang bei Raumtemperatur zur Reaktion bringt.
  • Nach Ablauf dieser Reaktionszeit wird das Verschwinden der endständigen Isocyanatgruppen durch das Verschwinden der charakteristischen Infrarot-Spektral-Banden bei 2270cm' (charakteristisch für die Isocyanatgruppe) nachgewiesen.
  • Das Reaktionsgemisch, das einen pH-Wert von 7,8 aufweist, wird unter Stickstoff bei 150 Umdrehungen/Min 3 Stunden lang bei 80° gerührt. Anschliessend wird die Temperatur für 1 Stunde auf 100° erhöht, auf Raumtemperatur abgekühlt. Anschliessend werden 10ml konz. Salzsäure hinzugegeben, um das Magnesiumhydroxid als Suspensionsmittel zu lösen. Das Reaktionsgemisch wird durch ein sehr feinwandiges Tuch filtriert, und die dann isolierten Perlen werden mit 2000mi Wasser gewaschen und über Nacht in 500ml Äthanol eingetaucht, um verbliebene Monomere zu entfernen. Die erhaltenen Perlen werden durch einen aus Polyestertuch hergestellten Sack filtriert. Der zugenähte Sack wird mit dem Inhalt in einem Wäschetrockner getrocknet. Man erhält einheitliche, kugelförmige Perlen in einer Ausbeute von 193g (96,5% d.Th.) mit einem Durchschnittsdurchmesser von 1,02 ± 0,3 mm, die einen Quellungsgrad in Wasser von 37% (DSH2O) aufweisen.
  • Falls man das Mengenverhältnis (B) zu (A) vergrössert, nimmt auch die Durchschnittsgrösse der Perlen zu und der Quellungsgrad in Wasser ab.
  • Beispiel 2:
  • Man geht in gleicher Weise vor wie in Beispiel 1 beschrieben, verwendet jedoch als (A) 47,5g HEMA und 5g N-Vinylpyrrolidon (NVP) und als (B) 47,5g des in Beispiel 1 verwendeten Polytetramethylenoxid-glykols. Man erhält Hydrogelperlen mit einer Durchschnittsgrösse von 1,1 mm und einem Quellungsgrad DS in H20 von 21 %.
  • Ein Ansteigen der NVP-Menge im Hydrogel bewirkt ein Ansteigen des Quellungsgrades.
  • Beispiele 3-8:
  • Geht man vor wie im Beispiel 1 beschrieben, jedoch unter Verwendung verschieden substituierter makromolekularer Verbindungen (B), die von Polytetramethylenoxid-glykolen, die endständig mit lsophoron-diisocyanat (IPDI) abgesättigt sind, abgeleitet werden, so erhält man Hydrogele Perlen folgender Eigenschaften:
    Figure imgb0009
  • Es wird in gleicher Weise vorgegangen, wie im Beispiel 1 beschrieben, jedoch werden 3,15g (0,005Mol) Aluminiumsulfat-hexadecahydrat anstelle des Magnesiumchlorid-hexahydrates und 31 ml (0,031 Mol) 1-n Natronlauge für die Herstellung von Aluminiumhydroxid als Suspensionsmittel verwendet.
  • Das Gemisch an Monomeren (A) und makromolekularer Verbindung (B) wird hergestellt, indem man 96g Polytetramethylenoxidglykol (Durchschnittsmolekulargewicht ca. 2000), welches endständig mit Isophorondiisocyanat abgesättigt ist, in 64g 2-Hydroxyäthylmethacrylat und 40g Acrylsäure löst und neutralisiert, bevor die Polymerisation beginnt.
  • Man erhält einheitliche kugelförmige Perlen, die einen Durchschnittsdurchmesser von 1,02mm ± 0,2mm in einer Ausbeute von 180g (90% d.Th.) aufweisen. Der Quellungsgrad ist vom pH abhängig, wobei man bei einem pH 3 einen Quellungsgrad von 65,4% und einem pH 8 einen solchen von 75,8% erhält.
  • Beispiel 10:
  • Man geht in gleicher Weise wie im Beispiel 1 beschrieben vor, jedoch werden 0,2g Azobisisobutyronitril anstelle von tert.-Butylperoktoat als Initialkatalysator für die Peroxy-Katalyse verwendet.
  • Das verwendete Gemisch aus (A) und (B) wird hergestellt, indem man 84g Polytetramethylenoxidglykol (Durchschnittsmolekulargewicht 2000), endständig abgesättigt mit Isophorondiisocyanat, in 56g 2-Hydroxyäthylmethacrylat und 60g N-(2-Dimethylamino)-äthylmethacrylat löst.
  • Man erhält 193g einheitliche kugelförmige Perlen (Ausbeute 96,5% d.Th.) mit einem Durchschnittsdurchmesser von 1,02 ± 0,4mm. Der Quellungsgrad ist pH-abhängig, wobei man folgende Werte DSpH3 von 83,2% und DSpHs von 71,1 % erhält.
  • Beispiel 11:
  • Geht man vor, wie im Beispiel 1 beschrieben, wobei man jedoch anstelle der 140g 2-Hydroxyäthylmethacrylat ein Gemisch aus 40g 2-Hydroxyäthylmethacrylat und 100g 3-Hydroxypropylmethacrylat einsetzt, so erhält man einheitliche kugelförmige Perlen in einer Ausbeute von 193g (96,5% d.Th.) mit einem Durchschnittsdurchmesser von 1,02 ± 0,3mm und einem Quellungsgrad in Wasser von DSH20 von 37,9%.
  • Beispiel 12:
  • In analoger Weise wie im Beispiel 1 beschrieben werden Hydrogelperlen hergestellt, indem man als Mono-Gemisch aus (A) und (B) 24g Polytetramethylenoxid-glykol (MW 2000), welches endständig mit lsophorondiisocyanat abgesättigt ist, in 42g 2-Hydroxyäthylmethacrylat, 54g N-Vinyl-2-pyrrolidon und 80g Methoxypoly- äthylenglykolmethacrylat, welches im Durchschnitt 9 Äthoxyeinheiten enthält, löst. Man erhält einheitliche runde Perlen mit einem Durchschnittsdurchmesser von 0,72mm und einem Quellungsgrad (DSHZo) von 27,2%.
  • Beispiel 13:
  • In analoger Weise wie im Beispiel 1 beschrieben, werden Hydrogelperlen hergestellt, indem man 33,3g einer 60%-igen wässrigen Lösung von N-Methylolacrylamid mit 171 eines Gemisches aus 40% PolytetramethylenC.xidglykol (MW 2000), endständig abgesättigt mit 2 Molen Isophorondiisocyanat, und 60% 2-Hydroxyäthyl- methacrylat und erhält 180g (85% d.Th.) einheitliche runde Perlen mit einem Durchmesser von 1,10mm und einem Quellungsgrad (DSH2O) von 32%.
  • Beispiel 14:
  • Man geht vor, wie unter Beispiel 1 beschrieben, ersetzt jedoch das Gemisch (A) und (B) durch 80g eines Polysiloxanpolyols (Q 4-3557 von Dow Corning), endständig abgesättigt mit lsophorondiisocyanat, gelöst in 89,2g 2-Hydroxyäthylmethacrylat und 30,8g N-Vinylpyrrolidon.
  • Man erhält 192g (Ausbeute 96% d.Th.) einheitliche, kugelförmige Perlen mit einem Durchschnittsdurchmesser von 1,02 ± 0,4mm und einem Quellungsgrad DSH2O von 39,8%.
  • Beispiel 15:
  • In analoger Weise wie in Beispiel 1 beschrieben werden 115g Natriumchlorid in 310g Wasser gemeinsam mit 25g (0,247 Äquivalente) Magnesiumchloridhexahydrat gelöst.
  • Es bildet sich ein einer, gallertartiger Niederschlag von Magnesiumhydroxid bei Zugabe von 123m1 1-n Natronlauge unter starkem Rühren.
  • Das Gemisch (A) + (B), welches in diesem Beispiel verwendet wird, wird hergestellt, indem man 107,5g Polydimethylsiloxandiol der Formel
    Figure imgb0010
    erhältlich von Dow Corning als Q 4-3667, endständig abgesättigt mit Isophorondiisocyanat, in 107,5g 2-Hydroxyäthylmethacrylat löst.
  • Es werden einheitliche, kugelförmige Perlen (200g, 93% d.Th.) erhalten, die einen Durchschnittsdurchmesser von 1,66 ± 0,5mm und einen Quellungsgrad DSH2O von 28,1 % aufweisen.
  • Beispiele 16-20:
  • In analoger Weise wie im Beispiel 1 beschrieben werden unter Verwendung derselben Reaktionsteilnehmer mit Ausnahme der Metallhydroxide als Suspensionsmittel folgende Hydrogele hergestellt:
    Figure imgb0011
  • Beispiele 21-27:
  • Man geht vor wie im Beispiel 1 beschrieben und verwendet zur Herstellung von Hydrogelperlen aus einem Gemisch (A) + (B) eine Lösung von 24g Polytetramethylenoxidglykol des Molekulargewichts 2000, endständig mit Isophorondiisocyanat abgesättigt, in 42g 2-Hydroxyäthylmethacrylat, 54g N-Vinyl-2-pyrrolidon und 80g einer der unten aufgezählten wasserunlöslichen Comonomeren.
  • Figure imgb0012
  • Die Umsetzungen verlaufen alle glatt und ergeben Perlen mit einem Quellungsgrad und Durchmesser, die als Durchschnittswerte zu bezeichnen sind.
  • Beispiel 28:
  • Ein glattwindiger 1000m1 Kunststoffkolben wird mit einem Rückflusskühler, Stickstoffeinleitröhrchen, Thermometer, welches mit einem Temperaturregler versehen ist, einem Trenngitter und einem ankerähnlichen Rührer, der durch einen regulierbaren Motor angetrieben wird, versehen.
  • In den Kolben werden 360g einer 20%-igen wässrigen Natriumchloridlösung und 13,2g Aluminiumsulfat-Hexadecahydrat vorgelegt. Die Lösung wird langsam auf 80° erwärmt und 160ml 1-n Natronlauge werden unter starkem Rühren tropfenweise zugefügt. Ein langsamer Stickstofffluss wird im Kolben aufrechterhalten. Nach Zugabe der gesamten Natronlauge wird die Rührgeschwindigkeit auf 150 Umdrehungen/Min. heruntergesetzt und 196g eines vollständig umgesetzten Gemisches, bestehend aus 29,4% Poly-n-butylenoxid (MW 2000), welches mit 2 Molen lsophorondiisocyanat endständig abgesättigt ist, 68,6% 2-Hydroxyäthylmethacrylat, 2% Natriumstyrolsulfonat, dem 2g Wasser und 0,2g tert.-Bu- tylperoktoat als Initialkatalysator beigegeben wurden, hinzugefügt. Drei Stunden lang wird die Temperatur auf 80° gehalten, wobei man konstant mit 150 Umdrehungen/Min. unter einem Stickstoffmantel rührt. Nach 3 Stunden wird die Temperatur 1 Stunde lang auf 100° erhöht und anschliessend der Kolben auf Zimmertemperatur abgekühlt. Zu diesem Reaktionsgemisch werden 10ml konz. Salzsäure hinzugegeben, um das Aluminiumhydroxid zu lösen. Der Inhalt des Kolbens wird wie oben beschrieben durch ein feinmaschiges Käsereituch filtriert, mit 21 Wasser gewaschen und über Nacht in 500m1 Äthanol eingeweicht, um die restlichen Monomeren zu extrahieren. Wie in Beispiel 1 beschrieben, werden die Perlen filtriert und getrocknet. Man erhält 180g einheitliche, runde Perlen mit einem Durchschnittsdurchmesser von 0,85mm. Der Quellungsgrad ist pH-abhängig und beträgt bei pH 1 (DSpH 1) 30,7% und bei pH 8 51,1 %.

Claims (3)

1. Ein Verfahren zur Herstellung von im wesentlichen einheitlichen, kugelförmigen Perlen bis zu einer Grösse von 5mm Durchmesser aus einem vernetzten, wasserunlöslichen Hydrogel durch Polymerisation in Suspension von (A) 95-30 Gewichts-%, bezogen auf das Hydrogel, mindestens eines wasserlöslichen, monoolefinischen Monomeren, das bis zu 70 Gewichts-%, bezogen auf die Totalmenge des Monomeren, durch mindestens eine wasserunlösliche monomere Verbindung ersetzt sein kann, wobei das Hydrogel höchstens 60 Gewichts-% der wasserunlöslichen monomeren Verbindung enthält, und wobei mindestens 5 Gewichts-% des Gesamtmonomeren aus einem hydroxysubstituierten hydrophilen Vinylmonomeren besteht, mit (B) 5 bis 70 Gewichts-%, bezogen auf das Hydrogel, einer endständig diolefinischen, vernetzenden Verbindung mit einem Molekulargewicht von 400-8000 in Gegenwart eines Polymerisationskatalysators in einer konzentrierten, wässrigen anorganischen Salzlösung und eines Suspensionsmittels sowie durch Behandlung des Hydrogels mit einer Säure, dadurch gekennzeichnet, dass man als Suspensionsmittel 0,01-5 Gewichts-%, basierend auf das Hydrogel, mindestens eines wasserunlöslichen, gallertartigen, wasserbindenden, anorganischen Metallhydroxides oder Metallhydrosidsalzes in Abwesenheit von überschüssigem Alkali oder freien Hydroxylionen verwendet.
2. Verfahren nach Patentanspruch 1, dadurch gekennzeichnet, dass man als Suspensionsmittel ein wasserunlösliches, gallertartiges Metallhydroxid oder Metallhydroxidsalz des Magnesiums, Aluminiums, Zirkoniums, Eisens, Nickels, Chroms, Zinks, Bleis, Calciums, Cobalts, Kupfers, Zinks, Calliums, Mangans, Strontiums, Bariums, Urans, Titans, Lanthans, Thors oder Cers verwendet.
3. Verfahren nach Patentanspruch 1, dadurch gekennzeichnet, dass man als Suspensionsmittel Magnesiumhydroxid, Aluminiumhydroxid, Magnesiumhydroxysalz oder Aluminiumhydroxysalz verwendet.
EP78100375A 1977-07-20 1978-07-12 Verfahren zur Herstellung von Hydrogelen in Form kugelförmiger Perlen grösseren Durchmessers Expired EP0000507B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US81740477A 1977-07-20 1977-07-20
US817404 1977-07-20

Publications (2)

Publication Number Publication Date
EP0000507A1 EP0000507A1 (de) 1979-02-07
EP0000507B1 true EP0000507B1 (de) 1982-09-29

Family

ID=25223018

Family Applications (1)

Application Number Title Priority Date Filing Date
EP78100375A Expired EP0000507B1 (de) 1977-07-20 1978-07-12 Verfahren zur Herstellung von Hydrogelen in Form kugelförmiger Perlen grösseren Durchmessers

Country Status (7)

Country Link
EP (1) EP0000507B1 (de)
JP (1) JPS5440891A (de)
AT (1) AT366066B (de)
CA (1) CA1136317A (de)
DE (1) DE2862045D1 (de)
DK (1) DK149002C (de)
ES (1) ES471862A1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4914170A (en) * 1987-11-17 1990-04-03 Rohm And Haas Company Superabsorbent polymeric compositions and process for producing the same
ATE154049T1 (de) * 1988-02-26 1997-06-15 Ciba Geigy Ag Benetzbares, biegsames, sauerstoffdurchlässiges, quellbares polymer mit polyoxyalkyleneinheiten in der hauptkette und kontaktlinse
AU638239B2 (en) * 1989-03-23 1993-06-24 Nippon Shokubai Co., Ltd. Crosslinked spherical fine particles and process for producing the same; coating composition and peelable pressure-sensitive adhesive containing said crosslinked spherical fine particles; and article containing them in the form of laminar composite
FR2759702B1 (fr) 1997-02-14 1999-04-02 Essilor Int Compositions polymerisables comprenant un oligomere urethane comme agent de reticulation, polymeres et polymeres hydrates obtenus a partir de ces compositions, et articles finis et semi-finis formes a partir de ces polymeres
JP2005526879A (ja) * 2002-03-11 2005-09-08 ファースト ウォーター リミテッド 吸収性ハイドロゲル
ATE416223T1 (de) * 2003-08-29 2008-12-15 Mayo Foundation Hydrogel-porenbildner zur herstellung von biologisch abbaubaren gerüsten
CA2587308A1 (en) 2004-11-12 2006-05-18 Mayo Foundation For Medical Education And Research Photocrosslinkable poly(caprolactone fumarate)
AU2006242487B2 (en) 2005-04-29 2011-12-01 Mayo Foundation For Medical Education And Research Hydrophilic/hydrophobic polymer networks based on poly(caprolactone fumarate), poly(ethylene glycol fumarate), and copolymers thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2801992A (en) * 1953-08-19 1957-08-06 Distillers Co Yeast Ltd Suspension stabilizer of magnesium hydroxide and excess alkali
CH616694A5 (en) * 1974-06-27 1980-04-15 Ciba Geigy Ag Process for the preparation of crosslinked, water-insoluble, hydrophilic copolymers

Also Published As

Publication number Publication date
EP0000507A1 (de) 1979-02-07
CA1136317A (en) 1982-11-23
DK322778A (da) 1979-01-21
ATA523278A (de) 1981-07-15
ES471862A1 (es) 1979-02-01
DE2862045D1 (en) 1982-11-11
JPS5440891A (en) 1979-03-31
JPS614401B2 (de) 1986-02-10
AT366066B (de) 1982-03-10
DK149002C (da) 1986-08-25
DK149002B (da) 1985-12-16

Similar Documents

Publication Publication Date Title
US4224427A (en) Process for preparing hydrogels as spherical beads of large size
EP0140828B1 (de) Vernetzte poröse Polymere für eine kontrollierte Wirkstoffabgabe
DE2653135C2 (de)
DE19807992C1 (de) Verfahren zur Vernetzung von Hydrogelen mit Bis- und Poly-2-oxazolidinonen
DE2831274C2 (de)
DE19529348C2 (de) Absorptionsmittel für Wasser und wäßrige Flüssigkeiten auf Polyacrylatbasis sowie Verfahren zu ihrer Herstellung und Verwendung
DE2364675C2 (de) Aus einer Polymerenhauptkette und Polymerenseitenketten bestehendes Copolymeres und seine Verwendung zur Herstellung von Gegenständen für biomedizinische Zwecke
DE2552614C3 (de) Verfahren zur partiellen alkalischen Hydrolyse von vorwiegend Acrylnitril enthaltenden Polymerisaten sowie die Verwendung der Hydrolysate
DE2623056C2 (de) Verfahren zur Herstellung von festen wasserunlöslichen, in Methanol löslichen, hydrophilen Polymeren
DE68922191T2 (de) Verfahren zur Produktion von Akrylat und von Akrylat enthaltendem Polymer.
DE3147953A1 (de) Verfahren zur herstellung von hydrogelen
WO1998021253A1 (de) Polymere mit antimikrobiellen eigenschaften
DE2330957A1 (de) Kationische gepfropfte und vernetzte mischpolymerisate, verfahren zu ihrer herstellung und ihre verwendung in kosmetischen zubereitungen
EP0000507B1 (de) Verfahren zur Herstellung von Hydrogelen in Form kugelförmiger Perlen grösseren Durchmessers
DE2935712A1 (de) Verfahren zum herstellen von stark absorbierenden polymerisaten
DE1720244A1 (de) Verfahren zur Herstellung von Pfropfmischpolymerisaten
DE2528068A1 (de) Wasserunloesliche hydrophile copolymere
CH446726A (de) Verfahren zur Herstellung modifizierter Polyvinylalkohole
DE3324835A1 (de) Vernetztes copolymerisat, verfahren zu seiner herstellung und seine verwendung als sorptionsmittel
DE19646965C2 (de) Biophobe Polymere auf Acrylatbasis, Verfahren zu ihrer Herstellung und ihre Verwendung
DE2343633C3 (de) Verfahren zur Herstellung perlförmiger, vernetzter, wasserunlöslicher Mischpolymerisate
JPS6360044B2 (de)
DE2235973A1 (de) Kunststoffmaterial und verfahren zu seiner herstellung
DE2640887C2 (de) Verfahren zum Suspensionspolymerisieren von Vinylchlorid
DE3707177C2 (de) Vernetzte Hydrogele mit hoher Quellbarkeit in Wasser auf der Basis von 2-Hydroxyethylmethacrylat und ihre Herstellung und Verwendung für weiche Linsen sowie im kosmetischen und medizinischen Bereich

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE CH DE FR GB NL SE

17P Request for examination filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE CH DE FR GB NL SE

REF Corresponds to:

Ref document number: 2862045

Country of ref document: DE

Date of ref document: 19821111

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19910522

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19910605

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19910619

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19910627

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19910722

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19910731

Year of fee payment: 14

Ref country code: BE

Payment date: 19910731

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19920712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19920713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19920731

Ref country code: BE

Effective date: 19920731

BERE Be: lapsed

Owner name: CIBA-GEIGY A.G.

Effective date: 19920731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19930201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19920712

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19930331

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19930401

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 78100375.1

Effective date: 19930204

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT