DK178133B1 - Large turbocharged diesel engine with energy recovery device - Google Patents

Large turbocharged diesel engine with energy recovery device Download PDF

Info

Publication number
DK178133B1
DK178133B1 DK200801354A DKPA200801354A DK178133B1 DK 178133 B1 DK178133 B1 DK 178133B1 DK 200801354 A DK200801354 A DK 200801354A DK PA200801354 A DKPA200801354 A DK PA200801354A DK 178133 B1 DK178133 B1 DK 178133B1
Authority
DK
Denmark
Prior art keywords
exhaust gas
turbine
engine
boiler
exhaust
Prior art date
Application number
DK200801354A
Other languages
Danish (da)
Inventor
Niels Kjemtrup
Original Assignee
Man Diesel & Turbo Deutschland
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Man Diesel & Turbo Deutschland filed Critical Man Diesel & Turbo Deutschland
Publication of DK200801354A publication Critical patent/DK200801354A/en
Priority to DK201400256A priority Critical patent/DK178371B1/en
Application granted granted Critical
Publication of DK178133B1 publication Critical patent/DK178133B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting from exhaust energy
    • F01N5/02Exhaust or silencing apparatus combined or associated with devices profiting from exhaust energy the devices using heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/065Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion taking place in an internal combustion piston engine, e.g. a diesel engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • F02G5/02Profiting from waste heat of exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • F22B1/1807Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines using the exhaust gases of combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/163Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with conduit assemblies having a particular shape, e.g. square or annular; with assemblies of conduits having different geometrical features; with multiple groups of conduits connected in series or parallel and arranged inside common casing
    • F28D7/1669Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with conduit assemblies having a particular shape, e.g. square or annular; with assemblies of conduits having different geometrical features; with multiple groups of conduits connected in series or parallel and arranged inside common casing the conduit assemblies having an annular shape; the conduits being assembled around a central distribution tube
    • F28D7/1676Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with conduit assemblies having a particular shape, e.g. square or annular; with assemblies of conduits having different geometrical features; with multiple groups of conduits connected in series or parallel and arranged inside common casing the conduit assemblies having an annular shape; the conduits being assembled around a central distribution tube with particular pattern of flow of the heat exchange media, e.g. change of flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2280/00Output delivery
    • F02G2280/20Rotary generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/30Technologies for a more efficient combustion or heat usage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

Stor turboladet dieselmotor, der er forsynet med udstødningsgaskedler og en kraftturbine til genvinding af energi i udstødningsgasserne. En af kedlerne kan være en integral del af udstødningsgasmodtagerne. En del af udstødningsgasstrømmen inden turboladerens turbine set i strømmens retning forgrenes til kraftturbinen. Motoren indeholder en forvarmningskedel ved lavtrykssiden af turboladerens turbine, mens der er placeret en overhedningskedel ved højtrykssiden af turboladerens turbine. Motoren kan drives med i høj grad befugtet skylleluft for i den forbindelse at øge mængden af energi i udstødningsgasserne, der kan genvindes. Motoren kan også drives som en varmepumpe, idet udstødningsgassen, der forlader motoren, har en temperatur, der er lavere end omgivelsestemperaturen.Large turbocharged diesel engine, equipped with exhaust gas boilers and a power turbine for energy recovery in the exhaust gases. One of the boilers may be an integral part of the exhaust gas receivers. Part of the exhaust gas flow before the turbocharger turbine seen in the direction of the flow is branched to the power turbine. The engine contains a preheater boiler at the low pressure side of the turbocharger turbine, while a superheat boiler is located at the high pressure side of the turbocharger turbine. The engine can be operated with highly humidified rinsing air in order to increase the amount of energy in the recoverable exhaust gases. The engine can also be operated as a heat pump, the exhaust gas leaving the engine having a temperature lower than the ambient temperature.

Description

STOR TURBOLADET DIESELMOTOR MED ENERGIGENVINDINGSINDRETNINGLARGE TURBOLED DIESEL ENGINE WITH ENERGY RECOVERY EQUIPMENT

OPFINDELSENS OMRÅDEFIELD OF THE INVENTION

Den foreliggende opfindelse angår en stor turboladet dieselmotor med en eller flere kedler, der opvarmes med udstødningsgas, og særligt en stor turboladet dieselmotor, der er forsynet med en kraftturbine, der drives med udstødningsgas, der forgrenes inden turboladerens turbine set i strømmens retning.The present invention relates to a large turbocharged diesel engine with one or more boilers heated with exhaust gas, and more particularly to a large turbocharged diesel engine equipped with an exhaust turbine powered by exhaust gas which branches before the turbocharger turbine in the direction of flow.

OPFINDELSENS BAGGRUNDBACKGROUND OF THE INVENTION

EP 0 434 419 præsenterer en stor turboladet totaktsdieselmotor, i hvilken varmeenergi fra udstødningsgassen genvindes ved en kombination af en kedel på lavtrykssiden af turboladeren og en kedel på højtrykssiden af turboladeren. Ved lavere motorbelastninger reduceres genvindingen af varmeenergien fra udstødningsgasserne, inden disse ledes til turboladeren, ved at lede en del af udstødningsgassen direkte ind i turboladeren, idet den første kedel set i strømmens retning omgås. Når der placeres en kedel mellem udstødningsgasmodtageren og turbinen i turboladeren, bliver den samlede konstruktion imidlertid forholdsvis voluminøs og kompliceret. Desuden forringer den øgede længde af strømningsvejen mellem udstødningsventilerne og turboladeren turboladerens reaktion i forbindelse med accelerationer. Desuden genvinder denne motor kun varme, mens der ikke er truffet nogen forholdsregler til at omdanne den genvundne energi til en mere anvendelig form for energi såsom rotationskraft eller elektricitet.EP 0 434 419 presents a large turbocharged two-stroke diesel engine in which heat energy from the exhaust gas is recovered by a combination of a boiler on the low-pressure side of the turbocharger and a boiler on the high-pressure side of the turbocharger. At lower engine loads, the recovery of the heat energy from the exhaust gases before being directed to the turbocharger is reduced by passing a portion of the exhaust gas directly into the turbocharger, bypassing the first boiler in the direction of flow. However, when a boiler is placed between the exhaust gas receiver and the turbine in the turbocharger, the overall design becomes relatively bulky and complicated. In addition, the increased length of flow path between the exhaust valves and the turbocharger reduces the reaction of the turbocharger in connection with accelerations. Furthermore, this engine only regains heat while no precautions have been taken to convert the recovered energy into a more usable form of energy such as rotational power or electricity.

PRÆSENTATION AF OPFINDELSENPRESENTING THE INVENTION

På denne baggrund er formålet med den foreliggende opfindelse at tilvejebringe en turboladet dieselmotor af den indledningsvist nævnte art, der er mere kompakt og mindre kompliceret at konstruere. Dette formål opnås ifølge krav 1 ved at tilvejebringe en turboladet dieselmotor af den nævnte art, der indeholder en flerhed af cylindre, der hver især er forbundet med en udstødningsgasmodtager via hver deres manifoldrør, et første udstødningsgasrør set i strømmens retning til at lede udstødningsgasserne fra udstødningsgasmodtageren til indløbet på turbinen i turboladeren, et andet udstødningsgasrør set i strømmens retning til at lede udstødningsgasserne fra udløbet på turbinen i turboladeren ud i atmosfæren, en eller flere kedler, der opvarmes med udstødningsgas, eller varmevekslere til genvinding af varmeenergi fra udstødningsgasserne, idet i det mindste en af disse kedler eller varmevekslere er placeret inden for den nævnte udstødningsgasmodtager.In the light of the foregoing, the object of the present invention is to provide a turbocharged diesel engine of the type mentioned earlier which is more compact and less complicated to construct. This object is achieved according to claim 1 by providing a turbocharged diesel engine of the said type, containing a plurality of cylinders, each connected to an exhaust gas receiver via their respective manifold pipes, a first exhaust gas pipe seen in the direction of flow to direct the exhaust gases from the exhaust gas receiver. to the turbine inlet of the turbocharger, another exhaust gas tube seen in the direction of flow to direct the exhaust gases from the outlet of the turbine of the turbocharger into the atmosphere, one or more boilers heated with the exhaust gas, or heat exchangers to recover the heat energy from the exhaust gases; at least one of these boilers or heat exchangers is located within said exhaust gas receiver.

Ved at placere en af kedlerne fysisk inden i udstødningsgasmodtageren er der på effektiv vis en komponent mindre i systemet, der kræver plads i det snævre område øverst på en stor turboladet dieselmotor. Denne foranstaltning skaber således mere plads omkring motoren, og den reducerer desuden omfanget af rørledningssystemet. Desuden gives der afkald på et hus til kedlen, da huset til udstødningsgasmodtageren nu opfylder to funktioner: Tilvejebringelse af et hulrum til modtagelse og samling af udstødningsgasserne fra de enkelte cylindre og tilvejebringelse af et hulrum til anbringelse af en kedel. En yderligere fordel består i, at trykfaldet gennem kedlen har mulighed for at blive tre gange større end i de traditionelle konstruktioner uden en reduktion af motorydelsen. Et øget trykfald muliggør igen en øget gashastighed, der muliggør en betydelig reduktion af varmeveksleroverfladen (når alle andre parametre er ens) , hvilket således resulterer i en meget mindre kedel.By physically placing one of the boilers within the exhaust gas receiver, there is effectively a smaller component in the system that requires space in the narrow area at the top of a large turbocharged diesel engine. Thus, this measure creates more space around the engine and also reduces the extent of the pipeline system. In addition, a boiler housing is dispensed with, as the exhaust gas receiver housing now fulfills two functions: providing a cavity for receiving and assembling the exhaust gases from individual cylinders and providing a cavity for placing a boiler. A further advantage is that the pressure drop through the boiler has the opportunity to be three times greater than in the traditional designs without a reduction in engine performance. An increased pressure drop, in turn, enables an increased gas velocity, which enables a significant reduction of the heat exchanger surface (when all other parameters are the same), thus resulting in a much smaller boiler.

Den store turboladede dieselmotor kan desuden indeholde en forvarmnings-/fordampningskedel på lavtrykssiden af turboladeren. I dette tilfælde anvendes kedlen, der er placeret inden i udstødningsgasmodtageren, til at overhede damp, der produceres af kedlen på lavtrykssiden af turboladeren. I den forbindelse forbedres kvaliteten af dampen, særligt når den overhedede damp skal anvendes i en dampturbine.The large turbocharged diesel engine can additionally contain a preheater / evaporator boiler on the low pressure side of the turbocharger. In this case, the boiler located within the exhaust gas receiver is used to superheat steam produced by the boiler on the low pressure side of the turbocharger. In this connection, the quality of the steam is improved, especially when the superheated steam is to be used in a steam turbine.

Den store turboladede dieselmotor kan desuden indeholde en dampturbine, der drives med damp, der produceres af kedlen eller kedlerne. I den forbindelse omdannes energien, der skal genvindes fra udstødningsgasserne, til en mere anvendelig kraftform for energi. Kraftturbinen kan drive en elektrisk generator, der tjener til at omdanne rotationskraften til elektricitet.The large turbocharged diesel engine may additionally contain a steam turbine powered by steam produced by the boiler or boilers. In this connection, the energy to be recovered from the exhaust gases is converted into a more usable form of energy. The power turbine can operate an electric generator which serves to convert the rotary power to electricity.

Udstødningsgasmodtageren kan indeholde en flerhed af kedler eller adskillige trin inden for en enkelt kedel. Energien i udstødningsgassen kan således overføres mere effektivt til dampen.The exhaust gas receiver may contain a plurality of boilers or several stages within a single boiler. The energy of the exhaust gas can thus be more efficiently transferred to the steam.

Flerheden af kedler kan udgøre et system, som producerer overhedet damp med flere damptrin, og som indeholder forvarmnings-/fordampningskedler og overhednings-/fordampningskedler.The plurality of boilers may constitute a multi-stage superheated steam system which contains preheat / evaporator boilers and superheat / evaporator boilers.

Yderligere formål, kendetegn, fordele og egenskaber ved den ladede forbrændingmotor ifølge opfindelsen fremgår af den detaljerede beskrivelse.Further objects, features, advantages and characteristics of the charged internal combustion engine according to the invention will be apparent from the detailed description.

KORT BESKRIVELSE AF OPFINDELSENBRIEF DESCRIPTION OF THE INVENTION

I den følgende detaljerede del af den foreliggende beskrivelse forklares opfindelsen mere detaljeret med henvisning til de eksemplariske udførelsesformer, der vises på tegningerne, på hvilke: figur 1 viser en delvis afbildning set fra siden af en stor turboladet dieselmotor ifølge en første udførelsesform for opfindelsen, figur 2 viser et længdetværsnit gennem motoren på figur 1, figur 3 skematisk viser en stor turboladet dieselmotor med foranstaltninger til genvinding af varmeenergi ifølge en anden udførelsesform for opfindelsen, figur 3a er et diagram, der viser driftsparametrene for motoren fra figur 3, figur 4 skematisk viser en stor turboladet dieselmotor med foranstaltninger til genvinding af varmeenergi ifølge en tredje udførelsesform for opfindelsen, figur 4a er et diagram, der viser driftsparametrene for motoren fra figur 4, figur 5 skematisk viser en stor turboladet dieselmotor med foranstaltninger til genvinding af varmeenergi ifølge en tredje udførelsesform for opfindelsen, figur 5a er et diagram, der viser driftsparametrene for motoren fra figur 5, figur 6 viser en anden udførelsesform for opfindelsen, i hvilken motoren drives som en varmepumpe, figur 7 viser en yderligere udførelsesform for opfindelsen, som ikke gør brug af en turbolader, men som i stedet er forsynet med en turbine og en blæser, der er forbundet elektrisk med hinanden, og figur 8 viser en anden udførelsesform for opfindelsen, der gør brug af recirkulation af udstødningsgas.In the following detailed part of the present description, the invention is explained in more detail with reference to the exemplary embodiments shown in the drawings, in which: Figure 1 shows a partial side view of a large turbocharged diesel engine according to a first embodiment of the invention; Figure 2 is a longitudinal cross-section through the engine of Figure 1; Figure 3 is a schematic diagram of a large turbocharged diesel engine with heat energy recovery measures according to another embodiment of the invention; Figure 3a is a diagram showing the operating parameters of the engine of Figure 3; a large turbocharged diesel engine with heat energy recovery measures according to a third embodiment of the invention; Figure 4a is a diagram showing the operating parameters of the engine of Figure 4; Figure 5 schematically shows a large turbocharged diesel engine with heat energy recovery measures according to a third embodiment.Figure 5a is a diagram showing the operating parameters of the motor of Figure 5; Figure 6 shows another embodiment of the invention in which the motor is operated as a heat pump; Figure 7 shows a further embodiment of the invention which does not use a turbocharger, but instead provided with a turbine and fan connected electrically to each other, and Figure 8 shows another embodiment of the invention using exhaust gas recirculation.

DETALJERET BESKRIVELSE AF FORETRUKNE UDFØRELSESFORMERDETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

I den følgende detaljerede beskrivelse beskrives den store turboladede dieselmotor ifølge opfindelsen i form af en stor totaktsdieselmotor ved hjælp af de foretrukne udføreisesformer.In the following detailed description, the large turbocharged diesel engine according to the invention is described in the form of a large two-stroke diesel engine by means of the preferred embodiments.

Konstruktionen og driften af store turboladede dieselmotorer såsom store totaktsdieselmotor af krydshovedtypen er velkendte i sig selv og bør ikke kræve yderligere forklaring i den foreliggende sammenhæng. Yderligere detaljer, der angår driften af lade- og udstødningsgassystemerne, er angivet nedenfor.The design and operation of large turbocharged diesel engines such as large crosshead type two-stroke diesel engines are well known in themselves and should not require further explanation in the present context. Further details relating to the operation of the charging and exhaust gas systems are given below.

Figur 1 viser en første udførelsesform for et øverste område af en stor totaktsdieselmotor 1 ifølge opfindelsen. Denne motor er forsynet med en flerhed af cylindre, der er anbragt ved siden af hinanden i en række. Hver cylinder er forsynet med en udstødningsventil (ikke vist), der er forbundet med dens cylinderdæksel. Udstødningskanalerne kan åbnes og lukkes ved hjælp af udstødningsventilen. Manifoldrør forbinder de pågældende udstødningskanaler med en udstødningsgasmodtager 3. Udstødningsgasmodtageren 3 er placeret parallelt med rækken af cylindre. Manifoldrørene 40 munder ud i udstødningsgasmodtageren 3, og en udstødningsledning leder fra udstødningsgasmodtageren til turbinen i en turbolader. I motorer med et meget stort antal cylindre (for eksempel 10 eller flere cylindre) kan udstødningsgasmodtageren deles i længderetningen i to eller flere dele (ikke vist).Figure 1 shows a first embodiment of a top region of a large two-stroke diesel engine 1 according to the invention. This engine is provided with a plurality of cylinders arranged side by side in a row. Each cylinder is provided with an exhaust valve (not shown) connected to its cylinder cover. The exhaust ducts can be opened and closed by means of the exhaust valve. Manifold pipes connect the respective exhaust ducts with an exhaust gas receiver 3. The exhaust gas receiver 3 is located parallel to the row of cylinders. The manifold tubes 40 open into the exhaust gas receiver 3, and an exhaust pipe leads from the exhaust gas receiver to the turbine in a turbocharger. In engines with a very large number of cylinders (for example, 10 or more cylinders) the exhaust gas receiver can be split longitudinally into two or more parts (not shown).

Udstødningsgasmodtageren 3 har i denne udførelsesform et cylindrisk hus 42, der, som vist på figur 2, ved sine ender er forsynet med aftagelige dæksler 44. Det cylindriske hus 42 indeholder en varmeveksler 23, som udstødningsgasserne kan strømme igennem for at producere overhedet damp. Varmeveksleren 23 virker således som en kedel. Det cylindriske hus 42 indeholder desuden en samleledning 46, som manifoldrørene 40 slipper udstødningsgasserne ud i.In this embodiment, the exhaust gas receiver 3 has a cylindrical housing 42 which, as shown in FIG. 2, is provided at its ends with removable covers 44. The cylindrical housing 42 contains a heat exchanger 23 through which the exhaust gases can flow to produce superheated steam. Thus, the heat exchanger 23 acts as a boiler. In addition, the cylindrical housing 42 contains a manifold 46 into which the manifold tubes 40 release the exhaust gases.

Det cylindriske hus 42 til udstødningsgasmodtageren er, således som det er vist på figur 2, delt i to varmevekslerdele 50a og 50b og samleledningsdele 46a og 46b, der er sidestillet med et centralt udløbskammer 52, som udstødningsgasserne forlader via en udstødningsledning. Følgelig er konstruktionen af udstødningsgasmodtageren 3 symmetrisk i forhold til dens centrale radiale plan.As shown in FIG. 2, the cylindrical housing 42 for the exhaust gas receiver is divided into two heat exchanger portions 50a and 50b and collector conduit portions 46a and 46b, juxtaposed with a central outlet chamber 52 which exits the exhaust gases via an exhaust pipe. Accordingly, the construction of the exhaust gas receiver 3 is symmetrical with respect to its central radial plane.

Begge afsnit 50a, 50b af varmevekslerarrangementet består af adskillige varmevekslingselementer, som følger efter hinanden, som er velkendte i sig selv, og som er adskilt af afstandsstykker 49. Hvert afsnit 50a, 50b indeholder to varmevekslingselementer 57a, 58a, 57b, 58b, der hver især indeholder et stort antal af rør, der forløber i gasstrømmens retning, der angives ved en pil, der er indtegnet som en fuldt optrukken linje, parallelt med længdeaksen af det cylindriske hus. Strømningsretningerne i de respektive varmevekslerdele 50a og 50b ligger over for hinanden og peger mod hinanden.Both sections 50a, 50b of the heat exchanger arrangement consist of several successive heat exchange elements which are well known in themselves and which are separated by spacers 49. Each section 50a, 50b contains two heat exchange elements 57a, 58a, 57b, 58b, each of which in particular, a large number of tubes extending in the direction of gas flow indicated by an arrow drawn as a fully drawn line, parallel to the longitudinal axis of the cylindrical housing. The flow directions in the respective heat exchanger portions 50a and 50b are opposite each other and point towards each other.

Tværsnitskonturen af de excentrisk placerede varmevekslerelementer 57a, 58a, 57b, 58b har form af et ringsegment, der støder op til den indvendige omkreds af det cylindriske hus 42. Ringsegmenterne kan deles op i undersegmenter for at gøre monteringen lettere (ikke vist).The cross-sectional contour of the eccentrically placed heat exchanger elements 57a, 58a, 57b, 58b is in the form of a ring segment adjacent to the inner circumference of the cylindrical housing 42. The ring segments can be divided into sub-segments to facilitate mounting (not shown).

Det cylindriske hus 42 til udstødningsgasmodtageren 3 er forsynet med en skillevæg 63, der adskiler varmevekslerelementerne fra resten af tværsnittet af det indre af udstødningsgasmodtageren 3 og i den forbindelse opdeler tværsnittet af det indre af udstødningsgasmodtageren i en kanal til optagelse af varmevekslerelementerne og en kanal til at samle og føre udstødningsgasserne mod kanalen med varmevekslerelementerne 57a, 58a, 57b, 58b.The cylindrical housing 42 for the exhaust gas receiver 3 is provided with a partition 63 separating the heat exchanger elements from the rest of the cross-section of the interior of the exhaust gas receiver 3, and in this connection the cross-section of the interior of the exhaust gas receiver divides into a channel for receiving the heat exchanger elements and collecting and passing the exhaust gases toward the duct with the heat exchanger elements 57a, 58a, 57b, 58b.

I den sidstnævnte kanal (som manifoldrørene 40 munder ud i) ledes udstødningsgassen i retning af pilen, der er vist med stiplede linjer.In the latter channel (which the manifold pipes 40 open into) the exhaust gas is directed in the direction of the arrow, shown in broken lines.

Varmeelementerne kan trækkes tilbage i kanalen til optagelse af varmeelementerne. De langsgående udvendige varmeelementer er adskilt fra de indvendige varmeelementer ved hjælp af afstandsstykker 49. Den samlede enhed holdes på plads ved hjælp af låseplader 66.The heaters can be retracted into the duct to receive the heaters. The longitudinal exterior heating elements are separated from the interior heating elements by spacers 49. The assembled unit is held in place by locking plates 66.

Samlekanalerne 46a, 46b har en tragtformet tværsnitsform, der åbner i en radialt udadgående retning. Manifoldrørene 40 er placeret således, at de blæser udstødningsgasserne ind i de respektive samlekanaler 46a, 46b.The collecting ducts 46a, 46b have a funnel-shaped cross-sectional shape which opens in a radially outward direction. The manifold tubes 40 are positioned so as to blow the exhaust gases into the respective collecting ducts 46a, 46b.

Samlekanalerne 46a, 46b er adskilt fra det centrale udløbskammer 52 ved hjælp af sidevægge 69, der er forbundet med frontale ender på samlekanalerne. Samlekanalerne 46a, 46b er åbne ved deres modsatte ender med en vis afstand til de aftagelige dæksler 44. I den forbindelse er der udformet modstrømningskamre 71a, 71b i området ved enderne af udstødningsgasmodtagerens hus 42. Modstrømningskamrene 71a, 71b forbinder samlekanalerne 46a, 46b med kanalerne, i hvilke varmevekslerafsnittene optages. Således er der udformet strømningsbaner på begge sider af udløbskammeret 52, der forbinder optagelseskanalerne 46a, 46b via kanalerne, der indeholder varmevekslerelementerne, med udløbskammeret. Udstødningsgasserne, der forlader manifoldrørene 40 i de respektive samlekanaler 46a, 46b, strømmer, således som det er vist på figur 2 med pilene, der er indtegnet med stiplede linjer, hen til modstrømningskamrene 71a, 71b og fra disse, således som det er vist med pilene, der er indtegnet med fuldt optrukne linjer, gennem de respektive varmevekslerelementer 57a, 58a, 57b, 58b mod udløbskammeret 52.The connecting ducts 46a, 46b are separated from the central outlet chamber 52 by means of side walls 69 which are connected to the frontal ends of the connecting ducts. The collecting ducts 46a, 46b are open at their opposite ends at some distance from the removable covers 44. In this connection, counterflow chambers 71a, 71b are formed in the region at the ends of the exhaust gas receiver housing 42. The counterflow chambers 71a, 71b connect the conduits 46a, 46b , in which the heat exchanger sections are recorded. Thus, flow paths are formed on both sides of the outlet chamber 52 connecting the take-up channels 46a, 46b through the channels containing the heat exchanger elements with the outlet chamber. The exhaust gases leaving the manifold tubes 40 in the respective collecting ducts 46a, 46b flow, as shown in FIG. 2, with the arrows plotted in dotted lines, to the counterflow chambers 71a, 71b and from them, as shown in FIG. the arrows drawn in solid lines through the respective heat exchanger elements 57a, 58a, 57b, 58b toward the outlet chamber 52.

Således tjener huset 42 til udstødningsgasmodtageren 3 til at indeholde både et optagelseshulrum til udstødningsgas og en kedel til genvinding af varmeenergi fra udstødningsgasserne. Ved at integrere kedlen inden i udstødningsgasmodtageren kan pladsen, der behøves til en udstødningskedel, spares, og der kan gives afkald på huset til en udstødningsgaskedel.Thus, the housing 42 of the exhaust gas receiver 3 serves to contain both an exhaust gas cavity and a boiler for recovering heat energy from the exhaust gases. By integrating the boiler inside the exhaust gas receiver, the space needed for an exhaust boiler can be saved and the housing of an exhaust gas boiler can be waived.

Figur 3 viser en anden udførelsesform for en stor turboladet totaktsdieselmotor af krydshovedtypen 1 med dens indsugnings- og udstødningssystemer. Motoren 1 indeholder en ladeluftmodtager 2 og en udstødningsgasmodtager 3. Udstødningsgasmodtageren 3 kan være af den type, der er beskrevet i den første udførelsesform, men dette er ikke nødvendigvis tilfældet. Motoren er forsynet med udstødningsventiler (en eller flere for hver cylinder), der ikke er vist. Motoren 1 kan f.eks. anvendes som hovedmotor i et søgående fartøj eller som en stationær motor til drift af en generator i et kraftværk. Den samlede nytteeffekt ved motoren kan for eksempel variere fra 5.000 til 110.000 kW, men opfindelsen kan også anvendes i firtaktsdieselmotorer med en effekt på for eksempel 1.000 kW.Figure 3 shows another embodiment of a large cross-head type turbocharged two-stroke diesel engine 1 with its intake and exhaust systems. The engine 1 contains a charge air receiver 2 and an exhaust gas receiver 3. The exhaust gas receiver 3 may be of the type described in the first embodiment, but this is not necessarily the case. The engine is equipped with exhaust valves (one or more for each cylinder) not shown. The motor 1 can e.g. is used as a main engine in a seagoing vessel or as a stationary engine for operating a generator in a power plant. For example, the overall power output of the engine can range from 5,000 to 110,000 kW, but the invention can also be used in four-stroke diesel engines with a power of, for example, 1,000 kW.

Ladeluften strømmer fra ladeluftmodtageren 2 til skylleluftåbningerne (ikke vist) på de pågældende cylindre. Når udstødningsventilen 4 åbnes, strømmer udstødningsgassen gennem manifoldrør og ind i udstødningsmodtageren 3 og derfra videre gennem en første udstødningsledning 5 til en turbine 6 i en turbolader, fra hvilken udstødningsgassen strømmer afsted gennem en anden udstødningsledning 7. Ved hjælp af en aksel 8 driver turbinen 6 en kompressor 9, der forsynes via en luftindsugning 10. Kompressoren 9 tilfører ladeluft under tryk til en ladeluftledning 11, der fører hen til ladeluftmodtageren 2.The charging air flows from the charging air receiver 2 to the rinsing air openings (not shown) on the respective cylinders. When the exhaust valve 4 is opened, the exhaust gas flows through manifold tubes and into the exhaust receiver 3 and thence through a first exhaust pipe 5 to a turbine 6 of a turbocharger, from which the exhaust gas flows through a second exhaust pipe 7. By means of a shaft 8, the turbine 6 a compressor 9 supplied via an air inlet 10. Compressor 9 supplies charged air under pressure to a charge air line 11 which leads to the charge air receiver 2.

Indsugningsluften i ledningen 11 passerer gennem en mellemkøler 12 til afkøling af skylleluften - der forlader kompressoren 9 ved en temperatur på omtrent 200 °C - til en temperatur på omtrent 36 °C.The suction air in conduit 11 passes through an intermediate cooler 12 to cool the rinsing air - leaving compressor 9 at a temperature of about 200 ° C - to a temperature of about 36 ° C.

Den afkølede skylleluft føres via en hjælpeblæser 16, der drives af en elektrisk motor 17, der sætter skylleluftstrømmen under tryk (ofte kun under forhold med lav eller delvis belastning) og hen til skylleluftmodtageren 2. Ved større belastninger er mængden af skylleluft, der leveres af turboladerens kompressor 9 tilstrækkelig til at drive motoren, og hjælpeblæseren 16 stoppes. I denne tilstand omgås hjælpeblæseren 16 via ledningen 15.The cooled flushing air is fed through an auxiliary fan 16 driven by an electric motor 17 which pressurizes the flushing air flow (often only under low or partial load conditions) and to the flushing receiver 2. At higher loads, the amount of flushing air supplied by the the turbocharger compressor 9 is sufficient to operate the engine and the auxiliary fan 16 is stopped. In this mode, the auxiliary fan 16 is bypassed by the wire 15.

En første kedel 23, fortrinsvis i form af en varmeveksler f.eks. af rør- eller finnetypen, anbringes i den første udstødningsledning 5, dvs. inden turbinen 6 set i strømmens retning, og anvender varmeenergi i udstødningsgasserne til at producere damp. Udstødningsgasserne har, når de ankommer til udstødningsgasmodtageren 3, en temperatur på omkring 455 °C, og temperaturen ved indgangen til den første kedel 23 er kun ubetydeligt lavere. Den første kedel 23 kan være en integral del af udstødningsgasmodtageren 3, således som det er vist og forklaret med henvisning til den første udførelsesform ovenfor.A first boiler 23, preferably in the form of a heat exchanger e.g. of the pipe or fins type, is placed in the first exhaust line 5, ie. prior to turbine 6 viewed in the direction of flow, and uses heat energy in the exhaust gases to produce steam. The exhaust gases, when they arrive at the exhaust gas receiver 3, have a temperature of about 455 ° C and the temperature at the entrance to the first boiler 23 is only slightly lower. The first boiler 23 may be an integral part of the exhaust gas receiver 3, as shown and explained with reference to the first embodiment above.

Efter kedlen 23 set i strømmens retning forgrenes udstødningsledningen, idet den største del af udstødningsgasserne fortsætter via udstødningsledningen 5 mod turbinen 6, og en mindre del af udstødningsgasserne strømmer via en ledning 30 mod en kraftturbine 31. Den yderligere kraftturbine 31 driver en elektrisk generator 32 .Following the boiler 23 in the direction of the flow, the exhaust line is branched off, the greater part of the exhaust gases continuing via the exhaust pipe 5 towards the turbine 6, and a smaller part of the exhaust gases flowing through a line 30 towards a power turbine 31. The additional power turbine 31 drives an electric generator 32.

En overskydende energi i udstødningsgasstrømmen omdannes således til elektrisk energi, dvs. energi med en høj eksergi. Mængden af udstødningsgas, der forgrenes til kraftturbinen 31, kan reguleres via en variabel strømreguator (ikke vist) i ledningen 30. Udstødningsgasserne, der forlader kraftturbinen 31, ledes hen til en anden udstødningsledning 7 og føres der tilbage til udstødningsgassens hovedstrøm.Thus, an excess energy in the exhaust gas stream is converted into electrical energy, ie. energy with a high exergy. The amount of exhaust gas which branches to the power turbine 31 can be controlled via a variable flow controller (not shown) in line 30. The exhaust gases exiting the power turbine 31 are directed to another exhaust line 7 and fed back to the main gas flow.

Den anden udstødningsledning 7 leder udstødningsgasserne hen til indløbet på en anden kedel 20, der indeholder en varmeveksler, f.eks. af rør- eller finnetypen. En tredje udstødningsledning 21 leder ladeluft fra udløbet på den anden kedel 20 ud i atmosfæren. Inden udstødningsgasserne når ud i atmosfæren, kan de renses i en SCR-reaktor (ikke vist) for at reducere f.eks. NOx-niveauer og passere gennem en lyddæmper (ikke vist) for at reducere støjforureningen.The second exhaust conduit 7 directs the exhaust gases to the inlet of another boiler 20 containing a heat exchanger, e.g. of the pipe or fins type. A third exhaust line 21 conducts charging air from the outlet of the second boiler 20 into the atmosphere. Before the exhaust gases reach the atmosphere, they can be purified in an SCR reactor (not shown) to reduce e.g. NOx levels and pass through a silencer (not shown) to reduce noise pollution.

Den anden kedel 20 anvender varmen i udstødningsgasstrømmen til at producere damp under tryk. På dette stade er udstødningsgassens temperatur lavere, end når den forlader cylindrene, typisk ligger temperaturen ved udløbet på turboladerens turbine 6 i området mellem 250 og 300 °C.The second boiler 20 uses the heat in the exhaust gas stream to produce steam under pressure. At this point, the exhaust gas temperature is lower than when it exits the cylinders, typically the temperature at the outlet of the turbocharger turbine 6 is in the range between 250 and 300 ° C.

En ledning 22 leder dampen, der produceres i den anden kedel 20, hen til indløbet på den første kedel 23. Den første kedel opvarmes med udstødningsgasser, der har en temperatur på omtrent 450 °C, og er således et meget effektivt medium til at fordampe/overhede vandet/dampen, der ledes ind i den første kedel 23.A conduit 22 conducts the steam produced in the second boiler 20 to the inlet of the first boiler 23. The first boiler is heated with exhaust gases having a temperature of about 450 ° C, thus being a very effective medium for evaporating. / overheat the water / steam entering the first boiler 23.

Den overhedede damp ledes via ledningen 34 hen til en dampturbine 37, der omdanner energien i dampen til roterende mekanisk kraft. Dampturbinen 37 driver en elektrisk generator 35 til produktion af elektrisk energi, der kan anvendes ombord på et søgående fartøj, f.eks. til at drive køleudstyr, eller tilføjes til elektriciteten, der produceres i et stationært kraftværk. Selvom det ikke er vist i denne eller nogen af de andre udførelsesformer, forstås det, at kedlerne og dampturbinen er en del af et dampkredsløb, der indbefatter en kondensator, en køler og andre komponenter, der er velkendte inden for dampkraftområdet.The superheated steam is passed via line 34 to a steam turbine 37 which converts the energy of the steam into rotary mechanical power. The steam turbine 37 drives an electric generator 35 to produce electrical energy that can be used aboard a seagoing vessel, e.g. to operate refrigeration equipment, or added to the electricity produced in a stationary power plant. Although not shown in this or any of the other embodiments, it is understood that the boilers and steam turbine are part of a steam circuit including a capacitor, a cooler and other components well known in the art of steam power.

Et eksempel på driftsparametrene i den anden udførelsesform med en MAN B&W® 12K98ME motor er angivet i tabel 1 nedenfor. Dette er en motor med 12 cylindre med en cylinderboring på 98 cm. Det skal bemærkes, at turboladerens kompressor plus en mulig hjælpeblæser kræver en krafteffekt på omtrent 25000 kW. Denne kraft udtrækkes fra udstødningsgassen og/eller leveres af hjælpeblæserne.An example of the operating parameters of the second embodiment with a MAN B & W® 12K98ME engine is given in Table 1 below. This is a 12-cylinder engine with a 98 cm cylinder bore. It should be noted that the turbocharger compressor plus a possible auxiliary fan requires a power output of approximately 25000 kW. This force is extracted from the exhaust gas and / or supplied by the auxiliary fans.

Det er muligt baseret på energiligninger at definere en optimal værdi med hensyn til kraftudtrækningen fra det samlede system. Dette afhænger til syvende og sidst af forhold såsom arten af kedlen, arten af dampturbinen og betingelserne for brugen af den store totaktsdieselmotor. På søgående fartøjer fokuseres der hovedsageligt på tilvejebringelsen af rotationskraft, mens en anvendelse i et stationært kraftværk fokuserer i lige høj grad på varmeproduktion (til opvarmning af kvarterer) og produktion af elektricitet.It is possible to define an optimum value based on the energy extraction from the total system based on energy equations. Ultimately, this depends on conditions such as the nature of the boiler, the nature of the steam turbine and the conditions for using the large two-stroke diesel engine. On seagoing vessels, the focus is mainly on the provision of rotational power, while an application in a stationary power station focuses equally on heat production (for heating neighborhoods) and electricity generation.

Systemet kan drives ved forskellige driftsteder med en variabel mængde af kraft, der udtages fra udstødningsgassen ved hjælp af den første kedel 23 og kraftturbinen 31.The system can be operated at various operating locations with a variable amount of force extracted from the exhaust gas by the first boiler 23 and the power turbine 31.

Kraften, der udtrækkes i den første kedel 23 inden turboladerens turbine 6 set i strømmens retning, reducerer den kraft, der står til rådighed for turboladerens turbine 6 og kraftturbinen 31, mens kraften, der udtrækkes i den anden kedel 20, ikke har nogen indflydelse på kraften i turboladeren og kraftturbinen.The force extracted in the first boiler 23 before the turbocharger turbine 6 seen in the flow direction reduces the power available to the turbocharger turbine 6 and the power turbine 31, while the force extracted in the second boiler 20 has no influence on the power of the turbocharger and the power turbine.

I eksemplet i tabel 1 udtrækkes der en mængde af energi på 10.000 kW i den første kedel 23 til tilførsel til dampturbinen 37 (denne mængde er valgt vilkårligt for dette eksempel, og der kan også vælges andre mængder, således som det er vist på figur 3A).In the example of Table 1, an amount of 10,000 kW of energy is extracted in the first boiler 23 for supply to the steam turbine 37 (this amount is selected at random for this example, and other quantities can also be selected, as shown in Figure 3A ).

Figur 3A er et diagram, der viser udregningsresultaterne for forskellige værdier for mængden af kraft, der udtrækkes ved den første kedel 23. Diagrammet viser kraften ved de enkelte komponenter som en procentdel af motorakselkraften for at illustrere det forhold, at opfindelsen kan anvendes ved forskellige motorstørrelser. I diagrammet ses det, at kraften, der kan udtrækkes fra kraftturbinen, reduceres, når kraften, der udtrækkes i den første kedel 23 inden turboladerens turbine 6 set i strømmens retning, øges. Det optimale driftspunkt kan bestemmes i overensstemmelse med typen af kraften, der er påkrævet (varme- eller rotationskraft/elektricitet).Figure 3A is a diagram showing the calculation results for different values of the amount of power extracted at the first boiler 23. The diagram shows the power of the individual components as a percentage of the engine shaft power to illustrate the fact that the invention can be used at different engine sizes. . The diagram shows that the power that can be extracted from the power turbine is reduced as the power extracted in the first boiler 23 before the turbocharger turbine 6 seen in the direction of the current increases. The optimum operating point can be determined according to the type of force required (thermal or rotational power / electricity).

Hvis der både er påkrævet varme- og rotationskraft såsom i stationære kraftværker, der både leverer elektricitet og varme, ligger det optimale driftspunkt snarest tættere på den maksimale kraftudtrækning via den første kedel 23. Dette driftspunkt kræver, at hjælpeblæseren 16 drives selv under forhold med fuld belastning.If both heating and rotational power are required, such as in stationary power plants that supply both electricity and heat, the optimum operating point is as close as possible to the maximum power extraction via the first boiler 23. This operating point requires the auxiliary blower 16 to be operated even under conditions of full load.

På et søgående fartøj er den påkrævede energi drivkraft, dvs. rotationskraft til at drive skibsskruen (ikke vist). Mængden af varmeenergi, der behøves i fartøjet, er typisk forholdsvis lav, mens mængden af elektricitet, der behøves, er forskellig alt efter arten af fartøjet. På massegodsskibe er mængden af elektricitet, der behøves, forholdsvis lav.On a seagoing vessel, the required energy is the driving force, ie. rotational force to drive the propeller screw (not shown). The amount of heat energy needed in the vessel is typically relatively low, while the amount of electricity needed varies according to the nature of the vessel. On bulk cargo ships, the amount of electricity needed is relatively low.

Containerskibe med fragt, der skal køles, eller fragtskibe, der fragter flydende naturgas, behøver en betydelig mængde af elektrisk energi. I disse situationer er det set ud fra et overordnet energieffektivitetssynspunkt fordelagtigt at arbejde med 5.000 til 10.000 kW, der udtrækkes fra den første kedel.Container vessels with freight to be cooled or freight vessels carrying liquefied natural gas need a considerable amount of electrical energy. In these situations, it is advantageous from an overall energy efficiency point of view to operate with 5,000 to 10,000 kW extracted from the first boiler.

Figur 4 viser en tredje udførelsesform for opfindelsen. Denne udførelsesform svarer i det væsentlige til den anden udførelsesform, bortset fra at skylleluftkøleren 12a er af en anden type. Skylleluftkøleren er en vasker, som store mængder vand sprøjtes ind i og fordampes i. Det indsprøjtede vand er fortrinsvis forholdsvist varmt, f.eks. ved opvarmning af havvand (når motoren installeres i et søgående fartøj) eller flodvand (når motoren installeres i et stationært kraftværk i nærheden af en flod) med spildvarme fra (vand-) kølingssystemet (ikke vist) i motoren 1. Vaskeren 12a drives med det mål, at luft, der forlader vaskerens udløb, har en temperatur på omtrent 70 °C og en relativ fugtghed på i det væsentlige 100%. Den absolutte fugtighed af skylleluften er omtrent fem gange højere end ved skylleluften, der forlader mellemkøleren 12 i den anden udførelsesform. Følgelig er mængden af energi, der er indeholdt i skylleluften og desuden i udstødningsgasserne, øget i væsentlig grad. Således står der mere energi til disposition til udtrækning fra udstødningsgasserne ved hjælp af kedlerne 20, 23 og kraftturbinen 31.Figure 4 shows a third embodiment of the invention. This embodiment is substantially similar to the second embodiment except that the purge air cooler 12a is of a different type. The rinsing air cooler is a washer into which large amounts of water are injected and evaporated. The injected water is preferably relatively hot, e.g. by heating seawater (when the engine is installed in a seagoing vessel) or river water (when the engine is installed in a stationary power plant near a river) with waste heat from the (water) cooling system (not shown) in the engine 1. The washer 12a is operated with it For example, air leaving the washer outlet has a temperature of about 70 ° C and a relative humidity of substantially 100%. The absolute humidity of the rinsing air is about five times higher than that of the rinsing air leaving the intermediate cooler 12 in the second embodiment. Consequently, the amount of energy contained in the purge air and, moreover, in the exhaust gases is substantially increased. Thus, more energy is available for extraction from the exhaust gases by the boilers 20, 23 and the power turbine 31.

Et eksempel på driftsparametrene i en tredje udførelsesform med en MAN B&W® 12K98ME motor er vist i tabel 1.An example of the operating parameters of a third embodiment with a MAN B & W® 12K98ME engine is shown in Table 1.

For at kunne frembringe dette skylleluftforhold behøver turboladerens kompressor og den mulige hjælpeblæser en krafttilførsel på omtrent 25.000 kW, og desuden skal der tilvejebringes en vandindsprøjtning på omtrent 7,5 kg/s, der fordamper i kompressorens udgangsluft.In order to produce this flushing air condition, the turbocharger's compressor and the possible auxiliary blower need a power supply of about 25,000 kW, and in addition, a water injection of about 7.5 kg / s must be provided, which evaporates in the compressor's exhaust air.

Denne krafttilførsel (25.000 kW) skal udtrækkes fra udstødningsgassen og/eller tilføres ved hjælp af hjælpeblæsere.This power supply (25,000 kW) must be extracted from the exhaust gas and / or supplied by auxiliary fans.

I dette eksempel udtrækkes der 10.000 kW i den første kedel 23 til levering til dampturbinen 37 (denne mængde er valgt vilkårligt for dette eksempel, og der kan også vælges andre mængder, således som det er vist på figur 4A).In this example, 10,000 kW is extracted in the first boiler 23 for delivery to the steam turbine 37 (this amount is selected at random for this example, and other quantities can also be selected, as shown in Figure 4A).

Figur 4A er et diagram, der viser udregningsresultaterne for forskellige værdier for mængden af energi, der udtrækkes inden i den første kedel. Diagrammet viser kraften ved de forskellige komponenter som en procentdel af motorakselkraften for at illustrere det forhold, at opfindelsen kan anvendes ved forskellige motorstørrelser. I diagrammet ses det, at kraften, der kan udtrækkes fra kraftturbinen 31, reduceres, når kraften, der udtrækkes i den første kedel 23 inden turboladerens turbine 6 set i strømmens retning, øges. I det foreliggende eksempel kan der udtrækkes mere end 25.000 kW i den første kedel 23, uden at det er nødvendigt at tilføre kraft til hjælpeblæseren 16. I motoren ifølge den anden udførelsesform kan der kun udtrækkes omkring 14.000 kW i den første kedel, uden at det er nødvendigt at tilføre kraft til hjælpeblæseren 16. Da brændstofeffektiviteten i selve motoren kun forringes meget lidt som følge af den fugtige og varme skylleluft, er den samlede brændstofeffektivitet ved motoren 1 i kombination med udstødningsgasenergigenvindingssystemet ifølge den foreliggende opfindelse betydeligt mere effektivt end ved en traditionel motor med et udstødningsgasenergigenvindingssystem (f.eks. den anden udførelsesform). Det ideale driftspunkt for motoren ifølge den tredje udførelsesform svarer til driftspunkterne for motoren ifølge den anden udførelsesform.Figure 4A is a diagram showing the calculation results for different values of the amount of energy extracted within the first boiler. The diagram shows the power of the various components as a percentage of the motor shaft power to illustrate the fact that the invention can be applied to different engine sizes. The diagram shows that the power that can be extracted from the power turbine 31 is reduced as the power extracted in the first boiler 23 before the turbocharger turbine 6 seen in the direction of the flow increases. In the present example, more than 25,000 kW can be extracted in the first boiler 23 without the need to apply power to the auxiliary fan 16. In the engine of the second embodiment, only about 14,000 kW can be extracted in the first boiler without is necessary to add power to the auxiliary fan 16. Since the fuel efficiency of the engine itself is only slightly degraded due to the humid and hot rinsing air, the overall fuel efficiency of the engine 1 in combination with the exhaust gas recovery system of the present invention is considerably more efficient than that of a traditional engine. with an exhaust gas recovery system (e.g., the second embodiment). The ideal operating point of the motor according to the third embodiment corresponds to the operating points of the motor according to the second embodiment.

I en variation af den tredje udførelsesform drives motoren med en meget lav udstødningsgastemperatur ved udløbet.In a variation of the third embodiment, the engine is operated with a very low exhaust gas temperature at the outlet.

Disse temperaturer kan udgøre helt ned til -40 °C, hvilket betyder, at vandet i udstødningsgassen gennemgår to faseforandringer: Fra damp til væske og fra væske til faststof, f.eks. indeholder udstødningsgassen, der forlader motoren, sne eller en lignende form for is. På denne måde virker motoren som en varmepumpe, hvilket er særligt interessant for anvendelser, ved hvilke der både behøves mekanisk energi og varme såsom ved et kombineret varme- og elektricitetsværk, der benyttes til at levere elektricitet og opvarmning af kvarterer. Denne driftstilstand opnås ved at udtrække en meget stor mængde energi ved den første kedel 23, i eksemplet i tabel 1 udtrækkes der 72.000 kW. Desuden reduceres det effektive område af turbinen 6 med omtrent en tredjedel sammenlignet med det ovenfor beskrevne eksempel/udførelsesform, hvilket medfører en udstødningsgastemperatur på -25 °C. Som en konsekvens af det reducerede effektive turbineområde reduceres den mængde af energi, der står til rådighed for kompressoren 9, i betydeligt omfang (temperaturfaldet af udstødningsgassen gennem turbinen (som følge af gasekspansion) øges, når det effektive turbineområde reduceres) . På denne måde øges kapaciteten og energiforbruget i hjælpeblæseren. I denne udførelsesform er hjælpeblæseren 16 virksom ved alle belastningsforhold, f.eks. også ved fuld belastning, da kraften, der produceres af turbinen 6, ikke engang ved fuld motorbelastning er tilstrækkelig for kompressoren 9 til at producere al den nødvendige skylleluft.These temperatures can be as low as -40 ° C, which means that the water in the exhaust gas undergoes two phase changes: from steam to liquid and from liquid to solid, e.g. contains the exhaust gas leaving the engine, snow or a similar form of ice. In this way, the engine acts as a heat pump, which is particularly interesting for applications where both mechanical energy and heat are needed, such as a combined heat and power plant used to supply electricity and neighborhood heating. This operating state is obtained by extracting a very large amount of energy at the first boiler 23, in the example in Table 1, 72,000 kW is extracted. In addition, the effective area of the turbine 6 is reduced by about one-third compared to the example / embodiment described above, which results in an exhaust gas temperature of -25 ° C. As a consequence of the reduced effective turbine area, the amount of energy available to the compressor 9 is significantly reduced (the temperature drop of the exhaust gas through the turbine (due to gas expansion) increases as the effective turbine area is reduced). In this way, the capacity and energy consumption of the auxiliary fan are increased. In this embodiment, the auxiliary fan 16 is operative in all load conditions, e.g. also at full load, since the power produced by the turbine 6 is not even at full engine load sufficient for compressor 9 to produce all the necessary flushing air.

Når motoren kører på svær brændselsolie eller dieselolie, konstrueres komponenterne i udstødningsdelen efter dugpunktet set i strømmens retning med korrosionsresistente materialer, således at de kan modstå de sure aflejriner, der er et resultat af svovlindholdet i disse brændstoffer (kondensatet indeholder svovlsyre).When the engine is running on heavy fuel oil or diesel fuel, the components of the exhaust section, after the dew point, are designed in the direction of flow with corrosion-resistant materials to withstand the acidic deposits resulting from the sulfur content of these fuels (the condensate contains sulfuric acid).

Når motoren drives med naturgas eller et andet brændstof, der i det væsentlige er svovlfrit, er sådanne foranstaltninger ikke påkrævet.When operating the engine with natural gas or other fuel that is essentially sulfur-free, such measures are not required.

Et eksempel på driftsparametrene for denne variant af den tredje udførelsesform med en MAN B&W® 12K98ME motor er vist i tabel 1 i spalten "3 cold".An example of the operating parameters for this variant of the third embodiment with a MAN B & W® 12K98ME engine is shown in Table 1 of the column "3 cold".

I denne variant af den tredje udførelsesform er der ingen anden kedel ved lavtrykssiden på grund af de lave temperaturer af udstødningsgassen efter turboladerens turbine. Således indeholder systemet kun den første kedel 23 ved turbinens højtryksside.In this variant of the third embodiment, there is no other boiler at the low pressure side due to the low temperatures of the exhaust gas after the turbocharger turbine. Thus, the system contains only the first boiler 23 at the high pressure side of the turbine.

I en anden variant af denne udførelsesform (ikke vist) er motoren forsynet med en anden turbine til drift med højere udstødningsgastemperaturer ved både turbinens høj- og lavtryksside (f.eks. mellem 50 og 200 °C ved lavtrykssiden og mellem 150 og 350 °C ved højtrykssiden), når kravet til varme er mindre og der sættes højere fokus på rotationkraft, f.eks. i forbindelse med drift om sommeren af et kombineret kraft- og varmeværk. Systemet kan enten skifte til en anden turbine med et større effektivt turbineområde end ved turbinen, der anvendes til at opnå udstødningsgastemperaturer under omgivelsestemperaturen, eller den anden turbine kan også have et forholdsvist lille effektivt turbineområde, og de to turbiner, der hver især har et lille effektivt område, anvendes parallelt og modtager hver især en del af udstødningsgasstrømmen. Under drift med højere udstødningsgastemperaturer leverer turbinen med det større effektive turbineområde eller de to turbiner med et lille effektivt turbineområde i paralleldrift en tilstrækkelig mængde kraft til kompressoren, således at hjælpeblæseren kun behøver at være aktiv under forhold med lav belastning. Kraften, der udtrækkes ved kedlen 23, sænkes tilsvarende for at opnå, at temperaturen af udstødningsgasserne, der forlader kedlen 23, opfylder den ønskede temperatur af udstødningsgassen ved turbinen 6's lavtryksside. Alternativt kan der anvendes en enkelt turbine med en variabel effektiv turbine (ikke vist) i stedet for to turbiner for at opnå den påkrævede fleksibilitet i det effektive turbineområde. Således er denne anden variant i stand til at arbejde i en modus, der fokuserer på varmeproduktion og en meget høj samlet energieffektivitet, mens den anden side fokuserer på produktion af rotationskraft, og systemet er i denne modus optimeret til at have en maksimal effektivitet af mængden af rotationskraft, der kan udtrækkes fra brændstoffet.In another variant of this embodiment (not shown), the engine is provided with a second turbine for operation with higher exhaust gas temperatures at both the high and low pressure side of the turbine (for example, between 50 and 200 ° C at the low pressure side and between 150 and 350 ° C at the high pressure side) when the heat demand is less and a higher focus is placed on the rotational force, e.g. in connection with operation in the summer of a combined power and heat plant. The system can either switch to another turbine with a larger effective turbine range than the turbine used to obtain exhaust gas temperatures below ambient temperature, or the other turbine may also have a relatively small effective turbine range, and the two turbines each having a small effective area, is used in parallel and each receives a portion of the exhaust gas flow. During operation with higher exhaust gas temperatures, the turbine with the larger efficient turbine area or the two turbines with a small effective turbine area in parallel operation provides a sufficient amount of power to the compressor, so that the auxiliary fan only needs to be active under low load conditions. The force extracted at the boiler 23 is similarly lowered to obtain that the temperature of the exhaust gases exiting the boiler 23 meets the desired temperature of the exhaust gas at the low pressure side of the turbine 6. Alternatively, a single turbine with a variable efficient turbine (not shown) may be used instead of two turbines to achieve the required flexibility in the efficient turbine range. Thus, this other variant is capable of operating in a mode that focuses on heat production and a very high overall energy efficiency, while the other side focuses on the production of rotational power, and the system is optimized in this mode to have maximum efficiency of the amount. of rotational force that can be extracted from the fuel.

Figur 5 viser en fjerde udførelsesform for opfindelsen. Denne udførelsesform svarer i det væsentlige til den anden udførelsesform, bortset fra at den første kedel 23 er placeret i udstødningsgasstrømmen, der forgrenes fra udstødningsgasledningen 5. Følgelig passerer kun den forgrenede del af udstødningsgasserne gennem den første kedel 23. En ledning 30 leder udstødningsgasserne fra udløbet på den første kedel 23 og hen til kraftturbinen 31. Fordelen ved denne udførelsesform ligger i, at udstødningsgasserne kan strømme fra udstødningsgasmodtageren 3 direkte hen til turboladerens turbine 6, hvilket betyder, at motoren har en bedre reaktion i forbindelse med accelerationer. Udløbet på kraftturbinen 31 er enten forbundet med indløbet på den anden kedel 20 eller den sidste del af udstødningsledningen 21 som vist ved den stiplede linje. Valget af forbindelsen afhænger af udløbstemperaturen ved kraftturbinen 31. Hvis udløbstemperaturen ved kraftturbinen 31 er betydeligt lavere end ved turboladerens turbine 6, forbindes udløbet på kraftturbinen med den sidste del af udstødningsledningen 21.Figure 5 shows a fourth embodiment of the invention. This embodiment is substantially similar to the second embodiment except that the first boiler 23 is located in the exhaust gas stream branched from the exhaust gas line 5. Accordingly, only the branched portion of the exhaust gases passes through the first boiler 23. A conduit 30 directs the exhaust gases from the outlet on the first boiler 23 and to the power turbine 31. The advantage of this embodiment lies in that the exhaust gases can flow from the exhaust gas receiver 3 directly to the turbocharger turbine 6, which means that the engine has a better reaction in connection with accelerations. The outlet of the power turbine 31 is either connected to the inlet of the second boiler 20 or the last part of the exhaust line 21 as shown by the dotted line. The choice of connection depends on the outlet temperature at the power turbine 31. If the outlet temperature at the power turbine 31 is considerably lower than at the turbocharger turbine 6, the outlet on the power turbine is connected to the last part of the exhaust line 21.

Et eksempel på driftsparametrene for den fjerde udførelsesform med en MAN B&W® 12K98ME motor er vist i tabel 1 i spalte "4".An example of the operating parameters of the fourth embodiment with a MAN B & W® 12K98ME engine is shown in Table 1 in column "4".

I dette eksempel forgrenes 20% af udstødningsgasserne mod kraftturbinen, den mulige kraftturbines kraftudtag (POPT) eller hjælpeblæserens krafttilførsel.In this example, 20% of the exhaust gases are branched off against the power turbine, the potential power turbine power take-off (POPT) or the auxiliary blower power supply.

Det er muligt at bestemme en optimal værdi med hensyn til kraftudtrækningen fra det samlede system. Dette afhænger til syvende og sidst af omstændigheder såsom arten af kedlen, arten af dampturbinen og brugsbetingelserne for den store totaktsdieselmotor På søgående fartøjer sættes der hovedsageligt fokus på tilvejebringelsen af rotationskraft, mens der ved en anvendelse i et stationært kraftværk fokuseres i lige høj grad på varmeproduktion (opvarmning af kvarterer) og produktion af elektricitet.It is possible to determine an optimal value in terms of the power extraction from the overall system. Ultimately, this depends on circumstances such as the nature of the boiler, the nature of the steam turbine, and the conditions of use of the large two-stroke diesel engine. In seagoing vessels, the main focus is on providing rotational power, while when used in a stationary power plant, focus is equally on heat production. (district heating) and electricity generation.

Kraften, der står til rådighed i udstødningsgasstrømmen (160 kg/s) ved 455 °C og 3,35 bar (abs.), kan udnyttes i fire indretninger.The power available in the exhaust gas flow (160 kg / s) at 455 ° C and 3.35 bar (abs.) Can be utilized in four devices.

1) Den første kedel 23 inden turboladerens turbine 6 set i strømmens retning; 2) kraftturbinen 31; 3) den anden kedel 20 efter turboladerens turbine 6 set i strømmens retning; og 4) turboladerens turbine 6.1) The first boiler 23 before the turbocharger turbine 6 seen in the direction of flow; 2) the power turbine 31; 3) the second boiler 20 after the turbocharger turbine 6 seen in the direction of flow; and 4) the turbocharger turbine 6.

Systemet kan drives ved forskellige driftspunkter med en variabel mængde af kraft, der udtages fra udstødningsgassen ved den første kedel 23 og kraftturbinen 31.The system can be operated at various operating points with a variable amount of power extracted from the exhaust gas at the first boiler 23 and the power turbine 31.

Kraften, der udtrækkes i den første kedel 23 inden turboladerens turbine 6 set i strømmens retning, reducerer den kraft, der står til rådighed for turboladerens turbine 6 og kraftturbinen 31, mens kraften, der udtrækkes i den anden kedel 20 ikke har nogen indflydelse på kraften i turboladeren og kraftturbinen.The force extracted in the first boiler 23 before the turbocharger turbine 6 seen in the flow direction reduces the power available to the turbocharger turbine 6 and the power turbine 31, while the force extracted in the second boiler 20 has no influence on the force. in the turbocharger and power turbine.

Resultaterne for andre mængder af energi, der udtrækkes fra den første kedel 23, vises i diagrammet på figur 5A.The results for other amounts of energy extracted from the first boiler 23 are shown in the diagram of Figure 5A.

I en variant af den fjerde udførelsesform (ikke vist) erstattes køleenheden 12 af en køle- og befugtningsenhed 12a, der tilføjer en betydelig mængde vand (damp) til ladeluften. Ladeluften afkøles ved denne udførelsesform ikke til en så lav temperatur som i udførelsesformerne uden befugtning af ladeluften. Driftsparametrene for denne udførelsesform er vist i tabel 1 i spalten „4 humid".In a variant of the fourth embodiment (not shown), the cooling unit 12 is replaced by a cooling and wetting unit 12a which adds a significant amount of water (steam) to the charging air. In this embodiment, the charging air is not cooled to such a low temperature as in the embodiments without wetting the charging air. The operating parameters for this embodiment are shown in Table 1 in the column "4 humid".

Figur 6 viser en femte udførelsesform for opfindelsen. Denne udførelsesform svarer i det væsentlige til den anden udførelsesform, bortset fra at den anden kedel 20 ikke er tilvejebragt. Desuden drives motoren med en meget lav udstødningsgastemperatur ved udløbet. Disse temperaturer kan udgøre helt ned til -40 °C, hvilket betyder, at vandet i udstødningsgassen gennemgår to faseforandringer: Fra damp til væske og fra væske til faststof, f.eks. indeholder gassen, der forlader motoren, sne eller en lignende form for is. På denne måde virker motoren som en varmepumpe, hvilket er særligt interessant i forbindelse med anvendelser, ved hvilke der både behøves mekanisk energi og varme såsom i et kombineret varme- og elektricitetsværk, der anvendes til levering af elektricitet og opvarmning af kvarterer.Figure 6 shows a fifth embodiment of the invention. This embodiment is substantially similar to the second embodiment, except that the second boiler 20 is not provided. In addition, the engine is operated at a very low exhaust gas temperature at the outlet. These temperatures can be as low as -40 ° C, which means that the water in the exhaust gas undergoes two phase changes: from steam to liquid and from liquid to solid, e.g. contains the gas leaving the engine, snow or a similar kind of ice. In this way, the engine acts as a heat pump, which is particularly interesting in applications where both mechanical energy and heat are needed, such as in a combined heat and power plant used to supply electricity and heat neighborhoods.

Den lave temperatur af udstødningsgassen opnås ved at udtrække en stor mængde energi ved kedlen 23, således at temperaturen af udstødningsgasserne, der forlader kedlen 23, er forholdsvis lav. Den efterfølgende ekspansion af udstødningsgassen i turboladeren medfører et yderligere fald af udstødningsgassens temperatur. Dette temperaturfald er ikke begrænset til omgivelsestemperaturen men kan falde til betydeligt under omgivelsestemperaturen. På denne måde omdannes forbrændingsmotoren til en såkaldt varmepumpe, i hvilken lavtemperaturvarmeenergi udtrækkes fra omgivelserne for at producere højtemperaturvarme.The low temperature of the exhaust gas is obtained by extracting a large amount of energy at the boiler 23 so that the temperature of the exhaust gases leaving the boiler 23 is relatively low. The subsequent expansion of the exhaust gas in the turbocharger causes a further decrease in the exhaust gas temperature. This drop in temperature is not limited to the ambient temperature but can drop significantly below ambient temperature. In this way, the combustion engine is converted into a so-called heat pump, in which low-temperature heat energy is extracted from the surroundings to produce high-temperature heat.

Når motoren kører på svær brændselsolie eller dieselolie, konstrueres komponenterne i udstødningsdelen efter dugpunktet set i strømmens retning med korrosionsresistente materialer, således at de kan modstå de sure aflejringer, der er et resultat af svovlindholdet i disse brændstoffer (kondensatet indeholder SO3 - svovlsyre).When the engine is running on heavy fuel oil or diesel fuel, the components of the exhaust section after the dew point are constructed in the direction of flow with corrosion-resistant materials so that they can withstand the acidic deposits resulting from the sulfur content of these fuels (the condensate contains SO3 - sulfuric acid).

Når motoren drives med naturgas (LNG), LPG, DME, alkohol eller et andet brændstof, der i det væsentlige er svovlfrit, er sådanne foranstaltninger ikke påkrævet.When operating with natural gas (LNG), LPG, DME, alcohol or other fuel that is essentially sulfur-free, such measures are not required.

I den femte udførelsesform er der ingen kedel på lavtrykssiden på grund af de lave temperaturer af udstødningsgassen efter turboladerens turbine. Således indeholder systemet kun den første kedel 23 ved turbinens høj tryksside.In the fifth embodiment, there is no boiler on the low pressure side due to the low temperatures of the exhaust gas after the turbocharger turbine. Thus, the system contains only the first boiler 23 at the high pressure side of the turbine.

Et eksempel på driftsparametrene for den femte udførelsesform, hvor der anvendes en MAN B&W® 12K98ME motor, er vist i tabel 1 i spalten "5&6".An example of the operating parameters of the fifth embodiment using a MAN B & W® 12K98ME engine is shown in Table 1 of the column "5 & 6".

Kraften, der står til rådighed i udstødningsgasstrømmen (160 kg/s ved 455 °C og 3,30 bar (abs.), udnyttes i tre indretninger.The power available in the exhaust gas stream (160 kg / s at 455 ° C and 3.30 bar (abs.) Is utilized in three devices.

1) Den første kedel 23 inden turboladerens turbine 6 set i strømmens retning; 2) kraftturbinen 31; og 3) turboladerens turbine 61) The first boiler 23 before the turbocharger turbine 6 seen in the direction of flow; 2) the power turbine 31; and 3) the turbocharger turbine 6

Systemet kan drives ved forskellige driftspunkter med en variabel mængde af kraft, der udtages fra udstødningsgassen ved den første kedel 23 og kraftturbinen 31.The system can be operated at various operating points with a variable amount of power extracted from the exhaust gas at the first boiler 23 and the power turbine 31.

Kraften, der udtrækkes i den første kedel 23 inden turboladerens turbine 6 set i strømmens retning, reducerer den kraft, der står til rådighed for turboladerens turbine 6 og kraftturbinen 31.The force extracted in the first boiler 23 before the turbocharger turbine 6 seen in the direction of flow reduces the power available to the turbocharger turbine 6 and the power turbine 31.

I en variant af den femte udførelsesform (ikke vist) er motoren ligesom beskrevet ovenfor i forbindelse med den tredje udførelsesform forsynet med to turbiner for også at gøre det muligt at drive motoren med højere udstødningsgastemperaturer med fokus på effektiviteten af mængden af rotationskraften, der udtrækkes fra brændstoffet i forhold til den samlede brændstofenergi (udregnet i forhold til den kombinerede varme og kraft, der produceres af motoren) .In a variant of the fifth embodiment (not shown), as described above, in connection with the third embodiment, two turbines are provided to also allow the engine to operate at higher exhaust gas temperatures, focusing on the efficiency of the amount of rotational force extracted from the engine. the fuel in relation to the total fuel energy (calculated in relation to the combined heat and power produced by the engine).

Figur 7 viser en sjette udførelsesform for opfindelsen. Denne udførelsesform svarer til udførelsesformen på figur 6, bortset fra at turboladeren 8 er udeladt. En elektrisk drevet blæser 16' (der ikke længere kan betegnes som „hjælpeblæser") sætter skylleluften under tryk. På udstødningsgassiden overtager en udvidet kraftturbine 31' funktionen af turboladerens turbine og leverer elektricitet via den elektriske generator 32' til den elektriske drivmotor 17', der føder blæseren 16'. Overskydende elektrisk energi, der frembringes af den udvidede generator 32', kan anvendes til andre formål. Håndteringen af den elektriske energi, der frembringes af generatoren 32', kan foretages af en styreenhed (ikke vist), der arbejder i overensstemmelse med et fødestyreprogram, eller under direkte instruktioner fra en levende operatør. Fraværet af en fast forbindelse mellem turbinen og kompressoren muliggør en mere fleksibel drift af denne motor, da kraften, der genereres ved hjælp af kraftturbinen, kan fordeles mere fleksibelt end ved en fast akselforbindelse mellem turbinen og kompressoren. Et akkumulatorsystem (ikke vist) såsom et elektrisk batteri kan anvendes til at kompensere for udsving i mængden af energi, der kræves til blæseren 16', hvorved motorens reaktion i forbindelse med accelerationer forbedres, da den afgivne blæsereffekt kan øges samtidig med en forøgelse af mængden af indsprøjtet brændstof, uden at det er nødvendigt at vente på turbinens reaktion på den øgede udstødningsgasstrøm.Figure 7 shows a sixth embodiment of the invention. This embodiment is similar to the embodiment of Figure 6, except that the turbocharger 8 is omitted. An electrically driven fan 16 '(which can no longer be referred to as "auxiliary fan") pressurizes the purge air. On the exhaust side, an extended power turbine 31' assumes the function of the turbocharger's turbine and delivers electricity via electric generator 32 'to electric drive motor 17', supplying the fan 16 '. Excess electrical energy generated by the extended generator 32' can be used for other purposes. The handling of the electrical energy generated by the generator 32 'can be done by a control unit (not shown) operating The absence of a fixed connection between the turbine and the compressor allows for a more flexible operation of this engine, since the power generated by the power turbine can be more flexibly distributed than by a turbine. a fixed shaft connection between the turbine and the compressor An accumulator system (not shown) such as an electricity Battery can be used to compensate for fluctuations in the amount of energy required for the fan 16 ', thereby improving the engine's response to accelerations, as the delivered fan power can be increased at the same time as an increase in the amount of fuel injected without it being necessary to wait for the reaction of the turbine to the increased exhaust gas flow.

Motoren ifølge den sjette udførelsesform kan drives fleksibelt over et område af kraftværdier, der kan udtrækkes inde fra kedlen 23. I en „vinter"-indstilling eller driftstilstand, hvor der behøves store mængder af varme til opvarmning af kvarterer, drives motoren således som en varmepumpe med udstødningsgastemperaturer ved udløbet på et godt stykke under 0°C, og en „sommer"-indstilling eller driftstilstand, hvor motoren ikke drives som en varmepumpe og udstødningsgastemperaturer inden for et område på mellem 50 og 200 °C. Til sommerindstillingen anvendes der en anden turbine (ikke vist) i kombination med kraftturbinen 31' eller i stedet for kraftturbinen 31', således at det samlede effektive turbineområde er forøget. Alternativt kan der anvendes en enkelt turbine med en variabel effektiv turbine. Skiftet af driftstilstanden bestemmes også af mængden af energi, der udtrækkes ved kedlen 23. Jo større mængden af energien, der udtrækkes ved kedlen 23, er, jo lavere bliver temperaturen af udstødningsgassen, der forlader turbinen.The motor according to the sixth embodiment can be operated flexibly over a range of force values which can be extracted from the boiler 23. In a "winter" setting or operating condition where large amounts of heat are needed for heating the quarters, the motor is thus operated as a heat pump. with exhaust gas temperatures at the outlet well below 0 ° C, and a "summer" setting or operating condition where the engine is not operated as a heat pump and exhaust gas temperatures within a range of between 50 and 200 ° C. For the summer setting, another turbine (not shown) is used in combination with the power turbine 31 'or instead of the power turbine 31', so that the overall effective turbine area is increased. Alternatively, a single turbine with a variable efficient turbine can be used. The change of operating state is also determined by the amount of energy extracted at the boiler 23. The greater the amount of energy extracted at the boiler 23, the lower the temperature of the exhaust gas leaving the turbine.

I "vinter"-indstillingen svarer de forskellige temperaturer og tryk til eksemplet, der er tilvejebragt for den femte udførelsesform, jf. tabel 1.In the "winter" setting, the different temperatures and pressures correspond to the example provided for the fifth embodiment, cf. Table 1.

I en variation af den sjette udførelsesform (ikke vist) driver turbinen 31' en hydraulikpumpe, og blæseren 16 drives af en hydraulikmotor (i stedet for en elektrisk generator henholdsvis motor). Hydraulikpumpen og motoren kan være positive fortrængningsindretninger eventuelt med en variabel slaglængde til opnåelse af fleksibilitet. Hydraulikpumpen og motoren er forbundet med hinanden via ledninger og ventiler, der styres af styreenheden 27, således at den hydrauliske energi, der leveres af pumpen, anvendes til at forsyne hydraulikmotoren.In a variation of the sixth embodiment (not shown), turbine 31 'operates a hydraulic pump and fan 16 is driven by a hydraulic motor (instead of an electric generator or motor, respectively). The hydraulic pump and motor may be positive displacement devices, optionally with a variable stroke to provide flexibility. The hydraulic pump and motor are connected to each other via wires and valves controlled by the control unit 27 so that the hydraulic energy supplied by the pump is used to supply the hydraulic motor.

En anden variation af den sjette udførelsesform (ikke vist) drives med udstødningsgas på 180 °C og en anden kedel på lavtrykssiden af kraftturbinen 31' for at maksimere effektiviteten af "sommer"-indstillingen. I dette tilfælde svarer motorparametrene til motorparametrene i den tredje udførelsesform (jf. tabel 1) i spalten "3 cold".Another variation of the sixth embodiment (not shown) is operated with exhaust gas of 180 ° C and another boiler on the low pressure side of the power turbine 31 'to maximize the efficiency of the "summer" setting. In this case, the engine parameters correspond to the engine parameters of the third embodiment (see Table 1) in the column "3 cold".

Motoren kan ikke blot drives ved de to ekstremer, der er nævnt ovenfor, i virkeligheden kan motoren drives med udstødningsgastemperaturer, der forlader turbinen, ved en hvilken som helst ønsket mellemliggende temperatur ved at justere mængden af energien, der udtrækkes ved kedlen 23, og vælge det passende effektive turbineområde svarende hertil. Til dette formål kan motoren også indeholde to turbiner med forskellige effektive turbineområder, en turbine med et lille effektivt turbineområde og en turbine med et større effektivt turbineområde. I denne variant kan motoren alene drives med turbinen med det lille effektive turbineområde ved meget lave udstødningsgastemperaturer ved lavtrykssiden af denne (vinterindstilling i et kombineret varme- og kraftværk), alene med turbinen med det større effektive turbineområde til mellemtemperaturer af udstødningsgassen ved lavtrykssiden af denne (forårs-/efterårsindstilling i et kombineret varme- og kraftværk) og med begge turbiner parallelt til høje udstødningsgastemperaturer ved lavtrykssiden af turbinerne (sommerindstilling i et kombineret varme- og kraftværk).Not only can the engine be operated at the two extremes mentioned above, in fact, the engine can be operated at exhaust gas temperatures exiting the turbine at any desired intermediate temperature by adjusting the amount of energy extracted at the boiler 23 and selecting the suitably efficient turbine area corresponding thereto. For this purpose, the engine may also contain two turbines with different efficient turbine ranges, one turbine with a small efficient turbine range and one turbine with a larger efficient turbine range. In this variant, the engine can only be operated with the turbine with the small efficient turbine range at very low exhaust gas temperatures at its low pressure side (winter setting in a combined heat and power plant), only with the turbine with the larger efficient turbine range for intermediate temperatures of the exhaust gas at this low pressure side ( spring / autumn setting in a combined heat and power plant) and with both turbines parallel to high exhaust gas temperatures at the low pressure side of the turbines (summer setting in a combined heat and power plant).

Figur 8 viser en syvende udførelsesform for opfindelsen. Denne udførelsesform svarer til den fjerde udførelsesform. Imidlertid er luftstrømmen til turboladeren 8 og udstødningsgasstrømmen fra turboladeren/kraftturbinen i den syvende udførelsesform reduceret med 20%, idet 20% af udstødningsgassen recirkuleres via den første kedel 23, recirkulationsledningen 19, en blæser 18 og en vasker 18a, tilbage til skyllesystemet ved ledningen 11 inden mellemkøleren 12 set i strømmens retning. Udløbet på kraftturbinen 31 er enten forbundet med indløbet på den anden kedel 20 eller den sidste del af udstødningsledningen 21 som vist ved den stiplede linje. Valget af forbindelsen afhænger af udløbstemperaturen ved kraftturbinen 31. Hvis udløbstemperaturen ved kraftturbinen 31 er betydeligt lavere end udløbstemperaturen ved turboladerens turbine 6, forbindes udløbet ved kraftturbinen med den sidste del af udstødningsledningen 21.Figure 8 shows a seventh embodiment of the invention. This embodiment is similar to the fourth embodiment. However, the air flow to the turbocharger 8 and the exhaust gas flow from the turbocharger / power turbine in the seventh embodiment is reduced by 20%, with 20% of the exhaust gas being recycled via the first boiler 23, the recirculation line 19, a blower 18 and a washer 18a, back to the flushing system at the conduit 11 before the intermediate cooler 12 seen in the direction of flow. The outlet of the power turbine 31 is either connected to the inlet of the second boiler 20 or the last part of the exhaust line 21 as shown by the dotted line. The choice of connection depends on the outlet temperature at the power turbine 31. If the outlet temperature at the power turbine 31 is significantly lower than the outlet temperature at the turbocharger turbine 6, the outlet at the power turbine is connected to the last part of the exhaust line 21.

Et eksempel på driftsparametrene for denne udførelsesform, der anvender den samme motor som i de foregående udførelsesformer, er vist i tabel 1, spalte "7".An example of the operating parameters of this embodiment using the same engine as in the previous embodiments is shown in Table 1, column "7".

For at kunne producere denne luftmængde på 128 kg/s med et skyllelufttryk på 3, 6 bar kræver turboladerens kompressor en krafttilførsel på omtrent 20.000 kW.To produce this airflow of 128 kg / s with a flushing air pressure of 3, 6 bar, the turbocharger compressor requires a power supply of approximately 20,000 kW.

Kraften skal udtrækkes fra udstødningsgassen ved turboladerens turbine. Udstødningsgassen indeholder 22.400 kW. Turboladerens turbine behøver kun at have 20000/22400 x 100% = 89% af udstødningsgasstrømmen for at kunne producere de nødvendige 20.000 kW. Den resterende strøm på 11% kan anvendes i kraftturbinen 31. Desuden udgør udstødningsgassens recirkulationsstrøm 20% af den samlede udstødningsgasstrøm, og al energien i strømlinjen kan anvendes i den første kedel 23.The power must be extracted from the exhaust gas at the turbocharger turbine. The exhaust gas contains 22,400 kW. The turbocharger's turbine needs only 20000/22400 x 100% = 89% of the exhaust gas flow to produce the required 20,000 kW. The remaining current of 11% can be used in the power turbine 31. In addition, the exhaust gas recirculation flow represents 20% of the total exhaust gas flow, and all the energy in the streamline can be used in the first boiler 23.

Indløbstemperaturen ved den anden kedel 20 er variabel og afhænger af kraften, der udtrækkes i kedlen 1, og bør ikke være lavere end omtrent 300 °C, da temperaturer, der er lavere end 300 °C, resulterer i udløbstemperaturer, der er lavere end 180 °C (hvis der anvendes naturgas eller et andet svovlfrit brændstof, kan temperaturerne vælges lavere med kondensation og mulig frysning af udstødningsgassen for at maksimere den samlede energieffektivitet).The inlet temperature of the second boiler 20 is variable and depends on the force extracted in the boiler 1 and should not be lower than about 300 ° C since temperatures lower than 300 ° C result in outlet temperatures lower than 180 ° C (if natural gas or other sulfur-free fuel is used, temperatures may be selected lower with condensation and possible freezing of the exhaust gas to maximize overall energy efficiency).

Kraftturbinen 31's kraft afhænger kun af kraftturbinens indløbstemperatur eller af, hvor meget kraft der faktisk udtrækkes i den første kedel 23's kraftturbineindløbsstreng.The power of the turbine 31 depends only on the inlet temperature of the power turbine or on how much power is actually extracted in the power boiler inlet string of the first boiler 23.

Desuden er kedlens indløbstemperatur nu en blanding af turboladerens udløbstemperatur og kraftturbinens udløbstemperatur.In addition, the boiler inlet temperature is now a mixture of the turbocharger outlet temperature and the power turbine outlet temperature.

Denne udførelsesform er særlig fordelagtig, idet den opnår lave ΝΟχ-værdier for udstødningsgassen.This embodiment is particularly advantageous in that it obtains low ΝΟχ values for the exhaust gas.

TABEL 1TABLE 1

Figure DK178133B1D00281
Figure DK178133B1D00291
Figure DK178133B1D00301
Figure DK178133B1D00311

Udførelsesformerne, der er beskrevet ovenfor, er blevet vist med et totrins dampsystem. Systemet kan imidlertid også udføres som et system med et enkelt trin eller som et system med flere end to trin.The embodiments described above have been shown with a two stage steam system. However, the system can also be implemented as a single-stage system or as a multi-stage system.

Udførelsesformen, hvor kedlen er placeret inden i udstødningsgasmodtageren som vist med henvisning til figurerne 1 og 2, kan kombineres med de andre udførelsesformer, der er vist på figurerne 3, 3a, 4, 4a, 5-8 .The embodiment in which the boiler is located within the exhaust gas receiver as shown with reference to Figures 1 and 2 can be combined with the other embodiments shown in Figures 3, 3a, 4, 4a, 5-8.

Eksemplerne ovenfor vedrører alle en motor, der kører på sin maksimale kontinuerlige motorydelse (MCR). Det skal bemærkes, at disse motorer kan køre under forskellige belastninger, hvilket kan resultere i andre værdier for temperaturerne og trykkene i indsugnings- og udstødningssystemerne.The examples above all relate to an engine running at its maximum continuous engine output (MCR). It should be noted that these motors can run under different loads, which may result in other values for the temperatures and pressures of the intake and exhaust systems.

Selvom udførelsesformerne og eksemplerne ovenfor er baseret på en specifik model af en stor totaktsdieselmotor, kan der med fordel anvendes andre størrelser og typer af forbrændingsmotorer i forbindelse med opfindelserne, der er beskrevet her.Although the embodiments and examples above are based on a specific model of a large two-stroke diesel engine, other sizes and types of internal combustion engines may advantageously be used in connection with the inventions described herein.

Temperaturerne af udstødningsgasserne, der forlader cylindrene i en stor totaktsdieselmotor, ligger typisk mellem 400 og 500 °C. Trykket i udstødningsgasserne, der forlader cylindrene på en sådan motor, er normalt højere end 2 bar og ligger typisk mellem 3 og 4 bar.Typically, the temperatures of the exhaust gases leaving the cylinders in a large two-stroke diesel engine are between 400 and 500 ° C. The pressure in the exhaust gases leaving the cylinders on such an engine is usually higher than 2 bar and is typically between 3 and 4 bar.

Konceptet med at ekspandere udstødningsgassen via turbinen til temperaturer, der er lavere end omgivelsestemperaturen, kan specifikt anvendes til totakts- og firtaktsforbrændingsmotorer.The concept of expanding the exhaust gas via the turbine to temperatures lower than ambient temperature can be specifically used for two-stroke and four-stroke internal combustion engines.

Udtrykket "indeholder", som det anvendes i kravene, udelukker ikke andre elementer eller trin. Udtrykket "en" eller "et", som det anvendes i kravene, udelukker ikke flertal.The term "contains" as used in the claims does not exclude other elements or steps. The term "one" or "one" as used in the claims does not exclude a majority.

Henvisningsbetegnelser, som de anvendes i kravene, skal ikke omfattes som en begrænsning af opfindelsens ramme.Reference numerals as used in the claims are not to be construed as limiting the scope of the invention.

Omend den foreliggende opfindelse er blevet beskrevet i detaljer med det formål at belyse den, skal det forstås, at sådanne detaljer kun tjener dette formål, og at der kan udføres variationer i den af fagfolk, uden at der afviges fra opfindelsens ramme.Although the present invention has been described in detail for the purpose of illustrating it, it should be understood that such details serve this purpose only and that variations in it may be performed by those skilled in the art without departing from the scope of the invention.

Claims (8)

1. Stor turboladet dieselmotor, der indeholder: en flerhed af cylindre, der hver især er forbundet med en udstødningsgasmodtager via hver deres manifoldrør, en første udstødningsgasledning set i strømmens retning til at lede udstødningsgasserne fra udstødningsgasmodtageren til indløbet på turboladerens turbine, en anden udstødningsgasledning set i strømmens retning til at lede udstødningsgasserne fra udløbet på turboladerens turbine ud i atmosfæren, en eller flere kedler, der opvarmes med udstødningsgas, eller varmevekslere til genvinding af varmeenergi fra udstødningsgasserne, kendetegnet ved, at i det mindste en af kedlerne eller varmevekslerne er placeret inden i udstødningsgasmodtageren.A large turbocharged diesel engine comprising: a plurality of cylinders, each connected to an exhaust gas receiver via their respective manifold tubes, a first exhaust gas line seen in the direction of flow to exhaust the exhaust gases from the exhaust gas receiver to the inlet of the turbocharger turbine, a second exhaust gas line in the direction of flow to direct the exhaust gases from the outlet of the turbocharger turbine into the atmosphere, one or more boilers heated with exhaust gas, or heat exchangers for recovering heat energy from the exhaust gases, characterized in that at least one of the boilers or heat exchangers is located in the exhaust gas receiver. 2. Motor ifølge krav 1, som desuden indeholder en forvarmningskedel på lavtrykssiden af turboladeren, og ved hvilken kedlen, der er placeret inden i udstødningsgasmodtageren, anvendes til at overhede damp, der produceres af kedlen ved lavtrykssiden af turboladeren.The engine of claim 1, further comprising a preheater boiler on the low-pressure side of the turbocharger and wherein the boiler located within the exhaust gas receiver is used to superheat steam produced by the boiler at the low-pressure side of the turbocharger. 3. Motor ifølge krav 1 eller 2, som desuden indeholder en dampturbine, der drives med damp, der produceres af kedlen eller kedlerne.An engine according to claim 1 or 2, further comprising a steam turbine powered by steam produced by the boiler or boilers. 4. Motor ifølge krav 3, ved hvilken kraftturbinen driver en elektrisk generator.The engine of claim 3, wherein the power turbine drives an electric generator. 5. Motor ifølge et af kravene 1 til 4, ved hvilken udstødningsgasmodtageren indeholder en flerhed af kedler.An engine according to any one of claims 1 to 4, wherein the exhaust gas receiver contains a plurality of boilers. 6. Motor ifølge krav 5, ved hvilken denne flerhed af kedler danner et system, som producerer overhedet damp med flere damptrin, og som indeholder forvarmnings- og overhedningskedler.The engine of claim 5, wherein said plurality of boilers forms a system which produces superheated steam with several steam stages and which contains preheating and superheating boilers. 7. Motor ifølge krav 1, ved hvilken udstødningsgasmodtageren på tværs er inddelt i en udstødningsgassamlekanal og en varmevekslingskanal.The engine of claim 1, wherein the exhaust gas receiver is divided transversely into an exhaust gas collector duct and a heat exchange duct. 8. Motor ifølge krav 7, ved hvilken varmevekslingskanalen har et i det væsentlige ringformet tværsnit, i hvilket i det væsentlige ringsegmentformede kedelafsnit optages.An engine according to claim 7, wherein the heat exchange channel has a substantially annular cross-section into which substantially annular segment-shaped boiler sections are accommodated.
DK200801354A 2006-04-12 2008-09-29 Large turbocharged diesel engine with energy recovery device DK178133B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DK201400256A DK178371B1 (en) 2008-09-29 2014-05-09 Large turbocharged diesel engine with energy recovery device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/EP2006/003355 WO2007115579A2 (en) 2006-04-12 2006-04-12 A large turbocharged diesel engine with energy recovery arrangment
EP2006003355 2006-04-12

Publications (2)

Publication Number Publication Date
DK200801354A DK200801354A (en) 2008-09-29
DK178133B1 true DK178133B1 (en) 2015-06-15

Family

ID=38236260

Family Applications (1)

Application Number Title Priority Date Filing Date
DK200801354A DK178133B1 (en) 2006-04-12 2008-09-29 Large turbocharged diesel engine with energy recovery device

Country Status (5)

Country Link
JP (1) JP4709923B2 (en)
KR (1) KR101238728B1 (en)
CN (1) CN101415908B (en)
DK (1) DK178133B1 (en)
WO (1) WO2007115579A2 (en)

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101118661B1 (en) * 2007-05-03 2012-03-06 맨 디젤 앤드 터보 필리얼 아프 맨 디젤 앤드 터보 에스이 티스크랜드 Large supercharged two-stroke diesel engine with crossheads
CN102265003B (en) * 2008-12-25 2014-07-16 三菱重工业株式会社 Control method and control device for exhaust heat recovery system for marine vessel
DE102009006959B4 (en) * 2009-01-31 2020-03-12 Modine Manufacturing Co. Energy recovery system
IT1393567B1 (en) * 2009-04-03 2012-04-27 Ciaccini SYSTEM FOR THE GENERATION OF THERMAL AND MECHANICAL ENERGY
JP5249866B2 (en) * 2009-06-25 2013-07-31 三菱重工業株式会社 Engine exhaust energy recovery device
US8689554B2 (en) * 2009-07-21 2014-04-08 Renault Trucks Engine arrangement with an improved exhaust heat recovery arrangement
JP5138643B2 (en) * 2009-07-28 2013-02-06 三菱重工業株式会社 Turbine generator, turbine generator control method, control device, and ship equipped with the turbine generator
JP5155977B2 (en) * 2009-09-30 2013-03-06 三菱重工業株式会社 Power generation system control device, power generation system, and power generation system control method
JP2011111975A (en) 2009-11-26 2011-06-09 Mitsubishi Heavy Ind Ltd Steam turbine power generation system and ship provided with same
JP5357720B2 (en) * 2009-11-27 2013-12-04 三菱重工業株式会社 Ships equipped with exhaust gas treatment equipment
JP5232766B2 (en) * 2009-12-24 2013-07-10 三菱重工業株式会社 Ship engine control system
DE102010028200B4 (en) * 2010-04-26 2016-02-04 Man Diesel & Turbo Se Engine assembly
DK177631B1 (en) * 2010-05-10 2014-01-06 Man Diesel & Turbo Deutschland Large two-stroke diesel engine with exhaust gas purification system
DE102010027068A1 (en) * 2010-07-13 2012-01-19 Behr Gmbh & Co. Kg System for using waste heat from an internal combustion engine
CN103003532B (en) * 2010-08-27 2015-07-15 沃尔沃卡车集团 Engine arrangement comprising a heat recovery circuit
EP2913486B1 (en) * 2010-09-24 2018-04-04 Mitsubishi Heavy Industries, Ltd. Power generation method and turbine generator
DE102010056238A1 (en) * 2010-12-24 2012-06-28 Audi Ag Drive with an internal combustion engine and an expansion machine with gas recirculation
SE1150169A1 (en) * 2011-02-25 2012-06-26 Scania Cv Ab Systems for converting thermal energy into mechanical energy in a vehicle
DE102011005072A1 (en) 2011-03-03 2012-09-06 Behr Gmbh & Co. Kg internal combustion engine
CN102536442A (en) * 2011-03-22 2012-07-04 摩尔动力(北京)技术股份有限公司 High-efficiency thermal power system
JP5808128B2 (en) * 2011-03-31 2015-11-10 三菱重工業株式会社 Gas fired engine
JP2012211751A (en) * 2011-03-31 2012-11-01 Universal Shipbuilding Corp Waste heat recovery apparatus of exhaust receiver
CH705014A1 (en) * 2011-05-27 2012-11-30 Liebherr Machines Bulle Sa Energy recovery system.
FI20115541L (en) * 2011-06-03 2012-12-04 Waertsilae Finland Oy Exhaust gas system and method for reducing exhaust gas temperature
KR101328401B1 (en) * 2011-09-22 2013-11-13 대우조선해양 주식회사 Energy saving system of ship by using waste heat
EP2762715A4 (en) 2011-09-28 2015-05-06 Mitsubishi Heavy Ind Ltd Direct fuel injection diesel engine apparatus
KR101307100B1 (en) 2011-11-24 2013-09-11 현대중공업 주식회사 Multiplex power generating system improving efficiency of the marine engine
JP5701203B2 (en) 2011-12-27 2015-04-15 三菱重工業株式会社 Electric supercharger using waste heat of internal combustion engine
JP5438146B2 (en) * 2012-01-31 2014-03-12 月島機械株式会社 Pressurized flow furnace system
WO2013150620A1 (en) * 2012-04-04 2013-10-10 三菱重工業株式会社 Vessel power-generation control device, vessel, and vessel power-generation control method
DK177700B1 (en) * 2012-04-19 2014-03-24 Man Diesel & Turbo Deutschland A large slow running turbocharged two stroke internal combustion engine with crossheads and exhaust- or combustion gas recirculation
DE102012009319B4 (en) * 2012-05-10 2018-11-08 Man Diesel & Turbo, Filial Af Man Diesel & Turbo Se, Tyskland Two-stroke large diesel engine with Rezirkulationsgasverdichter and thus coupled steam turbine
US8925317B2 (en) 2012-07-16 2015-01-06 General Electric Company Engine with improved EGR system
JP5398886B2 (en) * 2012-08-21 2014-01-29 三菱重工業株式会社 Power generation system control device, power generation system, and power generation method
JP2015532904A (en) * 2012-09-26 2015-11-16 マハジャン マヘシュ ダッタトレーMAHAJAN,Mahesh Dattatray Air thrust vehicle
JP2013029111A (en) * 2012-09-28 2013-02-07 Mitsubishi Heavy Ind Ltd Power generation method, turbine power generator, method of controlling turbine power generator, control device, and ship including the turbine power generator
FR2996593A1 (en) * 2012-10-04 2014-04-11 rui-qi Tong Device for re-use and transformation of heat from exhaust system of vehicle into electrical energy, has buffer body for steam pressure, where body is connected between inflating valve and heat exchanger conduit that is connected to tube
JP5976498B2 (en) * 2012-10-26 2016-08-23 三菱重工業株式会社 INTERNAL COMBUSTION ENGINE SYSTEM, SHIP HAVING THE SAME, AND METHOD FOR OPERATING INTERNAL COMBUSTION ENGINE SYSTEM
DK177616B1 (en) * 2012-12-03 2013-12-09 Man Diesel & Turbo Deutschland Large, slow-moving, turbocharged, two-stroke internal two-stroke internal combustion engine with cross heads and steam turbine
JP6122300B2 (en) * 2013-01-18 2017-04-26 川崎重工業株式会社 Engine system and ship
JP6020242B2 (en) * 2013-02-18 2016-11-02 トヨタ自動車株式会社 Waste heat utilization device for internal combustion engine
JP6071687B2 (en) * 2013-03-26 2017-02-01 月島機械株式会社 Pressurized flow furnace equipment
CH707886A1 (en) * 2013-04-12 2014-10-15 Liebherr Machines Bulle Sa Drive system.
JP5675932B2 (en) * 2013-10-31 2015-02-25 三菱重工業株式会社 Power generation method, turbine generator, turbine generator control method, control apparatus, and ship equipped with the turbine generator
CH709404A1 (en) * 2014-03-25 2015-09-30 Liebherr Machines Bulle Sa Drive system having a combustion engine and an energy recovery system.
JP6254928B2 (en) * 2014-11-14 2017-12-27 株式会社神戸製鋼所 Ship propulsion system and ship, and operation method of ship propulsion system
CN104500218B (en) * 2014-11-26 2017-01-11 上海交通大学 System capable of simultaneously improving low-speed working condition performance, high-speed working condition fuel efficiency, NOx emission and transient performance of internal combustion engine
JP6634084B2 (en) * 2014-12-12 2020-01-22 ボーグワーナー インコーポレーテッド Turbocharger turbine stage valve controlled by a single actuator
JP5908056B2 (en) * 2014-12-15 2016-04-26 三菱重工業株式会社 Gas fired engine
WO2016101186A1 (en) * 2014-12-24 2016-06-30 深圳智慧能源技术有限公司 Waste-gas turbine generator unit
CN107250494A (en) * 2015-01-30 2017-10-13 克劳迪奥·菲利波内 Waste heat recovery and conversion
JP6466739B2 (en) * 2015-02-27 2019-02-06 三菱重工業株式会社 Main machine control device and method, main machine, ship
US10202881B2 (en) * 2016-09-27 2019-02-12 Hanon Systems Integration of exhaust gas recirculation (EGR), exhaust heat recovery (EHRS), and latent heat storage in a complete exhaust thermal management module
JP2018054246A (en) * 2016-09-30 2018-04-05 常石造船株式会社 Steam generation system
JP7014518B2 (en) * 2017-03-03 2022-02-01 三菱重工業株式会社 Marine diesel engine
CN107387217A (en) * 2017-07-31 2017-11-24 中国船舶重工集团公司第七研究所 Power turbine TRT
CN107435574A (en) * 2017-09-06 2017-12-05 哈尔滨工程大学 Diesel exhaust waste heat ECR fan pressure charging system
CN114110548B (en) * 2021-10-29 2023-11-24 国能四川天明发电有限公司 Steam supply equipment and control method thereof
EP4187079A1 (en) * 2021-11-25 2023-05-31 Alfa Laval Corporate AB An arrangement for extracting heat from exhaust gas originating from an engine and a method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0434419A2 (en) * 1989-12-21 1991-06-26 Oy Wärtsilä Diesel International Ltd. Method and apparatus for effecting heat energy recovery in a large diesel engine
WO1994028298A1 (en) * 1993-05-31 1994-12-08 Kurki Suonio Eero Juho Ilmari Arrangement in combined-cycle power plant

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3797569A (en) * 1973-03-29 1974-03-19 American Schack Co Cage type radiation recuperator
DE2750894A1 (en) * 1977-09-14 1979-03-15 Elmapa Nv DEVICE FOR GENERATING THERMAL ENERGY AND ELECTRICAL ENERGY
CH632559A5 (en) * 1978-08-15 1982-10-15 Sulzer Ag Method for the operation of a ship's propulsion system and device for performing the method
JPS56156407A (en) * 1980-05-02 1981-12-03 Matsushita Electric Ind Co Ltd Pankine cycle device for automobile
DE3100732C2 (en) * 1981-01-13 1983-08-18 Mtu Motoren- Und Turbinen-Union Friedrichshafen Gmbh, 7990 Friedrichshafen Internal combustion engine with exhaust gas turbocharger
US4449660A (en) * 1981-04-30 1984-05-22 Black & Decker Inc. Fastener tool
JPS58143114A (en) * 1982-02-17 1983-08-25 Mitsubishi Heavy Ind Ltd Waste heat recovery plant for diesel engine
US4437274A (en) * 1982-05-03 1984-03-20 Masonite Corporation Building panel
JPS60261914A (en) * 1984-06-08 1985-12-25 Mitsui Eng & Shipbuild Co Ltd Waste heat recovery device for static pressure supercharging engine
JPS6144202A (en) * 1984-08-09 1986-03-03 三菱重工業株式会社 Economizer of exhaust gas for diesel engine
JPS627905A (en) * 1985-07-02 1987-01-14 Mitsubishi Heavy Ind Ltd Internal-combustion engine with steam turbine
JPS62152032A (en) * 1985-12-26 1987-07-07 Canon Inc Information processor
CH669977A5 (en) * 1986-02-27 1989-04-28 Bbc Brown Boveri & Cie
JPS62152032U (en) * 1986-03-19 1987-09-26
DE3705310A1 (en) * 1987-02-19 1988-09-01 Licentia Gmbh Exhaust turbine generator unit
DE3729117C1 (en) * 1987-09-01 1988-11-03 Man B & W Diesel Gmbh Internal combustion engine system
US4901531A (en) * 1988-01-29 1990-02-20 Cummins Engine Company, Inc. Rankine-diesel integrated system
US5381659A (en) * 1993-04-06 1995-01-17 Hughes Aircraft Company Engine exhaust reburner system and method
JP2794522B2 (en) * 1993-09-24 1998-09-10 株式会社クボタ Two-stroke engine air supply system
EP0653558B1 (en) * 1993-11-12 1998-04-22 Wärtsilä NSD Schweiz AG Process and engine for reducing the nitrous oxide content of exhaust gas of a two stroke internal combustion Diesel engine
US5540199A (en) * 1994-06-01 1996-07-30 Penn; Jay P. Radial vane rotary engine
JPH10252517A (en) * 1997-03-14 1998-09-22 Hino Motors Ltd Braking and auxiliary power device of internal combustion engine
US6729137B2 (en) * 2000-09-07 2004-05-04 Claudio Filippone Miniaturized waste heat engine
JP3915329B2 (en) * 1999-07-21 2007-05-16 日産自動車株式会社 Fuel injection control device for diesel engine
DE19938292A1 (en) * 1999-08-12 2001-02-15 Munters Euroform Gmbh Carl Device for humidifying the intake air of internal combustion engines with a turbocharger
JP2001090528A (en) * 1999-09-27 2001-04-03 Hitachi Ltd Distributed type energy generator and engine with turbo charger
US6502398B2 (en) * 2001-01-16 2003-01-07 Davorin D. Kapich Exhaust power recovery system
DE50110758D1 (en) * 2001-09-25 2006-09-28 Ford Global Tech Llc Device and method for the regeneration of an exhaust gas treatment device
JP4041956B2 (en) 2002-07-17 2008-02-06 ソニー株式会社 Data processing apparatus, data processing method, and program
US6647724B1 (en) * 2002-07-30 2003-11-18 Honeywell International Inc. Electric boost and/or generator
US20060112682A1 (en) * 2002-08-09 2006-06-01 Honda Giken Kogyo Kabushiki Kaisha Working medium supply control system in heat exchanger
GB0500253D0 (en) * 2005-01-07 2005-02-16 Peter Brotherhood Ltd Energy recovery system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0434419A2 (en) * 1989-12-21 1991-06-26 Oy Wärtsilä Diesel International Ltd. Method and apparatus for effecting heat energy recovery in a large diesel engine
WO1994028298A1 (en) * 1993-05-31 1994-12-08 Kurki Suonio Eero Juho Ilmari Arrangement in combined-cycle power plant

Also Published As

Publication number Publication date
KR20080113402A (en) 2008-12-30
CN101415908A (en) 2009-04-22
JP2009532614A (en) 2009-09-10
KR101238728B1 (en) 2013-03-05
DK200801354A (en) 2008-09-29
CN101415908B (en) 2013-03-13
WO2007115579A3 (en) 2008-06-26
JP4709923B2 (en) 2011-06-29
WO2007115579A2 (en) 2007-10-18

Similar Documents

Publication Publication Date Title
DK178133B1 (en) Large turbocharged diesel engine with energy recovery device
KR101793460B1 (en) Internal combustion engine
JP5121892B2 (en) Large turbocharged diesel engine with energy recovery configuration
FI102405B (en) Method for improving the total useful energy production of a thermal power plant i and a power plant with a liquid-cooled thermal power plant
US8689554B2 (en) Engine arrangement with an improved exhaust heat recovery arrangement
US20050056001A1 (en) Power generation plant
JP5377532B2 (en) Large turbocharged diesel engine with energy recovery configuration
US9500199B2 (en) Exhaust turbocharger of an internal combustion engine
KR102220071B1 (en) Boiler system
CN103620167A (en) Waste heat recovery installation
CN103670670B (en) Turbocharged two stroke uniflow internal combustion engine with crossheads and turbine
RU2725583C1 (en) Cogeneration plant with deep recovery of thermal energy of internal combustion engine
KR101922026B1 (en) Energy saving system for using waste heat of ship
KR102220076B1 (en) Boiler system
CN111527297A (en) Device for converting thermal energy from heat lost from an internal combustion engine
US20100186409A1 (en) Rankine cycle with multiple configuration of vortex
DK178371B1 (en) Large turbocharged diesel engine with energy recovery device
Dzida Possible efficiency increasing of ship propulsion and marine power plant with the system combined of marine diesel engine, gas turbine and steam turbine
CN102900484B (en) Large-scale turbocharged diesel engine with energy recovery device
CN102900483B (en) There is the large cross-head type two-stroke diesel engine of energy recycle device
JP5879177B2 (en) Prime mover system
GB2463641A (en) Making use of the waste heat from an internal combustion engine
KR20170138267A (en) System for recycling wasted heat of vessel
WO2014057164A2 (en) A cooling arrangement for a combined cycle internal combustion piston engine power plant