JP2012211751A - Waste heat recovery apparatus of exhaust receiver - Google Patents

Waste heat recovery apparatus of exhaust receiver Download PDF

Info

Publication number
JP2012211751A
JP2012211751A JP2011078503A JP2011078503A JP2012211751A JP 2012211751 A JP2012211751 A JP 2012211751A JP 2011078503 A JP2011078503 A JP 2011078503A JP 2011078503 A JP2011078503 A JP 2011078503A JP 2012211751 A JP2012211751 A JP 2012211751A
Authority
JP
Japan
Prior art keywords
exhaust
steam
water
boiler
heat recovery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011078503A
Other languages
Japanese (ja)
Inventor
Takeshi Kumagai
猛 熊谷
Shinji Baba
真二 馬場
Takamitsu Motoda
隆光 元田
Toru Nakao
徹 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Universal Shipbuilding Corp
Original Assignee
Hitachi Zosen Corp
Universal Shipbuilding Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp, Universal Shipbuilding Corp filed Critical Hitachi Zosen Corp
Priority to JP2011078503A priority Critical patent/JP2012211751A/en
Publication of JP2012211751A publication Critical patent/JP2012211751A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a waste heat recovery apparatus for an exhaust receiver, which is further excellent in efficiency, inexpensive and easy to handle in the exhaust receiver.SOLUTION: The waste heat recovery apparatus for the exhaust receiver includes an exhaust gas heat exchanger that is a waste heat recovery apparatus of a diesel main engine and has a structure in which water pipes are cylindrically arranged in an exhaust receiver body of the diesel main engine, or a water-cooled wall structure. The waste heat recovery apparatus for the exhaust receiver uses the exhaust gas heat exchanger as a heat exchanger for transforming the saturated steam that is steam-separated by a boiler of a marine vessel into superheated steam or transforming the boiler water that is steam-separated by the boiler of the marine vessel into steam and/or heated water to be returned to the boiler.

Description

本発明は、主として船舶に使用されるディーゼル主機関の排気レシーバ用の廃熱回装置に関する。   The present invention relates to a waste heat recovery device for an exhaust receiver of a diesel main engine mainly used for ships.

従来より、ディーゼル主機関用の排気ガス廃熱回収装置には色々の形式のものが行われている。特に排気ガスエコノマイザは多く使用されており、その効率向上のためスートブローによる色々の効率改善等が図られている(例えば、特許文献1参照)。
しかしながら、近年ディーゼル主機関の性能が向上し、過給機出口の排気ガス温度が低下傾向にあり、廃熱回収を十分に行うため排気ガスエコノマイザは大型化の傾向にあり、また、回収熱量は減少の傾向にある。
Conventionally, various types of exhaust gas waste heat recovery devices for diesel main engines have been used. In particular, exhaust gas economizers are often used, and various efficiency improvements by soot blow are being made to improve the efficiency (see, for example, Patent Document 1).
However, in recent years, the performance of diesel main engines has improved, the exhaust gas temperature at the outlet of the turbocharger has been declining, and exhaust gas economizers have been increasing in size to sufficiently recover waste heat. It tends to decrease.

特開2002−193187号公報JP 2002-193187 A

例えば、排気ガスエコノマイザ−ターボ発電機プラントシステムの場合、蒸気タービンへの蒸気は過熱蒸気とされているが、排気ガスエコノマイザ(以下、排エコという)の入り口温度が低いため、十分な過熱度を得ることが出来ず、このため過熱度を上げることにより得られるべきタービン効率の向上も期待し得ない。
また、小型船舶などでは、配置スペースとの兼ね合いから、廃熱回収装置としての排エコを装備することが困難なケースも多く、止むを得ず廃熱回収をすること自体を諦めてしまうケースもある。
また一方、最近のディーゼル主機関に装備されている過給機の性能が向上し、それに伴いシリンダ出口の排気ガスは余剰になる傾向があり、このため過給機でバイパスさせたり、或いはバイパスさせた排気ガスでガスタービンを駆動して動力回収を図る例も見受けられる。
しかし、これらは極めて高価なものとなる。
For example, in the case of an exhaust gas economizer-turbo power generator plant system, the steam to the steam turbine is superheated steam, but the exhaust gas economizer (hereinafter referred to as exhaust eco) has a low inlet temperature. Therefore, it cannot be expected to improve the turbine efficiency to be obtained by increasing the degree of superheat.
Also, for small vessels, there are many cases where it is difficult to equip exhaust ecology as a waste heat recovery device due to the arrangement space, and there is no choice but to give up the waste heat recovery itself. is there.
On the other hand, the performance of turbochargers installed in recent diesel main engines has improved, and as a result, exhaust gas at the cylinder outlet tends to become surplus. For this reason, the turbocharger can be bypassed or bypassed. In some cases, the exhaust gas is used to drive the gas turbine to recover the power.
However, these are extremely expensive.

上記のごとく、ディーゼル主機関に装備されている過給機の性能向上、主機関自体の効率運転化、スート対策等により排エコの運転効率化による廃熱回収には自ずから限界が生じつつある。また、小型船舶におけるスペースの問題は、排エコによる廃熱回収そのものを断念させてしまっている。
本願発明は、上記に鑑み、廃熱回収の手段として従来全く注目されていなかった主機関に直結している排気ガス用のレシーバ(以下、排気レシーバという)において廃熱回収手段を、単独または排エコとの協働の形で配設することにより、より効率の良い、安価で、取り扱い容易な、排気レシーバ用の廃熱回収装置を提供することを、その目的としている。
As described above, there is a natural limit to the recovery of waste heat by improving the efficiency of exhaust ecology by improving the performance of the turbocharger equipped in the diesel main engine, improving the efficiency of the main engine itself, and taking measures against soot. In addition, the problem of space in small vessels has given up the waste heat recovery itself due to waste ecology.
In view of the above, the present invention provides an exhaust gas receiver (hereinafter referred to as an exhaust receiver) directly connected to a main engine that has not been attracting attention as a waste heat recovery means. It is an object of the present invention to provide a waste heat recovery device for an exhaust receiver that is more efficient, inexpensive, and easy to handle by being arranged in cooperation with Eco.

本発明における排気レシーバの廃熱回収装置は、
1)ディーゼル主機関の廃熱回収装置であって、ディーゼル主機関の排気レシーバ本体内に円筒状に水管を配列した構造または水冷壁による構造を有する排ガス熱交換器を備えたものであり、
2)上述の1)において、前記排ガス熱交換器を、船舶内のボイラーにより汽水分離された飽和蒸気を過熱蒸気とするための熱交換器として使用するものである。
3)また、上述の1)において、前記排ガス熱交換器を、船舶内のボイラーにより汽水分離された缶水を、該ボイラーに戻す蒸気および/または加熱水とするための熱交換器として使用するものであり、
4)さらに、上述の1)または2)において、前記排ガス熱交換器を、船舶内のボイラーにより汽水分離された飽和蒸気を過熱蒸気とするための熱交換器として使用し、且つ、該ボイラーにより汽水分離された缶水を、該ボイラーに戻す蒸気および/またはより高温の加熱水とするための熱交換器として使用する排気ガスエコノマイザとの協働にて使用するものであり、
5)さらにまた、上述の1)または3)において、前記排ガス熱交換器を、船舶内のボイラーにより汽水分離された缶水を、該ボイラーに戻す蒸気および/または加熱水とするための熱交換器として使用し、且つ該ボイラーにより汽水分離された缶水を、該ボイラーに戻す蒸気および/またはより高温の加熱水とするための熱交換器として使用する排気ガスエコノマイザとの協働にて使用するものである。
The exhaust heat recovery device of the exhaust receiver according to the present invention,
1) A waste heat recovery device for a diesel main engine comprising an exhaust gas heat exchanger having a structure in which water pipes are arranged in a cylindrical shape or a structure with a water cooling wall in an exhaust receiver body of the diesel main engine,
2) In the above 1), the exhaust gas heat exchanger is used as a heat exchanger for making superheated steam saturated steam separated by steam in a ship's boiler.
3) Further, in the above 1), the exhaust gas heat exchanger is used as a heat exchanger for converting the can water, which has been steam-separated by the boiler in the ship, into steam and / or heated water to be returned to the boiler. Is,
4) Further, in the above 1) or 2), the exhaust gas heat exchanger is used as a heat exchanger for making saturated steam steam-separated by a boiler in a ship into superheated steam, and the boiler Steam water separated can water is used in cooperation with an exhaust gas economizer used as a heat exchanger for returning steam and / or higher temperature heating water to the boiler,
5) Furthermore, in the above 1) or 3), in the above-described 1) or 3), the exhaust gas heat exchanger is converted into steam and / or heated water for returning the boiler water steam-separated by the boiler in the ship to the boiler. Used in conjunction with an exhaust gas economizer used as a heat exchanger and used as a heat exchanger for steam and / or higher-temperature heated water to be returned to the boiler from canned water separated by steam To do.

また、本発明における排気レシーバの廃熱回収装置は、
6)上述の1)〜5)における、前記円筒状に配列した水管配列構造を、円周上に均等に等間隔をもって並列して配置された長尺の耐熱鋼管と、該長尺の耐熱鋼管間を各排気ガス通路に対し円周方向及び長手方向に対し密閉して接合された連結部材とにより構成したものとし、且つ、該配列構造の最外周面の直径を排気レシーバの内径より小さくし、内挿できるようにしたものであり、
7)上述の6)における、前記連結部材が、円周上に並列して配置された前記水管の最外周面において連結接合されているものであり、
8)上述の6)または7)における、前記連結部材を、前記水管との接合部において、水管の接線と連結部材との成す角度が、少なくとも鋭角にならない角度で水管外周に接合されているものとしたものである。
In addition, the exhaust heat recovery device of the exhaust receiver in the present invention,
6) A long heat-resistant steel pipe in which the water pipe array structure arranged in the above-mentioned cylindrical shape in 1) to 5) is arranged in parallel at equal intervals on the circumference, and the long heat-resistant steel pipe Between the exhaust gas passages and a connecting member hermetically sealed in the circumferential direction and the longitudinal direction, and the diameter of the outermost peripheral surface of the array structure is made smaller than the inner diameter of the exhaust receiver. , Which can be interpolated,
7) In the above 6), the connecting member is connected and joined on the outermost peripheral surface of the water pipe arranged in parallel on the circumference,
8) In the above-mentioned 6) or 7), the connecting member is joined to the outer periphery of the water tube at an angle where the tangent line of the water tube and the connecting member are not at an acute angle at the joint with the water tube. It is what.

すなわち、本発明の排気レシーバの廃熱回収装置は、主機関に直結された排気レシーバの内周面に沿って、気密的に配列された、メンブレンウオールとしてボイラにおいて実績のある水冷壁、配管列により、排気レシーバ内において、排気ガスの有する熱量を効率良く利用しようとするものである。   That is, the exhaust heat recovery apparatus for an exhaust receiver according to the present invention is arranged in an airtight manner along the inner peripheral surface of the exhaust receiver directly connected to the main engine. Thus, the heat quantity of the exhaust gas is efficiently used in the exhaust receiver.

本発明の排気レシーバの廃熱回収装置は、排気ガス系の上流側である排気レシーバで熱回収をすることにより、高温部での無駄な放熱を減じ、廃熱として有効に回収することができる。また、蒸気過熱器として用いた場合、高過熱度の蒸気を得ることができ、タービン効率の向上が図れる。さらに、排気ガス系の過給機の後流側に配設した排エコと協働させることにより排エコをコンパクトサイズにすることができる。また、独立した排エコの配置スペースの無い船舶においても廃熱回収を図ることができる。   The exhaust heat recovery apparatus for an exhaust receiver according to the present invention can recover waste heat efficiently by recovering heat with an exhaust receiver upstream of the exhaust gas system, thereby reducing waste heat in the high temperature part. . Moreover, when used as a steam superheater, steam with a high superheat degree can be obtained, and the turbine efficiency can be improved. Furthermore, the exhaust ecology can be made compact by cooperating with the exhaust ecology arranged on the downstream side of the exhaust gas supercharger. In addition, waste heat recovery can be achieved even in a ship that does not have an independent exhaust eco space.

本発明の実施の形態の廃熱回収装置を備えた排気レシーバを模式的に示した説明図。Explanatory drawing which showed typically the exhaust receiver provided with the waste heat recovery apparatus of embodiment of this invention. 本実施の形態による廃熱回収装置を蒸気過熱器として用いる場合のシステムを示す図。The figure which shows the system in the case of using the waste-heat recovery apparatus by this Embodiment as a steam superheater. 本実施の形態による廃熱回収装置を汽水分離器よりの加熱水を蒸気に代える熱交換器として用いる場合のシステムを示す図。The figure which shows the system in the case of using the waste heat recovery apparatus by this Embodiment as a heat exchanger which replaces the heating water from a brackish water separator with a steam. 排エコと協働して使用する場合の排気レシーバの作用説明図。Action | operation explanatory drawing of the exhaust receiver in the case of using it in cooperation with exhaust ecology. 本実施の形態における廃熱回収装置の水管とその管を連結する連結部材の構成を示す図。The figure which shows the structure of the connection member which connects the water pipe and the pipe | tube of the waste heat recovery apparatus in this Embodiment.

[実施の形態]
図1は、本発明の実施の形態における廃熱回収装置を備えた排気レシーバを模式的に示した説明図である。
図において、1は排気レシーバ、2は排気レシーバのカバー、21は排気レシーバの排気出口、3は排気ガス熱交換器である廃熱回収装置、4は管寄せ部、22は廃熱回収装置3におけるボイラからの加熱水または飽和蒸気の入り口、23は廃熱回収装置における蒸気または過熱蒸気の出口、5は水管、6は連結部材、D1は排気レシーバ内径、D2は円筒状廃熱回収装置の最外径である。
なお、図面における各部寸法は誇張されて表示されている。
[Embodiment]
FIG. 1 is an explanatory view schematically showing an exhaust receiver equipped with a waste heat recovery apparatus in an embodiment of the present invention.
In the figure, 1 is an exhaust receiver, 2 is an exhaust receiver cover, 21 is an exhaust outlet of the exhaust receiver, 3 is a waste heat recovery device that is an exhaust gas heat exchanger, 4 is a header, 22 is a waste heat recovery device 3 Heating water or saturated steam inlet from the boiler, 23 is the steam or superheated steam outlet in the waste heat recovery device, 5 is the water pipe, 6 is the connecting member, D1 is the exhaust receiver inner diameter, D2 is the cylindrical waste heat recovery device The outermost diameter.
In addition, each part dimension in drawing is exaggerated and displayed.

本発明の廃熱回収装置3は、ディーゼル主機関に直結された排気レシーバ1の本体内(内周側)に挿入される円筒状に水管5を配列した構造、または水冷壁(図示されていない)による構造を有し、前記円筒状に配列された水管5の間は連結部材6により溶接接合されている。
該接合は、廃熱回収装置3が排気レシーバ1のカバー2との間に適当なる間隙をもって配置され、且つ、廃熱回収装置3の内周側を通過する排気ガスが前記カバー2の壁面に直接接触しないように、気密的に行われる。
また、前記水管5は、管寄せ部4により流体の入口、出口毎に分離してまとめられ、外部(ボイラ)よりの缶水または飽和蒸気は入り口22から流入し、廃熱回収装置3で加熱された蒸気または過熱蒸気は出口23より流出する。
The waste heat recovery apparatus 3 of the present invention has a structure in which water pipes 5 are arranged in a cylindrical shape inserted into the main body (inner peripheral side) of an exhaust receiver 1 directly connected to a diesel main engine, or a water cooling wall (not shown) ), And the water pipes 5 arranged in a cylindrical shape are welded together by a connecting member 6.
In the joining, the waste heat recovery device 3 is arranged with an appropriate gap between the exhaust receiver 1 and the cover 2 of the exhaust receiver 1, and exhaust gas passing through the inner peripheral side of the waste heat recovery device 3 is applied to the wall surface of the cover 2. It is performed airtight so that it does not come into direct contact.
Further, the water pipe 5 is separated and collected for each inlet and outlet of the fluid by the header section 4, and can water or saturated steam from the outside (boiler) flows from the inlet 22 and is heated by the waste heat recovery device 3. The steam or superheated steam flows out from the outlet 23.

前記、廃熱回収装置3とカバー2の内壁との適当なる間隙Δ、および水管5の直径d、水管5間のピッチp等は、その間隙Δによる断熱壁としての効果と、廃熱回収装置3の廃熱回収効率、および廃熱回収装置3の使用対象を奈辺とするか、すなわち飽和蒸気/過熱蒸気変換を目的とするのか、加熱水/蒸気変換を目的にするのか等により特定される。   The appropriate gap Δ between the waste heat recovery device 3 and the inner wall of the cover 2, the diameter d of the water pipe 5, the pitch p between the water pipes 5, the effect as a heat insulating wall by the gap Δ, and the waste heat recovery device The waste heat recovery efficiency of No. 3 and whether the waste heat recovery device 3 is used as a target, that is, whether it is intended for saturated steam / superheated steam conversion or heated water / steam conversion, are specified. .

主機関排気レシーバ1内の排気ガス温度Teは、400℃程度あり、排気レシーバ1のカバー2の表面は保温が施工されているが、面積が大きく放熱量としては大きい。従って、排気レシーバ1の内周側に本実施の形態による廃熱回収装置3を配設することにより、外部への放熱量を減じると共にその廃熱を熱交換器として利用するものであり、この両者をより効率の良い状態で得るものである。   The exhaust gas temperature Te in the main engine exhaust receiver 1 is about 400 ° C., and the surface of the cover 2 of the exhaust receiver 1 is kept warm, but the area is large and the heat radiation amount is large. Therefore, by disposing the waste heat recovery device 3 according to the present embodiment on the inner peripheral side of the exhaust receiver 1, the amount of heat released to the outside is reduced and the waste heat is used as a heat exchanger. Both are obtained in a more efficient state.

図2は、本実施の形態による廃熱回収装置3を蒸気過熱器HE1として用いる場合のシステムを示す図である。
図3は、本実施の形態による廃熱回収装置3を汽水分離器Bよりの缶水を蒸気に代える熱交換器HE2として用いる場合のシステムを示す図である。
なお図2および図3においては、排エコEGEと各協働して使用する場合を示しているが、排エコEGEを省略して廃熱回収装置3を単独にて使用することができる。
図において、HE1は蒸気過熱器として用いる場合の廃熱回収装置、HE2は加熱水/蒸気変換の熱交換器として使用する場合の廃熱回収装置、Bは汽水分離器、Pはボイラ水循環ポンプ、SCはターボ過給機、EGEは排エコ、Sは蒸気、SSは飽和蒸気、SHSは過熱蒸気、EG1は排気レシーバ1の排気出口21より排出される排気ガス、EG2はターボ過給機出口より排出される排気ガス、EG3は排エコ出口より排出される排気ガス、HWは加熱水である。
FIG. 2 is a diagram showing a system when the waste heat recovery apparatus 3 according to the present embodiment is used as the steam superheater HE1.
FIG. 3 is a diagram showing a system when the waste heat recovery apparatus 3 according to the present embodiment is used as a heat exchanger HE2 that replaces steam from the brackish water separator B with steam.
Although FIGS. 2 and 3 show cases where the exhaust eco EGE is used in cooperation with the exhaust eco EGE, the exhaust heat EGE can be omitted and the waste heat recovery apparatus 3 can be used alone.
In the figure, HE1 is a waste heat recovery device when used as a steam superheater, HE2 is a waste heat recovery device when used as a heat exchanger for heating water / steam conversion, B is a brackish water separator, P is a boiler water circulation pump, SC is a turbocharger, EGE is exhaust eco, S is steam, SS is saturated steam, SHS is superheated steam, EG1 is exhaust gas discharged from the exhaust outlet 21 of the exhaust receiver 1, and EG2 is from turbocharger outlet Exhaust gas discharged, EG3 is exhaust gas discharged from the exhaust eco outlet, and HW is heated water.

図2において、汽水分離器(ボイラ)Bより放出される飽和蒸気SSは、排気レシーバ1の内周側に配設された廃熱回収装置3の入口22より管寄せ部4を介して各水管5に分岐配送される。廃熱回収装置3はディーゼル主機関(図示せず)からの400℃程度の排気ガスにより効率良く加熱され、過熱蒸気SHSとなって管寄せ部4の出口部に集約された出口23より外部に導かれる。導かれた過熱蒸気SHSは主として発電機用の蒸気タービン等へと供給される。
排エコEGEと協働して使用する場合は、排気ガスは、図4に示すように、ディーゼル機関(図示せず)の各シリンダ24から排気レシーバ1内に導かれ、廃熱回収装置3を加熱後、排気レシーバ1の排気ガス出口21より排出された排気ガスEG1はターボ過給機SCのブロワーを駆動した後、排気ガスEG2として排エコEGEに供給され、排エコEGEにおいて廃熱回収された後、外部へ排気ガスEG3として放出される。排気ガスEG1の温度は400℃程度(出力により異なる)、ターボ過給機SCからの排気ガスEG2の温度は250℃程度、排エコEGEの入り口ではさらに240℃程度となる。従って、排エコEGEにおける過熱温度が低いため、排エコEGEのみでは十分な過熱度を持たせることができず、タービン効率も上がっていない。本実施の形態による廃熱回収装置3を協働させることにより、従来の排エコEGEの単体使用の場合よりはもとより、本実施の形態による廃熱回収装置3を単体で使用する場合に比較してもその廃熱利用の熱効率は向上する。
In FIG. 2, the saturated steam SS released from the brackish water separator (boiler) B is supplied to each water pipe from the inlet 22 of the waste heat recovery device 3 disposed on the inner peripheral side of the exhaust receiver 1 through the header 4. 5 is branched and delivered. The waste heat recovery device 3 is efficiently heated by an exhaust gas of about 400 ° C. from a diesel main engine (not shown), and becomes superheated steam SHS outside from an outlet 23 collected at the outlet portion of the header 4. Led. The introduced superheated steam SHS is mainly supplied to a steam turbine for a generator.
When used in cooperation with exhaust eco EGE, as shown in FIG. 4, exhaust gas is led into the exhaust receiver 1 from each cylinder 24 of a diesel engine (not shown), and the waste heat recovery device 3 is used. After the heating, the exhaust gas EG1 discharged from the exhaust gas outlet 21 of the exhaust receiver 1 drives the blower of the turbocharger SC, and then is supplied to the exhaust eco EGE as the exhaust gas EG2, where waste heat is recovered in the exhaust eco EGE. After that, it is discharged to the outside as exhaust gas EG3. The temperature of the exhaust gas EG1 is about 400 ° C. (depending on the output), the temperature of the exhaust gas EG2 from the turbocharger SC is about 250 ° C., and further about 240 ° C. at the exhaust eco-EGE entrance. Therefore, since the superheat temperature in the exhaust eco EGE is low, the exhaust eco EGE alone cannot provide a sufficient degree of superheat, and the turbine efficiency does not increase. By cooperating the waste heat recovery device 3 according to the present embodiment, the waste heat recovery device 3 according to the present embodiment is compared to the case where the waste heat recovery device 3 according to the present embodiment is used alone as well as the case where the conventional waste eco-EGE is used alone. However, the thermal efficiency of using the waste heat is improved.

図3においては、汽水分離器(ボイラ)Bよりの缶水HWは、ボイラ水循環ポンプP1により廃熱回収装置3に導かれ、加熱水/蒸気変換の熱交換器として使用される廃熱回収装置HE2により蒸気Sとなり汽水分離器(ボイラ)Bへリターンされる。排気ガスEGの流れシステム、排エコEGEによる協働については図2の場合に準じるため、説明を省略する。 In FIG. 3, the canned water HW from the brackish water separator (boiler) B is led to the waste heat recovery device 3 by the boiler water circulation pump P 1 and used as a heat exchanger for heating water / steam conversion. Steam HE is converted to steam S by the apparatus HE2 and returned to the steam separator (boiler) B. The cooperation of the exhaust gas EG flow system and the exhaust eco EGE is the same as in FIG.

図5は、本実施の形態における廃熱回収装置の水管5とそれを連結する連結部材6の構成を示す図であり、(a)は水管5の各中央部が連結部材6により連結接合される例、(b)は円筒状に配列された水管5列の最外周部を連結部材61により連結接合される例、(c)は連結接合部における水管5と連結部材61との接線のなす角度θ(b参照)が少なくとも鋭角でないように溶接部62(溶接半径r)により接合された連結接合部の例、(d)は連結部材63が曲線をなす場合の連結接合部の例である。   FIG. 5 is a diagram showing the configuration of the water pipe 5 of the waste heat recovery apparatus and the connecting member 6 that connects the connecting parts 6 in the present embodiment. FIG. (B) is an example in which the outermost peripheral portion of the five rows of water tubes arranged in a cylindrical shape is connected and joined by the connecting member 61, and (c) is a tangent line between the water tube 5 and the connecting member 61 in the connecting and joining portion. An example of a connecting joint joined by the welded portion 62 (welding radius r) so that the angle θ (see b) is not at least an acute angle, and (d) is an example of a connecting joint when the connecting member 63 forms a curve. .

使用される水管5、連結部材6の材料は、高温強度に勝れ、且つ溶接性、耐腐食性に勝れた材料を選択する。水管5はボイラ、熱交換器用鋼管、特にCr−Mo鋼管(例えば、JIS規格 STBA20〜24)の使用が望ましく、また連結部材6の材料もこれに準ずるものが使用される。
これら材料を使用することにより、使用温度範囲は450〜600℃程度、耐酸化限度の使用温度範囲としては、600〜650℃程度が許容される。
The material of the water pipe 5 and the connecting member 6 to be used is selected from materials that are excellent in high-temperature strength and excellent in weldability and corrosion resistance. The water pipe 5 is desirably a boiler, a heat exchanger steel pipe, particularly a Cr-Mo steel pipe (for example, JIS standard STBA20 to 24), and the material of the connecting member 6 is equivalent to this.
By using these materials, a use temperature range of about 450 to 600 ° C. and a use temperature range of an oxidation resistance limit of about 600 to 650 ° C. are allowed.

図5において、(a)は溶接作業が比較的容易で、特に比較的排気温度の高いケースでは、前記カバー2の内壁との間隙Δと排気ガスからの水管5における伝熱のバランスが良く好ましい。
(b)は排気ガス温度による伝熱効果をより大きく採りたい場合等のケースに適し、比較的排気ガス温度の低い場合や比較的中小型機関の場合、または、排エコが配設出来ない場合等に適する。また、これにより前記間隙Δを比較的小さくすることができる。
(c)はケース(b)における溶接性や耐振動性を改善するため、水管5と連接部材の接線の成す角度θを少なくとも鋭角にならないように溶接接合する場合であり、振動の比較的大きい機関に適する。
(d)は(a)と(c)の両者の特徴を生かしたものであり、排気ガスの熱回収効率も高く、また前記間隙Δを比較的小さくすることができる。
In FIG. 5, (a) is preferable because the welding operation is relatively easy, and especially in the case where the exhaust temperature is relatively high, the gap Δ between the cover 2 and the heat transfer in the water pipe 5 from the exhaust gas is good. .
(B) is suitable for cases where the heat transfer effect due to the exhaust gas temperature is desired to be greater, such as when the exhaust gas temperature is relatively low, when the engine is relatively small, or when the exhaust eco cannot be installed. Suitable for etc. This also makes it possible to make the gap Δ relatively small.
(C) is a case where welding is performed so that the angle θ formed by the tangent line between the water pipe 5 and the connecting member does not become at least an acute angle in order to improve the weldability and vibration resistance in the case (b), and the vibration is relatively large. Suitable for institutions.
(D) makes use of the characteristics of both (a) and (c), the heat recovery efficiency of the exhaust gas is high, and the gap Δ can be made relatively small.

前記のごとく本実施の形態における廃熱回収装置3は、カバー2の内壁との適当なる間隙Δ、および水管5の直径d、水管5間のピッチp等は、その間隙Δによる断熱壁としての効果と、廃熱回収装置3の廃熱回収効率、および廃熱回収装置3の使用対象を奈辺とするか、すなわち飽和蒸気/過熱蒸気変換を目的とするのか、加熱水/蒸気変換を目的にするのか等により特定されるものであり、前記配列構造の最外周面における直径が排気レシーバ1の内径より小さくし、断熱壁としての効果が落ちない間隙Δとする。   As described above, the waste heat recovery apparatus 3 according to the present embodiment has an appropriate gap Δ with the inner wall of the cover 2, the diameter d of the water pipe 5, the pitch p between the water pipes 5, etc. Effects, waste heat recovery efficiency of the waste heat recovery device 3, and whether the use target of the waste heat recovery device 3 is Nanabe, ie for saturated steam / superheated steam conversion, for the purpose of heating water / steam conversion The diameter on the outermost peripheral surface of the array structure is made smaller than the inner diameter of the exhaust receiver 1, and the gap Δ is set so that the effect as a heat insulating wall does not deteriorate.

大型タンカー(VLCC)に搭載されるディーゼル主機関、約35,000PS出力、での回収熱量の試算例を以下に示す。なお、本試算は排気レシーバのサイズをベースにして内挿可能な廃熱回収装置での廃熱回収量を試算したものである。過給機効率の面からは約50℃程度の温度低下は機関性能上は許容される。
(1)排気レシーバが通常サイズ(外径1800Φ)の場合
回収装置伝熱面積:約85m2
回収廃熱量:530,000kcal/h(蒸気量換算:約900kg/h、6k
飽和)
ガス温度低下:12℃
(2)排気レシーバを+500mm(2,300Φ)にサイズアップする場合
回収装置伝熱面積:約170m2
回収廃熱量:1,170,000kcal/h(蒸気量換算:約2,000kg/
h、6k飽和)
ガス温度低下:24℃
蒸気発生機として利用すれば、例えば(2)のケースであれば独立の排エコが省略できるレベルと言える。
A trial calculation example of the amount of recovered heat in a diesel main engine mounted on a large tanker (VLCC) at about 35,000 PS output is shown below. This trial calculation is a trial calculation of the amount of waste heat recovered by a waste heat recovery device that can be inserted based on the size of the exhaust receiver. From the viewpoint of turbocharger efficiency, a temperature drop of about 50 ° C. is allowed in terms of engine performance.
(1) When the exhaust receiver is a normal size (outer diameter 1800Φ) Recovery device heat transfer area: about 85m 2
Recovered waste heat amount: 530,000 kcal / h (steam amount conversion: about 900 kg / h, 6 k
Saturation)
Gas temperature drop: 12 ° C
(2) When increasing the size of the exhaust receiver to + 500mm (2,300Φ) Recovery device heat transfer area: Approximately 170m 2
Recovered waste heat amount: 1,170,000 kcal / h (steam amount conversion: about 2,000 kg / h
h, 6k saturation)
Gas temperature drop: 24 ° C
If it is used as a steam generator, for example, in the case of (2), it can be said that it is a level where independent waste ecology can be omitted.

1 排気レシーバ
2 カバー
3 廃熱回収装置
4 管寄せ部
5 水管
6 連結部材
21 排気レシーバの排気出口
22 加熱水または飽和蒸気の入り口
23 蒸気または過熱蒸気の出口
24 ディーゼル機関のシリンダ
HE1 蒸気過熱器として用いる場合の廃熱回収装置
HE2 加熱水/蒸気変換の熱交換器として使用する場合の廃熱回収装置
B 汽水分離器
P ボイラ水循環ポンプ
SC ターボ過給機
EGE 排エコ
S 蒸気
SS 飽和蒸気
SHS 過熱蒸気
EG1 排気レシーバ出口より排出される排気ガス
EG2 ターボ過給機出口より排出される排気ガス
EG3 排エコ出口より排出される排気ガス
HW 缶水
DESCRIPTION OF SYMBOLS 1 Exhaust receiver 2 Cover 3 Waste heat recovery apparatus 4 Head part 5 Water pipe 6 Connecting member 21 Exhaust outlet of exhaust receiver 22 Inlet of heated water or saturated steam 23 Outlet of steam or superheated steam 24 Diesel engine cylinder HE1 As steam superheater Waste heat recovery device when used HE2 Waste heat recovery device when used as a heat exchanger for heating water / steam conversion B Steam water separator P Boiler water circulation pump SC Turbocharger EGE Waste eco S Steam SS Saturated steam SHS Superheated steam EG1 Exhaust gas discharged from the exhaust receiver outlet EG2 Exhaust gas discharged from the turbocharger outlet EG3 Exhaust gas discharged from the exhaust eco outlet HW Can water

Claims (8)

ディーゼル主機関の廃熱回収装置であって、ディーゼル主機関の排気レシーバ本体内に円筒状に水管を配列した構造または水冷壁による構造を有する排気ガス熱交換器を備えた排気レシーバの廃熱回収装置。   Waste heat recovery device for a diesel main engine, wherein the exhaust receiver has a structure in which water pipes are arranged in a cylindrical shape in the exhaust receiver body of the diesel main engine or a structure using a water cooling wall. apparatus. 前記排ガス熱交換器を、船舶内のボイラーにより汽水分離された飽和蒸気を過熱蒸気とするための熱交換器として使用することを特徴とする請求項1に記載の排気レシーバの廃熱回収装置。   2. The exhaust heat recovery apparatus for an exhaust receiver according to claim 1, wherein the exhaust gas heat exchanger is used as a heat exchanger for converting saturated steam steam-separated by a boiler in a ship into superheated steam. 前記排ガス熱交換器を、船舶内のボイラーにより汽水分離された缶水を、該ボイラーに戻す蒸気および/または加熱水とするための熱交換器として使用することを特徴とする請求項1に記載の排気レシーバの廃熱回収装置。   2. The exhaust gas heat exchanger is used as a heat exchanger for converting canned water that has been steam-separated by a boiler in a ship into steam and / or heated water to be returned to the boiler. Exhaust receiver waste heat recovery device. 前記排ガス熱交換器を、船舶内のボイラーにより汽水分離された飽和蒸気を過熱蒸気とするための熱交換器として使用し、且つ、該ボイラーにより汽水分離された缶水を、該ボイラーに戻す蒸気および/または加熱水とするための熱交換器として使用する排気ガスエコノマイザとの協働にて使用することを特徴とする請求項1または2に記載の排気レシーバの廃熱回収装置。   Steam that uses the exhaust gas heat exchanger as a heat exchanger for converting superheated steam that has been steam-separated by a boiler in a ship into superheated steam, and returns canned water that has been steam-separated by the boiler to the boiler The exhaust heat recovery apparatus for an exhaust receiver according to claim 1 or 2, wherein the exhaust heat exhaust apparatus is used in cooperation with an exhaust gas economizer used as a heat exchanger for making heated water. 前記排ガス熱交換器を、船舶内のボイラーにより汽水分離された缶水を、該ボイラーに戻す蒸気および/または加熱水とするための熱交換器として使用し、且つ、該ボイラーにより汽水分離された缶水を、該ボイラーに戻す蒸気および/または加熱水とするための熱交換器として使用する排気ガスエコノマイザとの協働にて使用することを特徴とする請求項1または3に記載の排気レシーバの廃熱回収装置。   The exhaust gas heat exchanger was used as a heat exchanger for converting the canned water separated by steam in the ship into a steam and / or heated water to the boiler, and the steam was separated by the boiler. The exhaust receiver according to claim 1 or 3, wherein the can water is used in cooperation with an exhaust gas economizer used as a heat exchanger for converting steam and / or heating water back to the boiler. Waste heat recovery equipment. 前記円筒状に水管の配列構造は、円周上に均等に等間隔をもって並列して配置された長尺の耐熱鋼管を各連結部材により排気ガス通路に対し円周方向及び長手方向に対し密閉して接合されており、該配列構造の最外周面の直径が排気レシーバの内径より小さく内挿されていることを特徴とする請求項1〜5のいずれか1項に記載の排気レシーバの廃熱回収装置。   The cylindrical water pipe arrangement structure is such that long heat-resistant steel pipes arranged in parallel at equal intervals on the circumference are sealed in the circumferential direction and the longitudinal direction with respect to the exhaust gas passage by each connecting member. The exhaust heat of the exhaust receiver according to any one of claims 1 to 5, wherein a diameter of an outermost peripheral surface of the array structure is inserted smaller than an inner diameter of the exhaust receiver. Recovery device. 前記連結部材は、円周上に 並列して配置された水管の最外周面において連結接合されていることを特徴とする請求項6に記載の排気レシーバの廃熱回収装置。   The waste heat recovery apparatus for an exhaust receiver according to claim 6, wherein the connecting member is connected and joined on the outermost peripheral surface of a water pipe arranged in parallel on the circumference. 前記連結部材は、前記水管との接合部において、水管の接線と連結部材との成す角度が少なくとも鋭角にならない角度で水管外周に接合されていることを特徴とする請求項6または7に記載の排気レシーバの廃熱回収装置。   The said connection member is joined to the water pipe outer periphery by the angle which the angle which the tangent of a water pipe and a connection member form at least does not become an acute angle in the junction part with the said water pipe. Waste heat recovery device for exhaust receiver.
JP2011078503A 2011-03-31 2011-03-31 Waste heat recovery apparatus of exhaust receiver Pending JP2012211751A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011078503A JP2012211751A (en) 2011-03-31 2011-03-31 Waste heat recovery apparatus of exhaust receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011078503A JP2012211751A (en) 2011-03-31 2011-03-31 Waste heat recovery apparatus of exhaust receiver

Publications (1)

Publication Number Publication Date
JP2012211751A true JP2012211751A (en) 2012-11-01

Family

ID=47265849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011078503A Pending JP2012211751A (en) 2011-03-31 2011-03-31 Waste heat recovery apparatus of exhaust receiver

Country Status (1)

Country Link
JP (1) JP2012211751A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5477342A (en) * 1977-11-30 1979-06-20 Miura Kogyo Kk Structure of heating surface of tubulous boiler
JPS60188815U (en) * 1984-05-25 1985-12-14 株式会社小松製作所 Exhaust gas heat exchanger for gas engines
JPS6144202A (en) * 1984-08-09 1986-03-03 三菱重工業株式会社 Economizer of exhaust gas for diesel engine
JPS61184302A (en) * 1985-02-12 1986-08-18 三菱重工業株式会社 Exhaust gas economizer system
JPH01134719U (en) * 1988-03-08 1989-09-14
JPH0616241Y2 (en) * 1988-07-28 1994-04-27 川重冷熱工業株式会社 Multi-tube once-through boiler
JP2000074304A (en) * 1998-08-31 2000-03-14 Samson Co Ltd Sound attenuating structure for multitubular once- through boiler combustion sound
JP2009532614A (en) * 2006-04-12 2009-09-10 エムエーエヌ・ディーゼル・フィリアル・アフ・エムエーエヌ・ディーゼル・エスイー・ティスクランド Large turbocharged diesel engine with energy recovery configuration

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5477342A (en) * 1977-11-30 1979-06-20 Miura Kogyo Kk Structure of heating surface of tubulous boiler
JPS60188815U (en) * 1984-05-25 1985-12-14 株式会社小松製作所 Exhaust gas heat exchanger for gas engines
JPS6144202A (en) * 1984-08-09 1986-03-03 三菱重工業株式会社 Economizer of exhaust gas for diesel engine
JPS61184302A (en) * 1985-02-12 1986-08-18 三菱重工業株式会社 Exhaust gas economizer system
JPH01134719U (en) * 1988-03-08 1989-09-14
JPH0616241Y2 (en) * 1988-07-28 1994-04-27 川重冷熱工業株式会社 Multi-tube once-through boiler
JP2000074304A (en) * 1998-08-31 2000-03-14 Samson Co Ltd Sound attenuating structure for multitubular once- through boiler combustion sound
JP2009532614A (en) * 2006-04-12 2009-09-10 エムエーエヌ・ディーゼル・フィリアル・アフ・エムエーエヌ・ディーゼル・エスイー・ティスクランド Large turbocharged diesel engine with energy recovery configuration

Similar Documents

Publication Publication Date Title
EP2423472B1 (en) Organic rankine cycle system and method
EP1882891A3 (en) CO-Generation
FI94895B (en) Arrangement in a combined cycle power plant
US20170184002A1 (en) Modular heat exchanger and conversion system
US9631539B2 (en) Apparatus for generating superheated vapor using wave fin
CN106168453B (en) Heat exchanger
WO2011051353A3 (en) Heat exchanger for direct evaporation in organic rankine cycle systems and method
JP2015017770A (en) Boiler system
US20100095648A1 (en) Combined Cycle Power Plant
KR102462735B1 (en) Systems and methods for reducing thermal stress in pressure vessels
JP2010138884A (en) Heat exchanging device and engine
JP2012211751A (en) Waste heat recovery apparatus of exhaust receiver
KR101168022B1 (en) Waste heat recovery system and methods of vessel
JP2010048546A (en) Dimple and serrated molded finned tube structure
EP2423473B1 (en) An improved organic rankine cycle system and method
EP2676008B1 (en) Apparatus and process for generation of energy by organic rankine cycle
KR101198283B1 (en) Super heater using the heat of exhaust gas
CN201462771U (en) Boiler for recycling high-temperature flue gas and waste heat after biomass burning
CN204881238U (en) Blind plate power remove device of nuclear power plant's condenser
JP2006214598A (en) Plate fin type heat exchanger for high temperature
WO2020125097A1 (en) System for recovering waste heat from jacket water of internal combustion engine by using absorption heat transformer
JP2020176760A (en) Boiler device
SU1060798A1 (en) Steam-gas-turbine plant
US20050074329A1 (en) Pipes for steam power-plant
KR101864165B1 (en) Waste heat recovery device of ship

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141014

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150303