DK175194B1 - Recombinant DNA molecules, interferon omega-type genes, transformed hosts containing the DNA information, expression plasmids for interferon-omega types, E. coli transformed therewith, human type I interferons, method ....... - Google Patents

Recombinant DNA molecules, interferon omega-type genes, transformed hosts containing the DNA information, expression plasmids for interferon-omega types, E. coli transformed therewith, human type I interferons, method ....... Download PDF

Info

Publication number
DK175194B1
DK175194B1 DK198503463A DK346385A DK175194B1 DK 175194 B1 DK175194 B1 DK 175194B1 DK 198503463 A DK198503463 A DK 198503463A DK 346385 A DK346385 A DK 346385A DK 175194 B1 DK175194 B1 DK 175194B1
Authority
DK
Denmark
Prior art keywords
ctg
cag
atg
aga
ttc
Prior art date
Application number
DK198503463A
Other languages
Danish (da)
Other versions
DK346385D0 (en
DK346385A (en
Inventor
Norbert Hauel
Rudolf Hauptmann
Peter Swetly
Eva Dworkin-Rastl
Guenther Adolf
Peter Meindl
Pieler Christian
Original Assignee
Boehringer Ingelheim Int
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE3428370A external-priority patent/DE3428370A1/en
Priority claimed from DE19853505060 external-priority patent/DE3505060A1/en
Application filed by Boehringer Ingelheim Int filed Critical Boehringer Ingelheim Int
Publication of DK346385D0 publication Critical patent/DK346385D0/en
Publication of DK346385A publication Critical patent/DK346385A/en
Application granted granted Critical
Publication of DK175194B1 publication Critical patent/DK175194B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/52Cytokines; Lymphokines; Interferons
    • C07K14/555Interferons [IFN]
    • C07K14/56IFN-alpha
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/52Cytokines; Lymphokines; Interferons
    • C07K14/555Interferons [IFN]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Public Health (AREA)
  • Toxicology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Animal Behavior & Ethology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Plant Pathology (AREA)
  • Virology (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Electrotherapy Devices (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The type I interferon peptides encoded by the genetic DNA sequences are called omega-interferons and are produced using appropriate expression vehicles and organisms.

Description

i DK 175194 B1in DK 175194 B1

Opfindelsen angår rekombinante DNA-molekyler, indeholdende en kodende sekvens for hidtil ukendte humane interferon-proteiner af type I, der indeholder 168-174 aminosyrer, for interferon-pseudo-o)2 (se figur 12) , in-v 5 terferon-pseudo-o3 (se figur 13) eller interferon- pseudo-u)4 (se figur 14) . Endvidere angår opfindelse in-terferon-o>-type gener, transformerede værter indeholdende DNA-informationen, ekspressionsplas-mider for sådanne interferon-ω-typer, E. coli transformeret hermed, fremit) gangsmåder til fremstilling af disse proteiner, medicinsk anvendelige interferonholdige blandinger, anvendelse af ω-interferon til fremstilling af medicinsk anvendelige blandinger og fremgangsmåde til fremstilling af nævnte ekspressionsplasmider.This invention relates to recombinant DNA molecules containing a coding sequence for novel type I human interferon proteins containing 168-174 amino acids for interferon pseudo-o) 2 (see Figure 12), in-terferon pseudo -o3 (see Figure 13) or interferon-pseudo-u) 4 (see Figure 14). In addition, the invention relates to interferon-type genes, transformed hosts containing the DNA information, expression plasmids for such interferon ω types, E. coli transformed herein, methods of producing these proteins, medically useful interferon-containing mixtures , use of ω-interferon to prepare medically useful mixtures and method for producing said expression plasmids.

15 Begrebet interferon blev dannet for at beskrive et udvalg af proteiner, der er endogene i menneskeceller og kendetegnes ved, at de udviser biologisk aktivitet, der dels overlapper og dels divergerer. Disse proteiner ændrer kroppens immunforsvar, og man antager, at de del-20 tager i virksom beskyttelse mod virussygdomme. Man inddelte eksempelvis interferonerne i tre klasser, nemlig i o-, 3- og γ-interferon.The term interferon was formed to describe a selection of proteins that are endogenous in human cells and characterized by exhibiting biological overlap and divergence. These proteins alter the body's immune system and are believed to participate in effective protection against viral diseases. For example, the interferons were divided into three classes, namely o-, 3- and γ-interferon.

Af 3- og γ-interferon kendes på nuværende tidspunkt i den menneskelige organisme kun én undertype (se f.eks. S. Ohno et al., Proc. Natl. Acad. Sci. 78, 5305 -25 5309 (1981); Gray et al., Nature 295, 503-508 (1982);At present, only one subtype of 3- and γ-interferon is known in the human organism (see, e.g., S. Ohno et al., Proc. Natl. Acad. Sci. 78, 5305-252530 (1981); Gray et al., Nature 295, 503-508 (1982);

Taya et al., EMBO Journal 1/8, 953-958 (1982)). Derimod er der beskrevet forskellige undertyper af a-interferon, (se f.eks. Phil. Trans. R. Soc. Lond. 299, 7-28 (1982))Taya et al., EMBO Journal 1/8, 953-958 (1982)). In contrast, various subtypes of α-interferon have been described (see, e.g., Phil. Trans. R. Soc. Lond. 299, 7-28 (1982))

De fuldt udviklede a-interferoner adskiller sig fra hin-30 anden ved højst 23% divergens og er ca. 166 aminosyrer i længden. Især interessant er en rapport om et (»-interferon, der har en overraskende høj molekylvægt (26.000. bestemt ved SDS polyacrylamid/gelelektroforese) (Goren,The fully developed α-interferons differ from each other by at most 23% divergence and are approx. 166 amino acids in length. Of particular interest is a report on a (?) Interferon having a surprisingly high molecular weight (26,000 determined by SDS polyacrylamide / gel electrophoresis) (Goren,

I DK 175194 B1 II DK 175194 B1 I

I 2 II 2 I

I P. et al. Virology 130, 273-280 (1983)). Dette inter- IIn P. et al. Virology 130, 273-280 (1983)). This inter- I

I feron kaldes IFN-α 26K. Det er blevet fastslået, at det IIn feron, IFN-α is called 26K. It has been established that it

I udviser den indtil nu højeste specifikke antivirale og IYou exhibit the highest specific antiviral to date and I

I anticellulære aktivitet. 'IIn anticellular activity. 'IN

I 5 De hidtil kendte interferoner er tilsyneladende IApparently the known interferons are I

I virksomme overfor en hel del sygdomme, men har kun ringe IYou have a lot of illnesses, but you have little

I eller overhovedet ingen virkning ved mange andre sygdom- IYou have or have no effect on many other diseases

I me (f.eks. Powledge, Bio/Technology, March 1984, 215 - IIn me (e.g. Powledge, Bio / Technology, March 1984, 215 - I

I 228 "Interferon on Trial"). Derudover forekommer der bi- IIn 228 "Interferon on Trial"). In addition, bi- I

I virkninger ved interferoner. Eksempelvis fastslog man IIn effects of interferons. For example, I was determined

I ved prøver af rekombinant α-interferons bivirkning mod II for samples of recombinant α-interferon side effect against I

I cancer, at doser på omkring 50 millioner enheder, der IIn cancer, doses of about 50 million units that you

I ifølge erfaringer fra fase I prøver skulle være sikre, IAccording to experience from Phase I tests, you should be safe

I medførte akutte tilfælde af forvirring, ledsmerter, der ICaused acute cases of confusion, joint pain that

I medførte arbejdsudygtighed, meget kraftig træthed, man- IIn the case of incapacity for work, very severe fatigue, I-

I ^ gel på appetit, tab af orienteringsevne, epileptiske an- II ^ gel on appetite, loss of orientation, epileptic an- I

I fald og forgiftning af leveren. Efter tilfælde af døde- IIn the fall and poisoning of the liver. After death, I

I lige hjerteanfald ved behandling af kræftpatienter med IIn straight heart attacks when treating cancer patients with I

I IF-α, forbød den franske regering i 1982 forsøg med det- IIn IF-α, in 1982, the French government banned trials of it

I te. Der berettedes også om mindst to hjertedødsfald i II tea. At least two deaths were also reported in I

I 20 Amerika ved forsøg for nylig udført dér. Det er blevet IIn 20 America by experiment recently performed there. It has become you

I mere og mere tydeligt, at i det mindste en del af bi- IMore and more clearly, at least part of the bi- I

virkningerne, såsom feber og upasselighed, er direkte IThe effects, such as fever and inappropriateness, are direct

I forårsaget af selve interferonmolekylet og ikke kan hen- IYou are caused by the interferon molecule itself and cannot reach you

I føres til forureninger. IYou are brought to contaminants. IN

I ^ På grund af de store forhåbninger, som interferon II ^ Due to the high hopes that interferon I

I havde vakt, og ansporet af Ønsket om at finde hidtil IYou had awakened and spurred on the desire to find so far

I ukendte interferonlignende molekyler med mindre bivirk- IIn unknown interferon-like molecules with minor side effects

I ninger, var det målet for denne opfindelse at finde og IIn things, the object of this invention was to find and

I fremstille sådanne hidtil ukendte substanser. IYou make such novel substances. IN

I Opfindelsen angår således bestemte hidtil ukendte IThus, in the invention, certain novel ones relate to I

I 30 interferoner af type I, som kan indeholde et Leader-pep- IIn 30 type I interferons which may contain a Leader peptide

I tid, og deres N-glykosylerede derivater (her betegnet IIn time, and their N-glycosylated derivatives (herein designated I

I som ω-interferon eller IFN-ω), der indeholder fra 168 II as ω-interferon or IFN-ω) containing from 168 I

3 DK 175194 B1 til 174, hensigtsmæssigt 172 aminosyrer, og udviser en divergens på 30 - 50%, hensigtsmæssigt 40-48% overfor de i hidtil kendte undertyper af α-interferon og en divergens i på 70% overfor β-interferon, og på den ene side virker 5 som α-interferoner, men på den anden side ikke besidder disse kendte substansers mange terapeutiske ulemper.3 DK 175194 B1 to 174, suitably 172 amino acids, and exhibit a divergence of 30 - 50%, suitably 40-48% against the known subtypes of α-interferon and a divergence of 70% against β-interferon, and on on the one hand, 5 acts as α-interferons, but on the other hand do not possess the many therapeutic disadvantages of these known substances.

Genstanden for opfindelsen er altså hidtil ukendte interferoner i fuldstændig ren form, deres ikke-gly-kosylerede og glykosylerede former, gensekvenserne, der 1Q koder herfor, såvel som rekombinante molekyler, der indeholder disse sekvenser· Genstanden for opfindelsen er endvidere ekspres s i ons-vehik ler som plasmider, der indeholder omtalte gensekvenser, endvidere forskellige værtsorganismer, såsom mikroorganismer eller vævskultu-^ rer, der gør fremstilling af disse hidtil ukendte interferoner ved gæring eller ved vævskulturmetoder mulig.Thus, the object of the invention is novel interferons in completely pure form, their non-glycosylated and glycosylated forms, the gene sequences encoding 1Q, as well as recombinant molecules containing these sequences. Furthermore, as plasmids containing said gene sequences, various host organisms, such as microorganisms or tissue cultures, enable the production of these novel interferons by fermentation or by tissue culture methods.

Disse ovenfor nævnte genstande for opfindelsen er ejendommelige ved det i hovedkravenes kendetegnende dele anførte.These objects of the invention mentioned above are peculiar to the features of the main claims.

20 Særlig fremhæves ifølge opfindelsen ω-interfero ner såvel som de tilsvarende gensekvenser med følgende formel: 25In particular, according to the invention, ω-interferons as well as the corresponding gene sequences of the following formula are highlighted:

I DK 175194 B1 II DK 175194 B1 I

I II I

I 5 10 15 II 5 10 15 I

I Cys Asp Leu Pro Gin Asn Bis Gly Leu Leu Ser Arg Asn Thr Leu II Cys Asp Leu Pro Gin Asn To Gly Leu Leu Ser Arg Asn Thr Leu I

I TGT GAT CTG CCT CAG AAC CAT GGC CTA CTT AGC AGG AAC ACC TTG II TGT GAT CTG CCT CAG AAC CAT GGC CTA CTT AGC AGG AAC ACC TTG I

I 20 25 30 II 20 25 30 I

I 5 Val Leu Leu His Gin Met Arg Arg Ile Ser Pro Phe Leu Cys Leu II 5 Val Leu Leu His Gin With Arg Arg Ile Ser Pro Phe Leu Cys Leu I

I GTG CTT CTG CAC CAA ATG AGG AGA ATC TCC CCT TTC TTG TGT CTC II GTG CTT CTG CAC CAA ATG AGG AGA ATC TCC CCT TTC TTG TGT CTC I

I 35 40 45 II 35 40 45 I

Lys Asp Arg Arg Asp Phe Arg Phe Pro Gin Glu Met Val Lys Gly IList Asp Arg Arg Asp Phe Arg Phe Pro Gin Glu With Fall List Gly I

I AAG GAC AGA AGA GAC TTC AGG TTC CCC CAG GAG ATG GTA AAA GGG II AAG GAC AGA AGA GAC TTC AGG TTC CCC CAG GAG ATG GTA AAA GGG I

I 1Λ 50 55 60 II 1Λ 50 55 60 I

AU Ser Gin Leu Gin Lys Ala His Val Met Ser Val Leu His Glu MetAU Ser Gin Leu Gin Lys Ala His Fall With Ser Val Leu His Glu Met

I AGC CAG TTG CAG AAG GCC CAT GTC ATG TCT GTC CTC CAT GAG ATG II AGC CAG TTG CAG AAG GCC CAT GTC ATG TCT GTC CTC CAT GAG ATG I

I 65 70 75 . II 65 70 75. IN

I Leu Gin Gin Ile Phe Ser Leu Phe His Thr Glu Arg Ser Ser Ala II Leu Gin Gin Ile Phe Ser Leu Phe His Thr Glu Arg Ser Ser Ala I

I CTG CAG CAG ATC TTC AGC CTC TTC CAC ACA GAG CGC TCC TCT GCT II CTG CAG CAG ATC TTC AGC CTC TTC CAC ACA GAG CGC TCC TCT GCT I

I 15 80 85 90 II 15 80 85 90 I

I Ala Trp Asn Met Thr Leu Leu Asp Gin Leu His Thr Gly Leu His II Ala Trp Asn Met Thr Leu Leu Asp Gin Leu His Thr Gly Leu His I

I GCC TGG AAC ATG ACC CTC CTA GAC CAA CTC CAC ACT GGA CTT CAT II GCC TGG AAC ATG ACC CTC CTA GAC CAA CTC CAC ACT GGA CTT CAT I

I 95 100 105 II 95 100 105 I

I Gin Gin Leu Gin His Leu Glu Thr Cys-Leu Leu Gin Val Val Gly II Gin Gin Leu Gin His Leu Glu Thr Cys-Leu Leu Gin Val Val Gly I

I CAG CAA CTG CAA CAC CTG GAG ACC TGC TTG CTG CAG GTA GTG GGA II CAG CAA CTG CAA CAC CTG GAG ACC TGC TTG CTG CAG GTA GTG GGA I

I 20 110 115 120 II 20 110 115 120 I

I Glu Gly Glu Ser Ala Gly Ala Ile Ser Ser Pro Ala Leu Thr Leu II Glu Gly Glu Ser Ala Gly Ala Ile Ser Ser Pro Ala Leu Thr Leu I

I GAA GGA GAA TCT GCT GGG GCA ATT AGC AGC CCT GCA CTG ACC TTG II GAA GGA GAA TCT GCT GGG GCA ATT AGC AGC CCT GCA CTG ACC TTG I

I 125 130 135 II 125 130 135 I

Arg Arg Tyr Phe Gin Gly Ile Arg Val Tyr Leu Lys Glu Lys Lys IArg Arg Tyr Phe Gin Gly Ile Arg Val Tyr Leu Lys Glu Lys Lys I

I AGG AGG TAC TTC CAG GGA ATC CGT GTC TAC CTG AAA GAG AAG AAA II AGG AGG TAC TTC CAG GGA ATC CGT GTC TAC CTG AAA GAG AAG AAA I

I 140 145 150 II 140 145 150 I

Tyr Ser Asp Cys Ala Trp Glu Val Val Arg Met Glu Ile Met Lys ITyr Ser Asp Cys Ala Trp Glu Val Val Arg With Glu Ile With List I

I TAC AGC GAC TGT GCC TGG GAA GTT GTC AGA ATG GAA ATC ATG AAA II TAC AGC GAC TGT GCC TGG GAA GTT GTC AGA ATG GAA ATC ATG AAA I

I 155 160 165 II 155 160 165 I

Ser Leu Phe Leu Ser Thr Asn Met Gin Glu Arg Leu Arg Ser Lys ISer Leu Phe Leu Ser Thr Asn With Gin Glu Arg Leu Arg Ser List I

I 30 TCC TTG TTC TTA TCA ACA AAC ATG CAA GAA AGA CTG AGA AGT AAA II 30 TCC TTG TTC TTA TCA ACA AAC ATG CAA GAA AGA CTG AGA AGT AAA I

I 170 II 170 I

I Asp Arg Asp Leu Gly Ser Ser II Asp Arg Asp Leu Gly Ser Ser I

I GAT AGA GAC CTG GGC TCA TCT II GAT AGA GAC CTG GGC TCA TCT I

I 35 II 35 I

5 DK 175194 B1 I position 111 kan sekvensen GGG (der koder for Gly) erstattes med GAG (der koder for Glu). De foretrukne molekyler omfatter også derivater, der er N-gly-• kosylerede i aminosyreposition 78.In position 111, the sequence GGG (encoding Gly) can be replaced by GAG (encoding Glu). The preferred molecules also include derivatives which are N-glycosylated at amino acid position 78.

5 Som eksenqpel kan begge de forannævnte ω-interfe- roner indeholde et Leader-peptid med formlen:As an example, both of the aforementioned ω interferons may contain a Leader peptide of the formula:

Met Ala Leu.Leu Phe Pro Leu Leu Ala Ala Leu Val Met Thr Ser Tyr Ser Pro Val Gly Ser Leu Gly 10With Ala Leu.Leu Phe Pro Leu Leu Ala Ala Leu Val With Thr Ser Tyr Ser Pro Val Gly Ser Leu Gly 10

Forklaring til tegningerne:Explanation of the drawings:

Fig. 1 : Restriktionskort for klonen E76E9 Fig. 2 : Restriktionskort for klonen P9A2 Fig. 3 : DNA-sekvens for klonen P9A2 15 Fig. 4 : DNA-sekvens for klonen E76E9FIG. 1: Restriction map for clone E76E9 Fig. 2: Restriction map for the clone P9A2 Fig. 3: DNA sequence of clone P9A2 FIG. 4: DNA sequence of clone E76E9

Fig. 5 : Genomisk Southern Blot analyse med DNA fra klonen P9A2 anvendt som sonde Fig. 6 : Konstruktion af ekspressionsklonen pRHWl2 Fig. 7 : Aminosyre- og nukleotidforskelle mellem inter-20 feroner af type IFIG. 5: Genomic Southern Blot analysis with DNA from clone P9A2 used as probe Fig. 6: Construction of the expression clone pRHW12 Fig. 7: Amino acid and nucleotide differences between type I interferons

Fig. 8a; Liste over singulære nukleotidpositioner i IFN-aA-genetFIG. 8a; List of singular nucleotide positions in the IFN-αA gene

Fig. 8b: Liste over singulære nukleotidpositioner i IFN-ωΐ-genet.FIG. 8b: List of singular nucleotide positions in the IFN-ωΐ gene.

25 Fig. 8c: Liste over singulære nukleotidpositioner i IFN-aD-genetFIG. 8c: List of singular nucleotide positions in the IFN-αD gene

Fig. 9: Skematisk afbildning af syntesen af interferonundertype til specifik sondeFIG. 9: Schematic representation of the interferon subtype synthesis for specific probe

Fig. 10: Påvisning af interferon-undertype fra specifik 30 rnRNAFIG. 10: Detection of interferon subtype from specific 30 rnRNA

Fig. 11: DNA-sekvens i IFN-wl-genet Fig. 12: DNA-sekvens i IFN-pseudo-o>2-genet Fig. 13: DNA-sekvens i IFN-pseudo-td3-genet Fig. 14: DNA-sekvens i IFN-pseudo-o>4-genet 35 Fig. 15: Korrigeret opstilling af sekvenserne i IFN-ω-FIG. 11: DNA sequence of the IFN-wl gene FIG. 12: DNA sequence of the IFN pseudo-β2 gene. 13: DNA sequence of the IFN pseudo-td3 gene FIG. 14: DNA sequence of the IFN pseudo-4 gene 4 FIG. 15: Corrected alignment of the sequences in IFN-ω-

I DK 175194 B1 II DK 175194 B1 I

I II I

I generne IIn the genes I

I Fig. 16: Homologier for signalsekvenserne IIn FIG. 16: Homologies for the signal sequences I

I Fig. 17: Homologier for de "færdige" proteinsekvenser IIn FIG. 17: Homologies for the "finished" protein sequences I

I Fig. 18: Homologier for de 4-DNA-sekvenser overfor hin- IIn FIG. 18: Homologies for the 4-DNA sequences against each other

I 5 anden. IIn 5 second. IN

I Ifølge opfindelsen tilvejebringer man de hidtil IIn accordance with the invention, they are heretofore provided

I ukendte ω-interferoner og DNA-sekvenserne, der koder IIn unknown ω interferons and the DNA sequences encoding I

I herfor, på følgende måde: IHereby, as follows:

I En linie af humane B-lymphom-celler, f.eks. IIn A line of human B lymphoma cells, e.g. IN

I 10 Namalwa-celler (se G. Klein et al., Int. J. Cancer 10, IIn 10 Namalwa cells (see G. Klein et al., Int. J. Cancer 10, I

I 44 (1972)), kan ved behandling med et virus, f. eks. II 44 (1972)), when treated with a virus, e.g.

I Sendai-virus, bringes til samtidig at producere a- og β- IIn Sendai virus, is caused to simultaneously produce α- and β-I

I interferon. Man kan isolere mRNA, dannet i de stimule- IIn interferon. One can isolate mRNA formed in the stimuli

I rede Namalwa-celler, og dette kan bruges som skabelon IIn prepared Namalwa cells, this can be used as template I

I 15 ved cDNA-syntese. For at forhøje udbyttet af de inter- II 15 by cDNA synthesis. In order to increase the yield of the inter-

I feronspecifikke sekvenser ved kloneringsfremgangsmåden, IIn feron-specific sequences by the cloning method, I

I lader man præparationen af mRNA gradiensseparere i en IYou allow the preparation of mRNA gradient separators into one I

I sukkeropløsning i henhold til de individuelle mRNA-mole- IIn sugar solution according to the individual mRNA mols

I kylers forskellige længde. Man indsamler hensigtsmæs- IIn different lengths of cooler. Intent is collected

I 20 sigt mRNA-moleky lerne i 12S-området (omkring 800 til IIn the 20 term, the mRNA molecules in the 12S region (about 800 to 1

I 1000 basers længde for mRNA). Her udsedimenterer mRNA- IIn 1000 base length for mRNA). Here, mRNA-I secretes

I molekylerne, der er specifikke overfor a- og β-interfe- IIn the molecules specific to α- and β-interphase I

I roner. mRNA fra dette gradientområde opkoncentreres ved IIn rones. mRNA from this gradient region is concentrated at I

I udfældning og genopløsning i vand. IIn precipitation and redissolution in water. IN

I 25 Fremstilling af et bibliotek for cDNA følger i IPreparation of a library for cDNA follows in I

I det væsentlige metoder, kendt fra litteraturen (se f. IEssentially methods known from the literature (see f. I

I eks. E. Dworkin-Rastl, M.B. Dworkin og P. Swetly, Jour- IIn E. E. Dworkin-Rastl, M.B. Dworkin and P. Swetly, Jour- I

I nal of Interferon Research 2/4, 575-585 (1982)). Man II nal of Interferon Research 2/4, 575-585 (1982)). Man I

I primer mRNA ved tilsætning af oligo-dT. Derefter til- IIn primer mRNA by the addition of oligo-dT. Then, I-

I 30 sætter man de fire desoxynukleosidtriphosphater (dATP, IAt 30, the four desoxynucleoside triphosphates (dATP, I) are added

I dGTP, dCTP, dTTP), og enzymet revers transkriptase, og IIn dGTP, dCTP, dTTP), and the enzyme reverse transcriptase, and I

I syntesen af cDNA foretages i en passende pufferopløsning IIn the synthesis of cDNA, a suitable buffer solution I is performed

I ved 45°C og varer en time. Man renser cDNA/mRNA-hybrid IYou are at 45 ° C and lasts an hour. CDNA / mRNA hybrid I is purified

ved chloroformekstraktion og kromatografi på en gelsøj- Iby chloroform extraction and chromatography on a gel column

I 35 le, f.eks. Sephadex G50. RNA hydrolyseres ved alkalibe- IIn 35 le, e.g. Sephadex G50. RNA is hydrolyzed by alkali I

7 DK 175194 B1 handling (0,3 mol NaOH ved 50°C, en time), og efter neutralisation med sur natriumacetatopløsning udfælder man cDNA med ethanol.B1 action (0.3 mol NaOH at 50 ° C, one hour) and, after neutralization with acidic sodium acetate solution, cDNA is precipitated with ethanol.

Man udfører dobbeltstrengssyntesen i en passende 5 opløsning (seks timer ved 15°C) efter tilsætning af de fire desoxynukleosidtriphosphater og E.coli DNA-polyme-rase I, hvorved under dannelse af hårnålsstrukturen ved 3'-enden cDNA samtidig fungerer som skabelon og primer (se A. Eftratiadis et al., Cell 7, 279, (1976)). Efter 10 ekstraktion med phenol, kromatografi på Sephadex G50 og udfældelse med ethanol, behandles DNA i passende opløsning med den enkeltstreng-specifikke endonuklease Si.Double strand synthesis is carried out in a suitable solution (six hours at 15 ° C) after the addition of the four deoxynucleoside triphosphates and E. coli DNA polymerase I, thereby forming the hairpin structure at the 3 'end cDNA simultaneously as a template and primer. (see A. Eftratiadis et al., Cell 7, 279, (1976)). After extraction with phenol, chromatography on Sephadex G50 and precipitation with ethanol, the DNA in appropriate solution is treated with the single-strand specific endonuclease Si.

Derved nedbrydes den hårnålestruktur i cDNA, der ikke er indbygget i dobbeltstrengen. Man ekstraherér med chloro-15 form og udfælder med ethanol, og gradientseparerer dobbeltstrengs DNA (dsDNA) i en sukkeropløsning efter størrelse. Ved den videre klonfremstilling anvender man hensigtsmæssigt kun dsDNA af størrelse 600 bp eller højere for at øge sandsynligheden for kun at tilvejebringe 20 kloner, som indeholder den fuldstændige kodende sekvens for de hidtil ukendte interferoner. dsDNA med mere end 600 bp længde opkoncentreres fra sukkergradienten til udfældning med alkohol og opløsning i vand.This breaks down the hairpin structure of the cDNA that is not built into the double strand. It is extracted with chloroform and precipitated with ethanol, and gradient separates double-stranded DNA (dsDNA) in a sugar solution by size. In the further clone preparation, only dsDNA of size 600 bp or higher is suitably used to increase the probability of providing only 20 clones containing the complete coding sequence for the novel interferons. dsDNA of more than 600 bp in length is concentrated from the sugar gradient to precipitation with alcohol and solution in water.

De dannede dsDNA-molekyler skal med henblik på 25 opformering anbringes i en passende vektor, og derefter i bakterien E. coli. Som vektor anvendes hensigtsmæssigt plasmidet pBR322 (F. Bolivar et al., Gene 2, 95 (1977)). Dette plasmid består i det væsentlige af et replicon og to selektionsmarkører. Disse bibringer vær-30 ten resistens mod visse antibiotika, Ampicillin og te-tracyclin (Apr, Tcr). Genet for 6-lactamase (Apr) indeholder sekvensen, der genkender restriktionsendonuklea-sen PstI. pBR322 kan gennemskæres med Pstl. De udhængende 3'-ender forlænges i en passende pufferopløsning 35 ved hjælp af enzymet terminal desoxynukleotid-transfera-The dsDNA molecules formed must be placed in a suitable vector for amplification, and then in the bacterium E. coli. As a vector, the plasmid pBR322 is conveniently used (F. Bolivar et al., Gene 2, 95 (1977)). This plasmid consists essentially of a replicon and two selection markers. These confer resistance to certain antibiotics, Ampicillin and tetracycline (Apr, Tcr). The gene for 6-lactamase (Apr) contains the sequence recognizing the restriction endonuclease PstI. pBR322 can be cut with Pstl. The hanging 3 'ends are extended in a suitable buffer solution 35 by the enzyme terminal deoxynucleotide transfer agent.

I DK 175194 B1 II DK 175194 B1 I

i 8 Ii 8 I

I se (TdT) under anvendelse af dGTP. Samtidig forlænges IIn see (TdT) using dGTP. At the same time you are being extended

I dsDNA også i 3'-enderne med enzymet TdT, idet der anven- II dsDNA also at the 3 'ends with the enzyme TdT, using I

I des dCTP. Homopolymerenderne af plasmid og dsDNA er kom- IIn the dCTP. The homopolymer ends of plasmid and dsDNA are com

I plementære og vil hybridisere, når plasmid DNA og dsDNA IIn plementary and will hybridize when plasmid DNA and dsDNA I

I 5 blandes under iagttagelse af passende koncentrationsfor-I 5 is mixed, taking into account appropriate concentration levels.

I hold og under egnede salt-, puffer- og temperaturbetin- IIn hold and under suitable salt, buffer and temperature conditions

I gelser (T. Nelson et al., Methods in Enzymology 68, 41 - IIn gels (T. Nelson et al., Methods in Enzymology 68, 41 - I

I 50 (1980)). IIn 50 (1980)). IN

I E. coli af stammen HB 101 (Genotyp P-, hsdS20 IIn E. coli of strain HB 101 (Genotype P-, hsdS20 I

I 10 (r-B, m-B) recAl3, ara-14, proA2, lacYl, galK2, rpsL20 II (r-B, m-B) recAl3, ara-14, proA2, lacYl, galK2, rpsL20 I

I (Smr), xyl-5, mtl-1, supE44, λ-) præpareret ved vask med HI (Smr), xyl-5, mtl-1, supE44, λ-) prepared by washing with H

I en CaCl2-opløsning, så den er rede til at optage det re- IIn a CaCl2 solution so that it is ready to absorb it

I kombinante vektor-dsDNA-molekyle. Præparerede E.coli HB IIn combining vector dsDNA molecule. Prepared E.coli HB I

I 101 blandes med DNA, og efter inkubation ved 0°C udsæt- II 101 is mixed with DNA and, after incubation at 0 ° C, exposes I

I 15 tes det derved dannede plasmid-DNA for en transformation IIn this, the plasmid DNA thus formed is transformed for a transformation I

I ved et varmechock ved 42°C i to minutter (M. Dagert et II at a heat shock at 42 ° C for two minutes (M. Dagert et I

I al., Gene 6, 23-28 (1979)). De transformerede bakterier IIn al., Gene 6, 23-28 (1979)). The transformed bacteria I

I anbringes dernæst på agarplader, der indeholder tetra-You are then placed on agar plates containing tetra

I cyclin (10 yg pr. liter). På dette agar kan E. coli HB IIn cyclin (10 µg per liter). On this agar, E. coli HB I

I 20 101 kun vokse, hvis det har optaget et vektor- eller re- II 20 101 only grow if it has occupied a vector or re- I

I kombinant-vektormolekyle (Tcr). Rekombinante vektor- IIn combinator vector molecule (Tcr). Recombinant vector I

I dsDNA-molekyler bibringer værten genotypen ApsTcr, da β- IIn dsDNA molecules, the host transmits the genotype ApsTcr, since β-I

I laktamaseinformationen ved anbringelse af dsDNA i $-lak- IIn the lactamase information by placing dsDNA in $ -lac- I

I tamasegenet er blevet ødelagt. Klonerne overføres til IIn the tama gene has been destroyed. The clones are transferred to I

I 25 agarplader, der indeholder 50 yg/ml ampicillin. Kun ca.In 25 agar plates containing 50 µg / ml ampicillin. Only approx.

I 3% af klonerne vokser her, hvad der betyder, at 97% af IIn 3% of the clones grow here, which means that 97% of I

I klonerne har fået indsat et dsDNA-molekyle. Ud fra 0,5 IA dsDNA molecule has been inserted into the clones. From 0.5 l

I yg dsDNA tilvejebringer man mere end 30.000 kloner. Her- IIn addition, dsDNA provides more than 30,000 clones. Here

I af overføres 28.600 kloner individuelt til hulningerne i IIn of, 28,600 clones are transferred individually to the holes in I

I 30 mikrotiterplader, der indeholder næringsmedium, 10 yg/ml IIn 30 microtiter plates containing nutrient medium, 10 µg / ml I

I tetracyclin og glycerin. Efter klonvækst opbevares pla- IIn tetracycline and glycerine. After clone growth, plate I is stored

I derne ved -70°C (cDNA-bibliotek). ITherein at -70 ° C (cDNA library). IN

I Når cDNA-biblioteket skal gennemsøges for kloner, IWhen to scan the cDNA library for clones, I

I der indeholder gener for hidtil ukendt interferon, lader IIn containing genes for novel interferon, I let

I 35 man efter optøning klonerne overføre til et nitrocellu- IAfter thawing, the clones are transferred to a nitrocellulose

9 DK 175194 B1 losefilter. Dette filter ligger på vækstagar, der indeholder tetracyclin. Man lader bakteriekolonierne vokse og fikserer derefter bakteriernes DNA på filteret.9 DK 175194 B1 release filter. This filter is on growth agar containing tetracycline. The bacterial colonies are grown and then the bacteria's DNA is fixed to the filter.

Som sonde anvender man med fordel indføjnings-5 stykket i klonen pER33 (E. Rastl et al., Gene 21, 237 -248 (1983)) - se også EP-A-0.115.613), der indeholder genet for IFNa2-Arg. Dette stykke DNA markeres radioaktivt ved hjælp af haktranslation, hvorved der anvendes DNA-polymerase I, dATP, dGTP, dTTP og a-^P-dCTP. Nitro-10 cellulosefilteret forbehandles under passende, men ikke stringente, hybridiseringsbetingelser uden den radioaktive sonde og derefter hybridiserer man ca. 16 timer under nærværelse af den radioaktive sonde. Derefter vaskes filteret under passende, men ikke stringente, betingel-15 ser· På grund af den manglende stringens under hybridi-seringen og vasken fanger man ikke blot interferon a2-Arg-holdige kloner, men også andre interferonholdige kloner, hvis gensekvens kan afvige betragteligt fra det hidtil kendte interferon-α. Efter tørring eksponeres 20 filteret på en røntgenfilm. En mørk farvning, der afviger tydeligt fra baggrundsniveauet, viser, at der findes en klon med interferon-specifikke sekvenser.As a probe, advantageously, the insert is inserted into the clone pER33 (E. Rastl et al., Gene 21, 237 -248 (1983)) - see also EP-A-0.115,613) containing the gene for IFNα2-Arg . This piece of DNA is radiolabeled by notch translation, using DNA polymerase I, dATP, dGTP, dTTP and α- β P-dCTP. The nitro-cellulose filter is pretreated under appropriate, but not stringent, hybridization conditions without the radioactive probe and then hybridized for approx. 16 hours in the presence of the radioactive probe. Then, the filter is washed under appropriate but not stringent conditions · Due to the lack of rigor during hybridization and washing, not only are interferon α2-Arg-containing clones captured, but also other interferon-containing clones whose gene sequence may differ significantly from the previously known interferon-α. After drying, the filter is exposed to an X-ray film. A dark staining that differs clearly from the background level indicates that a clone with interferon-specific sequences exists.

Da radioaktivitetssignalerne er af forskellig kvalitet, lader man både de positive og de mistænkelig 25 positivt reagerende kloner opformeres i lille målestok.Since the radioactivity signals are of different quality, both the positive and the suspiciously positive reacting clones are allowed to propagate on a small scale.

Man isolerer plasmid DNA-molekylerne, lader dem fordøje af restriktionsendonukleasen PstI, og lader dem skille efter størrelse ved elektroforese på en agarosegel (Birnboim et al·, Nucl. Acid. Res. 7, 1513 (1979)). DNA 30 i agarosegel overføres efter Southern's metode (E.M. Southern, J. Mol Biol· 98, 503-517 (1975)) til et nitrocellulosefilter. DNA på dette filter hybridiseres med den radioaktive IFN-genholdige denaturerede sonde. Som positiv kontrol tjener plasmidet 1F7 (deponeret hos DSM 35 under DSM-nummer 2362), der indeholder genet for inter-The plasmid DNA molecules are isolated, allowed to digest by the restriction endonuclease PstI, and separated by size by electrophoresis on an agarose gel (Birnboim et al., Nucl. Acid. Res. 7, 1513 (1979)). DNA 30 in agarose gel is transferred by Southern's method (E.M. Southern, J. Mol. Biol. 98, 503-517 (1975)) to a nitrocellulose filter. The DNA on this filter is hybridized with the radioactive IFN-containing denatured probe. As a positive control, plasmid 1F7 (deposited with DSM 35 under DSM number 2362) which contains the gene for inter

I DK 175194 B1 II DK 175194 B1 I

i 10 Iin 10 I

I feron-o2-Arg. Ifølge autoradiogrammet er det tydeligt, IIn feron-o2-Arg. According to the autoradiogram, it is clear that I

I at klonen E76E9 og klonen P9A2 indeholder en sekvens, IIn that clone E76E9 and clone P9A2 contain a sequence, I

I som under ikke stringente betingelser hybridiserer med IYou hybridize under non-stringent conditions with I

I genet for interferon-a2-Arg. Til brug for nærmere ka- IIn the gene for interferon-α2-Arg. For more detailed information

I 5 rakteristik af den dsDNA, der er indsat i klonerne E76E9 IIn 5 characteristics of the dsDNA inserted into clones E76E9 I

I og P9A2. lader man plasmiderne for disse kloner frem- II and P9A2. plasmids for these clones are obtained

I stille i større målestok. DNA’en fordøjes med forskel- IIn silence on a larger scale. The DNA is digested with difference I

I lige restriktionsendonukleaser, f.eks. med Alul, Sau3A, IIn even restriction endonucleases, e.g. with Alul, Sau3A, I

I Bglll, Hinfl, PstI og Haelll. De dannede fragmenter ad- IIn Bglll, Hinfl, PstI and Haelll. The fragments formed ad- I

I 10 skilles på en agarosegel. Ved sammenligning med passen- II 10 is separated on an agarose gel. By comparison with the pass- I

I de størrelsesmarkør, f.eks. de fragmenter, der opstår IIn the size cursor, e.g. the fragments arising i

I ved fordøjelse af pBR322 med restirktionsendonukleasen II by digesting pBR322 with the restriction endonuclease I

I Hinfl henholdsvis Haelll, kan man bestemme størrelsen af IIn Hinfl and Haelll, respectively, one can determine the size of I

fragmenterne. Der optegnes kort, som anvist af Smith og Ifragments. Cards are drawn, as directed by Smith and I.

I 15 Birnstiel (H.O. Smith et al. Nucl. Acid. Res. 3, 2387 - IIn Birnstiel (H. O. Smith et al. Nucl. Acid. Res. 3, 2387 - I

I 2398 (1967)), og rækkefølgen af disse fragmenter bliver IIn 2398 (1967)), and the order of these fragments becomes I

I bestemt. Ved hjælp af de på denne måde tilvejebragte ICertainly. Using the thus provided I

I restriktionsenzymkort (fig. 1 og 2) kan man overraskende ISurprisingly, in restriction enzyme maps (Figures 1 and 2), I

I slutte, at det ved de indsatte stykker i klonerne E76 IYou conclude that by inserting pieces into clones E76 I

I 20 drejer sig om hidtil ukendte gener for interferon, nem- II 20 is about novel interferon genes, namely I

I lig generne for ω-interferonerne. ISimilar to the genes for the ω interferons. IN

I Denne information om ω-interferonerne er en II This information about the ω interferons is an I

I hjælp, når det indsatte cDNA skal fordøjes af egnede re- IHelps when digesting the inserted cDNA by suitable re- I

I striktionsendonukleaser. De dannede fragmenter ligeres IIn stricture endonucleases. The resulting fragments are ligated I

I 25 med dsDBA-formen (den replikative form) af bakterieopha- IIn 25 with the dsDBA form (the replicative form) of bacterial suspension

I gen M13 mp9 (J. Messing et al., Gene 19, 269-276 (1982)) IIn gene M13 mp9 (J. Messing et al., Gene 19, 269-276 (1982)) I

I og opdeles i sekvenser ved hjælp af Sanger’s dideoxyme- IIn and divided into sequences using Sanger's dideoxyme-I

I tode (F. Sanger et al., Proc. Natl. Acad. Sci. 74, 5463- IIn Tode (F. Sanger et al., Proc. Natl. Acad. Sci. 74, 5463-1)

I 5467 (1977)). Man isolerer enkeltstrengs-DNA fra de re- II 5467 (1977)). Single strand DNA is isolated from the re- I

30 kombinante phager. Disse bindes til en syntetisk oligo- I30 combined phages. These are bound to a synthetic oligo-I

I mer, og man udfører derefter i fire parallelforsøg dob- IIn more, and then in four parallel experiments double

I beltstrengssyntese under anvendelse af det store frag- IIn belt string synthesis using the large fragment I

I ment af DNA-polymerase I fra E. coli (Klenow-fragment). IIntended by E. coli DNA polymerase I (Klenow fragment). IN

Til hver af de fire delreaktioner sættes en af de fire IFor each of the four partial reactions, one of the four I is added

I 35 didesoxynukleosidtriphosphater (ddATP, ddGTP, ddCTP, IIn didesoxynucleoside triphosphates (ddATP, ddGTP, ddCTP, I

11 DK 175194 B1 DDTTP). Dette fører til statistisk fordelte kædebrud på de steder, hvor der i skabelon-DNA findes komplementære baser til det pågældende didesoxynukleosidtriphosphat. Derudover benyttes også radioaktivt mærket dATP. Når 5 syntesereaktionen er tilendebragt, lader man produkterne denaturere og lader fragmenterne af enkeltstrengs-DNA opdele efter størrelse på en denaturerende polyacryl-amidgel (F. Sanger et al., FEBS Letters 87, 107 - 111 (1978)). Derefter eksponeres gelen på en røntgenfilm.11 DK 175194 B1 DDTTP). This leads to statistically distributed chain breaks at the sites where the template DNA contains complementary bases for the didesoxynucleoside triphosphate. In addition, radiolabeled dATP is also used. When the synthesis reaction is complete, the products are denatured and the fragments of single-strand DNA divided by size on a denaturing polyacrylic amide gel (F. Sanger et al., FEBS Letters 87, 107-111 (1978)). Then the gel is exposed to an X-ray film.

10 DNA-sekvensen for den rekombinante M13 phag kan så aflæses fra autoradiogrammet. Sekvenserne for de indsatte stykker i forskellige rekombinante phager bearbejdes yderligere i passende computerprogrammer (R. Staden,The DNA sequence of the recombinant M13 phage can then be read from the autoradiogram. The sequences of the inserted pieces in different recombinant phages are further processed in appropriate computer programs (R. Staden,

Nuel. Acid. Res. 10, 4731-4751 (1982)).Nuel. Acid. Res. 10, 4731-4751 (1982)).

15 Fig. 1 og 2 viser sekvenseringsstrategien. Fig.FIG. 1 and 2 show the sequencing strategy. FIG.

3. viser DNA-sekvensen af det indsatte stykke i klonen P9A2, fig. 4 for klonen E76E9. Den ikke-kodende DNA-streng vises i retningen 5'+ 3' sammen med den tilsvarende aminosyresekvens.Figure 3 shows the DNA sequence of the insert in clone P9A2; 4 for the clone E76E9. The non-coding DNA strand is shown in the direction 5 '+ 3' along with the corresponding amino acid sequence.

20 cDNA, isoleret fra klonen E76E9 for u>-(Glu)-in- terferon har en længde på 858 basepar og indeholder en 3' ikke-translateret region. Regionen, der koder for færdig t»)-(Glu)-interferon, forløber fra nukleotid 9 til nukleotid 524. cDNA, isoleret fra klonen P9A2 for u>(Gly) 25 -interferon har en længde på 877 basepar, og kodesekvensen for færdig ω-interferon løber fra nukleotid 8 til nukleotid 523. Den 3‘ ikke-translaterede region forløber ved P9A2 ud til poly-A-afsnittet.20 cDNA isolated from the clone E76E9 for β - (Glu) interferon has a length of 858 base pairs and contains a 3 'untranslated region. The region coding for complete β - (Glu) interferon extends from nucleotide 9 to nucleotide 524. cDNA isolated from the clone P9A2 for u> (Gly) 25 interferon has a length of 877 base pairs and the coding sequence for completed ω-interferon runs from nucleotide 8 to nucleotide 523. The 3 'untranslated region extends at P9A2 to the poly-A section.

DNA-sekvenserne, der koder for færdig ω-interfe-30 ron, findes fuldstændigt i klonerne E76E9 og P9A2. De begynder i den N-terminale ende med aminosyrerne cyste-in-asparaginsyre-leucin. Det har overraskende vist sig, at begge de færdige ω-interferoner har en længde på 172 aminosyrer, hvilket afviger tydeligt fra længden af hid-35 til kendte interferoner, som f. eks. 166 (henholdsvisThe DNA sequences encoding complete ω interferon are completely found in clones E76E9 and P9A2. They begin at the N-terminal end with the amino acids cyst-in-aspartic acid leucine. Surprisingly, it has been found that both of the completed ω interferons have a length of 172 amino acids, which differs markedly from the length of hide to 35 known interferons, such as, for example, 166 (

I DK 175194 B1 II DK 175194 B1 I

I 12 II 12 I

I 165) aminosyrer ved α-interferoner. Det har overrasken- IIn 165) amino acids by α-interferons. It has surprised- I

I de vist sig, at begge ω-interferonerne besidder et po- IIt has been found that both ω-interferons possess a po- I

I tentielt N-glykosyleringssted på aminosyrepositionen 78 IAt tentatively N-glycosylation site at amino acid position 78 I

I (asparagin-methionin-threonin). II (asparagine-methionine-threonine). IN

I 5 En sammenligning af DNA fra klonerne E76E9 ogI 5 A comparison of DNA from clones E76E9 and

I P9A2 viser en forskel. Tripletten, der koder for amino- IIn P9A2 shows a difference. The triplet encoding amino I

I syre 111 i klon E76E9 er GAG og koder for glutaminsyre, IIn acid 111 of clone E76E9 is GAG and codes for glutamic acid, I

I hvorimod denne triplett er GGG i klon P9A2 og koder for HIn contrast, this triplet is GGG in clone P9A2 and encodes H

I glycin. De to ω-interferoner adskiller sig altså fra HIn glycine. Thus, the two ω interferons differ from H

I 10 hinanden på et aminosyrested og betegnes u>-(Glu)-inter- IIn each other at an amino acid site and are designated u> - (Glu) -inter- I

I feron (E76E9) og ui(Gly)-interferon (P9A2). IIn feron (E76E9) and ui (Gly) interferon (P9A2). IN

I Sammenligning af de ω-interferoner med de hidtil II Comparison of the ω-interferons with the hitherto I

I kendte humane α-interferon undertyper giver følgende IIn known human α-interferon subtypes, the following I

I billede: IIn picture: I

I 15 II 15 I

I ω ^ι·-I ω ^ ι · -

I Proteinlængde IIn Protein Length I

I aminosyrer_172_166 _ IIn amino acids_172_166 _ I

I 20 II 20 I

I Potentiel N-glykosyle- II Potential N-glycosyl- I

I ringssted, position_78_- (++) IIn ring location, position_78_- (++) I

I +) Interferon o-A har kun 165 aminosyrer II +) Interferon o-A has only 165 amino acids I

I 25 ++) Interferon o-H har et potentielt N-glykosy- IIn 25 ++) Interferon o-H has a potential N-glycosyl

I leringssted på position 75 (D. Goeddel et IIn teaching site at position 75 (D. Goeddel et I.

I al.. Nature 290, 20-26 (1981)). IIn Nature, Nature 290, 20-26 (1981)). IN

I E. coli HB 101 med plasmidet E76E9 og E. coli 101 IIn E. coli HB 101 with the plasmid E76E9 and E. coli 101 I

I 30 med plasmidet P9A2 er blevet deponeret hos Deutschen II 30 with the plasmid P9A2 has been deposited with Deutschen I

I Sammlung fur Mikroorganismen (DMS Gottingen) med numrene IIn the collection fur the Microorganism (DMS Gottingen) with the numbers I

I DSM 3003 henholdsvis DSM 3004 den 3. juli 1984. IIn DSM 3003 and DSM 3004, respectively, on July 3, 1984. I

I Som bekræftelse på, at de hidtil ukendte kloner HI As confirmation that the novel clones H

I producerer en interferon-lignende aktivitet, kan man f. IYou produce an interferon-like activity, one can get

I 35 eks. kultivere klonen E76E9 og prøve bakteriens nedbryd- IIn 35 examples, cultivate the clone E76E9 and test the bacterial degradation

I ningsprodukt efter væksten ved en Plaque-reduktionsprø- IPost-Growth Inoculation Product by a Plaque Reduction Test

13 DK 175194 B1 ve. Som det var ventet, producerede bakterien interferon-lignende aktivitet (se Eksempel 3).13 DK 175194 B1 ve. As expected, the bacterium produced interferon-like activity (see Example 3).

Endvidere lod man, som bekræftelse på, at det ved begge de hidtil ukendte interferoner drejede sig om med-5 lemmer af en ny interferon-gruppe, al DNA fra Namalwa-celler isolere og fordøje med forskellige restriktions-nucleaser. Herved kan man få et overslag over, hvor mange gener der kodes af cDNA fra klonerne P9A2 og E76E9.Furthermore, as confirmation that both of the novel interferons were members of a new interferon group, all DNA from Namalwa cells were isolated and digested with various restriction nucleases. This provides an estimate of how many genes are encoded by cDNA from clones P9A2 and E76E9.

Man lod de tilvejebragte DNA-fragmenter skille på aga-10 rosegel efter Southern's metode (E.M. Southern et al-, J. Mol. Biol. 98, 503-517 (1975)), anbringe på nitrocellulosefilter og under relativ strenge betingelser hybri-disere med radioaktiv mærket specifik DNA fra klonen P9A2.The obtained DNA fragments were separated on agarose gel by Southern's method (EM Southern et al., J. Mol. Biol. 98, 503-517 (1975)), applied to nitrocellulose filters and hybridized under relatively strict conditions. with radiolabeled specific DNA from clone P9A2.

15 Resultaterne af hybridiseringen med DNA fra plas- midet P9A2 og pER33 vises i fig. 5a.The results of the hybridization with DNA from plasmids P9A2 and pER33 are shown in FIG. 5a.

På denne betegnes de enkelte spor med bogstaver, der henfører til de forskellige DNA-prØver (E = EcoRl, H = HindiII, B = BamHI, S = Sphl, P = PstI, C = Clal).On this, the individual traces are denoted by letters that refer to the different DNA samples (E = EcoRl, H = HindiII, B = BamHI, S = SphI, P = PstI, C = Clal).

20 Den venstre halvdel af filteret blev hybridiseret med interferon-a-gen-sonden ("A"), og den højre halvdel med det indføjede cDNA fra klonen P9A2 ("O"). Båndgruppen, der enten hybridiserer med α-interferongensonden eller med den hidtil ukendte interferon-gensonde, er forskel-25 lig. Ved de to forskellige sonder kan man ikke påvise nogen krydshybridisering, bedømt efter de tilsvarende spor.The left half of the filter was hybridized with the interferon-α gene probe ("A") and the right half with the cDNA inserted from clone P9A2 ("O"). The band group that either hybridizes with the α-interferon gene probe or with the novel interferon gene probe is different. The two different probes show no cross-hybridization, judged by the corresponding traces.

I fig. 5b afbildes cDNA fra klonen P9A2, og det fragment der benyttes til hybridisering. Angrebssteder-30 ne for nogle restriktionsenzymer er vist (P - sti, S =In FIG. 5b, cDNA from clone P9A2 is mapped and the fragment used for hybridization. The sites of attack for some restriction enzymes are shown (P - path, S =

Sau3A, A * Alul) . Sonden omfatter kun to af de tre mu lige Pstl-fragmenter. Hybridiseringsprøven viser kun ét hybridiserende fragment med omtrent 1300 basepar (bp), som hører til det homologe gen. Det mindre, 120 bp lan-35 ge fragment, var løbet igennem og ud af gelen. Bandet,Sau3A, A * Alul). The probe comprises only two of the three possible Pst I fragments. The hybridization sample shows only one hybridizing fragment of approximately 1300 base pairs (bp) belonging to the homologous gene. The smaller, 120 bp long fragment, had run through and out of the gel. The band,

I DK 175194 B1 II DK 175194 B1 I

I 14 II 14 I

I der hører til 5'-delen af genet, kan ikke påvises, da IIn the 5 'portion of the gene cannot be detected because I

sonden ikke indeholder denne region. Der kan ses mindst Ithe probe does not contain this region. At least I can be seen

I seks forskellige bånd i dette Pstl-spor. Dette betyder, IIn six different bands in this Pstl track. This means, I

I at der må være nogle andre gener til stede i det humane IIn that there must be some other genes present in the human I

I 5 genom, som er beslægtet med de hidtil ukendte sekvenser. IIn 5 genomes which are related to the novel sequences. IN

I Hvis der i disse gener skulle være et eller flere PstI- II If in these genes there should be one or more PstI- I

angrebssteder, så kan det ventes, at man vil kunne iso- Iattack sites, then it is expected that one will be able to isolate

I lere i det mindste tre yderligere gener. IIn clay at least three additional genes. IN

I Disse gener vil med fordel kunne isoleres fra et IThese genes may advantageously be isolated from an I

10 humant gen-bibliotek, der er indbygget i en plasmidvek- I10 human gene library embedded in a plasmid tumor

I tor, en phagvektor eller kosmidvektor (se Eksempel 4e). IIn tor, a phage vector or cosmid vector (see Example 4e). IN

I På dette sted må det nævnes, at ω-interferonerne II At this point it must be mentioned that the ω-interferons I

ifølge opfindelsen ikke blot omfatter de to færdige in- IAccording to the invention, not only do the two finished parts comprise I

I terferoner, der beskrives detailleret, men også om for- IIn terferons, which are described in detail, but also about for- I

I 15 skellige modifikationer af disse polypeptider, der ikke IIn 15 different modifications of these polypeptides, not I

I berører IFN-io-aktiviteten. Disse modifikationer kan f. IYou touch the IFN-io activity. These modifications may f. I

I eks. være afkortning af molekylet ved den N- eller C- IFor example, truncation of the molecule by the N- or C-I

I terminale ende, ombytning af aminosyrer med andre re- IAt the terminal end, the exchange of amino acids with other re- I

I ster, hvorved aktiviteten ikke ændres væsentligt, kemi- IIn steroids where the activity does not change significantly, chemistry

20 ske eller biokemiske bindinger af molekylet til andre I20 spoon or biochemical bonds of the molecule to others I

I molekyler, der kan være inerte eller aktive. Ved de IIn molecules that can be inert or active. By the I

sidstnævnte modifikationer kan det f.eks. dreje sig om Ithe latter modifications it may e.g. revolve around you

I hybridmolekyler af et eller flere ω-interferoner og/- IIn hybrid molecules of one or more ω-interferons and / - I

I eller kendte a- eller β-interferoner. IIn or known α or β interferons. IN

I 25 Med det formål at finde forskellene i aminosyrer IIn order to find the differences in amino acids I

I og nukleotidsekvenserne i de hidtil ukendte interfero- II and the nucleotide sequences of the novel interfero I

ner, især io(Gly)- og u)(Glu)-interferon, sammenlignet med I, especially io (Gly) - and u) (Glu) interferon, compared with I

I de allerede kendte a-interferoner og β-interferonet, der IIn the already known α-interferons and the β-interferon, which I

I er publiceret (C. Weissmann et al., Phil. Trans. R. Soc. IYou are published (C. Weissmann et al., Phil. Trans. R. Soc. I

I 30 London 299, 7-28 (1982); A. Ullrich et al-, J. Molec. II 30 London 299, 7-28 (1982); A. Ullrich et al., J. Molec. IN

I Biol. 156, 467-486 (1982); T. Taniguchi et al., Proc. IIn Biol. 156, 467-486 (1982); T. Taniguchi et al., Proc. IN

Nat. Acad. Sci. 77, 4003-4006 (1980); K. Tokodoro et INight. Acad. Sci. 77, 4003-4006 (1980); K. Tokodoro et al

I al-, EMBO J. 3, 669-670 (1984)), ordner man tilsvarende IIn al., EMBO J. 3, 669-670 (1984)), similarly I

I sekvenser parvist og tæller forskellene ved de enkelte IIn sequences in pairs, counting the differences of the individual I

I 35 positioner. IIn 35 positions. IN

15 DK 175194 B115 DK 175194 B1

Fra resultaterne afbildet i fig. 7 finder man, at DNA-sekvenserne i klonerne P9A2 og E76E9 er beslægtede med sekvenserne i interferoner af type I, (f.eks. a-og β-interferoner). Andetsteds vises, at forskellen mellem 5 aminosyresekvenserne mellem de enkelte α-interferoner og de hidtil ukendte sekvenser er større end 41,6% og mindre end 47,0%. Forskellene mellem de hidtil ukendte sekvenser eller sekvenserne i de enkelte a-interferoner og sekvenserne i β-interferonerne er af størrelsesordenen 10 70%. Med henblik på resultaterne af Eksempel 4, hvor man påviser eksistensen af en hel gruppe beslægtede gener, og med henblik på den nomenklatur, der er foreslået for interferonerne {J. Vilceck et al., J. Gen. Virol.From the results depicted in FIG. 7, it is found that the DNA sequences in clones P9A2 and E76E9 are related to the sequences of type I interferons (e.g., α and β interferons). Elsewhere, the difference between the 5 amino acid sequences between the individual α-interferons and the novel sequences is shown to be greater than 41.6% and less than 47.0%. The differences between the novel sequences or sequences of the individual α-interferons and the sequences of the β-interferons are of the order of 10 70%. For the purposes of Example 4, demonstrating the existence of a whole group of related genes, and for the nomenclature proposed for the interferons {J. Vilceck et al., J. Gen. Virol.

65, 669-670 (1984)) antager man, at de indføjede stykker 15 cDNA i klonerne P9A2 og E76E9 koder for en hidtil ukendt klasse type I-interferon, som kan betegnes som interfe-ron-ω.65, 669-670 (1984)), it is believed that the inserted pieces of cDNA in clones P9A2 and E76E9 encode a novel class I type interferon, which may be termed interferon-ω.

Endvidere påvises det, at gen-ekspressionen for ω-interferon er analog til ekspressionen af et interfe-20 ron-typel-gen. Med dette formål undersøges transkrip-tionen af de enkelte medlemmer af multigenfamilien o- og ω-interferoner ved hjælp af Sl-mapping-metoden (A. J.Furthermore, it is shown that the gene expression of ω-interferon is analogous to the expression of an interferon-type gene. To this end, the transcription of the individual members of the multigen family o and ω interferons is investigated by the S1 mapping method (A.J.

Berk et al., Cell 12, 721 (1977)) (se Eksempel 7), og det vises, at ekspressionen ω-1-mRNA er virusinducerbar.Berk et al., Cell 12, 721 (1977)) (see Example 7), and it is shown that the expression ω-1 mRNA is virus inducible.

25 Da transkripterne af en sådan genfamilie kun er forskellige i nogle enkelte baser ud af ca. 1000, er hybridise-ring alene intet tilstrækkeligt følsomt middel til at bestemme forskelle mellem de forskellige IFN mRNA.25 Since the transcripts of such a gene family differ only in some bases out of ca. 1000, hybridization alone is not a sufficiently sensitive means to determine differences between the various IFN mRNAs.

Til dette formål fremstiller man mRNA-sekvenserne 30 af 9 α-interferoner, af interferon-ω-Ι og af p-interfe-ron. Baserne, der er specifikke for den øverste sekvens, betegnes her med store bogstaver. Sådanne specifikke steder kan let findes ved hjælp af et trivielt computer-program. En hybridiseringssonde, som beror på 35 et specifikt sted, kan kun hybridisere perfekt med mRNATo this end, the mRNA sequences 30 of 9 α-interferons, of interferon-ω-Ι and of β-interferon are prepared. The bases specific to the upper sequence are denoted here in capital letters. Such specific places can easily be found using a trivial computer program. A hybridization probe based on a specific site can only hybridize perfectly with mRNA

I DK 175194 B1 II DK 175194 B1 I

I 16 II 16 I

I fra en bestemt undertype. Alle øvrige mRNA kan ikke hy- IIn from a certain subtype. All other mRNAs cannot be hybridized

I bridisere på det specifikke sted af undertypen. Når hy- IIn bridging at the specific place of the subtype. When he- I

I bridiseringssonden er markeret radioaktivt i den speci- IIn the bridging probe is marked radioactive in the speci- I

I fikke 5'-ende, beskyttes kun de radioaktive mærkninger IAt the 5 'end, only the radioactive labels I are protected

I 5 mod fordøjelse af en enkeltstreng-specifik nuclease II against digestion of a single strand-specific nuclease I

I (fortrinsvis Sl-nuclease), som har hybridiseret med den II (preferably S1 nuclease) which has hybridized with the I

I interferon-undertype-mRNA, som sonden var konstrueret IIn the interferon subtype mRNA that the probe was constructed in

I til. IIn to. IN

I Dette princip gælder ikke kun for interferon, men IThis principle applies not only to interferon but to

I 10 kan anvendes til enhver gruppe af kendte sekvenser, der II 10 can be used for any group of known sequences which I

I udviser de specifikke steder, der beskrives i fig. 8. IYou show the specific sites described in FIG. 8. I

I De ovennævnte specifikke positioner i undertyper- II The aforementioned specific positions in subtypes I

I ne er i de fleste tilfælde ikke restriktionssteder, IIn most cases, they are not restricted places

I hvorfor gennemskæring af cDNA med restriktions-endonuc- IIn why restriction endonuc- cDNA cDNA intersection

15 leaser ikke er egnet til at fremstille undertype-speci- I15 leases are not suitable for producing subtype speci- I

I fikke hybridiseringssonder. Derfor er de i dette eksem- IIn neat hybridization probes. Therefore, in this example, they are

pel benyttede sonder konstrueret ved udvidelse af et i Ipellets used probes constructed by extending one into one

H 5'-enden radioaktivt markeret oligonucleotid, som er IThe H 5 'end radiolabeled oligonucleotide which is I

I komplementær til mRNA i interferon-ω-Ι ovenfor det spe- IIn complementary to the mRNA of interferon-ω-Ι above it spe- I

I 20 cifikke sted. IIn 20 specific place. IN

I Pra fig. 10 fremgår, som ventet, at ω-1-mRNA kan IIn Pra fig. 10, as expected, it appears that ω-1 mRNA can I

induceres i Namalwa- og NC37-celler. Iinduced in Namalwa and NC37 cells. IN

I Opfindelsen angår derfor ikke blot gensekvenser, IIn the invention, therefore, not only relates to gene sequences, I

der koder specifikt for de angivne ω-interferoner, men Ispecifically encoding the indicated ω interferons but I

25 også modifikationer, der let og rutinemæssigt kan tilve- I25 also modifications that can be easily and routinely provided

I jebringes ved mutation, nedbrydning, transposition eller IYou are brought about by mutation, degradation, transposition or I

I tilføjelse. Alle sekvenser, der koder for de beskrevne, IIn addition. All sequences encoding the described I

I humane ω-interferoner (dvs. som udviser det biologiske IIn human ω interferons (i.e., exhibiting the biological I

I aktivitetsspektrum, der her beskrives), og som er dege- IIn the activity spectrum described herein) and which are degenerate

30 nereret sammenlignet med de viste sekvenser, skal også I30 compared to the sequences shown, I

I indbefattes, idet fagfolk på området er i stand til at IYou are included, as those skilled in the art are able to:

I fremstille de degenererede DNA-sekvenser af de kodende IYou make the degenerate DNA sequences of the coding I

I regioner. Endvidere er enhver sekvens, der koder for et IIn regions. Furthermore, any sequence encoding an I

I polypeptid med IFN-» aktivitetsspektrum, og som hybridi- IIn IFN-β spectrum of polypeptide, and as hybridis I

35 serer med de viste sekvenser (eller dele deraf), under I35 with the sequences shown (or portions thereof), under I

17 DK 175194 B1 stringente betingelser (eksempelvis betingelser, der selektivt giver mere end 85%, hensigtsmæssigt mere end 90% homologi) indbefatet.B1 stringent conditions (for example, conditions which selectively yield more than 85%, preferably more than 90% homology) are included.

Man gennemfører hybridiseringerne i 6 x SSC/5 x 5 Denhardt's opløsning/0,1% SDS ved 65°C. Stringensgraden fastlægges ved hjælp af udvaskningsgraden. For en udvælgelse af DNA-sekvenser med ca. 85% eller større homologi er betingelserne 0,2 x SSC/0,01%, SDS/65°C, og for en selektionering en udvælgelsen af DNA-sekvenser med ca.The hybridizations are performed in 6 x SSC / 5 x 5 Denhardt's solution / 0.1% SDS at 65 ° C. The degree of string is determined by the degree of leaching. For a selection of DNA sequences by ca. At 85% or greater homology, the conditions are 0.2 x SSC / 0.01%, SDS / 65 ° C, and for a selection, the selection of DNA sequences by ca.

10 90% eller større homologi er betingelserne 0,1 x SSC/- 0,01% SDS/65°C egnet.In 90% or greater homology, the conditions 0.1 x SSC / - 0.01% SDS / 65 ° C are suitable.

Ved gennemsøgning af et kosmid-bibliotek under disse betingelser (0,2 x SSC) opnår man nogle kosmider, der hybridiserer med en IFN-u>-sonde. Sekvensanalysen af 15 restriktionsenzymfragmenter, isoleret herfra, giver det autentiske IFN-iu-gen (se fig. 11), såvel som tre yderligere dermed beslægtede gener, der betegnes som IFN-pseu-do-<j>2, IFN-pseudo-u)3 og IFN-pseudo-u>4 (se fig. 12-14).Scanning a cosmid library under these conditions (0.2 x SSC) yields some cosmids that hybridize with an IFN-β probe. The sequence analysis of 15 restriction enzyme fragments, isolated therefrom, yields the authentic IFN-iu gene (see Fig. 11), as well as three additional related genes designated as IFN-pseu-do-2, IFN-pseudo-u ) 3 and IFN-pseudo-u> 4 (see Figs. 12-14).

Disse såvel som de peptider, der koder for, omfattes og-20 så af opfindelsen. De kendetegnes i kravene 11 til 13 samt 36 til 38.These as well as the encoding peptides are also encompassed by the invention. They are characterized in claims 11 to 13 and 36 to 38.

Fra DNA-sammenligningerne ses, at der er en omtrentlig 85% homologi mellem pseudogenerne og IFN-ωΙ-genet. (interferon-w-et-gen).From the DNA comparisons it is seen that there is an approximate 85% homology between the pseudogens and the IFN-ωΙ gene. (Interferon-w-a gene).

25 Derudover viser IFN-ωΙ-genet, at mRNA ved tran- skription indeholder information for et funktionelt interferonprotein, dvs. der kodes for et 23 aminosyrer langt signalpeptid med formlen: 30 Met Ala Leu leu Phe Pro Leu Leu Ala Ala Leu ValIn addition, the IFN-ωΙ gene shows that mRNA, upon transcription, contains information for a functional interferon protein, i.e. encoding a 23 amino acid signal peptide of the formula: 30 Met Ala Leu leu Phe Pro Leu Leu Ala Ala Leu Val

Met Thr Ser Tyr Ser Pro Val Gly Ser Leu Gly der følges af det 172 aminosyrer lange, færdige IFN-ωΙ.Met Thr Ser Tyr Ser Pro Val Gly Ser Leu Gly followed by the 172 amino acids, complete IFN-ωΙ.

Interferon-w-gener kan anbringes i alle organis-35 mer, der vil give høje udbytter. Egnede værter og vek-Interferon-w genes can be placed in any organism that will yield high yields. Suitable hosts and growers

I DK 175194 B1 II DK 175194 B1 I

i 18 Iin 18 I

I torer er bedst kendt af fagmanden, man kan som eksempel ITors are best known to one of ordinary skill in the art

I henvise til EP-A-0.093.619. IReferring to EP-A-0.093.619. IN

I For ekspressionen er prokaryoter især hensigts- IFor expression, prokaryotes are particularly useful

I mæssige. Især er E. coli K 12, stamme 294 (ATCC nr. IIn fair. In particular, E. coli is K 12, strain 294 (ATCC No. I

I 5 31.446) egnet. Blandt andre stammer, der er egnet, II 5 31,446) suitable. Among other suitable strains, I

I nævnes E. coli X1776 (ATCC nr. 31.537). Lige så vel som IMention is made of E. coli X1776 (ATCC No. 31,537). As well as you

I de ovenfor nævnte stammer kan E. coli W 3110 (F“, λ“, IIn the above-mentioned strains, E. coli W 3110 (F ", λ", I

I prototroph, ATCC, nr. 27.325), baciller som Bacillus IIn prototroph, ATCC, No. 27325), bacilli like Bacillus I

I subtilis, og andre Enterobacteriaceae, som Salmonella IIn subtilis, and other Enterobacteriaceae, such as Salmonella I

I 10 typhimurium eller Serratia marcensens, såvel som IIn 10 typhimurium or Serratia marcensens, as well as I

I forskellige Pseudomonader anvendes. IIn different Pseudomonads are used. IN

I I almindelighed kan man anvende plasmid-vektorer, IIn general, plasmid vectors, I, can be used

I der indeholder replikon og kontrolsekvenser, der stammer II containing replicon and control sequences derived from I

I fra arter, der er kompatible med værtscellerne, sammen IFrom species compatible with the host cells together

I 15 med disse værter. I vektoren findes normalt foruden et IIn 15 with these hosts. In the vector, there is usually besides an I

I replikationssted, genkendelsessekvenser, der gør det mu- IIn place of replication, recognition sequences that make it mu- I

I ligt at udvælge de transformerede celler efter phenoty- IIt is easy to select the transformed cells by phenotype I

I pi. Som eksempel transformerer man normalt E. coli medI pi. For example, E. coli is usually transformed with

I pBR322, et plasmid, der stammer fra E. coli-celler IIn pBR322, a plasmid derived from E. coli cells I

I 20 (Bolivar, et al., Gene 2, 95 (1977)). pBR322 indeholder II 20 (Bolivar, et al., Gene 2, 95 (1977)). pBR322 contains I

I gener for ampicillin- og tetracyclin-resistens, og gør IIn genes for ampicillin and tetracycline resistance, and do I

I det derved nemt at identificere transformerede celler. IIn that, easily identifying transformed cells. IN

I Plasmidet pBR322 eller andre plasmider må derudover in- IIn addition, the plasmid pBR322 or other plasmids must contain I

I deholde promotorer eller må modificeres sådan, at de IDo you have promoters or must be modified to

I 25 kommer til at indeholde promotorer, som mikrobeor- II 25 will contain promoters that microbe I

I ganismen kan udnytte til ekspression af sine egne prote- IThe ganism can utilize to express its own protein

I iner. De promotorer, der oftest anvendes under fremstil- IIner. The promoters most often used during manufacture I

I ling af rekombinant DNA, indeholder β-rlaktamase IIn the lining of recombinant DNA, β-rlactamase I contains

I (phenicillinase) og laktose-promotorsystemer, (Chang et II (phenicillinase) and lactose promoter systems, (Chang et I

I 30 al., Nature 275, 615 (1989); Itrakura et al., Science IIn al., Nature 275, 615 (1989); Itrakura et al., Science I

I 198, 1056 (1977); Goeddel et al., Nature 281, 544 II 198, 1056 (1977); Goeddel et al., Nature 281, 544 I

I (1979)) og Tryptophan(trp) promotor-systerner (Goeddel et II (1979)) and Tryptophan (trp) promoter sisters (Goeddel et I

I al., Nucleic Acids Res. 8, 4057 (1980); EP-A-0.036.776). IIn al., Nucleic Acids Res. 8, 4057 (1980); EP-A-0036776). IN

I Selv om de ovennævnte er de almindeligst anvendte promo- IAlthough the above are the most commonly used promotions

I 35 torer, er der også udviklet og benyttet andre mikrobiel- IIn 35 tumors, other microbial I have also been developed and used

19 DK 175194 B1 le promotorer. Gen-sekvensen for IFN-ω kan f.eks· indsættes under kontrol af Leftward-promotoren, der hører til bakteriophagen λ (Pl). Denne promotor er en af de kraftigste, styrbare promotorer, man kender. Man kan 5 styre den ved hjælp af λ-repressoren, for hvilken man kender restriktionssnitstederne.19 DK 175194 B1 le promoters. For example, the gene sequence of IFN-ω can be inserted under the control of the Leftward promoter belonging to the bacteriophage λ (P1). This promoter is one of the most powerful, controllable promoters known. It can be controlled by the λ repressor for which the restriction cut sites are known.

En temperaturfølsom allel af dette repressor-gen kan indføjes i en vektor, der indeholder en fuldstændig IFN-u)-sekvens. Hvis man forhøjer temperaturen til 42°C, 10 bliver repressoren inaktiveret, og promotoren eksprime-res op til sin maksimale koncentration. Summen af mRNAf der produceres under disse betingelser, skulle være tilstrækkelig til, at man kan tilvejebringe en celle, der blandt sine nye syntetiske ribonukleinsyrer indeholder 15 omkring 10%, der stammer fra P^-promotoren. Det er på denne måde muligt at etablere en klon-bank, i hvilken en funktionel IFN-to-sekvens bliver placeret i nabolaget til 5 et ribosom-bindingssted i varierende afstand fra X-Pl~ promotoren. Disse kloner kan derefter prøves, og man 20 kan udvælge de, der giver det højeste udbytte.A temperature-sensitive allele of this repressor gene can be inserted into a vector containing a complete IFN-α sequence. If the temperature is raised to 42 ° C, 10 the repressor is inactivated and the promoter is expressed up to its maximum concentration. The sum of mRNAs produced under these conditions should be sufficient to provide a cell containing, among its new synthetic ribonucleic acids, about 10% derived from the P1 promoter. In this way, it is possible to establish a clone bank in which a functional IFN two sequence is located in the neighborhood of a ribosome binding site at varying distances from the X-P1 promoter. These clones can then be tested and 20 selected for the highest yield.

Ekspressionen og translationen af en IFN-to-se-kvens kan også forløbe under kontrol af andre reguleringssystemer, der kan gælde som "homolog" til organis-men i dens ikke-transformerede form. Således indeholder 25 f.eks. kromosomal DNA fra en laktoseafhængig E. coli en laktose eller lac-operon, der ved udrystning af enzymet β-galactosidase gør nedbrydning af lactose mulig.The expression and translation of an IFN-to-se sequence may also proceed under the control of other regulatory systems that may act as "homologous" to the organism in its untransformed form. Thus, e.g. chromosomal DNA from a lactose-dependent E. coli a lactose or lac operon that, by shaking off the enzyme β-galactosidase, enables the degradation of lactose.

Lac-kontrolelementerne kan fås fra bakteriophagen X-plac5, der kan inficere E. coli. I phagen findes lac-30 operon, der kan stamme fra transduktion af samme bakteriearter. Reguleringssystemer, der kan anvendes ifølge opfindelsen, kan stamme fra plasmid DNA, der hører til organismen. Systemet lac-promotor-operator kan induceres ved hjælp af IPTG.The Lac controls can be obtained from the bacteriophage X-plac5 that can infect E. coli. The phage contains lac-30 operon, which may be derived from transduction of the same bacterial species. Regulatory systems that can be used according to the invention may be derived from plasmid DNA belonging to the organism. The system lac promoter operator can be induced by IPTG.

35 Andre promotor-operatorsystemer eller dele deraf kan i lige så høj grad anvendes: F.eks. arabinose-ope-35 Other promoter-operator systems or parts thereof can be used to the same extent: arabinose opera-

I DK 175194 B1 II DK 175194 B1 I

I 20 II 20 I

I rator, colicin Εχ-operator, galactose-operator, alkalisk IIn rator, colicin operator operator, galactose operator, alkaline I

I phosphatase-operator, trp-operator, xylose-A-operator,, IIn phosphatase operator, trp operator, xylose A operator ,, I

I tac-promotor og andre. IIn tac promoter and others. IN

I Foruden prokaryoter kan også eukaryotiske mikro- IIn addition to prokaryotes, eukaryotic micro- I

I 5 organismer anvendes, såsom gærkulturer. Den mest an- IIn 5 organisms are used, such as yeast cultures. The most used

vendte er Saccharomyces cerevisiae blandt de eukaryoti- Ireversed is Saccharomyces cerevisiae among the eukaryotic I

I ske mikroorganismer, skønt et antal andre arter også kan IIn microorganisms, although a number of other species can also

I bruges. Til ekspression i Saccharomyces kan man f.eks. IYou are used. For expression in Saccharomyces, e.g. IN

I benytte plasmidet YRp7 (Stinchcomb et al. Nature 282, 39 IIn using the plasmid YRp7 (Stinchcomb et al. Nature 282, 39 I)

I 10 (1979); Kingsman et al., Gene 7, 141 (1979); Tschumper II 10 (1979); Kingsman et al., Gene 7, 141 (1979); Tschumper I

I et al·. Gene 10, 157 (1980)) og plasmidet Yep 13 (Bwach IIn et al. Gene 10, 157 (1980)) and the plasmid Yep 13 (Bwach I

I et al.. Gene 8, 121-133 (1979)) på normal vis anvendes. IIn et al., Gene 8, 121-133 (1979)) is used normally. IN

I Plasmidet YRp7 indeholder genet TRP1, der stiller en se- IIn the plasmid YRp7, the gene contains TRP1, which confers a se I

I lektioneringsmarkering til rådighed for en gærmutant, IIn lesson marking available to a yeast mutant, I

I 15 der ikke kan gro i trypthophanholdigt medium; f.eks. IIn 15 that cannot grow in tryptophan-containing medium; eg. IN

I ATCC nr. 44.076. IIn ATCC No. 44,076. IN

I Defekten i TRPl, der karakteriserer genomet for IThe defect in TRP1, which characterizes the genome of I

I værtsorganismen, er således et brugbart hjælpemiddel, IThus, in the host organism, a useful aid is, I

I hvormed transformationen kan påvises, idet man foretager IBy which the transformation can be detected by making I

I 20 væksten uden tryptophan. På ganske tilsvarende måde IIn the 20 growth without tryptophan. In a very similar way

I forholder det sig ved plasmidet YEpl3, der indeholder IIt is related to the plasmid YEpl3 containing I

gærarts-genet LEU 2, der kan benyttes til at supplere en Ithe yeast gene LEU 2, which can be used to supplement an I

I LEU-2-minus mutant. Egnede promotor-sekvenser for gær- IIn LEU-2 minus mutant. Suitable promoter sequences for yeast I

I artsvektorer findes i regionen i umiddelbar 51-nærhed i IIn species vectors, the region is in the immediate vicinity of 51 in I

I 25 genet for ADH I (Animerer G., Methods of Enzymology 101, IIn the gene for ADH I (Animates G., Methods of Enzymology 101, I

I 192-201 (1983)), 3-phosphoglycerate-kinase (Hitzeman et IIn 192-201 (1983)), 3-phosphoglycerate kinase (Hitzeman et al

I al., J. Biol. Chem. 255, 2073 (1980)) eller andre glyko- IIn al., J. Biol. Chem. 255, 2073 (1980)) or other glycols

I lytiske enzymer (Kawaski og Fraenkel, BBRC 108, 1107 - IIn lytic enzymes (Kawaski and Fraenkel, BBRC 108, 1107 - I

I 1112 (1982)) som enolase, glyceraldehyd-3-phosphat, de- I(1112 (1982)) as enolase, glyceraldehyde-3-phosphate, de-I

30 hydrogenase, hexokinase, pyruvat, decarboxylase, phos- IHydrogenase, hexokinase, pyruvate, decarboxylase, phosphol

I phofructokinase, glucose-6-phosphat-isomerase, phospho- IIn phofructokinase, glucose-6-phosphate isomerase, phospho-I

I glucose-isomerase og -glucokinase. Ved indsats af egne- IIn glucose isomerase and glucokinase. By efforts of own- I

I de ekspressionsplasmider kan terminationssekvenser asso- IIn the expression plasmids, termination sequences can be asso- I

I cieret med disse gener, derudover indsættes i ekspres- IIn addition to these genes, they are additionally inserted into the expression I

I 35 sionsvektoren i 3'-enden af den sekvens, der skal eks- IIn the 35 vector at the 3 'end of the sequence to be expressed

21 DK 175194 B1 primeres, så polyadenylering og terminering af mRNA kan forudbestemmes.21 DK 175194 B1 is primed so that polyadenylation and termination of mRNA can be predetermined.

Andre promotorer, der besidder den fordel, at transkriptionen kan kontrolleres ved hjælp af vækstbe-5 tingeiserne, er promotorregionerne i gener for alkohol-dehydrogenase-2, isocytochrom C, syre-phosphatase nedbrydende enzymer, der er koblet med nitrogen-metabolismen, det ovenfor nævnte glyceraldehyd-3-phosphat-dehy-drogenase og enzymer, der kan nedbryde maltose og galak-10 tose. Promotorer, der reguleres ved en gærarts "Mating type Locus", f.eks. promotorer for generne BARI, MFol, STE2, STE3 og STE5, kan indsættes i temperaturregulerede systemer under anvendendelse af temperaturafhængige sivmutationer. (Rhine PH. D. i Thesis, University of Ore-15 gon, Eugene, Oregon (1979), Herskowitz og Oshima, The Molecular Biology of the Yeast Saccharomyces, part I, 181-209 (1981), Cold Spring Harbor Laboratory). Disse mutationer har indflydelse på ekspressionen af hvilende "Mating type kassetter" af gærarter og derigennem indi-20 rekte på promotorer, der afhænger af "Mating type". I almindelighed er dog enhver plasmidvektor egnet, der indeholder en gærkompatibel promotor og passende replika-tions- og terminationssekvenser.Other promoters possessing the advantage that transcription can be controlled by growth conditions are the promoter regions of genes for alcohol dehydrogenase-2, isocytochrome C, acid phosphatase degrading enzymes coupled with the nitrogen metabolism, the above said glyceraldehyde-3-phosphate dehydrogenase and enzymes capable of degrading maltose and galactose. Promoters regulated by a yeast species "Mating type Locus", e.g. promoters for the genes BARI, MFol, STE2, STE3 and STE5 can be inserted into temperature-regulated systems using temperature-dependent seismic mutations. (Rhine PH. D. in Thesis, University of Ore-15 gon, Eugene, Oregon (1979); Herskowitz and Oshima, The Molecular Biology of the Yeast Saccharomyces, Part I, 181-209 (1981), Cold Spring Harbor Laboratory) . These mutations affect the expression of dormant "Mating type cassettes" of yeast species and thereby indirectly on promoters that depend on "Mating type". In general, however, any plasmid vector is suitable that contains a yeast compatible promoter and appropriate replication and termination sequences.

Egnede værtsorganismer er foruden mikroorganismer 25 også kulturer af multicellulære organismer. I princippet kan enhver sådan kultur anvendes, lige meget om den stammer fra hvirveldyr eller hvirvelløse dyr. Den største interesse har celler fra hvirveldyr, så at vækst af vævscellekulturer er blevet en rutinemetode i de senere 30 år (Tissue, Culture, Academic Press# Kruse and Patterson, Editors (1973)). Eksempler på sådanne anvendelige værtscellelinier er VERO- og HeLa-celler, celler fra guldhamster-æg (CHO) og W138, BHJ, COS-7 og MDCK-celle-linier. Ekspressionsvektorer fra disse celler indehol-35 der iøvrigt (om nødvendig) et replikationssted, en pro-Suitable host organisms besides microorganisms are also cultures of multicellular organisms. In principle, any such culture can be used, whether it comes from vertebrate or invertebrates. Cores of vertebrates are of greatest interest, so that growth of tissue cell cultures has become a routine method for the past 30 years (Tissue, Culture, Academic Press # Kruse and Patterson, Editors (1973)). Examples of such useful host cell lines are VERO and HeLa cells, gold hamster egg (CHO) cells, and W138, BHJ, COS-7 and MDCK cell lines. Expression vectors from these cells also contain (if necessary) a site of replication,

I DK 175194 B1 II DK 175194 B1 I

I 22 i I motor, der er anbragt før genet, der skal eksprimeres,In 22 in I motor placed before the gene to be expressed,

I sammen med ethvert nødvendigt ribosombindingssted, RNA- IIn conjunction with any necessary ribosome binding site, RNA-I

I Splicing-sted, polyadenyleringssted og transkriptionelle IIn Splicing site, polyadenylation site and transcriptional I

I terminations-sekvenser. IIn termination sequences. IN

I 5 Til anvendelse i celler fra pattedyr baserer manI 5 For use in mammalian cells one bases

I ofte kontrolfunktionerne i ekspressionsvektorerne på vi- IIn often the control functions of the expression vectors of vi- I

I rusmateriale. Som eksempel stammer ofte anvendte promo- IIn substance. As an example, frequently used promo- I

I torer fra Polyoma Adenovirus 2, og især ofte fra Simian IIn tumors from Polyoma Adenovirus 2, and especially often from Simian I

I virus 40 (SV 40). De først og sidst anbragte slutpromo- IIn virus 40 (SV 40). They first and foremost placed the final promo

I 10 torer fra SV 40 er især nyttige, da begge let kan tilve- IIn 10 SV 40 towers are particularly useful as both can easily be obtained

I jebringes fra virusset som et fragment, der også inde- IYou are extracted from the virus as a fragment that also contains I

I holder de virale replikationssteder i SV 40. (Fiers et IYou hold the viral replication sites in SV 40. (Fiers et I

I al., Nature 273, 113 (1978)). Mindre eller større frag- IIn al., Nature 273, 113 (1978)). Smaller or larger frag- I

I menter fra SV 40 kan også anvendes under forudsætning IMents from SV 40 can also be used under condition I

I 15 af, at de indeholder den omtrent 250 bp lange sekvens, IIn that they contain the approximately 250 bp sequence, I

I der løber fra Hindlll snitstedet til Bgl I snitstedet i IIn the running from the Hindlll incision site to the Bgl I incision site in I

I det virale replikationsområde. Derudover er det også IIn the viral domain of replication. In addition, so are you

I muligt, og ofte anbefalelsesværdige at anvende promotor IPossible and often advisable to use promoter I

I eller kontrolsekvenser, der på almindelig vis har for- II or control sequences which have the usual form

I 20 bindelse med de ønskede gensekvenser, under forudsætning IIn association with the desired gene sequences, assuming I

I af, at disse kontrolsekvenser er kompatible med værts- IIn that these control sequences are compatible with host I

I cellesystemerne. IIn the cell systems. IN

I Et replikationsområde kan enten præpareres ved en IAn area of replication can either be prepared by an I

I passende vektorkonstruktion, så den kan indbygge et exo- IIn appropriate vector construction, so that it can incorporate an exo-I

I 25 gent område, f.eks. fra SV 40 eller en anden viruskilde IIn 25 gent range, e.g. from SV 40 or another virus source I

I (f.eks. Polyoma, Adeno, VSV, PBV osv.) eller kan præpa- II (e.g., Polyoma, Adeno, VSV, PBV, etc.) or can be prepared

I reres ved hjælp af værtscellens kromosomale replika- IYou are generated by the chromosomal replica of the host cell

I tionsmekanisme. Hvis vektoren skal integreres i værts- IIn tions mechanism. If the vector is to be integrated into the host I

I cellens kromosom, er den sidstnævnte metode normalt til- IIn the chromosome of the cell, the latter method is usually added

I 30 strækkelig. IIn 30 extensible. IN

I Det er dog hensigtsmæssigt at integrere generne i IHowever, it is appropriate to integrate the genes into I

I et ekspressionsplasmid pER103 (E. Rastl-Dworkin et al., IIn an expression plasmid pER103 (E. Rastl-Dworkin et al., I

I Gene 21, 237-248 (1983) og EP-A-0.115.613, deponeret hos IIn Gene 21, 237-248 (1983) and EP-A-0,115,613, filed with I

I DSM under nummeret DSM 2773 den 20. december 1983), da IIn DSM under the number DSM 2773 on December 20, 1983), when I

I 35 denne vektor indeholder alle reguleringselementer, der IIn this vector, all control elements containing I

23 DK 175194 B1 fører til høj ekspression af det klonede gen. Ifølge opfindelsen erstatter man følgelig i plasmidet pBR322 det indeholdte EcoRl/BamHI-fragment med en DNA-sekvens med formlen 5B1 leads to high expression of the cloned gene. Accordingly, according to the invention, the plasmid pBR322 replaces the contained EcoRl / BamHI fragment with a DNA sequence of formula 5

EcoRI Sau3AEcoRI Sau3A

10 qaattcacqctGATCGCTAAAACATTGTGCAÅAAAGAGGGTTGACTTTGCCTTCGCGA 59 ^mRNA-Start Met CAGTTAACTAGTACACAAGTTCACGGCAACGGTAAGGAGGTTTAAGCTTAAAG ATG 116 RBS Hindlll10 qaattcacqctGATCGCTAAAACATTGTGCAÅAAAGAGGGTTGACTTTGCCTTCGCGA 59 mRNA Start With CAGTTAACTAGTACACAAGTTCACGGCAACGGTAAGGAGGTTTAAGCTTAAAG ATG 116 RBS Hindlll

Zys Asp ^ rGT GAT C---IFN-omeca-Gen->Zys Asp ^ rGT GAT C --- IFN-omeca-Gen->

Sau3ASau 3A

20 25 1 3520 25 1 35

I DK 175194 B1 II DK 175194 B1 I

I 24 II 24 I

I Por at nå opfindelsens mål kan man med reference IIn Por to achieve the object of the invention, reference I can be made

I til fig. 6 eksempelvis benytte følgende fremgangsmåde: I1 to FIG. 6, for example, use the following procedure:

I I. Fremstilling af de nødvendige enkelt DNA-fragmenter: IPreparation of the required single DNA fragments:

I 5 Fragment a II 5 fragment and I

I Til fremstilling af fragment a) lader man et II For the preparation of fragment a), an I

I plasmid, der indeholder et gen for IFN-ω, f.eks. plasmid IIn plasmid containing a gene for IFN-ω, e.g. plasmid I

I P9A2 fordøje med restriktionsendonucleasen Avail. Efter IIn P9A2 digest with the restriction endonuclease Avail. After I

I kromatografi og rensning af det tilvejebragte cDNA-ind- IIn chromatography and purification of the cDNA obtained

I 10 føjningsstykke lader man dette to gange fordøje med re- IIn 10 joints, this is allowed to be digested twice with re- I

I striktionsendonucleaserne Ncol og Alul og derefter iso- IIn the restriction endonucleases Ncol and Alul and then iso- I

I lere ved hjælp af kromatografi og elektroelution. Dette IIn clay using chromatography and electroelution. This I

I fragment indeholder den største del af det tilsvarende IIn fragment, most of the corresponding I contains

I ω-interferon-gen. Eksempelvis udviser u>(Gly)-interfe- IIn the ω-interferon gene. For example, u> (Gly) interfere

I 15 rongenet fra klonen P9A2 følgende struktur: IIn the ring network of clone P9A2 the following structure:

I 10 15 II 10 15 I

I His Giv Leu Leu Ser Arg Asn Thr Leu IIn His Give Leu Leu Ser Arg Asn Thr Leu I

I CI CAT GGC CTA CTT AGC AGG AAC ACC TTG 2£ II CI CAT GGC CTA CTT AGC AGG AAC ACC TTG 2 £ I

I Ncol IIn Ncol I

I 20 20 25 30 II 20 20 25 30 I

I Val Leu Leu His Gin Met Arg Arg Ile Ser Pro Phe Leu Cys Leu II Val Leu Leu His Gin With Arg Arg Ile Ser Pro Phe Leu Cys Leu I

I GTG CTT CTG CAC CAA ATG AGG AGA ATC TCC CCT TTC TTG TGT CTC 73 II GTG CTT CTG CAC CAA ATG AGG AGA ATC TCC CCT TTC TTG TGT CTC 73 I

I 35 40 45 II 35 40 45 I

I Lys Asp Arg Arg Asp Phe Arg Phe Pro Gin Glu Met Val Lys Gly II List Asp Arg Arg Asp Phe Arg Phe Pro Gin Glu With Fall List Gly I

I AAG GAC AGA AGA GAC TTC AGG TTC CCC CAG GAG ATG GTA AAA GGG 118 II AAG GAC AGA AGA GAC TTC AGG TTC CCC CAG GAG ATG GTA AAA GGG 118 I

I 25 II 25 I

50 55 6050 55 60

Ser Gin Leu Gin Lys Ala His Val Met Ser Val Leu His Glu Met ISer Gin Leu Gin List Ala His Fall With Ser Val Leu His Glu With I

I AGC CAG TTG CAG AAG GCC CAT GTC ATG TCT GTC CTC CAT GAG ATG 163 II AGC CAG TTG CAG AAG GCC CAT GTC ATG TCT GTC CTC CAT GAG ATG 163 I

I 65 70 75 II 65 70 75 I

I Leu Gin Gin Ile Phe Ser Leu Phe His Thr Glu Arg Ser Ser Ala II Leu Gin Gin Ile Phe Ser Leu Phe His Thr Glu Arg Ser Ser Ala I

I 30 CTG CAG CAG ATC TTC AGC CTC TTC CAC ACA GAG Ci3<· 208 II 30 CTG CAG CAG ATC TTC AGC CTC TTC CAC ACA GAG Ci3 <· 208 I

I 80 85 90 II 80 85 90 I

Ala Trp Asn Met Thr Leu Leu Asp Gin Leu His Thr Gly Leu His IAla Trp Asn With Thr Leu Leu Asp Gin Leu His Thr Gly Leu His I

I GCC TGG AAC ATG ACC CTC CTA GAC CAA CTC CAC ACT GGA CTT CAT 253 II GCC TGG AAC ATG ACC CTC CTA GAC CAA CTC CAC ACT GGA CTT CAT 253 I

I 95 100 105 II 95 100 105 I

I Gin Gir. Leu Gin His Leu Glu Thr Cys Leu Leu Gin Val Val Giv IIn Gin Gir. Leu Gin His Leu Glu Thr Cys Leu Leu Gin Val Val Give I

I 35 CAG CAA CTG CAA CAC CTG GAG ACC TGC TTG CTG CAG GTA GTG GGA 298 II 35 CAG CAA CTG CAA CAC CTG GAG ACC TGC TTG CTG CAG GTA GTG GGA 298 I

25 DK 175194 B1 110 115 12025 DK 175194 B1 110 115 120

Glu Gly Glu Ser Ala Gly Ala Ile Ser Ser Pro Ala Leu 'Thr Leu 5 GAA GGA GAA TCT GCT GGG GCA ATT AGC AGC CCT GCA C TG ACC TTG 343 125 130 135Glu Gly Glu Ser Ala Gly Ala Ile Ser Ser Pro Ala Leu 'Thr Leu 5 GAA GGA GAA TCT GCT GGG GCA ATT AGC AGC CCT GCA C TG ACC TTG 343 125 130 135

Arg Arg Tyr Phe Gin Gly Ile Arg Val Tyr Leu Lys Glu Lys Lys AGG AGG TAC TTC CAG GGA ATC CGT GTC TAC CTG AAA GAG AAG AAA 388 140 145 150Arg Arg Tyr Phe Gin Gly Ile Arg Val Tyr Leu Lys Glu Lys Lys AGG AGG TAC TTC CAG GGA ATC CGT GTC TAC CTG AAA GAG AAG AAA 388 140 145 150

Tyr Ser Asp Cys Ala Trp Glu Val Val Arg Met Glu Ile Met Lys 10 TAC AGC GAC TGT GCC TGG GAA GTT GTC AGA ATG GAA ATC ATG AAA 433 155 160 165Tyr Ser Asp Cys Ala Trp Glu Val Val Arg With Glu Ile With List 10 TAC AGC GAC TGT GCC TGG GAA GTT GTC AGA ATG GAA ATC ATG AAA 433 155 160 165

Ser Leu Phe Leu Ser Thr Asn Met Gin Glu Arg Leu Arg Ser Lys TCC TTG TTC TTA TCA ACA AAC ATG CAA GAA AGA CTG AGA AGT AAA 478 170Ser Leu Phe Leu Ser Thr Asn Met Gin Glu Arg Leu Arg Ser Lys TCC TTG TTC TTA TCA ACA AAC ATG CAA GAA AGA CTG AGA AGT AAA 478 170

Asp Arg Asp Leu Gly Ser Ser GAT AGA GAC CTG GGC TCA TCT TGAAATGATTCTCATTGATTAÅTTTGCCATA 530 TAAC ACTTGC AC ATGTGAC TCTGGTCAATTC AAAAGAC TC TTATTTCGGC TTTAATC AC 589 AGAATTGACTGAATTAGTTCTGCAAATACTTTGTCGGTATATTAAGCCAGTATATGTTA 648 AAAAGACTTAGGTTCAGGGGCATCAGTCCCTAAGATGTTATTTATTTTTACTCATTTAT 707 20 TT ATTC TT AC ATTTT ATC ATATTTATAC TATTTATATTC TTATATAAC AAATGTTTGCC 766 TTTACATTGTATTAAGATAACAAAACATGTTCAGfct 802Asp Arg Asp Leu Gly Ser Ser GAT GAC CTG AGA GGC TCA TCT TGAAATGATTCTCATTGATTAÅTTTGCCATA 530 TAAC ACTTGC AC ATGTGAC TCTGGTCAATTC AAAAGAC TC TTATTTCGGC TTTAATC AC 589 AGAATTGACTGAATTAGTTCTGCAAATACTTTGTCGGTATATTAAGCCAGTATATGTTA AAAAGACTTAGGTTCAGGGGCATCAGTCCCTAAGATGTTATTTATTTTTACTCATTTAT 648 707 20 TT TT AC ATTC ATTTT ATC ATATTTATAC TATTTATATTC TTATATAAC AAATGTTTGCC 766 802 TTTACATTGTATTAAGATAACAAAACATGTTCAGfct

Alul 25 1 35Alul 25 1 35

I DK 175194 B1 II DK 175194 B1 I

I 26 II 26 I

I Fragment b IIn Fragment b I

I Til fremstilling af fragment b) lader man plasmid II To produce fragment b), plasmid I is charged

I P9A2 fordøje med restriktionsendonucleasen Avail. Efter IIn P9A2 digest with the restriction endonuclease Avail. After I

I kromatografi og rensning af det tilvejebragte cDNA-ind- IIn chromatography and purification of the cDNA obtained

I 5 sættelsesstykke lader man dette viderefordøje med re- IIn 5 sentence pieces this is allowed to be digested with re- I

I striktionsendonucleasen Sau3A og isolerer det ønskede IIn the string endonuclease Sau3A and isolate the desired I

I 189 bp lange fragment ved "hjælp af kromatografi og elek- IIn 189 bp fragment by "chromatography and electr

I troelution. Dette fragment har følgende struktur: IIn faith. This fragment has the following structure:

I 5 10 15 II 5 10 15 I

I Asp Leu Pro Gin Asn His Gly Leu Leu Ser Arg Asn Thr Leu II Asp Leu Pro Gin Asn His Gly Leu Leu Ser Arg Asn Thr Leu I

I IgAT CTG CCT CAG AAC CAT GGC CTA C TT AGC AGG AAC ACC TTG 42 II IgAT CTG CCT CAG AAC CAT GGC CTA C TT AGC AGG AAC ACC TTG 42 I

I s7u3a| NcoI II s7u3a | NcoI I

I 20 25' 30 II 20 25 '30 I

I 15 ^eu ^eu Gin ^et Arg Arg Ile Ser Pro Phe Leu Cys Leu II 15 ^ eu ^ eu Gin ^ et Arg Arg Ile Ser Pro Phe Leu Cys Leu I

I GTG C TT CTG CAC C AA ATG AGG AGA ATC TCC CCT TTC TTG TGT CTC 87 II GTG C TT CTG CAC C AA ATG AGG AGA ATC TCC CCT TTC TTG TGT CTC 87 I

I 35 40 45 II 35 40 45 I

I Lys Asp Arg Arg Asp Phe Arg Phe Pro Gin Glu Met Val Lys Gly II List Asp Arg Arg Asp Phe Arg Phe Pro Gin Glu With Fall List Gly I

I AAG GAC AGA AGA GAC TTC AGG TTC CCC CAG GAG ATG GTA AAA GGG 132 II AAG GAC AGA AGA GAC TTC AGG TTC CCC CAG GAG ATG GTA AAA GGG 132 I

I 20 II 20 I

I 50 55 60 II 50 55 60 I

I Ser Gin Leu Gin Lys Ala His Val Met Ser Val Leu Eis Glu Met ISer Gin Leu Gin List Ala His Fall With Ser Val Leu Claim Glu With I

I ACG CAG TTG CAG AAG GGC CAT GTC ATG TCT GTC CTC CAT GAG ATG 177 II ACG CAG TTG CAG AAG GGC CAT GTC ATG TCT GTC CTC CAT GAG ATG 177 I

I 25 Leu Gin Gin Ile II 25 Leu Gin Gin Ile I

I CTG CAG CAjg atc 189 II CTG CAG CAjg atc 189 I

I Sau3A| IIn Sau3A | IN

I 30 Fragment c II 30 Fragment c I

I Til fremstilling af fragment c) lader man plasmi- ITo produce fragment c), plasmid I is allowed

I det pER33 (se E. Rastl-Dworkin et al./ Gene 21, 237-248 IIn that pER33 (see E. Rastl-Dworkin et al./Gene 21, 237-248 I)

I (1983) og EP-A-0.115.613) fordøje to gange med restrik- II (1983) and EP-A-0.115.613) digest twice with restriction I

I tionsenzymerne EcoRI og PvuII. Det efter agarosegel- IIn the tions enzymes EcoRI and PvuII. It after agarose gel- I

I 35 fraktionering og rensning tilvejebragte 390 bp lange 27 DK 175194 B1 fragment, som indeholder Trp-promotor, det ribosomale bindingssted og startkodon, lader man derefter fordøje med Sau3A. Man tilvejebringer det ønskede 108 bp lange fragment ved agarosegel-elektroforese, elektroelution og 5 elutip-søjlerensning. Det udviser følgende struktur:In 35 fractionation and purification, 390 bp long 27 DK 175194 B1 fragment containing Trp promoter, the ribosomal binding site and start codon was then digested with Sau3A. The desired 108 bp fragment is obtained by agarose gel electrophoresis, electroelution, and elutip column purification. It has the following structure:

EcoRI |Sau3AEcoRI | Sau3A

qaattcacgctjGATCGCTAAAACATTGTGCAAAAAGAGGGTTGACTTTGCCTTCGCGA 5 9 ,JmRNA-Start Met 10 ACCAGTTAACTAGTACACAAGTTCACGGCAACGGTAAGGAGGTTTAAGCTTAAAG ATG 116 RBS HindlllqaattcacgctjGATCGCTAAAACATTGTGCAAAAAGAGGGTTGACTTTGCCTTCGCGA 5 9, JmRNA Start With 10 ACCAGTTAACTAGTACACAAGTTCACGGCAACGGTAAGGAGGTTTAAGCTTAAAG ATG 116 RBS Hindlll

Cys Asp TGT gat c 123Cys Asp TGT hole c 123

Sau3ASau 3A

1515

Sammenbinding af fragmenterne b og c: 20 Fragmenterne b og c sammenbindes med T4-ligase og gennemskæres efter destruktion af enzymet med Hindlll.Binding of fragments b and c: 20 Fragments b and c are joined by T4 ligase and cut after destruction of the enzyme by HindIII.

Dette ligerede fragment har følgende struktur:This ligated fragment has the following structure:

Hindlll Sau3A Ncol 25 alftGCTTAAAG ATGTGTGATC TGCCTCAGAA CCATGGCCTA CTTAGCAGGA 50 -] - ACACCTTGGT GCTTCTGCAC CAAATGAGGA GAATCTCCCC TTTCTTGTGT 100 CTCAAGGACA GAAGAGACTT CAGGTTCCCC CAGGAGATGG TAAAAGGGAG 150 30 CCAGTTGCAG AAGGCCCATG TCATGTCTGT CCTCCATGAG ATGCTGCAGC 200 AGATCACACA TCTTTAkqct t Sau3A Hindlll! 3525 NcoI HindIII Sau3A alftGCTTAAAG ATGTGTGATC TGCCTCAGAA CCATGGCCTA CTTAGCAGGA 50 -] - ACACCTTGGT GCTTCTGCAC CAAATGAGGA GAATCTCCCC TTTCTTGTGT 100 CTCAAGGACA GAAGAGACTT CAGGTTCCCC CAGGAGATGG TAAAAGGGAG 150 30 CCAGTTGCAG AAGGCCCATG TCATGTCTGT CCTCCATGAG ATGCTGCAGC 200 AGATCACACA TCTTTAkqct t Sau3A HindIII! 35

I DK 175194 B1 II DK 175194 B1 I

I 28 II 28 I

I 5 II 5 I

I 10 II 10 I

I Som alternativ kan dette DNA-fragment, der er IAlternatively, this DNA fragment which is I

I nødvendig til fremstilling af plasmid pRHWlO, også INecessary for the production of plasmid pRHW10, also I

I 15 tilvejebringes ved anvendelse af to syntetisk fremstil- II is provided by using two synthetic preparations

I lede oligonukleotider: IIn direct oligonucleotides: I

I Oligonukleotidet med formlen IIn the oligonucleotide of formula I

I 5' -AGCTTAAAGATGTGT-3 ' II 5 '-AGCTTAAAGATGTGT-3' I

I 20 II 20 I

I skal i sin 5'-ende være dephosphoryleret. IYou should be dephosphorylated at its 5 'end. IN

I Oligonucleotidet med formlen IIn the oligonucleotide of formula I

I 5’-GATCACACATCTTTA-3' II 5'-GATCACACATCTTTA-3 'I

I 25 II 25 I

I behandles med T4-polynucleotidkinase og ATP ved 5'-en- II is treated with T4 polynucleotide kinase and ATP at 5 'one-I

I den. IIn it. IN

I Ved hybridisering af de to oligonucleotider får IBy hybridizing the two oligonucleotides, you obtain

I man følgende korte DNA-fragment: IThe following short DNA fragment is:

I 30 II 30 I

I 5'-AGCTTAAAGATGTGT 3' II 5'-AGCTTAAAGATGTGT 3 'I

I 3'- ATTTCTACACACTAGp 5' II 3'- ATTTCTACACACTAGp 5 'I

I Ved den ene ende opstår der et 5' -overhængende IAt one end there is a 5 'overhanging I

I 35 stykke, der er typisk for Hindlll, og ved den anden ende IIn 35 pieces, typical of HindIII, and at the other end I

I et 5'-overhængende stykke, der er typisk for Sau3A. IIn a 5 'overhang typical of Sau3A. IN

29 DK 175194 B129 DK 175194 B1

Fragment b) dephosphoryliseres ved hjælp af kal-vetarmphosphatase. Fragment b) og det ovenfor beskrevne fragment bringes sammen og forbindes med hinanden ved hjælp af T4~ligase.Fragment b) is dephosphorylated by calcium phosphatase. Fragment b) and the fragment described above are brought together and joined by T4 ligase.

5 Da ligasen kræver en 5'-phosphatholdig ende, kan det syntetiske DNA-stykke i Sau3A-enden knyttes sammen med fragment b) eller med et andet syntetisk DNA-stykke.Since the ligase requires a 5 'phosphate-containing end, the synthetic DNA piece at the Sau3A end can be linked to fragment b) or another synthetic DNA piece.

Da de to resulterende fragmenter har forskellig længde, kan de skilles ved selektiv isopropanolfældning. Det 10 derved rensede fragment phosphoryleres ved hjælp af T4-polynucleotidkinase og ATP.Since the two resulting fragments have different lengths, they can be separated by selective isopropanol precipitation. The fragment thus purified is phosphorylated by T4 polynucleotide kinase and ATP.

II. Fremstilling af ekspressionsplasmider 15 a) Fremstilling af plasmidet pRHWlO:II. Preparation of Expression Plasmids 15 a) Preparation of the plasmid pRHW10:

Man liniariserer ekspressionsplasmidet pER103 (E. Rastl-Dworkin et al.. Gene 21, 237-284 (1983) og EP-A-0.115.613, deponeret ved DSM med DSM-nummer 22773) med HindiII og behandler derefter med kalvetarmphosphatase.The expression plasmid pER103 (E. Rastl-Dworkin et al. Gene 21, 237-284 (1983) and EP-A-0115,613, deposited by DSM with DSM number 22773) is linearized with HindiII and then treated with calf intestinal phosphatase.

20 Efter isolering og rensning af det tilvejebragte DNA, lader man dette dephosphorylere og sammenbinder det derefter med de ligerede fragmenter b og c (efter disses behandling med Hindlll). Derefter transformeres E. coli HB 101 med den tilvejebragte blanding og kultiveres på 25 LB-agar plus 50 iig/ml ampicillin. Plasmidet, der udviser den ønskede struktur, kalder man pRHW 10 (se fig. 6), det tjener efter sin replikation som mellemprodukt ved fremstilling af yderligere plasmider. b) Fremstilling af plasmid pRHWl2i 30 Man opskærer plasmid pRHWlO med BamHI, tilsætterAfter isolation and purification of the DNA obtained, this is dephosphorylated and then linked to the ligated fragments b and c (after their treatment with HindIII). Then E. coli HB 101 is transformed with the provided mixture and cultivated on 25 LB agar plus 50 µg / ml ampicillin. The plasmid exhibiting the desired structure is called pRHW 10 (see Fig. 6), which, after its replication, serves as an intermediate in the production of additional plasmids. b) Preparation of plasmid pRHW122 Plasmid pRHW10 is cut with BamHI, adds

Klenow-fragmentet fra DNA-polymerase I og de fire deoxy-nucleosidtriphosphater. Det efter inkubation tilvejebragte liniariserede plasmid, der har stumpe ender, renses og gennemskæres derefter med Ncol. Det store frag-35 ment, som kan fås efter agarosegel-elektroforese, elek-The Klenow fragment from DNA polymerase I and the four deoxy nucleoside triphosphates. The linearized plasmid, which has blunt ends, is incubated after incubation, then purified and cut with NcoI. The large fragment obtainable after agarose gel electrophoresis, electrically

I DK 175194 B1 II DK 175194 B1 I

I 30 II 30 I

I troelution og elutip-rensning, saramenbindes med fragmentIn faith elution and elutipuration, saramen is bound by fragment

I a. Derefter transformeres blandingen med E. coli HB 101 IThen, the mixture is transformed with E. coli HB 101 I

I og kultiveres på LB-agar plus 50 yg/ml ampicillin. Pias- II and cultivated on LB agar plus 50 µg / ml ampicillin. Pias- I

I midet, der udviser den ønskede struktur, får betegnelsen IIn the middle exhibiting the desired structure, the designation I is given

I 5 pRHWl2 (se fig. 6), der eksprimerer det ønskede IIn 5 pRHW12 (see Fig. 6) expressing the desired I

I w(Gly)-interferon. II w (Gly) interferon. IN

I Til eksempel indeholder 1 liter af den således IFor example, 1 liter of it thus contains I

I tilvejebragte bakteriekultur (optisk tæthed: 0,6 ved 600 IIn bacterial culture provided (optical density: 0.6 at 600 L)

I nm) 1 x 10^ IE interferon. IIn nm) 1 x 10 5 IU interferon. IN

I 10 II 10 I

I c) Fremstilling af plasmid pRHWll: I Man lader plasmid pRHWIO opskære med BamHI ogI c) Preparation of plasmid pRHWII: I Plasmid pRHW10 is cut up with BamHI and

I tilsætter Klenow-fragmentet fra DNA-polymerase I og de 4 IYou add the Klenow fragment from DNA polymerase I and the 4 I

I desoxynucleotsidphosphater. Det efter inkubation tilve- IIn desoxynucleotide phosphates. It after incubation I

I 15 jebragte liniariserede plasmid, der har lige ender, ren- IIn 15 linear straight-ended plasmid generated, I

I ses og gennemskæres derefter med Ncol. Det store frag- IYou then see and intersect with Ncol. The great frag- I

I ment, som fås efter agarosegel-elektroforese, elektro- IIn ment obtained after agarose gel electrophoresis, electr

I elution og elutip-rensning, sammenbindes med fragment a IIn elution and elutip purification, bond with fragment a I

I på analog måde, udvundet af plasmid E79E9, hvori dog det IIn an analogous manner, derived from plasmid E79E9, in which, however, I

I 20 for den 111. aminosyre(Gly) kodende GGG-kodon er erstat- II 20 for the 111th amino acid (Gly) coding GGG codon is substituted I

I tet med GAG-kodon (Glu). Derefter transformeres den IInto the GAG codon (Glu). Then it is transformed

I tilvejebragte blanding med E. coli HB 101 og opkultive- IIn admixture with E. coli HB 101 and cultured I

I res på LB-agar. Plasmidet, der udviser den ønskedeIn res on LB agar. The plasmid exhibiting the desired

I struktur, får betegnelsen pRHWll (se analogt fig. 6) og IIn structure, the designation is given pRHWII (see analogous to Figure 6) and I

I 25 det eksprimerer det ønskede u>(Glu)-interferon. IIn it it expresses the desired u> (Glu) interferon. IN

I Transformation af cellerne med vehiklerne kan IIn Transformation of the cells with the vehicles, you can

I foregå ved mange fremgangsmåder. Man kan f.eks. benytte IYou follow many approaches. One can, for example. use I

I calcium, hvorved man enten vasker cellerne i magnesium, IIn calcium, either washing the cells in magnesium, I

I suspenderer dem i calcium og tilsætter DNA, eller sætter IYou suspend them in calcium and add DNA, or add

I 30 cellerne til et fælles præcipitat af DNA og calciumphos- IIn the 30 cells to a common precipitate of DNA and calcium phosphate

I phat· Ved følgende genekspression overføres cellerne IIn phat · At the following gene expression, cells I are transferred

I til et medium, der er selektiv overfor transformerede II to a medium selective to transformed I

I celler. IIn cells. IN

I Efter transformation af værten, ekspression af II After transformation of the host, expression of I

I 35 genet og fermentering eller celledyrkning under betin- IIn the gene and fermentation or cell culture under betin I

31 DK 175194 B1 gelser, hvorunder IFN-ω bliver eksprimeret, kan man normalt. ekstrahere produktet ved hjælp af kendte kromatografiske skillemetoder og herved tilvejebringe et materiale, der indeholder IFN-ω med eller uden Leader- og 5 Tailing-sekvenser· IFN-ω kan eksprimeres med en Leader— sekvens ved N-enden (pre-IFN-ω), der kan fjernes af visse værtsceller. I modsat fald er det nødvendigt at fraspalte det eventuelle Leader-polypeptid for at tilvejebringe færdigt IFN-ω. Man kan også modificere IFN-ω-10 klonen således, at det færdige protein bliver produceret direkte i mikroorganismen i stedet for Pre-IFN-ω. I dette tilfælde kan man anvende precursorsekvensen fra gær-mating-pheromonet MF-e-1 for at opnå en korrekt færdiggørelse af det fusionerede protein og for at få udskilt 15 produktet i vækstmediet eller i periplasmaet. DNA-se-kvensen for funktionelt eller færdigt IFN-ω kan forbindes med MF-α-Ι på det formodede kathepsin-lignende snit-sted (efter Lys-Arg) ved position 256, regnet fra initieringskodon ATG (Kurjan, Herskowitz Cell 30, 933-943 20 (1982)).It is usually possible to express IFN-ω expressions under which IFN-ω is expressed. extract the product by known chromatographic separation methods, thereby providing a material containing IFN-ω with or without Leader and 5 Tailing sequences · IFN-ω can be expressed with a Leader sequence at the N end (pre-IFN-ω ) that can be removed by certain host cells. Otherwise it is necessary to cleave off any Leader polypeptide to provide complete IFN-ω. It is also possible to modify the IFN-ω-10 clone so that the finished protein is produced directly in the microorganism instead of Pre-IFN-ω. In this case, the precursor sequence of the yeast-feeding pheromone MF-e-1 can be used to obtain a correct completion of the fused protein and to excrete the product in the growth medium or in the periplasm. The DNA sequence of functional or complete IFN-ω can be associated with MF-α-Ι at the putative cathepsin-like incision site (after Lys-Arg) at position 256, calculated from initiation codon ATG (Kurjan, Herskowitz Cell 30, 933-943 (1982)).

På basis af deres biologiske virkningsområde er de hidtil ukendte interferoner ifølge opfindelsen anvendelige for enhver type behandling, som kendte interferoner benyttes til. Her kan f.eks. nævnes Herpes, Rhino-25 virus, eventuelle AIDS-infektioner, forskellige arter af cancer og lignende. De hidtil ukendte interferoner kan benyttes alene eller i kombination med andre kendte interferoner eller biologisk aktive produkter, f.eks. med IFN-α, IL-2, andre immun-modulatorer og lignende.On the basis of their biological field of action, the novel interferons of the invention are applicable to any type of treatment to which known interferons are used. Here, for example, mentioned are Herpes, Rhino-25 virus, possible AIDS infections, various species of cancer and the like. The novel interferons can be used alone or in combination with other known interferons or biologically active products, e.g. with IFN-α, IL-2, other immune modulators and the like.

30 IFN-ω kan indgives parenteralt i tilfælde, hvor der ønskes antitumor eller antiviral behandling, og i tilfælde, hvor de immunsuppressive egenskaber skal udnyttes. Der kan benyttes lignende doseringer og doseringsrater, som man for tiden benytter ved kliniske un-35 dersøgelser med IFNa-materialer, f.eks. ca. (1-10) x 10®IFN-ω may be administered parenterally in cases where antitumor or antiviral therapy is desired and in cases where the immunosuppressive properties are to be utilized. Similar dosages and dosage rates can be used currently used in clinical studies with IFNα materials, e.g. ca. (1-10) x 10®

I DK 175194 B1 II DK 175194 B1 I

I 32 II 32 I

I enheder daglig, og præparater, der er mere end 1% rene IIn units daily, and preparations that are more than 1% pure I

I op til f.eks. 5 x 10^ enheder daglig. IFor up to e.g. 5 x 10 ^ units daily. IN

I Eksempelvis kan man som passende dosis ved et i IFor example, as a suitable dose at one in I

I det væsentlige bakterielt produceret IFN-ω, der skal an- IEssentially bacterially produced IFN-ω to be used

I 5 vendes parenteralt, opløse 3 mg IFN-ω i 25 ml 5% humant IIn 5, parenterally, dissolve 3 mg of IFN-ω in 25 ml of 5% human I

I serumalbumin. Denne opløsning passeres gennem et bakte- IIn serum albumin. This solution is passed through a batch

I riologisk filter, og den filtrerede opløsning fordeles IIn rheological filter and the filtered solution is partitioned

I aseptisk på 100 små flasker, af hvilke hver indeholder 6 IAseptically on 100 small bottles, each containing 6 liters

I x 10^ enheder ren IFN-ω til parenteral brug. Før anven- IIn x 10 ^ units pure IFN-ω for parenteral use. Before applying- I

I 10 delsen opbevares småflaskerne hensigtsmæssigt koldt IIn the case, the small bottles are suitably stored cold

I (-20°C). Forbindelserne ifølge opfindelsen kan formule- II (-20 ° C). The compounds of the invention may be Formula I

I res på kendt måde til farmaceutisk anvendelige midler, IIn known manner for pharmaceutically acceptable agents, I

I hvorved polypeptidet ifølge opfindelsen blandes med en IIn which the polypeptide of the invention is mixed with an I

I farmaceutisk acceptabel bærer. Anvendelige bærere og IIn pharmaceutically acceptable carrier. Applicable carriers and

I 15 deres formulering beskrives af E.W. Martin i Remington's IIn their formulation, E.W. Martin in Remington's I

I Pharmaceutical Sciences, hvortil der udtrykkelig henvi- IIn Pharmaceutical Sciences, to which express reference is made

I ses. IFN-ω blandes med en afmålt mængde bærestof for at ISee you. IFN-ω is mixed with a measured amount of carrier to I

I tilvejebringe et egnet farmaceutisk middel, der på ef- IYou provide a suitable pharmaceutical agent which, in effect

I fektiv måde skal anvendes på patienten. Midlet anvendes ITo be used effectively in the patient. The agent is used I

I 20 med fordel parenteralt. IIn 20 advantageously parenterally. IN

I De følgende eksempler, der ikke skal begrænse op- IThe following examples are not intended to limit op

I findelsen, beskriver opfindelsen i detailler. IIn the finding, the invention describes in detail. IN

25 Eksempel 1 IExample 1 I

I Udsøgning af kloner, der er specifikke for IFN-sékvensen II Selection of Clones Specific to IFN Sequence I

I a) Fremstilling af cDNA-bibliotek II a) Preparation of cDNA Library I

I mRNA fra celler, stimuleret med Sendai-virus, be- IIn mRNA from cells stimulated with Sendai virus, I

I 30 nyttes som udgangsmateriale til fremstilling af et cDNA- II 30 is used as starting material for producing a cDNA-I

I bibliotek efter metoder, kendt fra litteraturen (E. IIn Library by Methods Known from Literature (E. I

I Dworkin-Rastl et al., Journal of Interferon Research Vol IIn Dworkin-Rastl et al., Journal of Interferon Research Vol

I 2/4, 575-585 (1982)). De dannede 30.000 kloner overfø- II 2/4, 575-585 (1982)). They formed 30,000 clones transfer

I res individuelt til fordybningerne i mikrotiterplader. IYou are individually resized for the indentations in microtiter plates. IN

I 35 Følgende medium anvendes ved vækst og indfrysning af ko- II The following medium is used for growth and freezing of cow I

33 DK 175194 B1 lonierne: 10 g Trypton 5 g gærekstrakt 5 5 g NaCl33 DK 175194 B1 lonies: 10 g Trypton 5 g yeast extract 5 5 g NaCl

0,51 g Na-citrat, 2 H2O0.51 g Na-citrate, 2 H 2 O

7,5 g K2HPO4 H2O 1,8 g KH2PO4 0,09 g MgS04, 7 H2O7.5 g K2HPO4 H2O 1.8 g KH2PO4 0.09 g MgSO4, 7 H2O

10 0,9 g (NH4)2SO40.9 g (NH 4) 2 SO 4

44 g glycerin 0,01 g tetracyclin, HC1 ad 1 1 H2O44 g glycerin 0.01 g tetracycline, HCl ad 1 L H2O

15 Mikrotiterpladerne med de individuelle kloner in kuberes natten over ved 37°C og opbevares derefter ved -70°C.The microtiter plates with the individual clones are incubated overnight at 37 ° C and then stored at -70 ° C.

b) Hybridiseringssonde 20 Som udgangsmateriale for hybridiseringssonder tjener det rekombinante plasmid pER33 (E. Dworkin-Rastl et al.. Gene 21, 237-248 (1983)). Dette plasmid indeholder koderegionen for det færdige interferon IFN-a2-arg plus 190 baser, der tilhører den 3' ikke-translate-25 rende region. 20 ug pER33 inkuberes en time ved 37°C med 30 enheder Hindlll restriktionsendonuclease i 200 yl reaktionsopløsning (10 mM tris-HCl pH 7,5, 10 mM MgCl2, 1 mM dithiotreitol (DTT), 50 mM NaCl). Reaktionen standses ved tilsætning af 1/25 vol 0,5 M ethylendini-30 trilotetraeddikesyre (EDTA) og ophedning til 70°C i ti minutter. Efter tilsætning af 1/4 vol 5 x puffer (80% glycerin, 40 mM tris-eddikesyre pH 7,8, 50 mM EDTA, 0,05% natriumdodecylsulfat (SDS), 0,1% bromphenolblåt), lader man de dannede fragmenter adskille efter størrelse 35 elektroforetisk på en 1% agarosegel [gel- og gennemløbs-b) Hybridization Probe 20 As the starting material for hybridization probes, the recombinant plasmid pER33 (E. Dworkin-Rastl et al. Gene 21, 237-248 (1983)) serves. This plasmid contains the coding region for the final interferon IFN-α2 arg plus 190 bases belonging to the 3 'nontranslating region. 20 µg pER33 is incubated for one hour at 37 ° C with 30 units of HindIII restriction endonuclease in 200 µl reaction solution (10 mM tris-HCl pH 7.5, 10 mM MgCl 2, 1 mM dithiotreitol (DTT), 50 mM NaCl). The reaction is quenched by the addition of 1/25 vol of 0.5 M ethylenedi-trinotetraacetic acid (EDTA) and heated to 70 ° C for ten minutes. After adding 1/4 vol of 5 x buffer (80% glycerine, 40 mM tris-acetic acid pH 7.8, 50 mM EDTA, 0.05% sodium dodecyl sulfate (SDS), 0.1% bromophenol blue), the fragments formed are charged. separating by size 35 electrophoretically on a 1% agarose gel [gel and flow

I DK 175194 B1 II DK 175194 B1 I

I 34 II 34 I

I puffer (TBE)? 10,8 g/l trishydroxymethylaminomethan IIn Buffer (TBE)? 10.8 g / l of trishydroxymethylaminomethane I

I (Trisbase), 5,5 g/l borsyre 0,93 g/l EDTA]. Man inku- II (Trisbase), 5.5 g / L boric acid 0.93 g / L EDTA]. Man incu- I

I berer gelen med en 0,5 yg/ml ethidiumbromidopløsning, IPrepare the gel with a 0.5 µg / ml ethidium bromide solution, I

I hvorved DNA-båndene bliver synlige i UV-lys, og udskærer IIn which the DNA bands become visible in UV light and cut out

I 5 den del af gelen, der indeholder det IFN-gelholdige DNA- IIn the portion of the gel containing the IFN gel-containing DNA-I

I stykke (ca. 800 bp længde). Man påsætter en spænding og IIn piece (about 800 bp length). You put a voltage and you

I elektroeluerer DNA i 1/10 x TBE-puffer. DNA-opløsningen IIn electroeluted DNA in 1/10 x TBE buffer. The DNA solution I

I ekstraheres en gang med phenol og fire gange med ether, IExtract once with phenol and four times with ether, I

I og DNA udfældes ved tilsætning af 1/10 vol 3 M natrium- II and DNA are precipitated by the addition of 1/10 vol of 3 M sodium I

I 10 acetat (NéiAc) pH 5,8, og 2,5 vol EtOH fra den vandige IIn 10 acetate (NaeAc) pH 5.8, and 2.5 vol EtOH from the aqueous I

I opløsning ved -20°C. Man fracentrifugerer DNA, vasker IIn solution at -20 ° C. The DNA is centrifuged, washed

I en gang med 70% ethanol og tørrer fem minutter i vakuum. IOnce with 70% ethanol and dry for five minutes in vacuo. IN

I Hertil tilsættes 50 μΐ vand (ca. 50 yg/yl). Denne DNA IIn this, 50 μΐ water (about 50 µg / yl) is added. This DNA I

I mærkes radioaktivt ved hjælp af haktranslation (modifi- IYou are labeled radioactive by chin translation (modifi- I

I 15 ceret efter T. Maniatis et al., Molecular Cloning, ed. IIn cited by T. Maniatis et al., Molecular Cloning, ed. IN

I CSH). 50 μΐ inkubationsopløsning indeholder: 50 mM IIn CSH). 50 μΐ incubation solution contains: 50 mM I

I Tris pH 7,8, 5 mM MgCl2# 10 mM mercaptoethanol, 100 ng IIn Tris pH 7.8, 5 mM MgCl 2 # 10 mM mercaptoethanol, 100 ng I

I indføjning-DNA fra pER33, 16 pg DNasel, 25 yMol dATP, IIn insert DNA from pER33, 16 µg DNasel, 25 µMol dATP, I

I 25 μΜοΙ dGTP, 25 μΜοΙ dTTP, 20 μΟί a32P-dCTP (> 3000 II 25 µΜο dGTP, 25 µΜ dTTP, 20 µΟ a32P-dCTP (> 3000 I

I 20 Ci/mMol) såvel som 3 enheder DNA-polymerase I (E. coli). IIn 20 Ci / mMol) as well as 3 units of DNA polymerase I (E. coli). IN

I Inkubationen foregår ved 14°C i 45 minutter. Man stand- IThe incubation takes place at 14 ° C for 45 minutes. You stand- I

I ser reaktionen ved at tilsætte 1 vol 50 mM EDTA, 2% SDS, IYou see the reaction by adding 1 vol 50 mM EDTA, 2% SDS, I

I 10 mM Tris pH 7,6 opløsning og opvarmer til 70°C i ti IIn 10 mM Tris pH 7.6 solution and heat to 70 ° C for ten liters

I minutter. DNA skilles ved kromatografi over Sephadex IIn minutes. DNA is separated by chromatography over Sephadex I

I 25 G-100 i TE-puffer (10 mM Tris pH 8,0, 1 mM EDTA) fra ik- .1In 25 G-100 in TE buffer (10 mM Tris pH 8.0, 1 mM EDTA) from

I ke indbygget radioaktivitet. Den radioaktivt mærkede IIn no built-in radioactivity. The radiolabelled I

I sonde udviser en specifik aktivitet på ca. 4 x 10^ IThe probe exhibits a specific activity of approx. 4 x 10 ^ I

I cpm/yg. IIn cpm / yg. IN

I c) Udvælgelse af kloner med IFN-genholdig indføjning II c) Selection of clones with IFN-containing insert I

I 30 Man optøer bakteriekulturerne, der er nedfrosset IIn 30, the bacterial cultures that are frozen are thawed

I på mikrotiterpladerne (a). Et stykke nitrocellulosefil- II on the microtiter plates (a). A piece of nitrocellulose fil- I

I ter af passende størrelse (Schleicher og Schiill, BA 85, IIters of appropriate size (Schleicher and Schiill, BA 85, I

I 0,45 μπ porestørrelse) lægges på LB-agar (LB-agar: 10 IIn 0.45 µm pore size) is applied to LB agar (LB agar: 10 L

I g/l trypton, 5 g/l gærekstrakt, 5 g/l NaCl, 15 g/l bacto IIn g / l tryptone, 5 g / l yeast extract, 5 g / l NaCl, 15 g / l bacto I

I 35 agar, 20 mg/l tetracyclin-HCl). Med et stempel, der IIn 35 agar, 20 mg / L tetracycline HCl). With a stamp which I

35 DK 175194 B1 passer til mikrotiterpladen, overføres de individuelle kloner til nitrocellulosefilteret. Natten over vokser bakterierne ved 37°C til kolonier på ca. 5 ram diameter.35 DK 175194 B1 fits the microtiter plate, the individual clones are transferred to the nitrocellulose filter. At night, the bacteria grow at 37 ° C to colonies of approx. 5 frame diameter.

For at destruere bakterierne og denaturere DNA, lægger 5 man nitrocellulosefilteret i rækkefølge på stabler af Whatman 3MM filter stænket med følgende opløsninger: 1) 8 minutter på 0,5 M NaOH, 2) 2 minutter 1 M Tris pH 7,4, 3) 2 minutter 1 M Tris pH 7,4 og 4) 4 minutter 1,5 M NaCl, 0,5 M Tris pH 7,4. Filtrene lufttørres og 10 holdes derefter to timer ved 80°C. Forbehandlingen af filtrene varede fire timer ved 65°C i hybridiseringsop-løsningen, der består af 6 x SSC (1 x SSC svarer til 0,15 M NaCl; 0,015 M trinatriumcitrat; pH 7,0), 5 xTo destroy the bacteria and denature the DNA, the nitrocellulose filter is applied sequentially to stacks of Whatman 3MM filter sprinkled with the following solutions: 1) 8 minutes on 0.5 M NaOH, 2) 2 minutes 1 M Tris pH 7.4, 3) 2 minutes 1 M Tris pH 7.4 and 4) 4 minutes 1.5 M NaCl, 0.5 M Tris pH 7.4. The filters are air dried and then kept at 80 ° C for two hours. The pretreatment of the filters lasted four hours at 65 ° C in the hybridization solution consisting of 6 x SSC (1 x SSC corresponds to 0.15 M NaCl; 0.015 M trisodium citrate; pH 7.0), 5 x

Denhardt's opløsning (1 x Denhardt's opløsning svarer 15 til 0,02% PVP (polyvinylpyrrolidon)? 0,02% Ficoll (MG:Denhardt's solution (1 x Denhardt's solution corresponds to 15% 0.02% PVP (polyvinylpyrrolidone)? 0.02% Ficoll (MG:

40.000 D); 0,02% BSM (Bovine-serum albumin) og 0,1% SDS40,000 D); 0.02% BSM (Bovine serum albumin) and 0.1% SDS

(natriumdodecylsulfat). Ca. 1 x 10^ cpm pr. filter af sonden, fremstillet i b) denatureres ved kogning og tilsættes hybridiseringsopløsningen. Hybridiseringen varer 20 16 timer ved 65°C. Filtrene vaskes fire gange en time ved 65°C med 3 x SSC/0,1% SDS. Filtrene lufttørres, beskyttes med Saran Wrap og eksponeres på Kodak X-OmatS film. 1 2 3 4 5 6 7 8 9 10 11 2(Sodium dodecyl sulfate). Ca. 1 x 10 ^ cpm per filter of the probe made in b) is denatured by boiling and added to the hybridization solution. The hybridization lasts for 16 hours at 65 ° C. The filters are washed four times an hour at 65 ° C with 3 x SSC / 0.1% SDS. The filters are air dried, protected with Saran Wrap and exposed to Kodak X-OmatS film. 1 2 3 4 5 6 7 8 9 10 11 2

Eksempel 2 3Example 2 3

Kontrol af IFN-gehholdige rekombinante plasmider ved 4 hjælp af Southern Transfer_ 5Control of IFN-containing Recombinant Plasmids by Southern Transfer_5

Af de positive eller mistænkelig positivt reage- 6 rende kolonier dyrkes 5 ml kulturer i L-urt (10 g/l 7 trypton, 5 g/l gærekstrakt, 5 g/l NaCl, 20 mg/l tetra- 8 cyclin x HC1) natten over ved 37°C. Plasmid-DNA isole 9 res modificeret efter Birnboim og Doly (Nucl. Acid Res.Of the positive or suspiciously positive-reacting 6 colonies, 5 ml cultures are grown in L-herb (10 g / l 7 tryptone, 5 g / l yeast extract, 5 g / l NaCl, 20 mg / l tetra-8 cyclin x HCl) overnight at 37 ° C. Plasmid DNA isolate 9 res modified after Birnboim and Doly (Nucl. Acid Res.

10 7, 1513, (1979)). Cellerne centrifugeres fra 1,5 ml su- 11 spension (Eppendorf-centrifuge) og udsuspenderes igen ved7, 1513 (1979)). Cells are centrifuged from 1.5 ml suspension (Eppendorf centrifuge) and resuspended at

I DK 175194 B1 II DK 175194 B1 I

I 36 II 36 I

I 0°C i 100 yl lysozymopløsning, der består af 50 mM glu- IIn 0 ° C in 100 µl lysozyme solution consisting of 50 mM glu-I

I kose, 10 mM EDTA, 25 mM tris-HCl pH 8,0 og 4 mg/ml lyso- IIn cure, 10 mM EDTA, 25 mM Tris-HCl pH 8.0 and 4 mg / ml lyso-I

I zym. Efter fem minutters inkubation ved stuetemperatur II zym. After five minutes of incubation at room temperature I

I tilsætter man 2 rumfangsdele iskold 0,2 M NaOH, 1% SDS- I2 volumes of ice-cold 0.2 M NaOH, 1% SDS-I are added

I 5 opløsning og inkuberer yderligere fem minutter. Derefter IIn 5 solution and incubate for another five minutes. Then you

I tilsætter man 150 yl iskold kaliumacetatopløsning pH IYou add 150 µl of ice-cold potassium acetate solution pH I

I 4,8 og inkuberer fem minutter. De udfældede celledele IFor 4.8 and incubate five minutes. The precipitated cell portions I

I bortcentrifugeres. DNA-opløsningen ekstraheres med 1 II centrifuge away. The DNA solution is extracted with 1 L

I rumfangsdel phenol/CHC3 (1:1), og DNA udfældes ved til- IIn the phenol / CHCl 3 (1: 1) portion, and DNA is precipitated at-I

I 10 sætning af 2 rumfangsdele ethanol. Efter centrifugering IIn 10 statement of 2 volumes ethanol. After centrifugation I

I vasker man bundfaldet en gang med 70% ethanol og tørrer IYou wash the precipitate once with 70% ethanol and dry

I fem minutter i vakuum. DNA opløses i 50 yl (TE)-puffer. IFor five minutes in vacuum. DNA is dissolved in 50 µl (TE) buffer. IN

I 10 yl heraf sættes til 50 yl reaktionsopløsning (10 mM ITo 10 µl thereof is added to 50 µl reaction solution (10 mM I

I Tris-HCl pH 7,5, 10 mM MgCl2> 50 mM NaCl, 1 mM DTT) IIn Tris-HCl pH 7.5, 10 mM MgCl 2> 50 mM NaCl, 1 mM DTT)

I 15 og fordøjes en time ved 37°C med 10 enheder Pstl-re- IFor 15 hours and digested for one hour at 37 ° C with 10 units of PstI-re I

I striktionsendonuclease. Man tilsætter 1/25 del rumfang IIn stricture endonuclease. 1/25 part volume is added

I 0,5 M EDTA og 1/4 rumfang 5 x puffer (se Eksempel lb)), IIn 0.5 M EDTA and 1/4 volume 5 x buffer (see Example 1b)), I

I opheder ti minutter til 70°C og fraskiller derefter DNA IYou heat for ten minutes to 70 ° C and then separate DNA I

I elektroforetisk på en 1% agarosegel (TBE-puffer). DNA i IIn electrophoretic on a 1% agarose gel (TBE buffer). DNA in I

I 20 agarosegel overføres efter Southern's metode (E. Μ. IIn 20 agarose gel is transferred by Southern's method (E. I. I

I Southern, J. Mol. Biol. 98, 503-517 (1975)) til et ni- IIn Southern, J. Mol. Biol. 98, 503-517 (1975)) to a Ni

I trocellulosefilter. Gelen inkuberes en time med en 1,5 IIn trocellulose filters. The gel is incubated for one hour with a 1.5 L

I M NaCl/0,5 M NaOH-oplØsning, hvorved DNA denatureres. IIn M NaCl / 0.5 M NaOH solution, thereby denaturing DNA. IN

I Derefter neutraliserer man en time med en 1 M Tris x HC1 IThen neutralize for 1 hour with a 1 M Tris x HCl I

I 25 pH 8/1,5 M NaCl-opløsning. DNA overføres til nitrocel- IIn pH 8 / 1.5 M NaCl solution. DNA is transferred to nitrocel-I

I lulosefilteret med 10 x SSC (1,5 M NaCl, 0,15 M natrium- IIn the lulose filter with 10 x SSC (1.5 M NaCl, 0.15 M sodium I)

I citrat, pH 7,0). Når overførslen er tilendebragt (ca. IIn citrate, pH 7.0). When the transfer is complete (approx

I 16 timer) skyller man filteret kortvarigt i 6 x SSC-puf- IFor 16 hours) rinse the filter briefly in 6 x SSC buffer

I fer, lufttørrer det og bager det to timer ved 80°C. Fil- IIn ferns, air dry and bake for two hours at 80 ° C. File I

I 30 teret forbehandles fire timer med en 6 x SSC/5 x IFor 30 hours four hours are pretreated with a 6 x SSC / 5 x I

I Denhardt's opløsning/0,1% SDS (se Eksempel lc) ved 65°C. IIn Denhardt's solution / 0.1% SDS (see Example 1c) at 65 ° C. IN

I Ca. 2 x 10^ cpm af hybridiseringssonden (se Eksempel lb) IIn Approx. 2 x 10 5 cpm of the hybridization probe (see Example 1b) I

I denatureres ved ophedning til 100°C og anbringes i hy- II is denatured by heating to 100 ° C and placed in the hy

I bridiseringsopløsningen. Man hybridiserer 16 timer ved IIn the bridging solution. 16 hours are hybridized at 1

I 35 65°C. Derefter vasker man filteret 4x1 time ved 65°C IAt 65 ° C. Then the filter is washed 4x1 hour at 65 ° C

37 DK 175194 B1 med en 3 x SSC/0,1% SDS-opløsning. Efter lufttørring dækkes filteret med Saran Wrap og eksponeres på Kodak X-Omats film.37 DK 175194 B1 with a 3 x SSC / 0.1% SDS solution. After air drying, the filter is covered with Saran Wrap and exposed to Kodak X-Omat film.

55

Eksempel 3 Påvisning af interferonaktivitet i klon E76E9Example 3 Detection of Interferon Activity in Clone E76E9

En 100 ml kultur af klon E76E9 dyrkes i L-urt (10 g/1 trypton, 5 g/l gærekstrakt, 5 g/1 NaCl, 5 g/l glu-10 kose, 20 mg tetracyclin x HC1 pr. 1) til en optisk tæthed Agoo = 0*8* Bakterierne fracentrifugeres i 10 minutter ved 7000 rpm, vaskes en gang med en 50 mM Tris x HC1 pH 8,0, 30 mM NaCl-opløsning og suspenderes i 1,5 ml vaskeopløsning. Man inkuberer \ time ved 0°C med 1 15 mg/ml lysozym og nedfryser og genoptøer derefter bakteriesuspensionen fem gange. Celleresterne bortcentrifugeres ved 40.000 rpm en time. Man sterilfiltrerer centrifugatet og prøver det for interferonaktivitet.A 100 ml culture of clone E76E9 is grown in L-herb (10 g / l tryptone, 5 g / l yeast extract, 5 g / l NaCl, 5 g / l glucose, 20 mg tetracycline x HCl per 1) to Optical density Agoo = 0 * 8 * The bacteria are centrifuged for 10 minutes at 7000 rpm, washed once with a 50 mM Tris x HCl pH 8.0, 30 mM NaCl solution and suspended in 1.5 ml wash solution. Incubate for 1 hour at 0 ° C with 1 15 mg / ml lysozyme and freeze and then re-thaw the bacterial suspension five times. The cell debris is centrifuged at 40,000 rpm for one hour. The centrifugate is sterile filtered and tested for interferon activity.

Herved anvender man Plaque-reduktionstesten med 20 V3-celler og "Vesicular Stomatitis Virus" (G. R. Adolf et al., Arch. Virol. 72, 169-178 (1982)). På uventet vis producerer klonen op til 9000 IU interferon pr. liter udgangskultur.The Plaque Reduction Test with 20 V3 Cells and the "Vesicular Stomatitis Virus" (G. R. Adolf et al., Arch. Virol. 72, 169-178 (1982)) is used. Unexpectedly, the clone produces up to 9000 IU of interferon per day. liter of starting culture.

25 Eksempel 4Example 4

Genomisk Southern Blot til bestemmelse af antal gener med hidtil ukendte sekvenser_ a) Isolering af DNA fra Namalwa-celler 30 Man centrifugerer 400 ml af en Namalwa-cellekul tur i en JA21-centrifuge ved 1000 rpm for at udfælde cellerne. Bundfaldet vasket forsigtigt, idet det udsuspenderes i NP40-puffer (NP40-puffer: 140 mM NaCl, 1,5 mM MgCl2, 10 mM Tris/Cl pH 7,4) og udfældes igen ved 35 1000 rpm. Det nye bundfald udsuspenderes i 20 ml NP40-Genomic Southern Blot to Determine Number of Genes with New Sequences a) Isolating DNA from Namalwa Cells 400 Centrifuge 400 ml of a Namalwa cell culture in a JA21 centrifuge at 1000 rpm to precipitate the cells. The precipitate was washed gently, suspended in NP40 buffer (NP40 buffer: 140 mM NaCl, 1.5 mM MgCl 2, 10 mM Tris / Cl pH 7.4) and precipitated again at 35 1000 rpm. The new precipitate is suspended in 20 ml of NP40-

I DK 175194 B1 II DK 175194 B1 I

I 38 II 38 I

I puffer og tilsættes 1 ml 10% NP40-opløsning, så celle- IIn buffer and add 1 ml of 10% NP40 solution, then cell I

I væggene kan ødelægges. Efter fem minutter i isbad lader IIn the walls can be destroyed. After five minutes in an ice bath you leave

I man de intakte cellekærner udcentrifugere ved 1000 rpm IIn the intact cell nuclei, centrifuge at 1000 rpm

I og kasserer centrifugatet. Man suspenderer cellekærner- IIn and discard the centrifugate. Cell nuclei are suspended

I 5 ne i 10 ml af en opløsning, der består af 50 mM Tris/Cl IIn 5 ml of 10 ml of a solution consisting of 50 mM Tris / Cl I

I pH 8,0, 10 mM EDTA og 200 mM NaCl, og tilsætter 1 ml IAt pH 8.0, 10 mM EDTA and 200 mM NaCl, adding 1 ml of I

I 20% SDS for at fjerne proteiner. Den tilvejebragte vi- IIn 20% SDS to remove proteins. It provided vi- I

I skose opløsning ekstraheres to gange med samme mængde IIn shoe solution, extract twice with the same amount of I

I phenol (mættet med 10 mM Tris/Cl pH 8,0) og to gange med IIn phenol (saturated with 10 mM Tris / Cl pH 8.0) and twice with I

I 10 chloroform. DNA udfældes ved ethanoltilsætning, fra- IIn chloroform. DNA is precipitated by ethanol addition, from I

I skilles ved centrifugering, hvorefter DNA-bundfaldet IYou are separated by centrifugation, after which the DNA precipitate I

I vaskes en gang med 70% ethanol, tørres fem minutter i IYou wash once with 70% ethanol, dry for 5 minutes in 1

I vakuum og opløses i 6 ml TE-puffer (TE-puffer: 10 mM IIn vacuum and dissolve in 6 ml TE buffer (TE buffer: 10 mM I)

I Tris/Cl pH 8,0, 1 mM EDTA). Koncentrationen af DNA er IIn Tris / Cl pH 8.0, 1 mM EDTA). The concentration of DNA is I

I 15 0,8 mg/ml. IIn 0.8 mg / ml. IN

I b) Restriktions-endonuclease-fordØjelse af DNA fra Na- II b) Restriction endonuclease digestion of Na-I DNA

I malwaceller__ II malwaceller__ I

I Restriktions-endonuclease-fordøjelsen udføres ved IIn the restriction endonuclease digestion is performed at I

I 20 betingelser angivet af producenten (New England IIn 20 conditions specified by the manufacturer (New England I

I Biolabs). 1 yg DNA fordøjes med 2 enheder egnet restrik- IIn Biolabs). 1 µg DNA is digested with 2 units of suitable restriction

I tions-endonuclease i et rumfang på 10 yl ved 37°C i to II thion endonuclease in a volume of 10 µl at 37 ° C for two liters

I timer eller længere· EcoRI, Hindlll, BamHl, SphI, IFor hours or longer · EcoRI, Hindlll, BamHl, SphI, I

I PstI og Clal anvendes som restriktionsendonucleaser. IIn PstI and Clal are used as restriction endonucleases. IN

I 25 Hver gang anvendes 20 yg DNA. Til kontrol af fordøjel- II 25 Each time 20 µg of DNA is used. For digestion control I

I sesreaktionens forløb skiller man hver gang ved reaktio- IIn the course of the reaction the reaction is separated each time by reaction I

I nens begyndelse 10 yl fra (alikvote mængder) og omsast ter IInitially 10 yl from (aliquots) and transitions

I med 0,4 yg Xphag-DNA. Man kontrollerer disse alikvote II with 0.4 µg Xphag DNA. These aliquots are checked

I mængder efter to timers inkubation ved hjælp af agarose- IIn quantities after two hours of incubation using agarose I

I 30 gel-elektroforese og bedømmer fuldstændigheden for for- IIn 30 gel electrophoresis and assess the completeness of the test

I døjelsesprocessen ved hjælp af en farveprøve for λ-phag- IIn the breeding process using a swatch for λ-phage- I

I DNA-fragmenter. IIn DNA fragments. IN

I Efter kontrollen standser man reaktionen ved at IAfter the control, the reaction is stopped by:

I tilsætte EDTA til en slutkoncentration på 20 mM og ophe- IYou add EDTA to a final concentration of 20 mM and raise

I 35 der ti minutter til 70°C. DNA udfældes ved tilsætning IFor 35 minutes, ten minutes to 70 ° C. DNA is precipitated by addition I

39 DK 175194 B1 af 0,3 M NaAc pH 5,6, og 2,5 rumfangsdele ethanol. Efter 30 minutters inkubation ved -70°C udfældes DNA i en Eppendorf-centrifuge, vaskes en gang med 70% ethanol og tørres. Den tilvejebragte DNA opbevares i 30 ul TE-puf-5 fer.Of 0.3 M NaAc pH 5.6, and 2.5 parts by volume of ethanol. After 30 minutes incubation at -70 ° C, DNA is precipitated in an Eppendorf centrifuge, washed once with 70% ethanol and dried. The DNA obtained is stored in 30 µl of TE buffer.

c) Gelelektroforese og Southern Transferc) Gel electrophoresis and Southern Transfer

De fordøjede DNA-sonder skilles efter størrelse på 0,8% agarosegel i TBE-puffer (10,8 g/l Tris-base, 5,5 10 g/l borsyre, 0,93 g/l EDTA). Til dette formål blander man 15 yl af DNA-sonden med 4 yl puffer (0,02% SDS, 5 x TBE-puffer, 50 mM EDTA, 50% glycerin, 0,1% Bromphenol-blåt), opheder i kort tid til 70°C og anbringer opløsningen i en fordybning i gelen. λ-DNA, som er opskåret 15 med EcoRI og Hindlll, anbringes i en tilsvarende fordybning og benyttes som markør for DNA-størreisen. Man udfører gel-elektroforesen i løbet af 24 timer ved omkring 1 V/cm. Derefter anbringes DNA efter Southern’s metode på et nitrocellulosefilter (Schleicher og Schuell, BA 20 85), herved benyttes som overføringspuffer 10 x SSC (1 x SSC: 150 mM trinatriumcitrat, 15 mM NaCl, pH 7,0). Man tørrer filteret ved stuetemperatur og opheder det derefter to timer til 80°C for at binde DNA hertil.. 1 2 3 4 5 6 7 8 9 10 11 d) Hybridiseringssonde 2 20 yg plasmid P9A2 opskæres med Avail, hvorved 3 der dannes et fragment på omtrent 1100 pb længde, som 4 indeholder hele cDNA-indføjningen. Dette DNA-stykke op 5 skæres igen med Sau3A og Alul, og det største DNA-stykke 6 isoleres efter agarose-gel-elektroforese (se fig. 5b) 7 ved hjælp af elektroelution og elutip-søjlekromatografi.The digested DNA probes are separated by size of 0.8% agarose gel in TBE buffer (10.8 g / l Tris base, 5.5 10 g / l boric acid, 0.93 g / l EDTA). To this end, 15 µl of the DNA probe is mixed with 4 µl of buffer (0.02% SDS, 5 x TBE buffer, 50 mM EDTA, 50% glycerine, 0.1% Bromophenol blue), briefly heated to 70 ° C and place the solution in a well in the gel. λ DNA, cut with Eco RI and HindIII, is placed in a corresponding well and used as a marker for the DNA major pig. The gel electrophoresis is performed over 24 hours at about 1 V / cm. Then, by Southern's method, DNA is placed on a nitrocellulose filter (Schleicher and Schuell, BA 20 85), using as transfer buffer 10 x SSC (1 x SSC: 150 mM trisodium citrate, 15 mM NaCl, pH 7.0). The filter is dried at room temperature and then heated for two hours to 80 ° C to bind DNA to it. 1 2 3 4 5 6 7 8 9 10 11 d) Hybridization probe 2 20 µg plasmid P9A2 is cut with Avail to form 3 fragment of approximately 1100 pb in length, which 4 contains the entire cDNA insert. This piece of DNA up 5 is cut again with Sau3A and Alul, and the largest DNA piece 6 is isolated after agarose gel electrophoresis (see Fig. 5b) 7 by electroelution and elutip column chromatography.

88

Det på denne måde tilvejebragte DNA (1,5 yg) opløses i 9 15 μΐ vand.The DNA (1.5 µg) thus obtained is dissolved in 9 15 μΐ water.

10 20 yg plasmid pER33 opskæres med Hindlll, som op- 11 skærer dette ekspressionsplasmid for IFN-α 2-Arg to gan-10 20 µg plasmid pER33 is cut with HindIII, which cuts this expression plasmid for IFN-α 2-Arg two genes.

I DK 175194 B1 II DK 175194 B1 I

I 40 II 40 I

I ge (E. Rastl-Dworkin et al. Gene 21, 237-248 (1983)). I(Ge Rastl-Dworkin et al. Gene 21, 237-248 (1983)). IN

I Det lille DNA-fragment indeholder genet for interferon- IIn the small DNA fragment, the gene for interferon I contains

I ct2Arg og isoleres på samme måde som ved plasmid P9A2. IIn ct2Arg and isolated in the same way as in plasmid P9A2. IN

I Begge DNA-stykker haktranslateres efter en meto- II Both DNA pieces are chopped after a method I

I 5 de, foreslået af P.W.J. Ribgy et al. (J. Mol. Biol. 113, IIn 5 de, proposed by P.W.J. Ribgy et al. (J. Mol. Biol. 113, I

I 237-251 (1977)). Haktranslationen gennemføres begge IIn 237-251 (1977)). The chin translation is both performed i

I gange med 0,2 pg DNA i en opløsning på 50 yl, der består IIn 0.2 µg DNA in a 50 µl solution consisting of I

I af 1 x hakpuffer (1 x hakpuffer: 50 mM Tris/Cl pH 7,2, II of 1 x notch buffer (1x notch buffer: 50 mM Tris / Cl pH 7.2, I

I 10 mM MgS04, 0,1 mM DTT, 50 pg/ml BSA), hver gang med IIn 10 mM MgSO 4, 0.1 mM DTT, 50 pg / ml BSA), each time with I

I 10 100 μΜοΙ dATP, dGTP og dTTP, 150 pCi a-1P-dCTP IIn 10 100 μΜοΙ dATP, dGTP and dTTP, 150 pCi a-1P-dCTP I

I (Amersham, 3.000 Ci/mMol) og 5 enheder DNA-polymerase I II (Amersham, 3,000 Ci / mMol) and 5 units of DNA polymerase I I

I (Boehringer-Mannheim, haktranslationskvalitet). Efter II (Boehringer-Mannheim, hook translation quality). After I

I to timer ved 14°C standser man reaktionen ved tilsætning IFor two hours at 14 ° C, the reaction is stopped by addition I

I af den samme mængde af en EDTA-oplØsning (40 mmol) og II of the same amount of an EDTA solution (40 mmol) and I

I 15 fjerner det ikke omsatte radioaktive materiale ved hjælp IIn 15, the unreacted radioactive material is removed by means of I

I af G50-søjlekromatografi med TE-puffer. Den blivende II of G50 column chromatography with TE buffer. The future I

I specifikke radioaktivitet er omtrent 100 x 10^ cpm/pg IIn specific radioactivity, about 100 x 10 5 cpm / pg I

I DNA. IIn DNA. IN

I e) Hybridisering og autoradiografi I(E) Hybridization and autoradiography

I 20 Man skærer nitrocellulosefilteret i to halvdele.In 20 The nitrocellulose filter is cut in two halves.

I De to halvdele indeholder identiske påsætninger af Na- IIn the two halves contain identical additions of Na-I

I walwa-DNA, som er behandlet med de restriktionsenzymer, IIn walwa DNA treated with the restriction enzymes, I

I der er nævnt i Eksempel 4a. Filtrene præhybridiseres to ' IReferred to in Example 4a. The filters are prehybridized to two

I timer ved 65°C i en opløsning, der indeholder 6 x SSC, 5 IFor hours at 65 ° C in a solution containing 6 x SSC, 5 L

I 25 x Denhardt’s (1 x Denhardt'ss 0,02% bovin serum-albumin II 25 x Denhardt's (1 x Denhardt's 0.02% bovine serum albumin I

I (BSA), 0,02% polyvinylpyrrolidon (PVP), 0,02% Ficoll II (BSA), 0.02% polyvinylpyrrolidone (PVP), 0.02% Ficoll I

I 400), 0,5% SDS, 0,1 mg/ml denatureret kalvebrissel-DNA II 400), 0.5% SDS, 0.1 mg / ml denatured calf DNA I

I og 10 mM EDTA. Hybridiseringen gennemføres i 16 timer II and 10 mM EDTA. The hybridization is carried out for 16 hours I

I ved 65°C i en opløsning, der indeholder 6 x SSC, 5 x II at 65 ° C in a solution containing 6 x SSC, 5 x 1

I 30 Denhardt's, 10 mM EDTA, 0,5% SDS og omtrent 10 x 106 cpm IIn 30 Denhardt's, 10 mM EDTA, 0.5% SDS and about 10 x 106 cpm I

I haktranslateret DNA. Den ene halvdel af filteret hybri- IIn notch-translated DNA. One half of the filter is hybrid

I diseres med interferon-a2-Arg-DNA, og den anden halvdel IYou interfere with interferon-α2-Arg DNA and the other half I

I med interferon-DNA, der er isoleret fra plasmid P9A2. II with interferon DNA isolated from plasmid P9A2. IN

I Efter hybridiseringen vaskes begge filtre ved stuetempe- IAfter the hybridization, both filters are washed at room temp

I 35 rator fire gange med en opløsning, der består af 2 x SSC IIn 35 rator four times with a solution consisting of 2 x SSC I

41 DK 175194 B1 og 0,1% SDS, og derefter to gange ved 65°C med en opløsning, der består af 0,2 x SSC og 0,01% SDS. Derefter tørrer man filtrene og eksponerer på en Kodak X—Omat S— film.41 DK 175194 B1 and 0.1% SDS, and then twice at 65 ° C with a solution consisting of 0.2 x SSC and 0.01% SDS. Then, dry the filters and expose to a Kodak X — Omat S— film.

5 Eksempel 5Example 5

Fremstilling af ekspressionsplasmiderne _pRHW 12 og pRHW 11_Preparation of expression plasmids _pRHW 12 and pRHW 11_

Indledning: 10 Fremstilling af ekspressionsplasmiderne belyses i fig. 6 (ikke skalatro), endvidere udføres alle restriktionsenzymf ordø jelserne efter producentens anvisning.Introduction: Preparation of the expression plasmids is illustrated in FIG. 6 (not scaling), all restriction enzyme orders are also performed according to the manufacturer's instructions.

a) Fremstilling af plasmid pRHW 10 15 Man lader 100 ug plasmid P9A2 fordøje ved hjælp af 100 enheder restriktion-endonuclease Avail (New Englands Biolabs). Herefter inaktiverer man enzymet ved ophedning til 70°C og fraktionerer de tilvejebragte fragmenter efter størrelse på en 1,4% agarosegel med 20 TBE-puffer (TBE-puffer: 10,8 g/l Tris-base, 5,5 g/l borsyre, 0,93 g/l EDTA). Båndene, som indeholder hele cDNA-indfØjningsstykket, elektroelueres og renses på en elutipsøjle (Schleicher & Schuell). Man tilvejebringer 20 ug, og heraf viderefordøjes 6 ug med restriktionsen-25 donucleasen Sau3a (20 enheder ialt 100 ul opløsning).a) Preparation of Plasmid pRHW 10 15 µg of plasmid P9A2 is digested using 100 units of restriction endonuclease Avail (New England's Biolabs). Thereafter, the enzyme is inactivated by heating to 70 ° C and fractionating the obtained fragments by size of a 1.4% agarose gel with 20 TBE buffer (TBE buffer: 10.8 g / l Tris base, 5.5 g / l boric acid, 0.93 g / l EDTA). The bands containing the entire cDNA insert are electroeluted and purified on an elution tube (Schleicher & Schuell). 20 µg are obtained and 6 µg are further digested with the restriction endonuclease Sau3a (20 units total 100 µl solution).

Man adskiller fragmenterne ved hjælp af 2% agarosegel TBE-puffer. Efter farvning med ethidiumbromid (EtBr) elektroeluerer man det 189 bp lange DNA-stykke og renser det som beskrevet ovenfor (= fragment b i fig. 6).The fragments are separated by 2% agarose gel TBE buffer. After staining with ethidium bromide (EtBr), the 189 bp DNA piece was electroeluted and purified as described above (= fragment b in Fig. 6).

30 Man isolerer det tilsvarende DNA-stykke fra eks- pressionsplasmidet pER33 (E. Rastl-Dworkin et al.. Gene 21, 237-248 (1983)) for at kunne føje interferongenet sammen med en promotor, et ribosomalt bindingssted og en startkodon. Til dette formål lader man 50 ug pER 33 to 35The corresponding DNA fragment is isolated from the expression plasmid pER33 (E. Rastl-Dworkin et al. Gene 21 For this purpose 50 µg pER 33 to 35 are charged

I DK 175194 B1 II DK 175194 B1 I

I 42 II 42 I

I gange fordøje med restriktionsenzymerne EcoRI og PvuII IIn digestion, digest with the restriction enzymes EcoRI and PvuII I

I og fraktionerer de tilvejebragte fragmenter efter stør- IAnd fractionate the obtained fragments by size

I relse på en 1,4% agarosegel i TBE-puffer. Det 389 bp IIn the case of a 1.4% agarose gel in TBE buffer. It 389 bp I

I lange DNA-stykke, som indeholder Trp-promotoren, det ri- IIn long DNA pieces containing the Trp promoter, it ri- I

I 5 bosomale bindingssted, og startkodonen, elektroelueres IAt 5 bosomal binding sites, and the start codon, I is electroeluted

I og renses over en elutipsøjle. Det således tilve- IIn and cleaned over an elutip column. It thus provides

I jebragte fragment lader man derefter fordøje med Sau3A, IThen, in clipped fragments, digest with Sau3A, I

I og det ønskede 108 bp lange fragment får man ved hjælp II and the desired 108 bp fragment are obtained by means of I

I af agarosegelelektroforese, elektroelution og elutip- II of agarose gel electrophoresis, electroelution and elutip- I

I 10 søjlerensning med et udbytte på omkring 100 ng (= frag- IIn 10 column purification with a yield of about 100 ng (= frag- I

I ment c i f ig. 6). II ment c i f ig. 6). IN

I 20 ng af fragment b sammenføjes i løbet af 18 IIn 20 ng of fragment b is joined over 18 l

I timer ved 14°C med 20 ng af fragment c i et volumen på IFor hours at 14 ° C with 20 ng of fragment c in a volume of 1

I 40 μΐ under anvendelse af 10 enheder T4-ligase i en op-In 40 μΐ using 10 units of T4 ligase in an

I 15 løsning, som indeholder 50 mM Tris/Cl pH=7,5, 10 mM IIn solution containing 50 mM Tris / Cl pH = 7.5, 10 mM I

I MgCl2# 1 mM DTT og 1 mM ATP. Derefter lader man enzymet IIn MgCl2 # 1 mM DTT and 1 mM ATP. The enzyme I is then charged

I destruere ved ophedning til 70°C og lader det tilveje- IDestroy by heating to 70 ° C and leave to provide

I bragte DNA opskære med HindiII i et totalrumfang på 50 IYou brought DNA slices with HindiII to a total volume of 50 I

lul. Ilul. IN

I 20 Man lader 10 yg af ekspressionsplasmidet pER 103 IIn 10, 10 µg of the expression plasmid pER103 I is let

I (E. Rastl-Dworkin et al., Gene 21, 237-248 (1983)) lini- I(E. Rastl-Dworkin et al., Gene 21, 237-248 (1983))

I arisere med Hindlll i et totalrumfang på 100 μΐ. Efter IIn arises with HindIII in a total volume of 100 μΐ. After I

I to timer ved 37°C tilsætter man 1 volumen 2 x phosphata- IFor two hours at 37 ° C, 1 volume of 2 x phosphate I is added

I sepuffer (20 mM Tris/Cl ph 9,2, 0,2 mM EDTA) sammen med IIn sepa buffer (20 mM Tris / Cl ph 9.2, 0.2 mM EDTA) together with I

I 25 en enhed kalvetarmsphosphatase (CIP). Efter 30 minutter IIn one unit of calf intestinal phosphatase (CIP). After 30 minutes I

I ved 45°C tilsætter man en yderligere enhed CIP og inku- IAt 45 ° C, an additional unit of CIP is added and incubated

I berer yderligere i 30 minutter. Det på denne måde til- IYou cook for another 30 minutes. It thus in-

I vejebragte DNA renses ved hjælp af dobbelt phenoleks- IIn pathway DNA is purified by double phenol-I

I traktion, enkelt chloroformekstraktion og fældning ved IIn traction, single chloroform extraction and precipitation at I

I 30 tilsætning af 0,3 M natriumacetat (pH = 5,5) og 2,5 rum- IIn the addition of 0.3 M sodium acetate (pH = 5.5) and 2.5 room-I

I fang ethanol. Dernæst dephosphorylerer man for at for- IIn catch ethanol. Next, it is dephosphorylated to prevent

I hindre, at vektoren ved næste procestrin skal gendannes. ITo prevent the vector from being restored at the next process step. IN

I Man sammenbinder i løbet af 18 timer ved 14°C 100 IIn 18 hours at 14 ° C 100 I are bonded together

I ng af det liniariserede pER 103, og de ligerede fragmen- IIn the linearized pER 103, and they ligated the fragment

I 35 ter b og c (efter fordøjelse med Hindlll) i en opløsning IIn 35 ter b and c (after digestion with HindIII) in a solution I

43 DK 175194 B1 på 100 yl, der indeholder ligasepuffer, med T4-DNA-liga-se.43 DK 175194 B1 of 100 µl containing ligase buffer with T4 DNA ligase.

200 yl forberedt E. coli HB 101 (E. Dworkin et al., Dev. Biol. 76, 435-448 (1980)) blandes med 20 yl af 5 den ovennævnte blanding og inkuberes i 45 minutter på is. Derefter standses DNA-optagelsen ved hjælp af et varmechock på 42°C i to minutter. Cellesuspensionen inkuberes yderligere ti minutter på is, og overføres derefter til LB-agar (lOg/l trypton, 5 g/l gærekstrakt, 5 10 g/l NaCl, 1,5 % agar), som indeholder 50 mg/l ampicil-lin. Plasmiderne, der findes i de tilvejebragte 24 kolonier, isoleres efter en metode angivet af Birnboim og Doly (se Nucl. Acid. Res. 7, 1513-1523 (1979)). Efter fordøjelse med forskellige restriktionsenzymer udviser 15 et plasmid den ønskede struktur. Dette får betegnelsen pRHW 10 (se fig. 6).200 µl of prepared E. coli HB 101 (E. Dworkin et al., Dev. Biol. 76, 435-448 (1980)) is mixed with 20 µl of the above mixture and incubated for 45 minutes on ice. Then, DNA recording is stopped by a heat shock of 42 ° C for two minutes. The cell suspension is incubated for an additional ten minutes on ice and then transferred to LB agar (10g / l tryptone, 5 g / l yeast extract, 5 10 g / l NaCl, 1.5% agar) containing 50 mg / l ampicillin . The plasmids found in the provided 24 colonies are isolated by a method described by Birnboim and Doly (see Nucl. Acid. Res. 7, 1513-1523 (1979)). After digestion with various restriction enzymes, a plasmid exhibits the desired structure. This is designated pRHW 10 (see Fig. 6).

b) Fremstilling af plasmid pRHW 12b) Preparation of plasmid pRHW 12

Ca. 10 yg af plasmid pRHW 10 opskæres med BamHI.Ca. 10 µg of plasmid pRHW 10 is cut with BamHI.

20 Derefter tilsætter man Klenow-fragmentet fra DNA-polyme-rase I, og de fire deoxynucleosid-triphosphater og inkuberer 20 minutter ved stuetemperatur. Det tilvejebragte liniariserede plasmid, der har lige ender, renses ved phenolekstraktion og fældning og opskæres derefter med 25 restriktionsendonuclease Ncol i et volumen på 100 yl.Then the Klenow fragment of DNA polymerase I and the four deoxynucleoside triphosphates are added and incubated for 20 minutes at room temperature. The linearized plasmid having straight ends is purified by phenol extraction and precipitation and then cut with 25 restriction endonuclease Nco I in a volume of 100 µl.

Det største fragment udvindes ved hjælp af agarosegel-elektroforese, elektroelution og elutip-rensning. Fragment a) (se fig. 6) tilvejebringer man fra 4 yg Avall-fragment, som indeholder P9A2-cDNA-indføjningsstykket 30 (se ovenfor) ved fordøjelse med Ncol og Alul, hvorved man opnår omtrent 2 yg fragment a).The largest fragment is recovered by agarose gel electrophoresis, electroelution, and elutip purification. Fragment a) (see Fig. 6) is obtained from 4 µg Avall fragment containing the P9A2 cDNA insert 30 (see above) by digestion with NcoI and Alul to obtain about 2 µg fragment a).

Til slut sammenføjes fragment a), og det dertil tilsatte to gange med BamHl/NcoI fordøjede pRHW 10 i et volumen på 10 yl, idet der anvendes 10 ng af hver DNA.Finally, fragment a) is joined and added thereto twice with BamHl / NcoI digested pRHW 10 in a volume of 10 µl, using 10 ng of each DNA.

35 Ved sammenføjning af et opfyldt BamHI-opskæringssted til35 When joining a fulfilled BamHI cutting site to

I DK 175194 B1 II DK 175194 B1 I

I 44 II 44 I

I en DNA, der er opskåret med Alul, opstår igen et BamHI- IIn a DNA cut with Alul, a BamHI-I is again formed

I opskæringssted. IIn the cutting site. IN

I Den ovenfor nævnte blanding transformeres med IThe above-mentioned mixture is transformed with I

I forbehandlet E. coli HB 101 som beskrevet ovenfor. Af IIn pretreated E. coli HB 101 as described above. By I

I 5 de tilvejebragte 40 kolonier udvælger man en, som får IIn 5 of the 40 colonies provided, one is selected which one gets you

I betegnelsen pRHW 12. IIn the designation pRHW 12. I

I Plasmidet isoleres, og EcoRI/BamHI-indføjnings- IIn the plasmid, isolate and EcoRI / BamHI insert I

I stykket sekvensanalyseres efter Sangers metode (F. IIn the piece, sequence analysis is performed according to Sanger's method (F. I

I Sanger et al., Proc. Nat- Acad. Sci 74, 5463 - 5467 IIn Sanger et al., Proc. Nat- Acad. Sci 74, 5463 - 5467 I

I 10 (1979)). Det indeholder den ventede sekvens.I 10 (1979)). It contains the expected sequence.

I c) Fremstilling af plasmid pRHW 11 II c) Preparation of plasmid pRHW 11 I

I Fremgangsmåden følger Eksempel 5b. 1 yg af plas- IIn the Process, Example 5b follows. 1 µg of plasma I

I mid pRHW 10 fordøjes med BamHI. De klæbrige ender af IIn mid pRHW 10 is digested with BamHI. The sticky ends of I

I 15 det tilvejebragte DNA afstumpes ved hjælp af Klenow- IIn the DNA obtained is blunted by Klenow-I

I fragmentet fra DNA-polymerase I og de 4 deoxynucleosid- IIn the DNA polymerase I fragment and the 4 deoxynucleoside I

I triphosphater, derefter opskæres det liniariserede DNA IIn triphosphates, the linearized DNA I is then cut

I med Ncol. Det store fragment udvindes ved hjælp af aga- II with Ncol. The large fragment is recovered by aga-I

I rosegel-elektroforese, elektroelution og Elutip-søjle- IIn rose-gel electrophoresis, electroelution and Elutip column- I

I 20 kromatografi. IIn chromatography. IN

I NcoI-AluI-fragmentet fra klon E76E9 isolerer man IThe NcoI-AluI fragment from clone E76E9 isolates I

I som i Eksempel 5b. 10 ng af dette vektorfragment og 10 IIn Example 5b. 10 ng of this vector fragment and 10 l

I ng af cDNA-fragmentet sammenbinder man i et rumfang på IIn the cDNA fragment, one binds in a volume of I

I 10 μΐ under egnede betingelser ved hjælp af en enhed T4- II 10 μΐ under suitable conditions using a unit T4-I

I 25 ligase· Efter transformation af DNA-blandingen i E. coli IIn 25 ligase · After transformation of the DNA mixture into E. coli I

I HB 101 og gennemsøgning af de tilvejebragte 45 kolonier IIn HB 101 and scanning the provided 45 colonies I

I på LB-plader, der indeholder ampicillin, udvælger man en IOn LB plates containing ampicillin, one is selected

I klon, som får betegnelsen pRHWll. Klonen opdyrkes, og IIn the clone, which is named pRHWll. The clone is cultivated and you

I man isolerer plasmid DNA. Dettes struktur bekræftes IIn isolating plasmid DNA. This structure is confirmed

I 30 ved, at det indeholder restriktions-endonuclease-snit- IYou know that it contains restriction endonuclease section I

I steder for Alul, EcoRI, HindlH, Ncol, Pstl. IIn places of Alul, EcoRI, HindlH, Ncol, Pstl. IN

I 35 II 35 I

45 DK 175194 B1 d) Ekspression af interferon-aktivitet af E. coli HB 101, der indeholder plasmid pRHW 12_ 100 ml af bakteriekulturen inkuberes i M9 minimal medium, som indeholder alle aminosyrer undtagen tryptho-5 phan (20 vg/ml pr. aminosyre), 1 ug/ml thiamin, 0,2% glukose og 20 pg/ml indol(3)-acrylsyre (IAA), induktor for tryphtophan-operon, indtil en optisk tæthed på 0,6 ved 600 nm. Derpå udcentrifugerer man bakterierne (ti minutter, 7000 rpm), vaskes en gang med 50 mM Tris/Cl pH 10 =8,, 30mM NaCl og udsuspenderer i 1,5 ml af denne puffer. Der inkuberes 30 minutter med 1 mg/ml lysosym på is, hvorefter man fem gange udfryser og optøer bakterierne. Man fjerner celleresterne ved centrifugering en time ved 40.000 rpm. Centrifugatet sterilfiltreres og 15 prøves for interferonaktivitet ved en plaque-reduktions-prøve under anvendelse af humane A549 celler og Encopha-lo-myocarditisvirus.D) Expression of interferon activity of E. coli HB 101 containing plasmid pRHW 12_ 100 ml of the bacterial culture is incubated in M9 minimal medium containing all amino acids except tryptophan (20 µg / ml per amino acid ), 1 µg / ml thiamine, 0.2% glucose and 20 µg / ml indole (3) -acrylic acid (IAA), tryptophan operon inductor, up to an optical density of 0.6 at 600 nm. The bacteria are then centrifuged (ten minutes, 7000 rpm), washed once with 50 mM Tris / Cl pH 10 = 8, 30mM NaCl and suspended in 1.5 ml of this buffer. Incubate 30 minutes with 1 mg / ml lysosyme on ice, then freeze and thaw the bacteria five times. Cell residues are removed by centrifugation for one hour at 40,000 rpm. The centrifugate is sterile filtered and assayed for interferon activity by a plaque reduction test using human A549 cells and Encophaolo myocarditis virus.

Resultat: 1 1 af den fremstillede bakteriekultur inde holder 1 x 10^ IE interferon (A. Billian, 20 Antiviral Res. 4, 75-98 (1984)).Result: 1 1 of the bacterial culture produced contains 1 x 10 8 IU of interferon (A. Billian, 20 Antiviral Res. 4, 75-98 (1984)).

Eksempel 6Example 6

Forskelle i aminosyre- og nucleotis-sekvenser for type I-interferoner_ 25 a) Sammenligning af aminosyresekvenserneDifferences in amino acid and nucleotide sequences for type I interferons_ 25 a) Comparison of the amino acid sequences

Den parvise sammenligning af aminosyresekvenserne foretages således, at man begynder sammenligningen med den første cysteinrest i det færdige α-interferon og ved den første cysteinrest i de aminosyresekvenser, som 30 cDNA-indføjningerne i plasmiderne P9A2 og E76E9 koder for. Begge sekvenser kaldes i fig. 7 IFN-ω, da man ved de opnåede værdier ikke kunne fastslå nogen forskelle mellem de specifikke sekvenser, der hører til P9A2 og til E76A9-kIonerne. Den eneste rettelse var indførelsen 35 af en tom plads ved position 45 hos interferon aA, somThe pairwise comparison of the amino acid sequences is made to begin the comparison with the first cysteine residue in the final α-interferon and at the first cysteine residue in the amino acid sequences encoded by the cDNA insertions in plasmids P9A2 and E76E9. Both sequences are called in FIG. 7 IFN-ω, since the obtained values could not detect any differences between the specific sequences belonging to P9A2 and the E76A9 cions. The only correction was the insertion 35 of an empty space at position 45 of interferon aA, which

I DK 175194 B1 II DK 175194 B1 I

I 46 II 46 I

I blev talt som en fejl. Når ω-interferon sekvens er part IYou were counted as a mistake. When ω-interferon sequence is part I

I i sammenligningen, udføres denne under hensyntagen til IIn the comparison, this is performed taking into account I

I de sædvanlige 166 aminosyrer. Denne værdi gives i fig. IIn the usual 166 amino acids. This value is given in FIG. IN

I 7 sammen med værdier for de øvrige 6 aminosyrer, som II 7 along with values for the other 6 amino acids that I

I 5 klonerne P9A2 og E76E9 koder for. Man får procentfor- IIn the 5 clones P9A2 and E76E9 encode. You get a percentage increase

I skellene ved division af de udregnede forskelle med tal- IIn the divisions of division of the calculated differences with numbers- I

I let 1,66. En ekstra aminosyre svarer således til et IIn light 1.66. An additional amino acid thus corresponds to an I

I procenttal på 0,6. For de seks ekstra aminosyrer i IFN- IIn percentage of 0.6. For the six additional amino acids of IFN-I

I ω giver dette 3,6%, som allerede er indregnet i procent- IIn ω this gives 3.6%, which is already recognized in percent- I

I 10 tallet. IIn the 10th century. IN

I Ved sammenligning med β-interferon begynder man IWhen compared with β-interferon, you start

I ved den 3. aminosyre i det færdige β-interferon, og med II at the 3rd amino acid of the finished β-interferon, and with I

I den første aminosyre i det færdige α-interferon eller IIn the first amino acid of the final α-interferon or I

I den første aminosyre, for hvilken plasmiderne P9A2 og IIn the first amino acid for which plasmids P9A2 and I

I 15 E76E9 koder. Den længste sammenligningsstruktur for o- IIn 15 E76E9 codes. The longest comparative structure for o- I

I interferon versus β-interferon løber således over 162 IThus, in interferon versus β-interferon, it exceeds 162 I

I aminosyrer, og der er to ekstra aminosyrer både for α- IIn amino acids, and there are two additional amino acids both for α-I

interferon og for β-interferon. Disse tælles som fejl Iinterferon and for β-interferon. These are counted as error I

I og vises separat i fig. 7, men er indregnet i procent- II and are shown separately in FIG. 7, but is recognized in percent- I

I 20 tallene. Sammenligning af β-interferon med aminosyrese- IIn the 20 numbers. Comparison of β-interferon with amino acid I

I kvenserne, der tilhører klonerne P9A2 eller E76E9, gen- IIn the sequences belonging to clones P9A2 or E76E9, I-I

I nemføres på samme måde. Herved optræder der dog ialt 10 IYou are carried in the same way. However, a total of 10 I occurs

I ekstra aminosyrer. IIn extra amino acids. IN

I 25 b) Sammenligning af nucleotid-sekvenser IB) Comparison of Nucleotide Sequences I

I Opstilling af sekvenser til sammenligning foregår II Sequence sequences for comparison

analogt med Eksempel 6a). Det første nucleotid i det Ianalogous to Example 6a). The first nucleotide of the I

I færdige α-interferon DNA er det første nucleotid, der IIn finished α-interferon DNA, the first nucleotide that I

I hører til tripletten, der koder for cystein i det færdi- IYou belong to the triplet that encodes cysteine in it

I 30 ge α-interferon. Det første nucleotid i DNA fra plas- IIn 30 g of α-interferon. The first nucleotide in plasm I DNA

I miderne P9A2 eller E76E9 er også det første nucleotid i IIn the mites P9A2 or E76E9 is also the first nucleotide in I

I kodonen for cystein-1. Det første nucleotid i DNA fra IIn the codon of cysteine-1. The first nucleotide in DNA from I

I β-interferon er det første nucleotid i den tredie tri- IIn β-interferon, the first nucleotide of the third is tri- I

I plet. Sammenligningen løber over ialt 498 nucleotider, IIn the spot. The comparison runs over a total of 498 nucleotides, I

35 når de enkelte DNA fra α-interferonerne sammenlignes med I35 when comparing the individual DNAs of the α interferons with I

47 DK 175194 B1 DNA fra β-interferon, og over 516 nucleotider, når DNA-sekvenserne fra de enkelte a-interferoner eller &-inter-feron bliver sammenlignet med sekvenserne fra plasmider-ne P9A2 og E76E9. Det absolutte fejltal angives i den 5 venstre del af tabellen på fig. 7, og derefter følger i parentes det tilsvarende procenttal.B1 DNA from β-interferon, and over 516 nucleotides, when the DNA sequences of the individual α-interferons or β-interferon are compared with the sequences of plasmids P9A2 and E76E9. The absolute error number is indicated in the left-hand part of the table in FIG. 7, followed by the corresponding percentage.

Eksempel 7 10 Virusinducerbar ekspression for ω-1-mRNA og NC37-celler a) Syntese af en specifik hybridiseringssonde for interferon___ 10 ymol af oligonucleotidet d(TGCAGGGCTGCTAA) 15 blandes med 12 ymol γ-^Ρ-ΑΤΡ (specifik aktivitet: >Example 7 10 Virus Inducible Expression for ω-1 mRNA and NC37 Cells

5000 Ci/mMol) og 10 enheder polynucleotid-kinase i et totalrumfang på 10 yl (70 mM Tris/Cl pH = 7,6, 10 mM5000 Ci / mMol) and 10 units of polynucleotide kinase for a total volume of 10 µl (70 mM Tris / Cl pH = 7.6, 10 mM

MgCl2/ 50 mM DTT), og man lader blandingen stå en time ved 37°C. Derefter standses omsætningen ved en 10 mi-20 nutter lang ophedning til 70°C. Det tilvejebragte radioaktivt markerede oligonucleotid hybridiseres med 5 yMol M13pRHW 12 ssDNA (se fig. 9) i et totalvolumen på 35 yl (100 mM NaCl) i en time ved 50°C.MgCl2 / 50 mM DTT) and leave to stand for one hour at 37 ° C. Thereafter, the reaction is stopped at a temperature of 10 ml for 20 minutes to 70 ° C. The radiolabeled oligonucleotide obtained is hybridized with 5 µMol M13pRHW 12 ssDNA (see Fig. 9) for a total volume of 35 µl (100 mM NaCl) for one hour at 50 ° C.

Der køles til stuetemperatur og tilsættes hak-25 translationspuffer, de 4-desoxynucleosid-triphosphater og 10 enheder Klenow-polymerase til et totalvolumen på 50 yl (50 mM Tris/Cl pH = 7,2, 10 mM MgCl2, 50 yg/ml BSA, 1 mM pr. nucleotid). Polymeriseringen gennemføres en time ved stuetemperatur og standses derefter ved op-30 hedning i fem minutter til 70°C.Cool to room temperature and add chopped translation buffer, the 4-deoxynucleoside triphosphates and 10 units of Klenow polymerase to a total volume of 50 µl (50 mM Tris / Cl pH = 7.2, 10 mM MgCl 2, 50 µg / ml BSA , 1 mM per nucleotide). The polymerization is carried out for one hour at room temperature and then quenched by heating for five minutes to 70 ° C.

Ved omsætningen opnår man et delvist dobbeltstrenget cirkulært DNA. Dette opskæres derefter i et totalvolumen på 500 yl med 25 enheder Avail, hvorved den af producenten foreskrevne puffer anvendes. Herved op-35 skæres den dobbeltstrengede region i ensartede størrel-Upon the reaction, a partially double-stranded circular DNA is obtained. This is then cut into a total volume of 500 µl with 25 units of Avail, using the buffer prescribed by the manufacturer. This cuts the double-stranded region into uniform sizes.

I DK 175194 B1 II DK 175194 B1 I

I 48 II 48 I

H ser. Derefter standses omsætningen ved en 5-minutters IH see. Then, the reaction is stopped at a 5-minute I

I ophedning til 70°C. IIn heating to 70 ° C. IN

b) Fremstilling af RNA fra virus-inficerede celler Ib) Preparation of RNA from Virus-Infected Cells I

I 5 100 x lO^celler (0,5 x 10^/ml) behandles 48-72 IIn 5 x 100 cells (0.5 x 10 6 / ml), 48-72 I are treated

I timer med 100 μΜοΙ dexamethason - kontrolprøven indehol- IFor hours with 100 μΜοΙ dexamethasone - the control sample contained I

I der ingen dexamethason. Til brug for interferon-induk- IThere is no dexamethasone. For the use of interferon induc- I

I tion suspenderes ekspressionscellerne i et serumfrit me- IIn tion, the expression cells are suspended in a serum-free medium

dium i en koncentration på 5 x 106/ml og inficeres med Idium at a concentration of 5 x 106 / ml and infected with I

10 2^® enheder/ml Sendai-virus. Aliquote dele af væske I10 2 ^ ® units / ml Sendai virus. Aliquote parts of liquid I

I over cellekulturbundfaldet prøves i Plaque-reduktions- IIn the above cell culture precipitate is tested in Plaque reduction I

prøven (Eksempel 5b) for IFN-aktivitet. Cellerne ind- Ithe sample (Example 5b) for IFN activity. The cells in- I

høstes seks timer efter virusinficeringen ved hjælp af Iharvested six hours after virus infection using I

centrifugering (1000 g, 10 minutter), vaskes med 50 ml Icentrifugation (1000 g, 10 minutes), washed with 50 ml of I

15 NP40-puffer (Eksempel 4a), udsuspenderes i 9,5 ml iskold I15 NP40 buffer (Example 4a) is suspended in 9.5 ml of ice cold I

NP40-puffer og lyseres ved at holdes på is i fem minut- INP40 buffer and lysed by holding on ice for five minutes

ter med 0,5 ml 10% NP40. Man fjerner cellekærnerne ved Iter with 0.5 ml of 10% NP40. Cell nuclei are removed at I

centrifugering (1000 x g, 10 minutter), og centrifugatet Icentrifugation (1000 x g, 10 minutes), and centrifugate I

indstilles med 50 mM Tris/Cl, 0,5% sarkosin og 5 mM EDTA Iis adjusted with 50 mM Tris / Cl, 0.5% sarcosine and 5 mM EDTA I

H 20 på pH = 8 og opbevares ved -20°C. RNA isoleres fra een- IH 20 at pH = 8 and stored at -20 ° C. RNA is isolated from one-I

I trifugatet ved ekstraktion en gang med phenol, en gang IIn the trifugate by extraction once with phenol, once I

I med phenol/chloroform/isoamylalkohol og en gang med II with phenol / chloroform / isoamyl alcohol and once with I

I chloroform/isoamylalkohol. Vandfasen overføres til 4 IIn chloroform / isoamyl alcohol. The aqueous phase is transferred to 4 L

I ml 5,7 molær CsCl-chlorid og centrifugeres i en SW-ro- IIn ml 5.7 molar CsCl chloride and centrifuged in a SW-ro-I

I 25 rotor (35 rpm, 20 timer) for at befri ekstrakten for DNA IIn 25 rotors (35 rpm, 20 hours) to free the extract of DNA I

I og restproteiner. RNA-bundfaldet udsuspenderes i 2 ml IIn and residual proteins. The RNA precipitate is suspended in 2 ml of I

I TE pH = 8,0 og udfældes med ethanol. Det udfældede RNA IIn TE pH = 8.0 and precipitated with ethanol. The precipitated RNA I

opløses derefter i vand til en koncentration på 5 mg/ml. Iis then dissolved in water to a concentration of 5 mg / ml. IN

I 30 c) Påvisning af interferon-ω mRNA IC) Detection of interferon-ω mRNA I

0,2 pi af den ifølge Eksempel 7b fremstillede hy- I0.2 µl of the hy-I prepared according to Example 7b

I bridiseringssonde udfældes sammen med 20-50 yg af den IThe bridging probe coincides with 20-50 µg of the I

I ifølge Eksempel 7c fremstillede RNA ved tilsætning af IIn Example 7c, RNA prepared by the addition of I

I ethanol. I et kontroleksperiment bruges i stedet for IIn ethanol. In a control experiment is used instead of I

I 35 cellulær RNA transfer RNA (tRNA) eller RNA, som stammer IIn 35 cellular RNA transfer RNA (tRNA) or RNA originating I

49 DK 175194 B1 fra E. coli, transformeret med plasmidet pRHW 12 (Eksempel 5).49 E. 175194 B1 from E. coli, transformed with the plasmid pRHW 12 (Example 5).

Det tilvejebragte bundfald vaskes saltfrit med 70% ethanol, tørres og opløses i 25 μΐ 80% formamid (100 5 mM PIPES pH = 6,8, 400 mM NaCl, 10 raM EDTA). DerefterThe obtained precipitate is washed salt-free with 70% ethanol, dried and dissolved in 25 μΐ 80% formamide (100 5 mM PIPES pH = 6.8, 400 mM NaCl, 10 µM EDTA). then

opheder man sonderne i fem minutter til 100°C for at denaturere hybridiseringssonden, indstiller umiddelbart derefter temperaturen til 52°C og inkuberer ved denne temperatur i 24 timer. Efter hybridiseringen stiller 10 man på is og tilsætter 475 yl Sl-reaktionsblanding (4 mMIf the probes are heated for five minutes to 100 ° C to denature the hybridization probe, immediately set the temperature to 52 ° C and incubate at this temperature for 24 hours. After hybridization, 10 is placed on ice and 475 µl of S1 reaction mixture (4 mM) is added

Zn(Ac)2» 30 mM NaAc, 250 mM NaCl, 5% glycerin, 20 yg ss kalve-thymus-DNA, 100 enheder Sl-nuclease). Der fordøjes en time ved 37°C, hvorefter reaktionen stoppes ved ethanolfældning.Zn (Ac) 2 »30 mM NaAc, 250 mM NaCl, 5% glycerine, 20 µg ss calf thymus DNA, 100 units of S1 nuclease). It is digested for one hour at 37 ° C, after which the reaction is stopped by ethanol precipitation.

15 Bundfaldet opløses i 6 vi formamid-puffer og ud separeres på en 6% acrylamidgel, som indeholder 8 M urinstof, i det væsentlige som ved sonder til DNA-se-kvenseringsreaktioner (F. Sanger et al., Proc. Nat.The precipitate is dissolved in 6 µm formamide buffer and separated on a 6% acrylamide gel containing 8 M urea, essentially as by probes for DNA sequencing reactions (F. Sanger et al., Proc. Nat.

Acad. Sci. 74, 5463-5467 (1979)).Acad. Sci. 74, 5463-5467 (1979)).

20 Ved autoradiografi benyttes den tørrede gel og en20 For autoradiography, the dried gel and one are used

DuPont Cronex X-film under anvendelse af en Kodak Lanex Regular Intensivator, og der arbejdes ved -70°C.DuPont Cronex X film using a Kodak Lanex Regular Intensifier and operating at -70 ° C.

Forklaring_til_fig._10 25 Rækkerne A til C er til kontrol.Explanation_to_fig._10 25 Rows A to C are for control.

Række A: 20 yg tRNARow A: 20 µg tRNA

Række B: 10 yg RNA fra pER 33 (E. coli-ekspressions- stamme til interferon-o2-Arg) Række C: 1 ng RNA fra pRHW 12 (E. coli-ekspressions- 30 stamme til interferon-ω-Ι) Række D: 50 yg RNA fra ubehandlede Namalwa-celler Række E: 50 yg RNA fra virus-inficerede Namalwa-celler Række F: 50 yg RNA fra Namalwa-celler, forbehandlet med dexamethason og inficeret med virus 35 Række G: 20 yg RNA fra ubehandlede NC 37-cellerRow B: 10 µg RNA from pER 33 (E. coli expression strain for interferon-o2-Arg) Row C: 1 ng RNA from pRHW 12 (E. coli expression strain for interferon-ω-Ι) Row D: 50 ug RNA from untreated Namalwa cells Row E: 50 ug RNA from virus-infected Namalwa cells Row F: 50 ug RNA from Namalwa cells, pretreated with dexamethasone and infected with virus 35 Row G: 20 ug RNA from untreated NC 37 cells

I DK 175194 B1 II DK 175194 B1 I

I 50 II 50 I

I Række H: 20 yg RNA fra virus-inficerede NC 37-celler IIn Row H: 20 µg RNA from virus-infected NC 37 cells I

I Række I: 20 yg RNA fra NC 37-celler, forbehandlet med IIn Row I: 20 µg RNA from NC 37 cells pretreated with I

dexamethason og inficeret med virus Idexamethasone and infected with virus I

I Række M: Skalamarkering (pBR 322 opskåret med Hinfl). IIn Row M: Scale marking (pBR 322 cut with Hinfl). IN

I 5 Rækkerne B og C viser, at det ventede signal kun II 5 Rows B and C show that the expected signal is only I

I kan påvises, når der findes et ωΐ-specifikt RNA blandt IYou can detect when a ωΐ-specific RNA exists among I

I RNA-molekylerne. Yderligere vises, at selv et stort IIn the RNA molecules. Further, it appears that even a large I

I overskud af falsk RNA ikke giver baggrundssignal (se IIn excess of false RNA does not give background signal (see I

I række B). Endvidere giver heller ikke tRNA, anvendt som IIn row B). Furthermore, tRNA, used as I, also does not yield

I 10 hybridiseringspartner, noget signal (se række A). IIn 10 hybridization partners, some signal (see row A). IN

I Rækkerne G til I viser induktion af ωΐ-specifik IIn rows G to I, induction of ωΐ-specific I shows

I RNA i virus-inficeret NC 37-celler. Forbehandlingen med IIn RNA in virus-infected NC 37 cells. The pretreatment with I

I dexamethason forstærker denne effekt. IIn dexamethasone this effect intensifies. IN

I Rækkerne D til F viser, at man i det store og he- IIn Rows D to F, one shows that in large and large

15 le får samme resultat med Namalwa-celler. Induktionen I15 le gets the same result with Namalwa cells. Induction I

med ωΐ-specifik RNA er dog ikke så stærk som ved NC 37- Ihowever, with ωΐ-specific RNA is not as strong as with NC 37-I

I cellerne. Resultatet er parallelt med resultatet af må- IIn the cells. The result is parallel to the result of measure I

I linger for interferon på centrifugat over det pågældende IYou linger for interferon on the centrifugate over the I

I cellebundfald. IIn cell sediment. IN

I 20 Forholdene ved interferon-cal-genekspression er II The ratios of interferon-cal gene expression are I

I altså, som man kunne vente ved et interferon typel-gen. ISo, as one might expect from an interferon typel gene. IN

I Eksempel 8 IIn Example 8 I

I 25 Isolering af genet, der koder for IFN-ωΙ henholdsvis be- II Isolation of the gene encoding IFN-ωΙ and Be- I, respectively

I slægtede gener:_ IIn related genes: _ I

I a) Cosmid-undersØqelse II a) Cosmid study I

I En human cosmidbank (human DNA, mandligt) klonet II A human cosmid bank (human DNA, male) cloned I

I 30 i cosmidvektor pcos2 EMBL (A. Ponstka, H.-R. Rockwitz, II in cosmid vector pcos2 EMBL (A. Ponstka, H.-R. Rockwitz, I.

I A.-M. Frischauf, B. Hohn, H. Lehrach Proc. Natl. Acad. IIn A.-M. Frischauf, B. Hohn, H. Lehrach Proc. Natl. Acad. IN

I Scl. 81, 4129-4133 (1984)) med en komplekscitet på 2 x IIn Scl. 81, 4129-4133 (1984)) having a complexity of 2 x 1

I 106) gennemsøges for IFN-ω- henholdsvis beslægtede ge- II 106) is searched for IFN-ω- and related ge- I, respectively

I ner. E. coli DH1 (rK“* rec.A; gyrA96, sup- E) IYou down. E. coli DH1 (rK “* rec.A; gyrA96, sup- E) I

I 35 benyttes som værtsorganisme. Man fremstillede derefter II 35 is used as the host organism. I was then prepared

51 DK 175194 B151 DK 175194 B1

Mg++-celler (= "plating bacteria"). E. coli DH1 vokser natten over i K-urt (10 g/l trypton, 5 g/l gærekstrakt, 5 g/l NaCl), supplementeret med 0,2% maltose· Bakterierne afcentrifugeres og overføres til en 10 mM MgS04~op-5 løsning, indtil ODggo = 2· 5 ml af denne cellesuspension inkuberes 20 minutter ved 37°C med 12,5 x 10® "colony forming units" af sammenpakkede cosmide 20.Mg ++ cells (= "plating bacteria"). E. coli DH1 grows overnight in K-herb (10 g / l tryptone, 5 g / l yeast extract, 5 g / l NaCl), supplemented with 0.2% maltose · The bacteria are centrifuged and transferred to a 10 mM MgSO -5 solution until ODggo = 2 · 5 ml of this cell suspension is incubated for 20 minutes at 37 ° C with 12.5 x 10 10 colony forming units of packed cosmide 20.

Derpå tilsættes 10 rumfang LB, og opslæmningen holdes en time ved 37°C for at opnå ekspression af kanamycinresi-10 stensen, leveret af cosmidet. Derefter fracentrifugeres bakterierne, udsuspenderes i 5 ml LB og udstryges i 200 μΐ portioner på nitrocellulosefilter (BA85, Schleicher og Schvill, 132 mm gennemsnit), der ligger på LB-agar (1,5% i L-urt) plus 30 ug/ml kanamycin. Der udvokser 15 10.000 - 20.000 kolonier pr. filter. Kolonierne replika- platteres på yderligere nitrocellulosefiltre, der opbevares ved 4°C.10 volumes of LB are then added and the slurry is kept for one hour at 37 ° C to obtain expression of the kanamycin resistance supplied by the cosmid. Then the bacteria are centrifuged, suspended in 5 ml LB and ironed out in 200 μΐ aliquots on nitrocellulose filters (BA85, Schleicher and Schvill, 132 mm average) on LB agar (1.5% in L herb) plus 30 µg / ml kanamycin. 15 10,000 - 20,000 colonies are grown per filter. The colonies are replicated on additional nitrocellulose filters stored at 4 ° C.

En gruppe af kolonifiltrene behandles som i Eksempel lc), dvs. man denaturerer bakterierne, hvorved 20 man kan fiksere enkeltstrengs-DNA til nitrocellulose. Filteret forvaskes fire timer ved 65°C i en 50 mM Tris/-HC1, pH = 8,0, 1 M NaCl, 1 mM EDTA, 0,1% SDS-opløsning. Derefter inkuberes filteret to timer ved 65°C i en 5 x Denhardt's (se Eksempel lc), 6 x SSC, 0,1% SDS-opløs-25 ning og hybridiseres derefter 24 timer ved 65°C med ca.A group of the colony filters is treated as in Example 1c), i.e. the bacteria are denatured, whereby single strand DNA can be fixed to nitrocellulose. The filter is pre-washed for four hours at 65 ° C in a 50 mM Tris / HCl, pH = 8.0, 1 M NaCl, 1 mM EDTA, 0.1% SDS solution. Then the filter is incubated for two hours at 65 ° C in a 5 x Denhardt's (see Example 1c), 6 x SSC, 0.1% SDS solution and then hybridized for 24 hours at 65 ° C with approx.

50 x 10® cpm hak-translateret, denatureret IFN-ωΙ DNA (Hindlll-BamHI indføjningsstykke i klon pRHWl2, se fig.50 x 10 6 cpm notch-translated, denatured IFN-ωΙ DNA (HindIII-BamHI insert in clone pRHW12), see FIG.

6) i samme opløsning. Efter hybridiseringen vaskes filteret 3 x 10 minutter ved stuetemperatur i en 2 x SSC,6) in the same solution. After hybridization, the filter is washed 3 x 10 minutes at room temperature in a 2 x SSC,

30 0,01% SDS-opløsning og derefter 3 x 45 minutter ved 65°C30 0.01% SDS solution and then 3 x 45 minutes at 65 ° C

i en 0,2 x SSC, 0,01% SDS-opløsning. Filteret tørres og eksponeres på Kodak X-Omat S film under anvendelse af et forstærkerfolie ved -70°C. Positivt reagerende kolonier lokaliseres på replika-filteret, kradses af og resuspen-35 deres i L-urt + kanamycin (30 yg/ml). Fra denne suspen-in a 0.2 x SSC, 0.01% SDS solution. The filter is dried and exposed to Kodak X-Omat S film using an amplifier film at -70 ° C. Positively responsive colonies are located on the replica filter, scraped off and resuspended in L-herb + kanamycin (30 µg / ml). From this suspension-

I DK 175194 B1 II DK 175194 B1 I

I 52 II 52 I

I sion udplattes nogle yl på LB-agar + 30 yg/ml kanamycin. IIn sion, some yl are plated on LB agar + 30 µg / ml kanamycin. IN

De deraf resulterende kolonier replika-platteres på et IThe resulting colonies are replica-plated on an I

I nitrocellulose-filter. Disse filtre hybridiseres som IIn nitrocellulose filters. These filters are hybridized as I

I beskrevet ovenfor med -mærket IFN—ωΙ-DNA. Fra hver IAs described above, labeled with IFN-ωΙ DNA. From each I

I 5 hybridiserende koloni isoleres cosmidet ved en metode IIn 5 hybridizing colony, the cosmid is isolated by a method I

I beskrevet af Birnboim & Doly (Nucl. Acids Res. 7, 1513 IIn described by Birnboim & Doly (Nucl. Acids Res. 7, 1513 I

(1979)). Med denne cosmid DNA-præparation transformeres I(1979)). With this cosmid DNA preparation, I is transformed

E. coli DHl, og trans formanterne selektioneres på LB- IE. coli DH1, and the transformants are selected on LB-I

I agar + 30 yg/ml kanamycin. Transformanterne prøves igen IIn agar + 30 µg / ml kanamycin. The transformants are tested again

I 10 med 32p„ra(jioafc.t-iv markeret IFN-wl-DNA for positivt rea- II-labeled with IFN-w1 DNA for positive reaction.

I gerende kloner. Der udvælges hvert sted en klon fra det IIn germinating clones. Each site selects a clone from it

oprindelige isolerede, hvis cosmid fremstilles i større Ioriginal isolated if cosmid is produced in larger I

H målestok (Clewell, D.B. og Helinski, D.R., Biochemistry IH scale (Clewell, D.B. and Helinski, D.R., Biochemistry I

9, 4428 (1970))- Tre af de isolerede cosmider bærer I9, 4428 (1970)) - Three of the isolated cosmids carry I

15 navnene cos9, coslO og cosB. I15 names cos9, coslO and cosB. IN

I b) Afledet kloning af hybridiserende fragmenter i PPC8 II b) Derived cloning of hybridizing fragments in PPC8 I

1 yg af hver af cosmiderne cos9, coslO og cosB I1 µg of each of the cosmids cos9, cos10 and cosB I

opskæres med HindiII under de af producenten (New Icut with HindiII under those of the manufacturer (New I

20 England Biolabs) anbefalede betingelser. Fragmenterne I20 England Biolabs) recommended conditions. The fragments I

skilles elektroforetisk på 1% agarosegel i TBE-puffer og Iis electrophoretically separated on 1% agarose gel in TBE buffer and I

overføres på nitrocellulosefilter efter Southern's meto- de (Eksempel 4c). Begge filtre hybridiseres som beskre- I vet i Eksempel 4d) med haktranslateret ωΙ-DNA, vaskes og 25 eksponeres. Der anvendes omtrent 20 yg af hvert cosmid til opskæring med Hindlll, og de dannede fragmenter I skilles gel-elektroforetisk. Fragmenterne, der i præ- I forsøget hybridiserede med ωΙ-DNA, elektroelueres og I renses over elutip-søjler (Schleicher + Schiill). Disse 30 fragmenter sammenbindes med Hindlll-liniariseret, de- I phosphoryleret pUC8 (Messing, J., Vieira, J., Gene 19, I 269-276 (1982)). E. coli JM101 (supE, thi, (lac-proAB), I [f\ traD36, pro AB, lac q Z M15] (f.eks. fa. P. L. Bio- I chemicals) transformeres med denne reaktionsblanding.is transferred onto nitrocellulose filter by Southern's method (Example 4c). Both filters are hybridized as described in Example 4d) with notch-translated ωΙ DNA, washed and exposed. Approximately 20 µg of each cosmid is used for cutting with HindIII and the resulting fragments I are gel electrophoretically separated. The fragments that hybridized with ωΙ DNA in the pre-I experiment are electroeluted and purified over elutip columns (Schleicher + Schiill). These 30 fragments are linked to HindIII linearized, de-phosphorylated pUC8 (Messing, J., Vieira, J., Gene 19, I 269-276 (1982)). E. coli JM101 (supE, thi, (lac-proAB), I [phD tra36, pro AB, lac q Z M15] (e.g., fa. L. L. Bio-I chemicals) is transformed with this reaction mixture.

I 35 Bakterierne udstryges på LB-agar, der indeholder 50 yg/ DK 175194 B1 • 53 ml ampicillin, 250 yg/ml 5-brom-4-chlor-3-indolyl-&-D-galaktopyranosid (BCIG, Sigma) og 250 yg/ml isopropyl-$-D-thiogalakto-pyranosid (IPTG, Sigma). En blåfarvning af de dannede kolonier viser, at indføjningen af et 5 stykke pUC8 er mislykkedes. Fra nogle hvide kloner isolerer man plasmid DNA i lille målestok, opskærer med Hindlll og skiller på 1% agarosegel. DNA-fragmenterne overføres på nitrocellulosefilter og hybridiseres med 32ρ_ω_£»«ν som ovenfor. Med basis i cos9 og coslO udvæl-10 ges fra hvert sted en afledet klon, som betegnes pRHW22 henholdsvis pRH57. Udgående fra cosB kloner man to fragmenter, der hybridiserer med med ωΐ-sonden og betegner dem pRH51 henholdsvis pRH52.I 35 The bacteria are smeared on LB agar containing 50 µg / DK 175194 B1 • 53 ml ampicillin, 250 µg / ml 5-bromo-4-chloro-3-indolyl - & - D-galactopyranoside (BCIG, Sigma) and 250 µg / ml isopropyl - $ - D-thiogalacto-pyranoside (IPTG, Sigma). A blue staining of the colonies formed shows that the insertion of a 5 piece pUC8 has failed. From some white clones, small-scale plasmid DNA is isolated, cut with HindIII and separated on 1% agarose gel. The DNA fragments are transferred onto nitrocellulose filters and hybridized with 32ρ_ω_ £ »« ν as above. Based on cos9 and cos10, a derived clone is selected from each site, designated pRHW22 and pRH57, respectively. Starting from cosB, two fragments are hybridized with the ωΐ probe and designated pRH51 and pRH52 respectively.

15 c) SekvensanalyseC) Sequence analysis

Det i pUC8 indføjede DNA udskilles fra vektordelen ved hjælp af opskæring med Hindlll og følgende gel-elektroforese. Dette DNA, ca. 10 yg, sammenbindes under anvendelse af T4 DNA-ligase i 50 yl reaktionsopløsning, 20 rumfanget forøges til 250 yl med hak-translationspuffer (Eksempel 4d) og endelig brydes DNA under isafkøling ved hjælp af ultralyd (MSE 100 Watt Ultrasonic Disintegrator, største ydelse ved 20 kHz, fem gange 30 sekunder). Herefter repareres enderne af brudstykkerne ved hjælp af 25 tilsætning af 1/100 rumfang af henholdsvis 0,5 mM dATP, dGTP , dCTP og dTTP sammen med 10 enheder Klenow-frag-ment af DNA-polymerase I i to timer ved 14°C. De tilvejebragte DNA-fragmenter, der har lige ender, adskilles efter størrelse på en 1% agarosegel. Fragmenter med 30 størrelser mellem 500 og 1000 bp isoleres og klones ved hjælp af phagvektoren M13 mp8, der er opskåret med Smal og dephosphoryleret. Enkeltstreng DNA rekombinante pha-ger isoleres og opdeles efter Sanger's metode (Sanger F. et. al., Proc. Natl. Acad. Sci 74, 5463-5467 (1976)).The DNA inserted into pUC8 is excised from the vector portion by cutting with HindIII and subsequent gel electrophoresis. This DNA, ca. 10 µg, are bound together using T4 DNA ligase in 50 µl reaction solution, the volume is increased to 250 µl with notch translation buffer (Example 4d) and finally the DNA is broken down by ice cooling using ultrasound (MSE 100 Watt Ultrasonic Disintegrator, greatest performance at 20 kHz, five times 30 seconds). Thereafter, the ends of the fragments are repaired by the addition of 1/100 volumes of 0.5 mM dATP, dGTP, dCTP and dTTP, respectively, together with 10 units of Klenow fragment of DNA polymerase I for two hours at 14 ° C. The obtained DNA fragments having straight ends are separated by size of a 1% agarose gel. Fragments of 30 sizes between 500 and 1000 bp are isolated and cloned using the phage vector M13 mp8, which is cut with SmaI and dephosphorylated. Single strand DNA recombinant phages are isolated and subdivided according to Sanger's method (Sanger F. et al., Proc. Natl. Acad. Sci 74, 5463-5467 (1976)).

35 Enkeltsekvenserne kombineres til en totalsekvens ved35 The single sequences are combined into a total sequence by

I DK 175194 B1 II DK 175194 B1 I

I 54 II 54 I

I II I

I hjælp af EDB (Staden, R., Nucl. Acids Res. 10, 4731 - IWith the help of EDB (Staden, R., Nucl. Acids Res. 10, 4731 - I

I 4751 (1982)). IIn 4751 (1982)). IN

I d) Sekvens for den af ledede klon pRH57 (IFN-ωΙ) II d) Sequence of the clone pRH57 (IFN-ωΙ) I

I 5 Sekvensen vises i fig. 11. Dette 1933 bp lange IIn the sequence shown in FIG. 11. This 1933 bp long I

I fragment indeholder genet for interferon-ωΐ. Regionen, IIn fragment, the gene contains interferon-ωΐ. The region, I

der koder for protein, omfatter nucleotiderne 576 til Iencoding protein comprises nucleotides 576 to 1

I 1163. Sekvensen er fuldstændig identisk med sekvensen II 1163. The sequence is completely identical to the sequence I

I fra cDNA-klonen P9A2. Nucleotidafsnittet 576 til 674 II from the cDNA clone P9A2. Nucleotide sections 576 to 674 I

I 10 koder for et 23 aminosyrer langt signalpeptid. Den så- II 10 codes for a 23 amino acid signal peptide. The so- I

I kaldte TATA-box ligger i en for interferon type I-gen IThe called TATA box is located in an interferon type I gene I

I karakteristisk afstand fra startkodonen ATG (positioner IAt a distinct distance from the start codon ATG (positions I

I 476-482). I genet findes nogle signalsekvenser for po- II 476-482). In the gene are some signal sequences for pol I

lyadenylering ved transkriptionen (ATTAAA i posi- Ilyadenylation at the transcription (ATTAAA in posi- I

I 15 tionerne 1497 - 1502 henholdsvis 1764 - 1794; AATAAA i IIn the 15 tions 1497 - 1502 and 1764 - 1794 respectively; AATAAA i

I positionerne 1729 - 1734 henholdsvis 1798 - 1803), hvor- IIn positions 1729 - 1734 and 1798 - 1803, respectively), where- I

I af den første anvendes i klon P9A2. II of the first is used in clone P9A2. IN

I e) Sekvens for den afledede klon pRHW22 (IFN-pseudo-(n2) II e) Sequence of the derived clone pRHW22 (IFN-pseudo- (n2) I)

I 20 I fig. 12 gengives den 2132 bp lange sekvens, der IIn FIG. 12 reproduces the 2132 bp sequence which I

hører til Hindi 11-fragmentet fra cosmidet cos 9 og som Ibelongs to the Hindi 11 fragment from the cosmid cos 9 and as I

I hybridiserer med ωΙ-DNA-sonden. Der ses en åben læse- IYou hybridize with the ωΙ DNA probe. An open reading is seen

I ramme fra nucleotid 905 til nucleotid 1366. Den tilsva- IIn the frame from nucleotide 905 to nucleotide 1366. It corresponds to I

I rende aminosyresekvens er gengivet. De første 23 amino- IThe running amino acid sequence is reproduced. The first 23 amino- I

I 25 syrer minder om, hvad der findes i signalpeptidet i ty- IIn 25 acids, what is found in the signal peptide of type I

I pisk type I interferon. De næste 131 aminosyrer viser IIn whip type I interferon. The next 131 amino acids show I

I indtil aminosyre 65 lighed med ω-1-interferon, og det er II up to amino acid 65 similar to ω-1 interferon, and that is I

I bemærkelsesværdigt, at tyrosin er første aminosyre i det INotably, tyrosine is the first amino acid in the I

fuldt udviklede'protein. Ifully developed protein. IN

I 30 Efter aminosyreposition 66 følger sekvensen for IFollowing amino acid position 66, the sequence of I follows

I et potentielt N-glykosyleringssted (Asn-Phe-Ser). Fra IIn a potential N-glycosylation site (Asn-Phe-Ser). From I

dette sted adskiller aminosyresekvensen sig fra sekven- Iat this site, the amino acid sequence differs from the sequence I

I sen sig fra sekvensen, der hører til et type 1-interfer- ISeen from the sequence belonging to a type 1 interference

I on. Det kan dog bevises, at man ved egnede indføjninger II on. However, it can be proved that by appropriate insertions I

I 35 og deraf resulterende forskydninger af proteinlæserammen IIn 35 and consequent displacements of the protein reading frame I

55 DK 175194 B155 DK 175194 B1

Kan opnå lighed med IFN-ωΙ (se Eksempel 9). Set ud fra type I interferon drejer det sig ved det isolerede gen om et pseudogen: IFN-pseudo-ui2.Can achieve similarity to IFN-ωΙ (see Example 9). Seen from type I interferon, the isolated gene is a pseudogenic: IFN-pseudo-ui2.

5 f) Sekvens for den afledede klon pRH51 (IFN-pseudo-M3)F) Sequence of the derived clone pRH51 (IFN-pseudo-M3)

Et omtrent 3.500 bp langt Hindlll-fragment, der stammer fra cosmid B og hybridiserer med ωΐ-sonden, sekvensopdeles delvist (fig. 13). Der findes en åben læseramme fra nucleotidpositionen 92 til 394. De første 10 23 aminosyrer udviser et signalpeptids kendetegn. Den påfølgende sekvens begynder med tryptophan og ligner IFN-ωΙ indtil aminosyre 42. Derefter bliver sekvensen forskellig fra IFN-ωΙ og ender efter aminosyre 78. Man kan ved indføjninger ændre sekvensen således, at den vi-15 ser en stor homologi til IFN-ωΙ (Eksempel 9). Genet betegnes IFN-pseudo-u>3.An approximately 3,500 bp HindIII fragment originating from cosmid B and hybridizing with the ωΐ probe is partially subdivided (Fig. 13). An open reading frame exists from nucleotide positions 92 to 394. The first 10 23 amino acids exhibit a signal peptide's characteristics. The subsequent sequence begins with tryptophan and is similar to IFN-ωΙ until amino acid 42. Then the sequence becomes different from IFN-ωΙ and ends after amino acid 78. On insertion, the sequence can be altered to show a large homology to IFN-ωΙ (Example 9). The gene is designated IFN-pseudo-u> 3.

g) Sekvens for indføjningsstykket i pRB52 (XFN-pseudo —d>4 )___ 20 Et 3.659 bp langt Hind-fragment isoleret fra cosmid B og hybridiserende med ωΙ-DNA vises i fig. 14.g) Sequence of the insert in pRB52 (XFN pseudo-d> 4) ___ 20 A 3,659 bp Hind fragment isolated from cosmid B and hybridizing with ωΙ DNA is shown in FIG. 14th

En åben læseramme, hvis translationsprodukt viser delvis homologi med IFN-ωΙ, findes mellem nucleotidpositionerne 2.951 og 3.250. Efter et 23 aminosyre langt signalpep-25 tid begynder den følgende aminosyresekvens med phenyl-alanin. Homologien med IFN-1 brydes.allerede efter den 16. aminosyre, genoptages ved den 22. aminosyre og ender med den 41. aminosyre. En eventuel translation var mulig til aminosyre 77. Analogt med Eksempel 8f) og 8g) 30 kan man også her tilvejebringe en god homologi med IFN-ωΐ ved hjælp af indføjningerne (Eksempel 9). Det her isolerede pseudogen betegnes som IFN-pseudo-o»4.An open reading frame whose translation product shows partial homology to IFN-ωΙ exists between nucleotide positions 2,951 and 3,250. After a 23 amino acid long signal peptide, the following amino acid sequence begins with phenylalanine. The homology to IFN-1 is broken even after the 16th amino acid, resumes at the 22nd amino acid and ends with the 41st amino acid. An optional translation was possible for amino acid 77. Analogously to Examples 8f) and 8g), a good homology to IFN-ωΐ can also be provided here by the insertions (Example 9). The pseudogen isolated here is referred to as IFN-pseudo-o »4.

3535

I DK 175194 B1 II DK 175194 B1 I

I 56 II 56 I

I Eksempel 9 IIn Example 9 I

I Udnyttelse af generne for 4 medlemmer af I FN-ot-fami lien IIn Utilizing the Genes of 4 Members of the United Nations Family I

I I fig. .15 vises generne for IFN-ωΙ til IFN- IIn FIG. .15 shows the IFN-ωΙ genes for IFN-I

I 5 pseudo-u>4 samlet sammen med aminosyreoversætteisen. For IIn 5 pseudo-u> 4 together with the amino acid transliteration. For I

I at opnå bedre overensstemmelse indfører man tomme plad- IIn order to achieve better conformity, empty plates are introduced

I ser i de enkelte gener. Disse betegnes ved punkter. Der IYou look in the individual genes. These are denoted by points. There you

I fjernes ingen baser. Basenummereringen indbefatter også INo bases are removed. The base numbering also includes I

I de tomme pladser. Aminosyreoversaettelsen af IFN-ωΙ bi- IIn the empty seats. The amino acid translation of IFN-ωΙ bi- I

I 10 beholdes {f.eks. på position 352 - 355: "C.AC" koder for IIn 10, {e.g. at positions 352 - 355: "C.AC" codes for I

I His). Ved pseudogenerne oversættes kun til en aminosy- IIn His). In the pseudogens, only one amino acid I is translated

re, hvor oversættelsen er entydig. Det kan af denne Ire where the translation is unambiguous. It can by this

I sammenligning straks ses, at de fire isolerede gener er IIn comparison, it is immediately seen that the four isolated genes are I

I beslægtet med hinanden. Således findes f.eks. det po- IYou related to each other. Thus, e.g. it po- I

I 15 tentielle N-glykosyleringssted (nucleotidpositionerne IAt the tenth N-glycosylation site (nucleotide positions I

I 301 til 309) i alle fire gener. IIn 301 to 309) in all four genes. IN

I Derudover findes, undtagen i IFN-pseudo-u>4 ved IIn addition, except in IFN-pseudo-u> 4, I exists

I nucleotidpositionerne 611 til 614, en triplet, der udgør IAt nucleotide positions 611 to 614, a triplet constituting I

I et stopkodon, der ved IFN-ωΙ sørger for, at et fuldt ud- IIn a stop codon that, at IFN-ωΙ, ensures that a full I

I 20 viklet protein med en længde på 172 aminosyrer bliver IIn 20 wrapped protein with a length of 172 amino acids you become

afsluttet. Ved denne opstilling eksisterer ved IFN- Ifinished. This arrangement exists at IFN-I

I pseudo-ta2 (nucleotidpositionerne 497 til 499), og ved IIn pseudo-ta2 (nucleotide positions 497 to 499), and at I

IFN-pseudo-o>4 (nucleotidpositionerne 512 til 514) tidli- IIFN-pseudo-α> 4 (nucleotide positions 512 to 514) early

I ge stopkodoner. IYou give stop codons. IN

I 25 Slægtsskabsgraden mellem generne henholdsvis ami- II 25 The degree of kinship between the genes and the ami I, respectively

I nosyreoversættelserne lader sig beregne af opstillingen IIn the acidic translations it is possible to calculate by the arrangement I

I i fig. 15. Fig. 16 giver DNA-homologien mellem medlem- IIn FIG. 15. FIG. 16 gives the DNA homology between member I

I merne af IFN-<i>-familien. Ved parvis sammenligning af IIn the mares of the IFN- <i> family. By pairwise comparison of I

I positioner tæller man ikke disse med, hvor der i den ene IIn positions you do not count these, where in the one I

I 30 eller begge partnere er en tom plads på positionen. IIn 30 or both partners, an empty space is in the position. IN

I Sammenligningen giver en homologi på omtrent 85% mellem IIn the comparison, a homology of about 85% between I

IFN-u>l-DNA og sekvenserne for pseudogenerne. IFN-pseudo- IIFN-u> 1 DNA and the sequences of the pseudogens. IFN pseudo-I

I o)2-DNA er omtrent 82% homolog med DNA fra IFN-pseudo-u3 II o) 2 DNA is approximately 82% homologous to IFN-pseudo-u3 I DNA

I henholdsvis IFN-pseudo-ω4. Fig. 17 viser resultatet af IIn IFN-pseudo-ω4, respectively. FIG. 17 shows the result of I

I 35 sammenligning af signalsekvenserne og fig. 18 resultatet IIn comparing the signal sequences and FIGS. 18 the result I

57 DK 175194 B1 af sammenligninger af de "fuldt udviklede" proteiner.57 DK 175194 B1 of comparisons of the "fully developed" proteins.

De sidste ligger mellem 72 og 88%. Denne homologi er dog væsentlig større end den, der findes mellem IFN-ωΙ og IFN-a'erne og IFN-β (Eksempel 6). Det faktum, at de 5 enkelte medlemmer af IFN-w-familien er fjernere fra hinanden end de i IFN-a-familien lader sig forklare ved, at tre af de fire isolerede IFN-u-gener er pseudogener og åbenbart ikke mere er underkastet det selektionstryk, som funktionelle gener er.The latter are between 72 and 88%. However, this homology is substantially larger than that found between IFN-ωΙ and IFN-αs and IFN-β (Example 6). The fact that the 5 individual members of the IFN-w family are more distant from each other than those in the IFN-a family can be explained by the fact that three of the four isolated IFN-u genes are pseudogenic and are obviously no longer subject to the selection pressure that functional genes are.

1010

Eksempel 10 GæringExample 10 Fermentation

Stambeholdning: 15 En enkeltkoloni af bakteriestammen HB10l/pRHW14 på LB-agar (med 25 mg/ml ampicillin) overføres ved podning til trypton-soja-urt (OXDID CM129) med 25 mg/ml ampicillin og rystet ved 37°C og 250 o/min til en optisk tæthed (546 nm) på ca. 5 er nået (logaritmisk vækstfa-20 se). Man tilsætter 10 vægt% steril glycerol, fylder kulturen i sterile ampuller, der hver indeholder 1,5 ml og nedfryser til -70°C.Inventory: A single colony of the bacterial strain HB10l / pRHW14 on LB agar (with 25 mg / ml ampicillin) is transferred by grafting to tryptone soybean (OXDID CM129) with 25 mg / ml ampicillin and shaken at 37 ° C and 250 ° C. / min to an optical density (546 nm) of approx. 5 is reached (logarithmic growth phase). 10 wt% sterile glycerol is added, the culture is filled into sterile vials each containing 1.5 ml and frozen to -70 ° C.

Prækultur 25 Kulturmediet indeholder 15 g/l Na2HP04 χ 12H2O, 0,5 g/l NaCl; 1,0 g/l NH4CI; 3,0 g/l KH2P047 0,25 g/lPre-culture 25 The culture medium contains 15 g / l Na2 HPO4 χ 12H2O, 0.5 g / l NaCl; 1.0 g / l NH 4 Cl; 3.0 g / l KH2 PO47 0.25 g / l

MgS04 x 7H2? 0,011 g/l CaCl2; 5 g/l caseinhydrolysat (Merck 2238); 6,6 g/l glukose-monohydrat; 0,1 g/l am picillin; 20 mg/l cystein og 1 mg/1 thiamin-hydrochlor-30 id. 4 portioner på 200 ml af dette medium overføres til 1000 ml Erlenmeyerkolber, der hver podes med 1 ml af en stamkultur af HBl01/pRHWl4 og rystes i 16-18 timer ved 37°c og 250 o/min.MgSO4 x 7H2? 0.011 g / l CaCl 2; 5 g / L casein hydrolyzate (Merck 2238); 6.6 g / l glucose monohydrate; 0.1 g / l in picillin; 20 mg / l cysteine and 1 mg / l thiamine hydrochloride. 4 portions of 200 ml of this medium are transferred to 1000 ml Erlenmeyer flasks, each seeded with 1 ml of a stock culture of HBl01 / pRHW14 and shaken for 16-18 hours at 37 ° C and 250 rpm.

35 Hovekdultur:Head culture:

I DK 175194 B1 II DK 175194 B1 I

I 58 II 58 I

I Gæringsmediet indeholder 10 g/1 (NH4)2HP04, 4,6 IIn the fermentation medium, 10 g / l (NH4) contains 2HPO4, 4.6 l

I g/1 K2HP04 x 3H20? 0,5 g/l NaCl; 0,25 g/l MgS04 x IIn g / 1 K2HP04 x 3H20? 0.5 g / l NaCl; 0.25 g / l MgSO 4 x I

I 7H20; 0,011 g/1 CaCl2; 11 g/l glukosemonohydrat; 21 II 7H 2 O; 0.011 g / L CaCl 2; 11 g / l glucose monohydrate; 21 I

I g/1 caseinhydrolysat (Merck 2238); 20 mg/l cystein; 1 IIn g / l casein hydrolyzate (Merck 2238); 20 mg / l cysteine; 1 I

5 mg/l thiamin-hydrochlorid og 20 mg/l 3-B-indolacrylsyre. I5 mg / l thiamine hydrochloride and 20 mg / l 3-B-indolacrylic acid. IN

I 8 liter sterilt medium i en gæringsbeholder med 14 liter IIn 8 liters of sterile medium in a fermentation container of 14 liters I

totalrumfang (højde: radius = 3:1) inokkuleres med 800 Itotal volume (height: radius = 3: 1) is inoculated with 800 l

ml af prækulturen. Iml of pre-culture. IN

I Gæringen forløber ved 28°C, 100 o/min. (Effigas- IThe fermentation runs at 28 ° C, 100 rpm. (Effigas- I

I 10 Turbine), en lufttilførsel på lvvm (volumen/volumen/mi- II 10 Turbine), an air supply of lvvm (volume / volume / mi-I

I nut) og en begynde Ises-pH på 6,9. I løbet af gæringen IIn Nut) and an initial Ises pH of 6.9. During fermentation I

I aftager pH og holdes derefter konstant på 6,0 med 3 N IYou decrease the pH and then keep constant at 6.0 with 3 N I

I NaOH. Når man har nået en optisk tæthed (546 nm) på 18 IIn NaOH. When reaching an optical density (546 nm) of 18 l

I til 20 (sædvanligvis efter 8,5 - 9,5 timers gæring) II to 20 (usually after 8.5 - 9.5 hours of fermentation)

I 15 afkøler man med andre betingelser uændret til 20°C, ind- IIn 15, under other conditions, it is cooled to 20 ° C, at room temperature

I stiller uden lufttilførsel pH med 6N H2S04 til 2,2 og IYou set the pH with 6N H2SO4 to 2.2 and I without air supply

I omrører i en time ved 20°C og 800 o/min. (uden lufttil- IYou stir for one hour at 20 ° C and 800 rpm. (without air supply- I

I førsel). Den nu inaktiverede biomasse afcentrifugeres i IIn progress). The now inactivated biomass is centrifuged in I

I en CEPA-laboratoriecentrifuge type GLE ved 30.000 o/min, IIn a CEPA laboratory centrifuge type GLE at 30,000 rpm, I

I 20 nedfryses til -20°C. og opbevares. II 20 is frozen to -20 ° C. and stored. IN

Eksempel 11 IExample 11 I

Rensning af interferon-w-Gly IPurification of Interferon-W-Gly I

I 25 II 25 I

I a) Delvis rensning IPartial purification

I Alle processer udføres ved 4°C. IIn All processes are performed at 4 ° C. IN

I 140 g biomasse (E. coli HB101 transformeret med IIn 140 g of biomass (E. coli HB101 transformed with I

I ekspressionsklonen pRHW12) udsuspenderes i 1150 ml 1% IIn the expression clone pRHW12) is suspended in 1150 ml of 1% I

I 30 eddikesyre (forudkølet til 4°C) og omrøres i 30 minut- IIn 30 acetic acid (pre-cooled to 4 ° C) and stir for 30 minutes

I ter. Man indstiller pH af suspensionen med 5 M NaOH til II ter. The pH of the suspension is adjusted with 5 M NaOH to 1

I 10,0 og rører yderligere to timer. Derefter indstilles IIn 10.0 and stir another two hours. Then you set

I med 5 M HC1 til pH 7,5, røres yderligere 15 minutter og II with 5 M HCl to pH 7.5, stir for a further 15 minutes and I

I centrifugeres (4°C,' 1 time, 10.000 o/minut, J21 centri- II centrifuge (4 ° C, 1 hour, 10,000 rpm, J21 centrifuge

I 35 fuge (Beckman), JA10-rotor). IIn 35 joint (Beckman), JA10 rotor). IN

59 DK 175194 B159 DK 175194 B1

Det klare centrifugat overføres til en 150 ml CPG (controlled pore glass)-søjle (CPG 10-350, porestørrelse 120/200) med 50 ml/time, vaskes med 1000 ml 25 mM Tris/-1M NaCl, pH 7,5 og elueres med 25 mM Tris/lM KCNS/50% 5 ethylenglycol, pH 7,5 (50 ml/time).The clear centrifugate is transferred to a 150 ml CPG (controlled pore glass) column (CPG 10-350, pore size 120/200) at 50 ml / hour, washed with 1000 ml 25 mM Tris / -1M NaCl, pH 7.5 and elute with 25 mM Tris / lM KCNS / 50% ethylene glycol, pH 7.5 (50 ml / h).

Den proteintop, der indeholder interferonaktiviteten indsamles, dialyseres natten over mod 0,1 M Na-phosphat, pH = 6,0, og 10% polyethylenglycol 40.000, og det opståede bundfald afcentrifugeres (4°C, 1 time, 10 10.000 o/min, J21-centrifuge, JA20-rotor) (se Tabel 1).The protein peak containing the interferon activity is collected overnight dialyzed against 0.1 M Na phosphate, pH = 6.0, and 10% polyethylene glycol 40,000, and the resulting precipitate is centrifuged (4 ° C, 1 hour, 10,000 rpm). , J21 centrifuge, JA20 rotor) (see Table 1).

b) Yderligere Rensningb) Further Purification

Det dialyserede og koncentrerede CPG-eluat fortyndes med puffer A (0,1 M Na-phosphat pH 6,25/25% 1,2— 15 propylenglycol) 1:5 og overføres til en "Superloop"“injektionsanordning (Pharmacia) og derfra med 0,5 ml/min til en med puffer A ækvilibreret monoS 5/5 (Pharmacia, kationbytter)-søjle. Elutionen udføres med 0,5 ml/min over 20 ml liniær gradient fra 0 til 1 M NaCl i puffer 20 A. Gennemløbet og fraktioner på 1 ml samles og prøves ved hjælp af en CPE-reduktionstest for interferonaktivitet. De aktive fraktioner samles.The dialyzed and concentrated CPG eluate is diluted with buffer A (0.1 M Na phosphate pH 6.25 / 25% 1.2-15 propylene glycol) 1: 5 and transferred to a Superloop injection device (Pharmacia) and from there. at 0.5 ml / min to a buffer A equilibrated monoS 5/5 (Pharmacia, cation exchanger) column. The elution is performed at 0.5 ml / min over 20 ml linear gradient from 0 to 1 M NaCl in buffer 20 A. The throughput and fractions of 1 ml are collected and tested by a CPE reduction test for interferon activity. The active fractions are pooled.

TABEL 1 25TABLE 1 25

Volumen Biologisk test Protein total U/mg Udbytte _(ml) U/ml+ U total (mg/ml) (mg)_%Volume Biological Test Protein total U / mg Yield _ (ml) U / ml + U total (mg / ml) (mg) _%

Vol. 1150 15.000 17,3xl06 3,6 4140 4180 100 DL 2200 < 600 >l,3x!06 0,74 1628 <600_<5 30 Eluat 124,3 170000 21,0xl06 16,8 2088 10000 121 efter dialyse 41 300000 12,3xl06 12,6 516,6 23800 71 + CPE-reduktionstest: A549 celler, EMC-virus 35 U: Enheder baseret på interferon-a2 (se Eksempel 2 iVol. 1150 15,000 17.3x106 3.6 4140 4180 100 DL 2200 <600> 1.3x6 0.74 1628 <600_ <5 30 Eluate 124.3 170000 21.0x106 16.8 2088 10000 121 after dialysis 41 300000 12, 3x106 12.6 516.6 23800 71 + CPE reduction test: A549 cells, EMC virus 35 U: Units based on interferon-α2 (see Example 2 in

I DK 175194 B1 II DK 175194 B1 I

I 60 II 60 I

I EP-A-0.115.613; E. coli HB101 transformeret med IIn EP-A-0,115,613; E. coli HB101 transformed with I

I ekspressionsklon pER 33) som standard IIn expression clone pER 33) as standard I

I DL: Gennemløb. IIn DL: Throughput. IN

I 5 II 5 I

I Eksempel 12 IIn Example 12 I

I Karakterisering af HuIFN-ωΙ IIn Characterization of HuIFN-ωΙ I

I A. Antiviral aktivitet på humane cellerIn A. Antiviral activity on human cells

I B. Antiviral aktivitet på abeceller IIn B. Antiviral Activity on Monkey Cells I

I 10 C. Væksthæmmende aktivitet på human Burkitt's lym- II 10 C. Growth-inhibiting activity on human Burkitt's lymph- I

I phomceller (Zellinie Daudi) IIn phom cells (cell line Daudi) I

I D. Antivækstaktivitet på humane cervixcarcinomceller IIn D. Anti-growth activity on human cervical carcinoma cells I

I (Cellelinie HeLa) II (Cell line HeLa) I

I E. Syrestabilitet IIn E. Stability of acid

I 15 F. Serologisk karakterisering. IIn 15 F. Serological characterization. IN

I A* Antiviral aktivitet på humane celler II A * Antiviral activity on human cells I

I Cellelinie: Human lungecarcinomcellelinie A549 (ATCC IIn Cell Line: Human Lung Carcinoma Cell Line A549 (ATCC I

I CCL 185 II CCL 185 I

I 20 Virus: Muse-encephalomyocarditis-virus (EMCV)In 20 Viruses: Mouse encephalomyocarditis virus (EMCV)

I Prøvesystem: Hæmning af den cytophatiske effekt (alle IIn Test System: Inhibition of the Cytophatic Effect (All I

I titreringer udføres fire gange) IIn titrations are performed four times)

I Et partielt renset præparat af HuIFN-ωΙ med et II A partially purified preparation of HuIFN-ωΙ with an I

I 25 proteinindhold på 9,4 mg/ml titreres i en passende for- IAt a protein content of 9.4 mg / ml, titrate in an appropriate formula

I tynding i nævnte prøvesystem. Præparatet udviste anti- IIn thinning in said test system. The composition showed anti-I

I viral virkning med en specifik aktivitet på 8300 IE/ mg IIn viral action with a specific activity of 8300 IU / mg I

I baseret på referencen Go-23-901-527. II based on reference Go-23-901-527. IN

I 30 II 30 I

I 35 II 35 I

61 DK 175194 B1 B. Antiviral aktivitet på abeceller61 DK 175194 B1 B. Antiviral activity on monkey cells

Cellelinie: GL-V3 abenyreceller (Christofinis G.J., J. Med. Microbiol. 3, 251-258, 1970)Cell line: GL-V3 monkey kidney cells (Christofinis G. J., J. Med. Microbiol. 3, 251-258, 1970)

Virus: Vesicular Stomatitis Virus (VSV) 5 Prøvesystem Plaque-reduktions-test (alle titreringer fire gange)Virus: Vesicular Stomatitis Virus (VSV) 5 Sample System Plaque Reduction Test (all titrations four times)

Præparatet beskrevet i Eksempel 12A udviste en specifik antiviral aktivitet på 580 E/mg i nævnte prøvesystem.The preparation described in Example 12A showed a specific antiviral activity of 580 U / mg in said test system.

10 C. Antivækstaktivitet på humane Burkitt'ø lymphomcel- ler (cellelinie Daudi)__10 C. Anti-growth activity on human Burkitt'oe lymphoma cells (Daudi cell line) __

Humane Burkitt's lymphom-cellelinie Daudi dyrkedes under tilstedeværelse af forskellige koncentrationer 15 af HuIFN-ωΙ. Celletætheden bestemmes efter to, fire og seks dages inkubation ved 37°C; ubehandlede kulturer var kontrol. Alle forsøg blev gennemført tredobbelt.Human Burkitt's lymphoma cell line Daudi was grown in the presence of various concentrations of HuIFN-ωΙ. Cell density is determined after two, four and six days of incubation at 37 ° C; untreated cultures were control. All experiments were performed in triplicate.

Af følgende figur fremgår, at IFN-ω udviser en udpræget hæmning for cellevækst ved en koncentration på 100 anti-20 virale enheder (IE, se Eksempel 12A) pr. ml; ved en koncentration på 10 IE/ml kunne man iagttage en delvis midlertidig hæmning (følgende symboler anvendes i figuren: o Kontrol, ° 1 IE/ml, Q 10 IE/ml, ^ 100 IE/ML): 25 30 35The following figure shows that IFN-ω exhibits a pronounced inhibition of cell growth at a concentration of 100 anti-20 viral units (IU, see Example 12A) per day. ml; at a concentration of 10 IU / ml a partial temporary inhibition could be observed (the following symbols are used in the figure: o Control, ° 1 IU / ml, Q 10 IU / ml, ^ 100 IU / ML): 25 30 35

I DK 175194 B1 II DK 175194 B1 I

I 62 II 62 I

I !χο4ΤΠ i ; i ~ : · II! Χο4ΤΠ i; i ~: · I

I ' 7 jI '7 j

I 5 0.5- | ' | ' : ff / II 5 0.5- | '| ': ff / I

I oi- | :· ; | f / ' II oi- | : ·; | f / 'I

I J- o.i- ‘fiTi .. · ; ; II J- o.i- 'fiTi .. ·; ; IN

I 5 ? r i. · i II 5? r i. · i I

I o ' II o 'I

ΗΗ

I 15 S II 15 S I

I » ' i : II »'i: I

I o i II o i I

I : ·» ’ ! . i ,· II: · »'! . i, · I

I jl'*: ϊ II jl '*: ϊ I

· •‘—r—:—:-r i ; “ T"^ I· • '- r -: -: - r i; “T” I

I 20 ·:·! 0. i 2 · : 4 · ! e : II 20 ·: ·! 0. i 2 ·: 4 ·! e: I

I DAGE IDAYS I

I D. Væksthæmmende aktivitet på humane cervixcarcinomcel- IIn D. Growth-inhibiting activity on human cervical carcinoma cell-I

I ler (cellelinie HeLa)_ II clay (HeLa cell line) _ I

I 25 Den humane cervixcarcinom-cellelinie HeLa dyrkes IThe human cervical carcinoma cell line HeLa is cultured

sammen med følgende proteiner eller proteinblandinger; Itogether with the following proteins or protein mixtures; IN

I HuIFN-ωΙ (se Eksempel 12A) 100 IE/ml IIn HuIFN-ωΙ (see Example 12A) 100 IU / ml I

I HuIFN-γ (se Eksempel 12A) 100 IE/ml IIn HuIFN-γ (see Example 12A) 100 IU / ml I

Human tumor-nekrosefaktor (HuXFN), >98% ren# IHuman tumor necrosis factor (HuXFN),> 98% pure # I

I 30 fremstillet af Genentech Inc., San Francisco, IIn 30 manufactured by Genentech Inc., San Francisco, I

I USA (se Pennica D. et al.. Nature 312, 724-729; IIn the United States (see Pennica D. et al. Nature 312, 724-729; I

I 1984) 100 ng/ml IIn 1984) 100 ng / ml I

I Alle binære kombinationer af de nævnte proteiner IAll binary combinations of said proteins I

I med koncentrationer som ovenfor. II with concentrations as above. IN

I 35 I hver 3 cm kunststof-vævskulturskål blev anbragt IIn each of the 3 cm plastic tissue culture dishes I was placed

I to kulturer (50.000 celler/skål) og der inkuberes seks IIn two cultures (50,000 cells / dish) and six I are incubated

63 DK 175194 B1 dage ved 37°C og i tilslutning hertil blev celletætheden bestemt· Behandling af cellerne med HuIFN-ωΙ eller HuIFN-f havde kun ringe indflydelse på cellevæksten, hvorimod HuIFN-γ viste en tydelig cytostatisk effekt.63 DK 175194 B1 days at 37 ° C and thereafter, cell density was determined · Treatment of cells with HuIFN-ωΙ or HuIFN-f had little effect on cell growth, whereas HuIFN-γ showed a distinct cytostatic effect.

5 Kombinationer af IFN-γ med IFN-ωΙ viste synergistisk cy-tostatisk/cytotoksisk virkning.5 Combinations of IFN-γ with IFN-ωΙ showed synergistic cytostatic / cytotoxic effect.

Følgende figur viser resultaterne af forsøget: ! i i ππττπ—·—I—I—γτττγπ-, 10 ·.'·!.! i;: ? ti' ·: i C = ! :ϊ i S j /-Ή. »·).!· r ·.; i ·4·Κ I f: j ;'iI^if:iCT‘nnrij »r,l: -til i ::.!:= 1»·:ιΐΐ,ΐ;-j{ J|:,.ilM. 1:Mi ri (L· 'tf: ’ *.* * . i ’ * .i* *:! ' ' ’ J *' 1 · · .* * *.·. ·* ί :* *··'*ϊ |' ·*: I * ··*! · *j · j * i j ί·· ΐ “ Γ·· *** ·: *; 15 M.!·"" )r:r~- 15 -;:»r;~!SG isaasi-:!;·*H r-bS:l afe _ i i l·'i.;'.1: i ·"·—;Γ1 >T^_yj5rF^7r^· Γ”~—·Γ~^·^ΓΤ~Γ~'ί'·'ιΓ73Γ7· i· J 1 fil ντ·': •:-7 i r :i ί i mmThe following figure shows the results of the experiment:! i i ππττπ— · —I — I — γτττγπ-, 10 ·. '·!.! i ;:? ti '·: i C =! : ϊ i S j / -Ή. »·).! · R · .; i · 4 · Κ I f: j; 'iI ^ if: iCT'nnrij »r, l: -to i ::.!: = 1» ·: ιΐΐ, ΐ; -j {J |:,. ilM. 1: Mi ri (L · 'tf:' *. * *. I '* .i * *:!' '' J * '1 · ·. * * *. ·. · * Ί: * * ··' * ϊ | '· *: I * ·· *! · * j · j * ij ί ·· ΐ “Γ ·· *** ·: *; 15 M.! ·" ") r: r ~ - 15 - ;: »R; ~! SG isaasi -:!; · * H r-bS: l afe _ iil · 'i.;'. 1: i ·" · -; Γ1> T ^ _yj5rF ^ 7r ^ · Γ " ~ - · Γ ~ ^ · ^ ΓΤ ~ Γ ~ 'ί' · 'ιΓ73Γ7 · i · J 1 file ντ ·': •: -7 ir: i ί i mm

: p·- ί i-·-I i j . ri }V |-:Γ;1 Γ:ν;^ :j!:‘:i Γ Lrl.p -T: p · - ί i- · -I i j. ri} V | -: Γ; 1 Γ: ν; ^: j! ': i Γ Lrl.p -T

2o t -vhhner?· 3 5 10 30 60 100 25 10 4 x celler/målestok Følgende symboler anvendes i ovenstående figur: C ubehandlet kontrol, T HuTNF, O HuIFN-ωΙ, G HuIFN-γ.2o t -vhner? · 3 5 10 30 60 100 25 10 4 x cells / scale The following symbols are used in the figure above: C untreated control, T HuTNF, O HuIFN-ωΙ, G HuIFN-γ.

E. Syrestabilitet 30 Med henblik på undersøgelse af syrestabiliteten af HuIFN-ωΙ blev en fortynding af det i Eksempel 12A nævnte præparat anbragt i cellekulturmedium (o/min. I 1640 med 10% føtal kalveserum) og pH blev med HC1 indstillet på en værdi af 2, der inkuberedes 24 timer ved 36 4°G og neutraliseredes med NaOH. Denne prøve titreredesE. Acid Stability 30 To test the acid stability of HuIFN-ωΙ, a dilution of the preparation mentioned in Example 12A was placed in cell culture medium (rpm in 1640 with 10% fetal calf serum) and the pH was adjusted to a value of HCl with 2, incubated for 24 hours at 36 ° C and neutralized with NaOH. This sample was titrated

I DK 175194 B1 II DK 175194 B1 I

I 64 II 64 I

I ved hjælp af en antiviral test (se Eksempel 12A), den HBy means of an antiviral test (see Example 12A), the H

I udviste 75% biologisk aktivitet i forhold til en kon- II showed 75% biological activity compared to a con I

I trol, der var inkuberet ved neutral pH. IFNojI kan altså HIn trolls incubated at neutral pH. Thus IFNojI can H

I betegnes som syrestabil. IYou are referred to as acid stable. IN

I 5 II 5 I

I F. Serologisk karakterisering IIn F. Serological characterization I

I Med henblik på bestemmelse af HuIFN-ωΙ's serolo- II For the purpose of determining HuIFN-ωΙ serolo- I

I giske egenskaber sammenlignet med HuIFN-a2 forinkubererIn gic properties compared to HuIFN-α2 preincubates

I man prøver (fortyndet til 100 IE/ml med lige store rum- IIn the test (diluted to 100 IU / ml with equal volume)

I 10 fang af opløsninger af monoklonale antistoffer eller po- IIn 10 fold of solutions of monoclonal antibodies or poly

I lyklonale antisera 90 minutter ved 37°C, derefter be- IIn lyclonal antisera 90 minutes at 37 ° C, then i

I stemmes prøvernes antivirale aktivitet. Den følgende ta- IYou agree the antiviral activity of the samples. The following ta- I

I bel viser, at HuIFN-ωΙ kun kan neutraliseres af et anti- II bel shows that HuIFN-ωΙ can only be neutralized by an anti-I

I serum mod leukocytinterferon i relativ høj koncentra- IIn serum against leukocyte interferon at relatively high concentrations

I 15 tion, men ikke af antistoffer, der virker mod HuIFN-a2 IIn 15 tion, but not by antibodies that act against HuIFN-α2 I

I eller HuIFN-ø. HuIFN-^l er derfor hverken serologisk IIn or HuIFN Island. HuIFN- ^ l is therefore neither serological I

I beslægtet med HuIFNct2 eller med HuIFN-β: IIn related to HuIFNct2 or HuIFN-β: I

I 20 II 20 I

I 25 I 1I 25 I 1

I 35 II 35 I

30 I30 I

65 DK 175194 B165 DK 175194 B1

TABELTABLE

Antiserum mono- Fortynding Neutralisering afAntiserum Mono- Dilution Neutralization of

Tel« antistoffer yg/ml_HuIFN-a2_HuIFN-ωΙ 5 EBI-11) 1 + 10 +++ 100 +++ 1000 - 0 EBI-33·) 1 +++ 10 10 +++ 100 +++ 1000 +++ 0 L3B72) 100 +++ 0 1000 +++ 0 15 Fare-anti- leukocyter-IFN^) 1:50.000 +++ - 1: 5.000 +++ 0 1: 500 +++ + 1: 50 - +++ 20 Kanin-anti-Count «antibodies yg / ml_HuIFN-a2_HuIFN-ωΙ 5 EBI-11) 1 + 10 +++ 100 +++ 1000 - 0 EBI-33 ·) 1 +++ 10 10 +++ 100 +++ 1000 +++ 0 L3B72) 100 +++ 0 1000 +++ 0 15 Danger anti-leukocyte IFN ^ 1: 50,000 +++ - 1: 5,000 +++ 0 1: 500 +++ + 1: 50 - ++ + 20 Rabbit Anti-

HuIFN-a2 1: 1.000 +++ 1: 100 +++ 0 1: 10 - 0 Fåre-anti- 25 HuIFN-84^_1: 50_=_0_ 1) = se EP-A-0.119.476 2) = A. Berthold et al. i Arzneimittelforschung 35, 364-369 (1985) 3) = Research Reference Reagent Catalog nr- 30 G-026-502-568 4) = Research Reference Reagent Catalog nr.HuIFN-a2 1: 1,000 +++ 1: 100 +++ 0 1: 10 - 0 Sheep anti-HuIFN-84 ^ _1: 50 _ = _ 0_ 1) = see EP-A-0.119.476 2) = A Berthold et al. in Arzneimittelforschung 35, 364-369 (1985) 3) = Research Reference Reagent Catalog no. 30 G-026-502-568 4) = Research Reference Reagent Catalog no.

G-028-501-568G-028-501-568

Research Resources Branch, National Institute of Allergy and Infectious Diseases, Bethesda, 35 Maryland, USA.Research Resources Branch, National Institute of Allergy and Infectious Diseases, Bethesda, 35 Maryland, USA.

Symboler: - ikke prøvet, 0 ingen neutralisation, + del vis neutralisation, +++ fuldstændig neutralisation.Symbols: - not tested, 0 no neutralization, + some neutralization, +++ complete neutralization.

Claims (37)

1. Rekombinante DNA-molekyler, indeholdende en I I kodende sekvens for hidtil ukendte humane interferon- I I proteiner af type I, der indeholder 168-174 aminosy- I I 5 rer, for interferon-pseudo-ti>2 (se figur 12) , interfe- I I ron-pseudo-u>3 (se figur 13) eller interferon-pseudo- I I ω4 (se figur 14), kendetegnet ved, at ko- I I desekvensen under så stringente betingelser, at kun I I en homologi på mere end 85% kan påvises, hybridiserer I I 10 med a) indsættelsen i Pst-1 gennemskæringsstedet i I I plasmidet E76E9 i E.coli HB101 deponeret ved DSM med I I deponeringsnummer DSM 3003, b) i plasmidet P9A2 i E. I I coli HB 101 deponeret ved DSM med deponeringsnummer I I DSM 3004. I I 15 2. DNA-molekyle ifølge krav 1,kende- I I tegnet ved, at de stringente betingelser kun I I tillader påvisning af en homologi på mere end 90%. I1. Recombinant DNA molecules, containing a II coding sequence for novel type I human interferon II proteins containing 168-174 amino acids, for interferon pseudo-ti> 2 (see Figure 12), interferon - II ron-pseudo-u> 3 (see Figure 13) or interferon-pseudo-II ω4 (see Figure 14), characterized in that the co-II sequence under such stringent conditions that only II has a homology of more than 85% can be detected, II 10 hybridizes with a) insertion into the Pst-1 intersection site of II plasmid E76E9 in E. coli HB101 deposited by DSM with II deposition number DSM 3003, b) in plasmid P9A2 in E. II coli HB 101 deposited by DSM with deposition number A DNA molecule according to claim 1, characterized in that the stringent conditions only allow II to detect a homology of more than 90%. IN 3. DNA-molekyle ifølge krav 1 og 2, kende- I I tegnet ved, at kodesekvensen foreligger som I I 20 indsættelse ved Pst-1 gennemskæringsstedet a) i I I plasmidet E76E9 i E.coli HB101 deponeret ved DSM med . I I deponeringsnummer DSM 3003, b) i plasmidet P9A2 i E. I I coli HB 101 deponeret ved DSM med deponeringsnummer I I DSM 3004, eller er en degenereret variant af disse I I 25 indsættelser. IA DNA molecule according to claims 1 and 2, characterized in that the coding sequence is present as an I insert at the Pst-1 intersection site a) in the I I plasmid E76E9 in E. coli HB101 deposited by DSM med. I in deposit number DSM 3003, b) in plasmid P9A2 in E. I in coli HB 101 deposited by DSM with deposit number I in DSM 3004, or is a degenerate variant of these I in 25 insertions. IN 4. DNA-molekyle ifølge krav 1 til 3, k e η - I I detegnet ved, at vehiklen er et plasmid, der I I kan undergå replikation i prokaryoter eller i euka- I I ryoter. I I 30 5. DNA-molekyle ifølge krav 4,kende- I I tegnet ved, at det er en ekspressionsvehikel, I I der kan undergå replikation i mikroorganismer eller i I I pattedyrsceller. I DK 175194 B1DNA molecule according to claims 1 to 3, characterized in that the vehicle is a plasmid capable of replication in prokaryotes or in eukaryotic cells. A DNA molecule according to claim 4, characterized in that it is an expression vehicle, which can undergo replication in microorganisms or in mammalian cells. In DK 175194 B1 6. DNA-molekyle ifølge krav 5, kende tegnet ved, at det indeholder sekvensen TGT GAT CTG CCT CAG AAC CAT GGC CTA CTT AGC AGG AAC ACC TTG 45The DNA molecule of claim 5, characterized in that it contains the sequence TGT GAT CTG CCT CAG AAC CAT GGC CTA CTT AGC AGG AAC ACC TTG 45 5 GTG CTT CTG CAC CAA ATG AGG AGA ATC TCC CCT TTC TTG TGT CTC 90 AAG GAC AGA AGA GAC TTC AGG TTC CCC CAG GAG ATG GTA AAA GGG 135 AGC CAG TTG CAG AAG GCC CAT GTC ATG TCT GTC CTC CAT GAG ATG 180 CTG CAG CAG ATC TTC AGC CTC TTC CAC ACA GAG CGC TCC TCT GCT 225 GCC TGG AAC ATG ACC CTC CTA GAC CAA CTC CAC ACT GGA CTT CAT 270 CAG CAA CTG CAA CAC CTG GAG ACC TGC TTG CTG CAG GTA GTG GGA 3155 GTG CTT CTG CAC CAA ATG AGG AGA ATC TCC CCT TTC TTG TGT CTC 90 AAG GAC AGA AGA GAC TTC AGG TTC CCC CAG GAG ATG GTA AAA GGG 135 AGC CAG TTG CAG AAG GCC CAT GTC ATG TCT GTC CTC CAT GAG ATG 180 CTG CAG CAG ATC TTC AGC CTC TTC CAC ACA GAG CGC TCC TCT GCT 225 GCC TGG AAC ATG ACC CTC CTA GAC CAA CTC CAC ACT GGA CTT CAT 270 CAG CAA CTG CAA CAC CTG GAG ACC TGC TTG CTG CAG GTA GTG GGA 315 10 GAA GGA GAA TCT GCT GGG GCA ATT AGC AGC CCT GCA CTG ACC TTG 360 AGG AGG TAC TTC CAG GGA ATC CGT GTC TAC CTG AAA GAG AAG AAA 405 TAC AGC GAC TGT GCC TGG GAA GTT GTC AGA ATG GAA ATC ATG AAA 450 TCC TTG TTC TTA TCA ACA AAC ATG CAA GAA AGA CTG AGA AGT AAA 495 GAT AGA GAC CTG GGC TCA TCT 516 15 1 2 3 4 5 6 7 8 9 10 1110 GAA GGA GAA TCT GCT GGG GCA ATT AGC AGC CCT GCA CTG ACC TTG 360 AGG AGG TAC TTC CAG GGA ATC CGT GTC TAC CTG AAA GAG AAG AAA 405 TAC AGC GAC TGT GCC TGG GAA GTT GTC AGA ATG GAA ATC ATG AAA 450 TCC TTG TTC TTA TCA ACA AAC ATG CAA GAA AGA CTG AGA AGT AAA 495 GAT AGA GAC CTG GGC TCA TCT 516 15 1 2 3 4 5 6 7 8 9 10 11 7. DNA-molekyle ifølge krav 5, kende 2 tegnet ved, at DNA-molekylet ifølge krav 6 i 3 position 332 indeholder nucleotidet A i stedet for 4 nucleotidet G. 5The DNA molecule of claim 5, knowing 2 characterized in that the DNA molecule of claim 6 at 3 position 332 contains nucleotide A instead of 4 nucleotide G. 8. DNA-molekyle ifølge krav 5, kende- 6 tegnet ved, at det er plasmidet E76E9 i E.coli 7 HB101 deponeret ved DSM med deponeringsnummer DSM 8 3003 eller er plasmidet P9A2 i E. coli HB 101 depone 9 ret ved DSM med deponeringsnummer DSM 3004. 10DNA molecule according to claim 5, characterized in that it is the plasmid E76E9 in E. coli 7 HB101 deposited by DSM with deposit number DSM 8 3003 or the plasmid P9A2 in E. coli HB 101 deposited 9 by DSM with deposit number DSM 3004. 10 9. DNA-molekyle ifølge krav 6 og 7, kende- 11 tegnet ved, at dette yderligere indeholder en for et leader-peptid kodende DNA-sekvens med formlen ATG GCC CTC CTG TTC CCT CTA CTG GCA GCC CTA GTG ATG ACC AGC TAT AGC CCT GTT GGA TCT CTG GGC I DK 175194 B1 I I 68 IThe DNA molecule of claims 6 and 7, characterized in that it further contains a DNA peptide coding sequence of the formula ATG GCC CTC CTG TTC CCT CTA CTG GCA GCC CTA GTG ATG ACC AGC TAT AGC CCT GTT GGA TCT CTG GGC I DK 175194 B1 II 68 I 10. Interferon-iol-gen, kendetegnet I I ved, at det har formlen GATCTGGTAAACCTGAA 17 I I GCAAATATAGAAACCTATAGGGCCTGACTTCCTACATAAAGTAAGGAGGGTAAAAATGG 76 I I AGGCTAGAATAAGGGTTAAAATTTTGCTTCTAGAACAGAGAAAATGATTTTTTTCATAT 135 I I ATATATGAATATATATTATATATACACATATATACATATATTCACTATAGTGTGTATAC 194 I I ATAAATATATAATATATATATTGTTAGTGTAGTGTGTGTCTGATTATTTACATGCATAT 253 I I AGTATATACACTTATGACTTTAGTACCCAGACGTTTTTCATTTGATTAAGCATTCATTT 312 I I GTATTGACACAGCTGAAGTTTACTGGAGTTTAGCTGAAGTCTAATGCAAAATTAATAGA 371 I I TTGTTGTCATCCTCTTAAGGTCATAGGGAGAACACACAAATGAAAACAGTAAAAGAAAC 430 I I TGAAAGTACAGAGAAATGTTCAGAAAATGAAAACCATGTGTTTCCTATTAAAAGCCATG 469 I I CATACAAGCAATGTCTTCAGAAAACCTAGGGTCCAAGGTTAAGCCATATCCCAGCTCAG 548 I I TAAAGCCAGGAGCATCCTCATTTCCCA ATG GC£ CTC C TG TTC CCT CTA CTG 599 I I GCA GCC CTA GTG ATG ACC AGO TAT AGC CCT GTT GGA TCT CTG GGC 644 I I TGT GAT CTG CCT CAG AAC CAT GGC CTA CTT AGC AGG AAC ACC TTG 689 I I GTG CTT CTG CAC CAA ATG AGG AGA ATC TCC CCT TTC TTG TGT CTC 734 I I AAG GAC AGA AGA GAC TTC AGG TTC CCC CAG GAG ATG GTA AAA GGG 779 I I AGC CAG TTG CAG AAG GCC CAT GTC ATG TCT GTC CTC CAT GAG ATG 824 I I CTG CAG CAG ATC TTC AGC CTC TTC CAC ACA GAG CGC TCC TCT GCT 869 I I GCC TGG AAC ATG ACC CTC CTA GAC CAA CTC CAC ACT GGA CTT CAT 914 I I CAG CAA CTG CAA CAC CTG GAG ACC TGC TTG CTG CAG GTA GTG GGA 959 I I G AA GGA GAA TCT GCT GGG GCA ATT AGC AGC CCT GCA CTG ACC TTG 1004 I I AGG AGG TAC TTC CAG GGA ATC CGT GTC TAC CTG AAA GAG AAG AAA 1045 I I TAC AGC GAC TGT GCC TGG GAA GTT GTC AGA ATG GAA ATC ATG AAA 1094 I I TCC TTG TTC TTA TCA ACA AAC ATG CAA GAA AGA CTG AGA AGT AAA 1139 I I GAT AGA GAC CTG GGC TCA TCT TGA AATGATTCTCATTGATTAATTTGCCAT 1190 I I ATAACACTTGCACATGTGACTCTGGTCAATTCAAAAGACTCTTATTTCGGCTTTAATCA 1249 I I CAGAATTGACTGAATTAGTTCTGCAAATACTTTGTCGGTATATTAAGCCAGTATATGTT 1308 I I AAAAAGACTTAGGTTCAGGGGCATCAGTCCCTAAGATGTTATTTATTTTTACTCATTTA 1367 I TTTATTCTTACATTTTATCATATTTATACTATTTATATTCTTATATAACAAATGTTTGC 1426 I I CTTTACATTGTATTAAGATAACAAAACATGTTCAGCTTTCCATTTGGTTAAATATTGTA 1485 I TTTTGTTATTTATTAAATTATTTTCAAACAAAACTTCTTGAAGTTATTTATTCGAAAAC 1544 I I CAAAATCCAAACACTAGTTTTCTGAACCAAATCAAGGAATGGACGGTAATATACACTTA 1603 I I CCTATTC ATTC ATTCCATTT AC AT AATATGTATAAAGTG AG TAT CA AAGTGGCA TATTT 1662 I I TGGAATTGATGTCAAGCAATGCAGGTGTACTCATTGCATGACTGTATCAAAATATCTCA 1721 I I TGTAACCAATAAATATATACACTTACTATGTATCCCACAAAAATTAAAAAGTTATTTTA 1780 I I AAAAAGAAATACAGGTGAATAAACACAGTTTCTTTCCGTGTTGAAGAGCTTTCATTCTT 1839 I I ACAGGAAAAGAAACAGTAAAGATGTACCAATTTCGCTTATATGAAACACTACAAAGATA 1898 I I AGTAAAAGAAAATGATGTTCTCATACTAGAAGCTT 1933 I DK 175194 B110. Interferon-IOL gene II characterized in that it has the formula GATCTGGTAAACCTGAA GCAAATATAGAAACCTATAGGGCCTGACTTCCTACATAAAGTAAGGAGGGTAAAAATGG 17 II 76 II 135 II AGGCTAGAATAAGGGTTAAAATTTTGCTTCTAGAACAGAGAAAATGATTTTTTTCATAT ATATATGAATATATATTATATATACACATATATACATATATTCACTATAGTGTGTATAC ATAAATATATAATATATATATTGTTAGTGTAGTGTGTGTCTGATTATTTACATGCATAT II 194 253 II 312 II AGTATATACACTTATGACTTTAGTACCCAGACGTTTTTCATTTGATTAAGCATTCATTT GTATTGACACAGCTGAAGTTTACTGGAGTTTAGCTGAAGTCTAATGCAAAATTAATAGA TTGTTGTCATCCTCTTAAGGTCATAGGGAGAACACACAAATGAAAACAGTAAAAGAAAC II 371 430 II 469 II TGAAAGTACAGAGAAATGTTCAGAAAATGAAAACCATGTGTTTCCTATTAAAAGCCATG CATACAAGCAATGTCTTCAGAAAACCTAGGGTCCAAGGTTAAGCCATATCCCAGCTCAG 548 II TAAAGCCAGGAGCATCCTCATTTCCCA ATG GC £ CTC C TG TTC CCT CTA CTG 599 II GCA GCC CTA GTG ATG ACC AGO TAT AGC CCT GTT GGA TCT CTG GGC 644 II TGT GAT CTG CCT CAG AAC CAT GGC CTA CTT AGC AGG AAC ACC TTG 689 II GTG CTT CTG CAC CAA ATG AGG AGA ATC TCC CCT TTC TTG TGT CTC 734 II AAG GAC AGA AGA GAC TTC AGG TTC CCC CAG GAG ATG GTA AAA GGG 779 II AGC CAG TTG CAG AAG GCC CAT GTC ATG TCT GTC CTC CAT GAG ATG 824 II CTG CAG CAG ATC TTC AGC CTC TTC CAC ACA GAG CGC TCC TCT GCT 869 II GCC TGG AAC ATG ACC CTC CTA GAC CAA CTC CAC ACT GGA CTT CAT 914 II CAG CAA CTG CAA CAC CTG GAG ACC TGC TTG CTG CAG GTA GTG GGA 959 IIG AA GGA GAA TCT GCT GGG GCA ATT AGC AGC CCT GCA CTG ACC TTG 1004 II AGG AGG TAC TTC CAG GGA ATC CGT GTC TAC CTG AAA GAG AAG AAA 1045 II TAC AGC GAC TGT GCC TGG GAA GTT GTC AGA ATG GAA ATC ATG AAA 1094 II TCC TTG TTC TTA TCA ACA AAC ATG CAA GAA AGA CTG AGA AGT AAA 1139 II GAT GAC CTG AGA GGC TCT TCA TGA AATGATTCTCATTGATTAATTTGCCAT ATAACACTTGCACATGTGACTCTGGTCAATTCAAAAGACTCTTATTTCGGCTTTAATCA 1249 1190 II II II AAAAAGACTTAGGTTCAGGGGCATCAGTCCCTAAGATGTTATTTATTTTTACTCATTTA CAGAATTGACTGAATTAGTTCTGCAAATACTTTGTCGGTATATTAAGCCAGTATATGTT 1308 1367 1426 II I TTTATTCTTACATTTTATCATATTTATACTATTTATATTCTTATATAACAAATGTTTGC CTTTACATTGTATTAAGATAACAAAACATGTTCAGCTT TCCATTTGGTTAAATATTGTA 1485 TTTTGTTATTTATTAAATTATTTTCAAACAAAACTTCTTGAAGTTATTTATTCGAAAAC In 1544 I I I I CAAAATCCAAACACTAGTTTTCTGAACCAAATCAAGGAATGGACGGTAATATACACTTA 1603 CCTATTC ATTC ATTCCATTT AC TO AATATGTATAAAGTG AG TAT CA AAGTGGCA TATTT 1662 I I I I TGGAATTGATGTCAAGCAATGCAGGTGTACTCATTGCATGACTGTATCAAAATATCTCA 1721 TGTAACCAATAAATATATACACTTACTATGTATCCCACAAAAATTAAAAAGTTATTTTA 1780 I I I I AAAAAGAAATACAGGTGAATAAACACAGTTTCTTTCCGTGTTGAAGAGCTTTCATTCTT 1839 ACAGGAAAAGAAACAGTAAAGATGTACCAATTTCGCTTATATGAAACACTACAAAGATA 1898 I I AGTAAAAGAAAATGATGTTCTCATACTAGAAGCTT 1933 In DK 175 194 B1 11. Interferon-col-gen, kendetegnet ved, at det har formlen AAGCTTGAGCCCCCAGGGAAGCATAACCACATGAACCTGAATGAATATATT 51 CTAGAAGGAGGGAAGC^æAGAGAAGTTCTTTCACTAATAACCATCAAGGTCTTCTGTG 110 AATCAAATATCAAACAAAGATAGTCCTAAAAAGTTTAATTTCCAGAGATAGGTAATTTC 169 CTAACTGAATACAGAAACCCATAGGGCCCAGGGATCCTGATTTCCTATGCAAAATGGAG 228 GGTAAAACTGGAGGCTAGGATCTGGGCTAAAAGTATATACTTCTAACAGTAGCACAAAG 287 ATGTTTCTCATCTGATTGATCAATATTCATTTGGATTGATATATCTTAAGTTTACTGGG 346 AATATTGAACATCCATTGCAAAAATCAAGAGTGTAGAGTGATGACCTCCTTTTAGGTCA 405 TATAGAACAAGGTTTTTCAACCCCCATCCATGGACCGGGGTACTGGTCCTGGCCTGGTA 464 GGAACAGGGCCGCACAGCAGGAGGCAAGCAGGCCAACCAACAAGCATTAACGCCTGAGC 523 TCTGCCTCCTGTCAGATCAGCAGTGGCATTGGATTCTCAAAAGAGCAGGAACCCTATTG 582 TGAAGTGCAGATGCGAAGGATCTAGGTTGTGGTCTCCTAATGAGAATCTAATGCCTCTG 641 AAAGCATTCCCTCCCTGACCCCATTTTTCGTGGAAAAATTATCTTCCACCAAACTGGTG 700 GCCAAAAGGTTGTGGATGCTGATATAGAAGACATGTAAATGAAAACAATAAATGGAATT 759 AAAAATTTAGAGAAATGCTCAGAAAAATGAAAACTATTTGTGCTCCATTAAAGCCATGC 818 ATAGATAGAATGTCTTCATAGAACCTAGGATCCAAGGTTCTATGAAGACCTCAGCTCAA 877 CGAGGCCAAAAGCATCCTGATTTCTGA ATG GCC CTC CTC TTC CCT CTA CTG 928 GCA GCC CTA GAG GTG TGC AGC TGT GGC TCT TCT GGA TCT CTA GGA 973 TAT AAC CTG CCT CAG AAC CAT GGC CTG CTA GGC AGG AAC ACC TTG 1018 GTG CTT TTG GGC CAA ATG AGG AGA ATC TCT CCC TTC TTG TGT CTA 1063 AAG GAC AGA AGT GAC TTC AGA TTC CCC CAG GAG AAG GTG GAA GTC 1108 AGC CAG TTG CAG AAG GCC CAG GCT ATG TCT TTC CTC TAT GAT GTG 1153 TTA CAG CAG GTC TTC AAC TTC TCA CAC AAA GCG CTC CTC TGC TGC 1198 ATG GAA CAT GAC CTT CCT GGA CCA ACT CCA CAC TTT ACG TCA TCA 1243 GCA GCT GGA ACA CCT GGA GAC CTG CTT GGT GCA GGA GAT GGG AGA 1288 AGG AGA AGC TGG GGG CAG TGG GTG ATT GAG GGC TCT ACA CTG GCC 1333 TTG AGG AGG TAT TTC CAG GAA TCC ATC TCT ACC TGA AAGAGAAGAAA 1380 TAAAGATTGTGCCTGGGAAGTTGTCAGAGTGGAAATCATGAGATCCTTTTCATCCACAA 1439 GTTTGGAAGAAAGATTGAGAAGTAAGGATGAAGACCTGGGCTCATCATGAAATGATTCT 1498 CATTGACTAATCTGCCATATCACACTTGTACATGTGACTTTGGATATTCAAAAAGCTCA 1557 TTTCTGTTTCATCAGAAATTATTGAATTAGTTTTAGCAAATACTTTATTAATAGCATAA 1619 AGCAAGTTTATGTCAAAAACATTCAGCTCCTGGGGCATCCGTAACTCAGAGATAACTGC 1675 CCTGATGCTGTTTATTTATCTTCCTTCTTTTTTTTCATGCCTTGTATTTATGATATTTA 1734 TATATTTTATATTTTCATCTTCACATCGTATTAAAATTTATAAAACATTCACTTTTTCA 1793 TATTAAGTTTGCATTTTGTTTTATTAAATTCATATCAAAGAAAACTCTGTAAATGTTTC 1852 I DK 175194 B1 I I 70 I I TATTCTAAAAACAATGTCTACTTTCTCTTTTTGTAAACCAAATTGAAAATATGGTAAAA 1911 I I TGTATTAACTCATTCATTTCATTCCTATTATATGTATAAATTGAGTAAATGGCAAACTG 1970 I I TGGGGTTTTCTTAAAGAAATACAGGTGAATAAAGCAAACACAGTTTCTCTCAGTCTAAG 2029 I I AGGGAAAGAGACGTAAAAACAGGACAAATATTTATATTATTTCAATTATGTTAAATGCT 2088 I I ACAAAGAGAAGTAAAGAAAAGTGATGTTCTCACATCAGAAGCTT 2132 I11. Interferon-glycol-gene characterized in that it has formula 51 AAGCTTGAGCCCCCAGGGAAGCATAACCACATGAACCTGAATGAATATATT CTAGAAGGAGGGAAGC ^ æAGAGAAGTTCTTTCACTAATAACCATCAAGGTCTTCTGTG 110 AATCAAATATCAAACAAAGATAGTCCTAAAAAGTTTAATTTCCAGAGATAGGTAATTTC CTAACTGAATACAGAAACCCATAGGGCCCAGGGATCCTGATTTCCTATGCAAAATGGAG 169 228 287 GGTAAAACTGGAGGCTAGGATCTGGGCTAAAAGTATATACTTCTAACAGTAGCACAAAG ATGTTTCTCATCTGATTGATCAATATTCATTTGGATTGATATATCTTAAGTTTACTGGG AATATTGAACATCCATTGCAAAAATCAAGAGTGTAGAGTGATGACCTCCTTTTAGGTCA 346 405 464 TATAGAACAAGGTTTTTCAACCCCCATCCATGGACCGGGGTACTGGTCCTGGCCTGGTA GGAACAGGGCCGCACAGCAGGAGGCAAGCAGGCCAACCAACAAGCATTAACGCCTGAGC TCTGCCTCCTGTCAGATCAGCAGTGGCATTGGATTCTCAAAAGAGCAGGAACCCTATTG 523 582 641 TGAAGTGCAGATGCGAAGGATCTAGGTTGTGGTCTCCTAATGAGAATCTAATGCCTCTG AAAGCATTCCCTCCCTGACCCCATTTTTCGTGGAAAAATTATCTTCCACCAAACTGGTG GCCAAAAGGTTGTGGATGCTGATATAGAAGACATGTAAATGAAAACAATAAATGGAATT 700 759 818 AAAAATTTAGAGAAATGCTCAGAAAAATGAAAACTATTTGTGCTCCATTAAAGCCATGC ATAGATAGAATGTCTTCATAGAACCTAGGATCCAAGGTTCTATGAAGACCTC AGCTCAA 877 CGAGGCCAAAAGCATCCTGATTTCTGA ATG GCC CTC CTC TTC CCT CTA CTG 928 GCA GCC CTA GAG GTG TGC AGC TGT GGC TCT TCT GGA TCT CTA GGA 973 TAT AAC CTG CCT CAG AAC CAT GGC CTG CGGGGG AGG AGA ATC TCT CCC TTC TTG TGT CTA 1063 AAG GAC AGA AGT GAC TTC AGA TTC CCC CAG GAG AAG GTG GAA GTC 1108 AGC CAG TTG CAG AAG GCC CAG GCT ATG TCT TTC CTC TAT GAT GTG 1153 TTA CAG CAG GTC TTC AAC TAC CAC AAA GCG CTC CTC TGC TGC 1198 ATG GAA CAT GAC CTT CCT GGA CCA ACT CCA CAC TTT ACG TCA TCA 1243 GCA GCT GGA ACA CCT GGA GAC CTG CTT GGT GCA GGA GAT GGG AGA 1288 AGG AGA AGC TGG GGG CAG TGG GTG GGC TCT ACA CTG GCC 1333 TTG AGG AGG TAT TTC CAG GAA TCC ATC TCT ACC TGA AAGAGAAGAAA 1380 TAAAGATTGTGCCTGGGAAGTTGTCAGAGTGGAAATCATGAGATCCTTTTCATCCACAA 1439 GTTTGGAAGAAAGATTGAGAAGTAAGGATGAAGACCTGGGCTCATCATGAAATGATTCT 1498 CATTGACTAATCTGCCATATCACACTTGTACATGTGACTTTGGATATTCAAAAAGCTCA 1557 TTTCTGTTTCATCAGAAATTATTGAATTAGTTTTAGCAAATACTTTATTAATAGCATAA 1619 AGCAAG TTTATGTCAAAAACATTCAGCTCCTGGGGCATCCGTAACTCAGAGATAACTGC 1675 CCTGATGCTGTTTATTTATCTTCCTTCTTTTTTTTCATGCCTTGTATTTATGATATTTA TATATTTTATATTTTCATCTTCACATCGTATTAAAATTTATAAAACATTCACTTTTTCA 1734 1793 1852 TATTAAGTTTGCATTTTGTTTTATTAAATTCATATCAAAGAAAACTCTGTAAATGTTTC In DK 175194 B1 70 I I I I I I TATTCTAAAAACAATGTCTACTTTCTCTTTTTGTAAACCAAATTGAAAATATGGTAAAA 1911 TGTATTAACTCATTCATTTCATTCCTATTATATGTATAAATTGAGTAAATGGCAAACTG 1970 2029 TGGGGTTTTCTTAAAGAAATACAGGTGAATAAAGCAAACACAGTTTCTCTCAGTCTAAG I I I I I I AGGGAAAGAGACGTAAAAACAGGACAAATATTTATATTATTTCAATTATGTTAAATGCT 2088 2132 In ACAAAGAGAAGTAAAGAAAAGTGATGTTCTCACATCAGAAGCTT 12. Interferon-pseudo-a)3-gen, kendeteg- I I net ved, at det har formlen CCATG 5 I I CATAGCAGGAATGCCTTGAGAGAAGCTGAAGTCCAAGGTTCATCCAGACCCCAGCTCAG 64 I I CTAGGCCAGCAGCACCCTCGTTTCCCA ATG GTC CTC CTG CTT CCT CTA CTC 115 I I GTG GCC CTG CCG CTT TGC CAC TGT GGC CCT GTT GGA TCT CTG AGC 160 I I TGG GAC CTG CCT CAG AAC CAT GGC CTA CTT AGC AGG AAC ACC TTG 205 I I GCA CTT CTG . GGC CAA ATG TGC AGA ATC TCC ACT TTC TTG TGT CTC 250 I I AAG GAC AGA AGA GAC TTC AGG TTC CCC CTG GAG ATG TGG ATG GCA 295 I I GTC AGT TGC AGA AGG CCC CGG CCC TGT CTG TCC TCC ATG AGA TGC 340 I I TTC AGC AGA TCT TCA GCC TCT TCC CCA CAG AGT GCT CCT CTG CTG 385 I I CCT GGA ACA TGA CCCTCCTGGACCAACTCCACACTGGACTTCATCTGCAGCTGGA 440 I I ATGCCTGGATGCTTGCTTAGGGCAGACAAAAAGAGAGGAAGAATCTGTGGGGGTGATTG 499 I I GGGCCCTACACTGGCCTTGAGGACGTACTTTCAGGGAATGCATGGGAATCCAGGGAATC 558 I I TACCTGGAGGAGAAGAAATACAGTGACTGTGCTTGGGAGGTTGTCAGAGTGGAATCGTG 617 I I AAATCCTTCTCTTCATCATCAACAAACTTGCAAGAAGGACTGAGAAGTAAGGATGAAGA 676 I I CCTGGGTTCATCCTGAAATTATTCTCATTGATTAATCTGCCATATCACACTTGCACATG 735 I I TGTCTTTG GTCATTTCAATAGGTTCTTATTTCTGCAG 772 I I 13, Interferon-pseudo-ω4-gen, kendeteg- I I net ved, at det har formlen I I AAGCTTTGGGCATGACCTAGTAGGTGACTCTT 32 I I AGTTGGAGTGGTCAGTTGTAAGGCTCTTGCTCAGTCACGTGGCTCCCCTGTATTTCCCC 91 I I ACGTTTGCAGCCGTGCTCCTTCTCAATGCTATGAAAGTGTGGGCTCCTCTCCCACTGGA 150 I I GTGCTGACTGTAGCTTGTATCTTGGCACTCCCAGGCTGTACATAACAGCTCTGAGGTGA 209 I I TCTCAGGGTTAATGTTTTCTCCCCGACTTGGAGGCCATTGAAGGAAGGGACCTTAGTAG 268 I I TAGTTGTAACTGAGGGTCTTTTGCTTGTCTCCTGGGGGCTCCACCCCAGAGATGCAGGT 327 I I GAGCAATCACTCAGTGCATTCAGCTTGGGATGGGGGTGTCTGTGCTGTGGGCCCAAGAC 386 I I AGGGGTTCCCTGCCTGGTGATGTGAGGGGTGGGTGGTTGACCAATGGCAGACAGACTGG 445 I I CCTCCTCTCTTGGGTTGACAGCAGCTTGTTGGAGGTATGCATAAGGCACTTGGGGTCTT 504 I I GCTCCTTCATTAGTTCCAAGGTAGCTGGGGTAGTACCACTGCAGAGGCAGTGTTAGACA 563 I I GGCTTTCTGTTACCCCTGGGGTCTCCACCTCCTAGAAATGTGAAGTCATGTTAATGGGA 622* I DK 175194 B1 GTGTTTAGCCAGAGGAGTGGGGTGGCTGCATGCTGGTGTAAGTATGGGACTTCACTTCT 681 TGGGAAACAGGGAGGTGGAATCTTACCA6CAGGAGACT6TTCTCCTCACGATGTGTAAC 740 CTGCAGTGTGCTGGAAGTTTAGGTGACTGTGGCATGATGTTAGCTTGTAAACAAAGAGC 799 TTCAGACTCTTTGTCTCTTCCCCAGACCCAAGGCAGCAAGGATAAAAGCTGCTGCTGTG 858 GCAGTGGCAGAGGTAGQATGGTTGTGGGAGCCTCTCCCCAGGGAAACTCTAGTCAACTA 917 CCAGTGGATATGCTCAGCCATGGGTAGGGTGACTGTTCTGCAGTCATGGGCAGGGGGCC 976 TGCTCCTGAAGAATAGGGACAGGGATTCTCAGGGAAGAGGGGCTGGACTCCTCTTCATA 1035 TAGTGGCGATGATGTGCTGGAGGTGCCAGTGTAGTGAATAGGCCTTTGTTCCTTCCCCA 1094 GCCAGAGGGCTGCTGGGGCTGTCCCACTGCAACGGTCATGGTGGATGGGTTATGGGTTG 1153 ACTGTGGGATTTCTTTCTTGGAGAAATGCTGGACTGCCTGATTGAGGAGACGAGGGAAG 1212 GGAAGAATGCCTGTGCTGGAGTCTCTGGTCAGGTGGCTCTGCCACAGAGGAGAGGTGAC 1271 CACGAGGAACTGCGTGGAGAACAGTGTAGCCACTCTTCTGTGAGGCAGTTGCTCTGTTT 1330 TGGGGATCTGGAGGAGCCGCTATTCCTTACAGATTCCCAGAGCCTGGAGACAGCAAGGG 1389 CAAGAGCTGTGAGAAAGCAAAGATAGCAACCCACCCTTCTCACTGGGAGCTCTGTTCCA 1448 GGGAGATGCAGAGCTGCCATTGCTCAATAGCCCCAGCTGGTAGCTGGAGACCCAGGCCT 1507 GGCAGACCCACCCAGTGAGCAGATAGGGGATTAGGGACCCACATAACACACAGTCTGGC 1566 CACTTTTCCATAGGGCTGCTGAATATGCTGGGGGTCCAATCCAGACCATAGTCACCTCA 1625 CATTTTTCAGTACCTGAAGATATCAACAGTGAAGGCTATGAAACAGTGAAGATGGGGAC 1684 CTGCCCCTGCCTCTGGACCTCTGTrCCAGAGAGGTACAACCTGTTGCCTCCGACATACA 1743 TGCAGGAGGTGGCTGGAGACCCGGTGGATATCCCTCCCACTGAGGAGAAGCAGCATCAG 1802 GGAATCAGGTGAAGAAACAGTCTGGCCACTTTTTGGTAGAGCAGCTGTGCTTGCTGGGG 1861 GTCTGCTACCACCCCCAGCAAAAAGAATGGCATTTGCAAGAATGGCTAAGGCTGCTAAA 1920 CAGCAACAATGGCAACCTACCATTCCCrrTGGAGCGCCATCCCAGGGAXATTCGAAACT 1979 GCTGTCCACTAGAAAACAGTGGTGGAGGTGAGTGGAGACCCCAGTGGAGAGTTTCACCT 2038 GGTGAAAAGAAACAGGATTTGGGATCGACATGAATAACCAATCTGACTGCTTCCCCGTA 2097 GAGCTGCTGGACTGTGCTGGGTGGCTGCTCCAGTCCCTAGCTGCCTTGGACTGCCGAGA 2156 ACCCAAAGGCTCCAATAGCTAAGATTGTGAAAGAGCAAAGATGGCAGCCCACCCCCTGC 2215 CACAGGGAGCTCCATGTCAGGGAGGTATGAGGCTGCTACCAGTGTCTGGCTGGATTCCC 2274 AAGTCGAGTGGGTCTXACCCTGAGACAGGCCATGGAAGGTGGGCCTGTCATTGTCACTG 2333 CCCAGCGCCCTGGATGAAACCCCTTTGCTAGGGGTATGTATAGGGGTCTAGCGTCCTGC 2392 TTGGCTGGAGTTAIAGCTTCTTTTGTGGGGAGGCCTGGGTATCTAAGGCTCCAGGGTAC 2451 CCATGCATGCGAGAGCGGCTGCTCTGCTGAACCCTACGTAGCCCTGCATGTCAGACTAA 2510 ATGCCCTGGTAGAGTGGGTTCACTAGGAGATCTCCTGACCTGAGGATTGCAAAGATCTG 2569 TGGGAGAAGCGTGGGTCCCCAGGGCTGCTCACTTACTCACCACTTCCCTGGGCAGGAGA 2628 GGCTCCCCTGGCTCTGTGTCATCCTGGGGGGGCAGTTGTCCTGCCTXACTTTGCTTTAT 2687 TCTCCATGGGTCAAGTTGTTlTCTTGAGTCTCAATGTGTGCACCTGGTTTiTrCAGTTG 2746 AAGGTGCTGTATTTACTTGCCCCTTCCATTTCTCTCCATGAGAGTGGCACACACTAGCA 2805 GGTTCCAGTCGGCCATCrTGCAACCCCTGAAAACTATTTGTTTCCAGCTATAAGCCATT 2864 I DK 175194 B1 I I 72 I I GAGAGAACCTGGAGTGGCATAAAAAGAATGCCTCGGGGTTCATCCCGACCCCAGCTCAG 2923 I I CTAGGCCAGCAGCACCCTCGTTTCCCA ATG GTC CTA CTG CTT GTT CTA CTG 2974 I I GTG GCC CTG CTG CTT TGC CAA TGT GGC CCT GTT GGA TCT CTG GGC 3019 I I TTT GAC CTG CCT CAG AAC CGT GGC CTA CTT AGC AGG AAC ACC TTG 3064 I I GCA TTC TGG GCC AAA TGC AGA ATC TCC ACT TTC TTG TGT CTC AAG 3109 I I GAC AGA AGA GAC TTC AGG TTC CCC CTG GAG ATG TGG ATG GCA GTC 3154 I I ATT TGC AGA AGG CCC AGG CTG TGT CTG TCC TCC ATG AGA TGC TTC 3199 I I AGC AGA TCT TCA GCC TCT TCC CCA CAG AGC GCT CCT CTG CTG CCT 3244 I I GGA ACA TGA CCCTCCTGGACCAGCTCCACACTGGATTTCATCAGCAGCTCGAATAG 3300 I I CCTGGAGTCTTGCTTAGGGCAGGCAACAGGAGAGGAAGAATCTGTGGGGGTGATTGGGA 3359 I I CCCTACACTGGCCTTGAGGAGGTACTTCCAGGGAATCCATGGGAATCCAGAGAATCTAC 3418 I I CTGAAAGAGAAGAAATACAGTGACTGTGCTTAGGAGGTTGTCAGAATGGAATCATGAAA 3477 I I TCCTTCTCTTCATCAACAGACTTGCAAGGACTGAGAAGTAAGGATGAAGACCTGGGGTC 3536 I I TGCTTTACTCTTTCTTATTTTCTTCCTCTTCCTTACTATGTGTTTATTTCTTCTTTTTC 3595 I I TAGTTCCTTAACTTGTAAGTAGTTCACTTGGTTTGAGGTCTTTCTTCTTTTTTAATATA 3654 I I AGCTT 365912. Interferon pseudo-a) 3 gene, characterized in that it has the formula CCATG 5 II CATAGCAGGAATGCCTTGAGAGAAGCTGAAGTCCAAGGTTCATCCAGACCCCAGCTCAG 64 II CTAGGCCAGCAGCACCCTCGTTTCCCA CCT CCT CCT CCT CCT CCT CCT CCT CCT CCT GGA TCT CTG AGC 160 II TGG GAC CTG CCT CAG AAC CAT GGC CTA CTT AGC AGG AAC ACC TTG 205 II GCA CTT CTG. GGC CAA ATG TGC AGA ATC TCC ACT TTC TTG TGT CTC 250 II AAG GAC AGA AGA GAC TTC AGG TTC CCC CTG GAG ATG TGG ATG GCA 295 II GTC AGT TGC AGA AGG CCC CGG CCC TGT CTG TCC TCC ATG AGA TGC 340 II TTC AGC AGA TCT TCA GCC TCT TCC CCA CAG AGT GCT CCT CTG CTG 385 II CCT GGA ACA TGA CCCTCCTGGACCAACTCCACACTGGACTTCATCTGCAGCTGGA 440 II ATGCCTGGATGCTTGCTTAGGGCAGACAAAAAGAGAGGAAGAATCTGTGGGGGTGATTG 499 II GGGCCCTACACTGGCCTTGAGGACGTACTTTCAGGGAATGCATGGGAATCCAGGGAATC 558 II TACCTGGAGGAGAAGAAATACAGTGACTGTGCTTGGGAGGTTGTCAGAGTGGAATCGTG 617 II AAATCCTTCTCTTCATCATCAACAAACTTGCAAGAAGGACTGAGAAGTAAGGATGAAGA 676 II CCTGGGTTCATCCTGAAATTATTCTCATTGATTAATCTGCCATATCACACTTGCACATG 735 II TGTCTTTG GTCATTTCAATAGGTTCTTATTTCTGCAG 772 II 13, Interferon-pseudo-ω4 gene , characterized in that it has the formula II AAGCTTTGGGCATGACCTAGTAGGTGACTCTT 32 II AGTTGGAGTGGTCAGTTGTAAGGCTCTTGTCGTCGTGTGTGTGTGTGTGTTTCCCCC 91 II ACGTTTGCAGCCT TATCTTGGCACTCCCAGGCTGTACATAACAGCTCTGAGGTGA 209 I I TCTCAGGGTTAATGTTTTCTCCCCGACTTGGAGGCCATTGAAGGAAGGGACCTTAGTAG 268 I I TAGTTGTAACTGAGGGTCTTTTGCTTGTCTCCTGGGGGCTCCACCCCAGAGATGCAGGT 327 I I GAGCAATCACTCAGTGCATTCAGCTTGGGATGGGGGTGTCTGTGCTGTGGGCCCAAGAC 386 I I AGGGGTTCCCTGCCTGGTGATGTGAGGGGTGGGTGGTTGACCAATGGCAGACAGACTGG 445 I I CCTCCTCTCTTGGGTTGACAGCAGCTTGTTGGAGGTATGCATAAGGCACTTGGGGTCTT 504 I I GCTCCTTCATTAGTTCCAAGGTAGCTGGGGTAGTACCACTGCAGAGGCAGTGTTAGACA 563 I I GGCTTTCTGTTACCCCTGGGGTCTCCACCTCCTAGAAATGTGAAGTCATGTTAATGGGA 622 * In DK 175194 B1 GTGTTTAGCCAGAGGAGTGGGGTGGCTGCATGCTGGTGTAAGTATGGGACTTCACTTCT 681 TGGGAAACAGGGAGGTGGAATCTTACCA6CAGGAGACT6TTCTCCTCACGATGTGTAAC 740 CTGCAGTGTGCTGGAAGTTTAGGTGACTGTGGCATGATGTTAGCTTGTAAACAAAGAGC 799 TTCAGACTCTTTGTCTCTTCCCCAGACCCAAGGCAGCAAGGATAAAAGCTGCTGCTGTG 858 GCAGTGGCAGAGGTAGQATGGTTGTGGGAGCCTCTCCCCAGGGAAACTCTAGTCAACTA 917 CCAGTGGATATGCTCAGCCATGGGTAGGGTGACTGTTCTGCAGTCATGGGCAGGGGGCC 976 TGCTCCTGAAGAATAGGGACAGGGATTCTCAGGGAAGAGGGGCTGGACTCCTCTTCATA 1035 TAG TGGCGATGATGTGCTGGAGGTGCCAGTGTAGTGAATAGGCCTTTGTTCCTTCCCCA 1094 GCCAGAGGGCTGCTGGGGCTGTCCCACTGCAACGGTCATGGTGGATGGGTTATGGGTTG 1153 ACTGTGGGATTTCTTTCTTGGAGAAATGCTGGACTGCCTGATTGAGGAGACGAGGGAAG 1212 GGAAGAATGCCTGTGCTGGAGTCTCTGGTCAGGTGGCTCTGCCACAGAGGAGAGGTGAC 1271 CACGAGGAACTGCGTGGAGAACAGTGTAGCCACTCTTCTGTGAGGCAGTTGCTCTGTTT 1330 TGGGGATCTGGAGGAGCCGCTATTCCTTACAGATTCCCAGAGCCTGGAGACAGCAAGGG 1389 CAAGAGCTGTGAGAAAGCAAAGATAGCAACCCACCCTTCTCACTGGGAGCTCTGTTCCA 1448 GGGAGATGCAGAGCTGCCATTGCTCAATAGCCCCAGCTGGTAGCTGGAGACCCAGGCCT 1507 GGCAGACCCACCCAGTGAGCAGATAGGGGATTAGGGACCCACATAACACACAGTCTGGC 1566 CACTTTTCCATAGGGCTGCTGAATATGCTGGGGGTCCAATCCAGACCATAGTCACCTCA 1625 CATTTTTCAGTACCTGAAGATATCAACAGTGAAGGCTATGAAACAGTGAAGATGGGGAC 1684 CTGCCCCTGCCTCTGGACCTCTGTrCCAGAGAGGTACAACCTGTTGCCTCCGACATACA 1743 TGCAGGAGGTGGCTGGAGACCCGGTGGATATCCCTCCCACTGAGGAGAAGCAGCATCAG 1802 GGAATCAGGTGAAGAAACAGTCTGGCCACTTTTTGGTAGAGCAGCTGTGCTTGCTGGGG 1861 GTCTGCTACCACCCCCAGCAAAAAGAATGGCATTTGCAAGAATGGCTAAGGCTGCTAAA 1920 CAGCAACAATGGCAACCTACCATTCCCr rTGGAGCGCCATCCCAGGGAXATTCGAAACT 1979 GCTGTCCACTAGAAAACAGTGGTGGAGGTGAGTGGAGACCCCAGTGGAGAGTTTCACCT 2038 GGTGAAAAGAAACAGGATTTGGGATCGACATGAATAACCAATCTGACTGCTTCCCCGTA 2097 GAGCTGCTGGACTGTGCTGGGTGGCTGCTCCAGTCCCTAGCTGCCTTGGACTGCCGAGA 2156 ACCCAAAGGCTCCAATAGCTAAGATTGTGAAAGAGCAAAGATGGCAGCCCACCCCCTGC 2215 CACAGGGAGCTCCATGTCAGGGAGGTATGAGGCTGCTACCAGTGTCTGGCTGGATTCCC 2274 AAGTCGAGTGGGTCTXACCCTGAGACAGGCCATGGAAGGTGGGCCTGTCATTGTCACTG 2333 CCCAGCGCCCTGGATGAAACCCCTTTGCTAGGGGTATGTATAGGGGTCTAGCGTCCTGC 2392 TTGGCTGGAGTTAIAGCTTCTTTTGTGGGGAGGCCTGGGTATCTAAGGCTCCAGGGTAC 2451 CCATGCATGCGAGAGCGGCTGCTCTGCTGAACCCTACGTAGCCCTGCATGTCAGACTAA 2510 ATGCCCTGGTAGAGTGGGTTCACTAGGAGATCTCCTGACCTGAGGATTGCAAAGATCTG 2569 TGGGAGAAGCGTGGGTCCCCAGGGCTGCTCACTTACTCACCACTTCCCTGGGCAGGAGA 2628 GGCTCCCCTGGCTCTGTGTCATCCTGGGGGGGCAGTTGTCCTGCCTXACTTTGCTTTAT 2687 TCTCCATGGGTCAAGTTGTTlTCTTGAGTCTCAATGTGTGCACCTGGTTTiTrCAGTTG 2746 AAGGTGCTGTATTTACTTGCCCCTTCCATTTCTCTCCATGAGAGTGGCACACACTAGCA 2805 GGTTCCAGTCGGCCATCrTGCAACCCCTGAAAACTATTTGTTTCCAGCTATAA GCCATT 2864 In DK 175194 B1 II 72 II GAGAGAACCTGGAGTGGCATAAAAAGAATGCCTCGGGGTTCATCCCGACCCCAGCTCAG 2923 II CTAGGCCAGCAGCACCCTCGTTTCCCA ATG GTC CTA CTG CTT GTT CTA CTG 2974 II GTG GCC CTG CTG CTT TGC CAA TGT GGC CCT GTT GGA TCT CTG GGC 3019 II TTT GAC CTG CCT CAG AAC CGT GGC CTA CTT AGC AGG AAC ACC TTG 3064 II GCA TTC TGG GCC AAA TGC AGA ATC TCC ACT TTC TTG TGT CTC AAG 3109 II GAC AGA AGA GAC TTC AGG TTC CCC CTG GAG ATG TGG ATG GCA GTC 3154 II ATT TGC AGA AGG CCC AGG CTG TGT CTG TCC ATG AGA TGC TCC TTC 3199 II AGC TCT AGA TCT TCA GCC TCC CAG AGC CCA CTG CTG CCT GCT CCT 3244 II GGA ACA TGA CCCTCCTGGACCAGCTCCACACTGGATTTCATCAGCAGCTCGAATAG CCTGGAGTCTTGCTTAGGGCAGGCAACAGGAGAGGAAGAATCTGTGGGGGTGATTGGGA 3359 3300 II II II CTGAAAGAGAAGAAATACAGTGACTGTGCTTAGGAGGTTGTCAGAATGGAATCATGAAA CCCTACACTGGCCTTGAGGAGGTACTTCCAGGGAATCCATGGGAATCCAGAGAATCTAC 3418 3477 3536 II II TCCTTCTCTTCATCAACAGACTTGCAAGGACTGAGAAGTAAGGATGAAGACCTGGGGTC TGCTTTACTCTTTCTTATTTTCTTCCTCTTCCTTACTATGTGTTTATTT CTTCTTTTTC 3595 I I TAGTTCCTTAACTTGTAAGTAGTTCACTTGGTTTGAGGTCTTTCTTCTTTTTTAATATA 3654 I I AGCTT 3659 14. Transformeret værtsorganisme, kende- I tegnet ved, at den indeholder den genetiske in- I I formation ifølge krav 1 til 10. I I 15. Værtsorganisme ifølge krav 14, k e n d e - I I 20tegnet ved, at den genetiske sekvens er inde- I I holdt i en vehikel, der kan undergå replikation i I I værtsorganismen. I I 16. Værtsorganisme ifølge krav 14,kende- H I tegnet ved, at den er en pattedyrscellelinie I 25 eller E.coli. I 17. Værtsorganisme ifølge krav 14,kende- I I tegnet ved, at den er E.coli med DSM nr. 3003 I eller E.coli med DSM nr. 3004. I I 18. Værtsorganisme ifølge krav 17,kende- H I 30tegnet ved, at vehiklen derudover indeholder I I for ekspressionen nødvendige replikon- og kontrolse- I I kvenser. I DK 175194 B1Transformed host organism, characterized in that it contains the genetic information according to claims 1 to 10. II. Host organism according to claim 14, known - II characterized in that the genetic sequence is contained in a vehicle that can undergo replication in the II host organism. The host organism of claim 14, characterized in that it is a mammalian cell line I 25 or E. coli. A host organism according to claim 14, characterized in that it is E. coli with DSM No. 3003 I or E. coli with DSM No. 3004. II 18. Host organism according to claim 17, characterized in that: that the vehicle additionally contains II for the expression necessary replicon and control sequences. In DK 175194 B1 19. Værtsorganisme ifølge krav 18, kendetegnet ved, at vehiklen indeholder de for ekspression nødvendige replikon- og kontrolsekvenser fra plasmidet pER103 med DSM nr. 2773 (se figur 6). 5 20. Værtsorganisme ifølge krav 19, kende tegnet ved, at den er transformeret med et eks-pressionsplasmid ifølge krav 21, 22 eller 23.Host organism according to claim 18, characterized in that the vehicle contains the expression and control sequences required for expression from plasmid pER103 with DSM No. 2773 (see Figure 6). A host organism according to claim 19, characterized in that it is transformed with an expression plasmid according to claim 21, 22 or 23. 21. Ekspressionsplasmid for interferon-ω, der er et derivat af plasmidet pBR322, kendeteg-10 n e t ved, at plasmidet pBR322 i stedet for sit eget kortere EcoRI/BamHI-fragment indeholder en DNA-sekvens med formlen EcoRI Sau3A g a a trt c acoctGATCGCTAAAACATTGTGCAAAAAGAGGGTTGACTTTGCCTTCGCGA 59 ^mRHA-Start Met ACCAGTTAACTAGTACACAAGTTCACGGCAACGGTAAGGAGGTTTAAGCTTAAAfl ATG 116 RBS Hindlll Cys Asp TGT fiÅX. C-jIH^-omega-Gen-» Sau3A21. Expression plasmid for interferon-ω, a derivative of the plasmid pBR322, characterized in that the plasmid pBR322, instead of its own shorter EcoRI / BamHI fragment, contains a DNA sequence of the formula EcoRI Sau3A go into c ^ mRHA Start With ACCAGTTAACTAGTACACAAGTTCACGGCAACGGTAAGGAGGTTTAAGCTTAAAfl ATG 116 RBS Hindlll Cys Asp TGT fiÅX. C-jIH ^ -omega-Gen- »Sau3A 22. Ekspressionsplasmid pRHW12 ifølge krav 21, kendetegnet ved, at interferon-o>-genet op- viser en DNA-sekvens med formlen TGT GAT CTG CCT CAG AAC CAT GGC CTA CTT AGC AGG AAC ACC TTG 28 Ncol GTG CTT CTG CAC CAA ATG AGG AGA ATC TCC CCT TTC TTG TGT CTC 73 AAG GAC AGA AGA GAC TTC AGG TTC CCC CAG GAG ATG GTA AAA GGG 118 AGC CAG TTG CAG AAG GCC CAT GTC ATG TCT GTC CTC CAT GAG ATG 163 CTG CAG CAG ATC TTC AGC CTC TTC CAC ACA GAG CGC TCC TCT GCT 208 GCC TGG AAC ATG ACC CTC CTA GAC CAA CTC CAC ACT GGA CTT CAT 253 CAG CAA CTG CAA CAC CTG GAG ACC TGC TTG CTG CAG GTA GTG GGA 298 GAA GGA GAA TCT GCT GAG GCA ATT AGC AGC CCT GCA CTG ACC TTG 343 AGG AGG TAC TTC CAG GGA ATC CGT GTC TAC CTG AAA GAG AAG AAA 388 TAC AGC GAC TGT GCC TGG GAA GTT GTC AGA ATG GAA ATC ATG AAA 433 I DK 175194 B1 I I 74 I I TCC TTG TTC TTA TCA ACA AAC ATG CAA GAA AGA CTG AGA AGT AAA 478 I I GAT AGA GAC CTG GGC TCA TCT TGAAAT6ATTCTCATTGATTAATTTGCCATA 530 I I TAACACTTGCACATGTGACTCTGGTCAATTCAAAAGACTCTTATTTCGGCTTTAATCAC 589 I I AGAATTGACTGAATTAGTTCTGCAAATACTTTGTCGGTATATTAAGCCAGTATATGTTA 648 I I AAAAGACTTAGGTTCAGGGGCATCAGTCCCTAAGATGTTATTTATTTTTACTCATTTAT 707 I I TTATTCTTACATTTTATCATATTTATACTATTTATATTCTTATATAACAAATGTTTGCC 766 I I TTTACATTGTATTAAGATAACAAAACATGTTCASCi 802 I I Alul I I 10 IExpression plasmid pRHW12 according to claim 21, characterized in that the interferon-o> gene displays a DNA sequence of the formula TGT GAT CTG CCT CAG AAC CAT GGC CTA CTT AGC AGG AAC ACC TTG 28 Ncol GTG CTT CTG CAC CAA ATG AGG AGA ATC TCC CCT TTC TTG TGT CTC 73 AAG GAC AGA AGA GAC TTC AGG TTC CCC CAG GAG ATG GTA AAA GGG 118 AGC CAG TTG CAG AAG GCC CAT GTC ATG TCT GTC CTC CAT GAG ATG 163 CTG CAG CAG ATC TTC AGC CTC TTC CAC ACA GAG CGC TCC TCT GCT 208 GCC TGG AAC ATG ACC CTC CTA GAC CAA CTC CAC ACT GGA CTT CAT 253 CAG CAA CTG CAA CAC CTG GAG ACC TGC TTG CTG CAG GTA GTG GGA 298 GAA GGA GAA TCT GCT GAG GCA ATT AGC AGC CCT GCA CTG ACC TTG 343 AGG AGG TAC TTC CAG GGA ATC CGT GTC TAC CTG AAA GAG AAG AAA 388 TAC AGC GAC TGT GCC TGG GAA GTT GTC AGA ATG GAA ATC ATG AAA 433 I DK 175194 B1 II 74 II TCC TTG TTC TTA TCA ACA AAC ATG CAA GAA AGA CTG AGA AGT AAA 478 II GAT AGA GAC CTG GGC TCA TCT TGAAAT6ATTCTCATTGATTAATTTGCCATA 530 II TAACACTTGCACATGTGACTCTGGTCAATTCAAAAGACTCTTATTTCGGCTTTA ATCAC AGAATTGACTGAATTAGTTCTGCAAATACTTTGTCGGTATATTAAGCCAGTATATGTTA 589 I I 648 I I 707 I I AAAAGACTTAGGTTCAGGGGCATCAGTCCCTAAGATGTTATTTATTTTTACTCATTTAT TTATTCTTACATTTTATCATATTTATACTATTTATATTCTTATATAACAAATGTTTGCC 766 I I I I 802 TTTACATTGTATTAAGATAACAAAACATGTTCASCi Alu I I I I 10 23. Ekspressionsplasmid pRHWll ifølge krav 21, .1 I kendetegnet ved, at interferon-6>-genet op- I I viser en DNA-sekvens med formlen I I TGT GAT CTG CCT CAG AAC CAT GGC CTA CTT AGC AGG AAC ACC TTG 28 I I Ncol I I GTG CTT CTG CAC CAA ATG AGG AGA ATC TCC CCT TTC TTG TGT CTC 73 I I AAG GAC AGA AGA GAC TTC AGG TTC CCC CAG GAG ATG GTA AAA GGG 118 I I AGC CAG TTG CAG AAG GCC CAT GTC ATG TCT GTC CTC CAT GAG ATG 163 I I CTG CAG CAG ATC TTC AGC CTC TTC CAC ACA GAG CGC TCC TCT GCT 208 I I GCC TGG AAC ATG ACC CTC CIA GAC CAA CTC CAC ACT GGA CTT CAT 253 I I CAG CAA CTG CAA CAC CTG GAG ACC TGC TTG CTG CAG GTA GTG GGA 298 I I GAA GGA GAA TCT GCT GAG GCA ATT AGC AGC CCT GGA CTG ACC TTG 343 I I AGG AGG TAC TTC CAG GGA ATC CGT GTC TAC CTG AAA GAG AAG AAA 388 I I TAC AGC GAC TGT GCC TGG GAA GTT GTC AGA ATG GAA ATC ATG AAA 433 I I TCC TTG TTC TTA TCA ACA AAC ATG CAA GAA AGA CTG AGA AGT AAA 478 I I GAT AGA GAC CTG GGC TCA TCT TGAAATGATTCTCATTGATTAATTTGCCATA 530 I I TAACACTTGCACATGTGACTCTGGTCAATTCAAAAGACTCTTATTTCGGCTTTAATCAC 589 I I AGAATTGACTGAATTAGTTCTGCAAATACTTTGTCGGTATATTAAGCCAGTATATGTTA 648 I I AAAAGACTTAGGTTCAGGGGCATCAGTCCCTAAGATGTTATTTATTTTTACTCATTTAT 707 I I . TTATTCTTACATTTTATCATATTTATACTATTTATATTCTTATATAACAAATGTTTGCC 766 I I TTTACATTGTATTAAGATAACAAAACATGTTCASst 802 I I Alul I DK 175194 B1Expression plasmid pRHWII according to claim 21, characterized in that the interferon-6> gene displays a DNA sequence of formula II TGT GAT CTG CCT CAG AAC CAT GGC CTA CTT AGC AGG AAC ACC TTG 28 II Ncol II GTG CTT CTG CAC CAA ATG AGG AGA ATC TCC CCT TTC TTG TGT CTC 73 II AAG GAC AGA AGA GAC TTC AGG TTC CCC CAG GAG ATG GTA AAA GGG 118 II AGC CAG TTG CAG AAG GCC CAT GTC ATG TCT GTC CTC CAT GAG ATG 163 II CTG CAG CAG ATC TTC AGC CTC TTC CAC ACA GAG CGC TCC TCT GCT 208 II GCC TGG AAC ATG ACC CTC CIA GAC CAA CTC CAC ACT GGA CTT CAT 253 II CAG CAA CTG CAA CAC CTG GAG ACC TGC TTG CTG CAG GTA GTG GGA 298 II GAA GGA GAA TCT GCT GAG GCA ATT AGC AGC CCT GGA CTG ACC TTG 343 II AGG AGG TAC TTC CAG GGA ATC CGT GTC TAC CTG AAA GAG AAG AAA 388 II TAC AGC GAC TGT GCC TGG GAA GTT GTC AGA ATG GAA ATC ATG AAA 433 II TCC TTG TTC TTA TCA ACA AAC ATG CAA GAA AGA CTG AGA AGT AAA 478 II GAT AGA GAC CTG GGC TCA TCT TGAAATGATTCTCATTGATTAATTTGCCATA 530 II TAACACTTGCACATGTGACTCTGG TCAATTCAAAAGACTCTTATTTCGGCTTTAATCAC 589 I I I I AGAATTGACTGAATTAGTTCTGCAAATACTTTGTCGGTATATTAAGCCAGTATATGTTA 648 AAAAGACTTAGGTTCAGGGGCATCAGTCCCTAAGATGTTATTTATTTTTACTCATTTAT 707 In In. TTATTCTTACATTTTATCATATTTATACTATTTATATTCTTATATAACAAATGTTTGCC 766 I I TTTACATTGTATTAAGATAACAAAACATGTTCASst 802 I I Alul I DK 175194 B1 24. Plasmid pRHWIO, der er et derivat af pBR.322, kendetegnet ved, at der i plasmi-det pER103 med DSM nr. 2773 (se figur 6) i Hindlll-stedet er indføjet et DNA-fragment med formlen Hindi II Sau3A Ncol a^SCTTAAAG ATGTGTGATC TGCCTCAGAA CCATGGCCTA CTTAGCAGGA 50 ACACCTTGGT GCTTCTGCAC CAAATGAGGA GAATCTCCCC TTTCTTGTGT 100 CTCAAGGACA GAAGAGACTT CAGGTTCCCC CAGGAGATGG TAAAAGGGAG 150 CCAGTTGCAG AAGGCCCATG TCATGTCTGT CCTCCATGAG ATGCTGCAGC 200 AGATCACACA TCTTTAaoet·. t Sau3A Hindlll24. Plasmid pRHW10, a derivative of pBR.322, characterized in that a DNA fragment of the formula Hindi II Sau3A Ncol has been inserted into the plasmid pER103 with DSM No. 2773 (see Figure 6). a ^ SCTTAAAG ATGTGTGATC TGCCTCAGAA CCATGGCCTA CTTAGCAGGA 50 ACACCTTGGT GCTTCTGCAC CAAATGAGGA GAATCTCCCC TTTCTTGTGT 100 CTCAAGGACA GAAGAGACTT CAGGTTCCCC CAGGAGATGG TAAAAGGGAG 150 CCAGTTGCAG AAGGCCCATG TCATGTCTGT CCTCCATGAG ATGCTGCAGC 200 AGATCACACA TCTTTAaoet ·. t Sau3A Hindlll 25. E. coli HB 101, kendetegnet ved, at den er transformeret med et plasmid ifølge krav 12, 22, 23 eller 24.E. coli HB 101, characterized in that it is transformed with a plasmid according to claims 12, 22, 23 or 24. 26. Humane interferon-proteiner af type I, kendetegnet ved, at de kodes for af et DNA-molekyle ifølge et af kravene 1 til 10.Human type I interferon proteins, characterized in that they are encoded by a DNA molecule according to any one of claims 1 to 10. 27. Humane interferoner ifølge krav 26, kendetegnet ved, at de modne interferoner opvi- 25 ser en divergens på 30 til 50% over for humane ot-interferoner.Human interferons according to claim 26, characterized in that the mature interferons show a divergence of 30 to 50% against human ot interferons. 28. Humane interferoner af type I ifølge krav 28, kendetegnet ved, at a) de modne interferoner opviser en divergens på 30 30 til 50% over for humane a-interferoner og en divergens på omtrent 70% over for β-interferon, og b) de har en længde på 168-174 aminosyrer; samt N-glycosylerede derivater deraf. __ _ ____ I DK 175194 B1 I I 76 IType I human interferons according to claim 28, characterized in that a) the mature interferons exhibit a divergence of 30 to 50% against human α-interferons and a divergence of about 70% to β-interferon, and b ) they have a length of 168-174 amino acids; as well as N-glycosylated derivatives thereof. __ _ ____ I DK 175194 B1 I I 76 I 29. Interferoner ifølge krav 28,kende- I I tegnet ved, at de opviser en divergens på 40 I I til 48% over for humane ot-interferoner, samt N- I I glycosylerede derivater deraf. I I 5 30. Interferoner ifølge krav 26 til 29, k e n - I I detegnet ved, at de indeholder et leader- I I peptid. IInterferons according to claim 28, characterized in that they exhibit a divergence of 40 I to 48% against human ot interferons, and N-I I glycosylated derivatives thereof. Interferons according to claims 26 to 29, characterized in that they contain a leader I peptide. IN 31. Interferoner ifølge krav 26 til 29, k e η - I I detegnet ved, at de har 172 aminosyrer. H I 10 32. Interferon ifølge krav 31, kende- I I tegnet ved, at det har aminosyresekvensen I I 5 10 15 I I Cys Asp Leu Pro Gin Asn His Gly Leu Len Ser Arg Asn Thr Leu I I 20 25 30 I I Val Leu Leu His Gin net Arg Arg Ile Ser Pro Phe Leu Cys Leu I I 35 40. 45 I I Lys Asp Arg Arg Asp Phe Arg Phe Pro Gin Glu Net Val Lys Gly I I 50 55 60 I I Ser Gin Leu Gin Lys Ala His Val Met Ser Val Leu His Glu Met I 65 70 75 I I Leu Gin Gin Ile Phe Ser Leu Phe His Thr Glu Arg Ser Ser Ala I I 80 85 90 I I Ala Trp Asn Met Thr Len Leu Asp Gin Leu His Thr Gly Leu His I 95 100 105 I I Gin Gin Leu Gin His Leu Glu Thr Cys Leu Leu Gin Val Val Gly I I 110 115 120 I I Glu Gly Glu Ser Ala Gly Ala Ile Ser Ser Pro Ala Leu Thr Leu I 125 130 135 I Arg Arg Tyr Phe Gin Gly Ile Arg Val Tyr Leu Lys Glu Lys Lys I I 140 145 150 I I Tyr Ser Asp Cys Ala Trp Glu Val Val Arg Met Glu Ile Met Lys I I 155 160 165 I I Ser Leu Phe Leu Ser Thr Asn Met Gin Glu Arg Leu Arg Ser Lys I I 170 I I Asp Arg Asp Leu Gly Ser Ser I I og i aminosyreposition 78 N-glycosylerede derivater I I deraf. I DK 175194 B131. Interferons according to claims 26 to 29, characterized in that they have 172 amino acids. HI 10 32. Interferon according to claim 31, characterized in that it has the amino acid sequence II 5 10 15 II Cys Asp Leu Pro Gin Asn His Gly Leu Len Ser Arg Asn Thr Leu II 20 25 30 II Val Leu Leu His Gin net Arg Arg Ile Ser Pro Phe Leu Cys Leu II 35 40. 45 II List Asp Arg Arg Asp Phe Arg Phe Pro Gin Glu Net Fall List Gly II 50 55 60 II Ser Gin Leu Gin Lys Ala His Fall With Ser Val Leu His Glu Met I 65 70 75 II Leu Gin Gin Ile Phe Ser Leu Phe His Thr Glu Arg Ser Ser Ala II 80 85 90 II Ala Trp Asn Met Thr Len Leu Asp Gin Leu His Thr Gly Leu His I 95 100 105 II Gin Gin Leu Gin His Leu Glu Thr Cys Leu Leu Gin Val Val Gly II 110 115 120 II Glu Gly Glu Ser Ala Gly Ala Ile Ser Ser Pro Ala Leu Thr Leu I 125 130 135 I Arg Arg Tyr Phe Gin Gly Ile Arg Val Tyr Leu Lys Glu Lys Lys II 140 145 150 II Tyr Ser Asp Cys Ala Trp Glu Val Val Arg With Glu Ile With List II 155 160 165 II Ser Leu Phe Leu Ser Thr Asn With Gin Glu Arg Leu Arg Ser Ser II II 170 II Asp Arg Asp Leu G ly Ser Ser I I and in amino acid position 78 N-glycosylated derivatives I I thereof. In DK 175194 B1 33. Interferon ifølge krav 31, kendetegnet ved, at interferonet ifølge krav 32 i position 111 indeholder aminosyren Glu i stedet for Gly, og i aminosyreposition 78 N-glycosylerede derivater deraf.Interferon according to claim 31, characterized in that the interferon according to claim 32 in position 111 contains the amino acid Glu instead of Gly, and in amino acid position 78 N-glycosylated derivatives thereof. 34. Interferoner ifølge krav 30 til 33, ken detegnet ved, at de indeholder et leader-peptid med formlen Met Ala Leu Leu Phe Pro Leu Leu Ala Ala Leu Val Met Thr Ser Tyr Ser Pro Val Gly Ser Leu Gly. 10- 35. Fremgangsmåde til fremstilling af interfe ron-proteiner ifølge krav 26 til 34, kendetegnet ved, at en egnet værtsorganisme transformeres med genetisk information, der koder for interferon-proteiner iføl-15 ge krav 26 til 34; denne information eksprimeres til produktion af det pågældende interferon i værtsorganismen; og det herved tilvejebragte interferon-protein isoleres fra denne værtsorganisme.Interferons according to claims 30 to 33, characterized in that they contain a leader peptide of the formula Met Ala Leu Leu Phe Pro Leu Leu Ala Ala Leu Val Met Thr Ser Tyr Ser Pro Val Gly Ser Leu Gly. A method for producing interferon proteins according to claims 26 to 34, characterized in that a suitable host organism is transformed with genetic information encoding interferon proteins according to claims 26 to 34; this information is expressed to produce the interferon in question in the host organism; and the resulting interferon protein is isolated from this host organism. 36. Fremgangsmåde ifølge krav 35, kende - tegnet ved, at informationen er indeholdt i et hvilket som helst DNA-molekyle ifølge krav 1 til 10.The method of claim 35, characterized in that the information is contained in any DNA molecule of claims 1 to 10. 37. Fremgangsmåde ifølge krav 36, kende tegnet ved, at værtsorganismen efter transfor- 25 mationen er defineret ifølge et af kravene 15 til 20.The method of claim 36, characterized in that, after the transformation, the host organism is defined according to one of claims 15 to 20. 38. Fremgangsmåde ifølge krav 35, kende - tegnet ved, at interferonet er defineret ifølge krav 32 til 34.A method according to claim 35, characterized in that the interferon is defined according to claims 32 to 34. 39. Fremgangsmåde ifølge krav 35, kende - 30 tegnet ved, at der som vært anvendes E.coli HB 101 og som plasmid et plasmid ifølge krav 21, 22 eller 23. I DK 175194 B1 I I 78 I I 40. ω-Interferon, der kan fremstilles ved frem- I I gangsmåden ifølge krav 35 eller 39. IA method according to claim 35, characterized in that the host is used as E. coli HB 101 and as a plasmid a plasmid according to claims 21, 22 or 23. In ω 175194 B1 II 78 II 40. ω-Interferon which may be prepared by the method of claim 35 or 39. I 41. Blanding, der er egnet til antitumor- eller I I antiviral behandling, kendetegnet ved, at I I 5 den ud over et eller flere inerte bærestoffer og/ el- I I ler fortyndingsmidler indeholder en aktiv mængde af I I interferon-peptid ifølge et af kravene 26 til 34. IA composition suitable for antitumor or II antiviral treatment, characterized in that II contains, in addition to one or more inert carriers and / or diluents, an active amount of II interferon peptide according to one of claims 26 to 34. I 42. Anvendelse af ω-interferon ifølge krav 30 I I til 34 til fremstilling af en til antitumor- eller I I 10 antiviral behandling egnet blanding. IUse of ω-interferon according to claims 30 I I to 34 to prepare a mixture suitable for antitumor or I I 10 antiviral treatment. IN 43. Fremgangsmåde til fremstilling af plasmidet I pRHWlO, kendetegnet ved, at der i plasmi- I I det pER103 med DSM nr. 2773 (figur 6) i Hindlll- I I stedet ved hjælp af ligasereaktion indføjes et DNA- I I 15 fragment med formlen I I Hindlll Sau3A Ncol I I aAGCTTAÅAG ATGTGTGATC TGCCTCAGAA CCATGGCCTA CTTAGCAGGA 50 I I ACACCTTGGT GCTTCTGCAC CAAATGAGGA GAATCTCCCC TTTCTTGTGT 100 I I CTCAAGGACA GAAGAGACTT CAGGTTCCCC CAGGAGATGG TAAAAGGGAG 150 I I CCAGTTGCAG AAGGCCCATG TCATGTCTGT CCTCCATGAG ATGCTGCAGC 200 I I AGATCACACA TCTTTAaact t I I Sau3A Hindlll I I og at det således tilvejebragte plasmid transformeres I I til replikation i E. coli og dyrkes. I DK 175194 B143. A method for producing the plasmid I pRHW10, characterized in that a DNA II fragment of formula II HindIII is inserted into the plasmid II pER103 with DSM No. 2773 (Figure 6) in the HindIII II site by ligase reaction. Sau3A NcoI II aAGCTTAÅAG ATGTGTGATC TGCCTCAGAA CCATGGCCTA CTTAGCAGGA 50 II ACACCTTGGT GCTTCTGCAC CAAATGAGGA GAATCTCCCC TTTCTTGTGT 100 II CTCAAGGACA GAAGAGACTT CAGGTTCCCC CAGGAGATGG TAAAAGGGAG 150 II CCAGTTGCAG AAGGCCCATG TCATGTCTGT CCTCCATGAG ATGCTGCAGC 200 II AGATCACACA TCTTTAaact t II Sau3A Hind II and to the thus obtained plasmid is transformed II for replication in E coli and grown. In DK 175194 B1 44. Fremgangsmåde til fremstilling af ekspres-sionsplasmidet pRHW12, kendetegnet ved, at der i det ved restriktionsendonucleasefordøjelse med BamHI, udfyldning af skæringssteder ved hjælp af Kle-5 now-fragmentet fra DNA-polymerase I og de 4 desoxy-nucleosidtriphosphater og en følgende skæring med Ncol opnåede større fragment af plasmidet pRHWlO, som i Hindu I-stedet fra plasmid pER103 med DSM nr. 2773 (se figur 6) indeholder DNA-fragmentet med formlen :Hindlll Sau3A Ncol a&SCXTAAAG ATGTGTGATC TGCCTCAGAA CGATGGCCTA CTTAGCAGGA 50 ACACCTTGGT GCTTCTGCAC CAAATGAGGA GAATCTCCCC TTTCTTGTGT 100 CTCAAGGACA GAAGAGACTT CAGGTTCCCC CAGGAGATGG TAAAAGGGAG 150 CCAGTTGCAG AAGGCCCATG TCATGTCTGT CCTCCATGAG ATGCTGCAGC 200 AGATCACACA TCTTTAaact t 6au3A Hindlll ved ligasereaktion indføjes det ved fordøjelse af Avail-fragmentet af klonen P9A2 (DSM nr. 3004) ved hjælp af Ncol og Alul opnåede fragment med formlen c CAT GGC CTA CTT AGC AGG AAC ACC TTG 28 Ncol GTG CTT CTG CAC CAA ATG AGG AGA ATC TCC CCT TTC TTG TGT CTC 73 AAG GAC AGA AGA GAC TTC AGG TTC CCC CAG GAG ATG GTA AAA GGG 118 AGC CAG TTG CAG AAG GCC CAT GTC ATG TCT GTC CTC CAT GAG ATG 163 CTG CAG CAG ATC TTC AGC CTC TTC CAC ACA GAG CGC TCC TCT GCT 208 GCC TGG AAC ATG ACC CTC CTA GAC CAA CTC CAC ACT GGA CTT CAT 253 CAG CAA CTG CAA CAC CTG GAG ACC TGC TTG CTG CAG GTA GTG GGA 298 GAA GGA GAA TCT GCT GGG GCA ATT AGC AGC CCT GCA CTG ACC TTG 343 AGG AGG TAC TTC CAG GGA ATC CGT GTC TAC CTG AAA GAG AAG AAA 388 I DK 175194 B1 I I 80 I I TAC AGC GAC TGT GCC TGG GAA GTT GTC AGA ATG GAA ATC ATG AAA 433 I I TCC TTG TTC TTA TCA ACA AAC ATG CAA GAA AGA CTG AGA AGT AAA 478 I I GAT AGA GAC CTG GGC TCA TCT TGAAATGATTCTCATTGATTAATTTGCCATA 530 I I TAACACTTGCACATGTGACTCTGGTCAATTCAAAAGACTCTTATTTCGGCTTTAATCAC 589 I I AGAATTGACTGAATTAGTTCTGCAAATACTTTGTCGGTATATTAAGCCAGTATATGTTA 64 B I I AAAAGACTTAGGTTCAGGGGCATCAGTCCCTAAGATGTTATTTATTTTTACTCATTTAT 707 I I TTATTCTTACATTTTATCATATTTATACTATTTATATTCTTATATAACAAATGTTTGCC 766 I I TTTACATTGTATTAAGATAACAAAACATGTTCAGct 802 I I Alul I I og at det således tilvejebragte plasmid transformeres I I til replikation i E. coli og dyrkes. I44. A method of producing the expression plasmid pRHW12, characterized in that, by restriction endonuclease digestion with BamHI, filling sites by the Kleene 5 Now fragment of DNA polymerase I and the 4 deoxy nucleoside triphosphates and a subsequent cutting obtained with NcoI larger fragment of the plasmid pRHW10, which in the Hindu I site of plasmid pER103 with DSM No. 2773 (see Figure 6) contains the DNA fragment of the formula: HindIII Sau3A Ncol a CTCAAGGACA GAAGAGACTT CAGGTTCCCC CAGGAGATGG TAAAAGGGAG 150 CCAGTTGCAG AAGGCCCATG TCATGTCTGT CCTCCATGAG ATGCTGCAGC 200 AGATCACACA TCTTTAaact by P CTT AGC AGG AAC ACC TTG 28 Ncol GTG CTT CTG CAC CAA ATG AGG AGA A TC TCC CCT TTC TTG TGT CTC 73 AAG GAC AGA AGA GAC TTC AGG TTC CCC CAG GAG ATG GTA AAA GGG 118 AGC CAG TTG CAG AAG GCC CAT GTC ATG TCT GTC CTC CAT GAG ATG 163 CTG CAG CAG ATC TTC AGC CTC TTC CAC ACA GAG CGC TCC TCT GCT 208 GCC TGG AAC ATG ACC CTC CTA GAC CAA CTC CAC ACT GGA CTT CAT 253 CAG CAA CTG CAA CAC CTG GAG ACC TGC TTG CTG CAG GTA GTG GGA 298 GAA GGA GAA TCT GCT GGG GCA ATT AGC AGC CCT GCA CTG ACC TTG 343 AGG AGG TAC TTC CAG GGA ATC CGT GTC TAC CTG AAA GAG AAG AAA 388 I DK 175194 B1 II 80 II TAC AGC GAC TGT GCC TGG GAA GTT GTC AGA ATG GAA ATC ATG AAA 433 II TCC TTG TTC TTA TCA ACA AAC ATG GAA CAA CTG AGA AGA AGT AAA 478 II GAT GAC CTG AGA GGC TCA TCT TGAAATGATTCTCATTGATTAATTTGCCATA TAACACTTGCACATGTGACTCTGGTCAATTCAAAAGACTCTTATTTCGGCTTTAATCAC II 530 589 II 64 B II AGAATTGACTGAATTAGTTCTGCAAATACTTTGTCGGTATATTAAGCCAGTATATGTTA AAAAGACTTAGGTTCAGGGGCATCAGTCCCTAAGATGTTATTTATTTTTACTCATTTAT TTATTCTTACATTTTATCATATTTATACTATTTATATTCTTATATAACAAATGTTTGCC II 707 766 II TT TACATTGTATTAAGATAACAAAACATGTTCAGct 802 I I Alul I I and the plasmid thus obtained is transformed I I for replication in E. coli and grown. IN 45. Fremgangsmåde til fremstilling af ekspres- I I sionsplasmidet pRHWll, kendetegnet ved, at I I 15 der i det ved restriktionsendonucleasef ordøj else med I I BamHI, udfyldning af skæringssteder ved hjælp af Kle- I I now-fragmentet fra DNA-polymerase I og de 4 desoxy- I I nucleosidtriphosphater og en følgende skæring med I I Ncol opnåede større fragment af plasmidet pRHWlO, som I I 20 i Hindu I-stedet fra plasmid pER103 med DSM nr. 2773 I I (se figur 6) indeholder DNA-fragmentet med formlen I I HindiII Sau3A Ncol I I aAGCTTAAAG ATGTGTGATC TGCCTCAGAA CCATGGCCTA CTTAGCAGGA 50 I I ACACCTTGGT GCTTCTGCAC CAAATGAGGA GAATCTCCCC TTTCTTGTGT 100 I I CTCAAGGACA GAAGAGACTT CAGGTTCCCC CAGGAGATGG XAAAAGGGAG 150 I I CCAGTTGCAG AAGGCCCATG TCATGTCTGT CCTCCATGAG ATGCTGCAGC 200 I I AGATCACACA TCTTTAaact t I I Sau3A HindiII I DK 175194 B1 ved ligasereaktion indføjes det ved fordøjelse af Avail-fragmentet af klonen E76E9 (DSM nr. 3003) ved hjælp af Ncol og Alul opnåede fragment med formlen C CAT GGC CTA CTT AGC AGG AAC ACC TTG 28 NCOl GTG CTT CTG CAC CAA ATG AGG AGA ATC TCC CCT TTC TTG TGT CTC 73 AAG GAC AGA AGA GAC TTC AGG TTC CCC CAG GAG ATG GTA AAA GGG 118 AGC CAG TTG CAG AAG GCC CAT GTC ATG TCT GTC CTC CAT GAG ATG 163 CTG CAG CAG ATC TTC AGC CTC TTC CAC AGA GAG CGC TCC TCT GCT 208 3GCC TGG AAC ATG ACC CTC CTA GAC CAA CTC CAC ACT GGA CTT CAT 253 CAG CAA CTG CAA CAC CTG GAG ACC TGC TTG CTG CAG GTA GTG GGA 298 GAA GGA GAA TCT GCT GAG GCA ATT AGC AGC CCT GCA CTG ACC TTG 343 AGG AGG TAC TTC CAG GGA ATC CGT GTC TAC CTG AAA GAG AAG AAA 388 TAC AGC GAC TGT GCC TGG GAA GTT GTC AGA ATG GAA ATC ATG AAA 433 TCC TTG TTC TTA TCA ACA AAC ATG CAA GAA AGA CTG AGA AGT AAA 478 GAT AGA GAC CTG GGC TCA TCT TGAAATGATTCTCATTGATTAATTTGCCATA 530 TAACACTTGCACATGTGACTCTGGTCAATTCAAAAGACTCTTATTTCGGCTTTAATCAC 589 AGAATTGACTGAATTAGTTCTGCAAATACTTTGTCGGTATATTAAGCCAGTATATGTTA 648 AAAAGACTTAGGTTCAGGGGCATCAGTCCCTAAGATGTTATTTATTTTTACTCATTTAT 707 TTATTCTTACATTTTATCATATTTATACTATTTATATTCTTATATAACAAATGTTTGCC 766 TTTACATTGTATTAAGATAACAAAACATGTTCAGCt 802 Alul og at det således tilvejebragte plasmid transformeres til replikation i E. coli og dyrkes.45. A method of producing the expression plasmid pRHWII, characterized in that II, in the restriction endonuclease reaction with II BamHI, fills cut sites by the Kle II II fragment of DNA polymerase I and the 4 deoxy II nucleoside triphosphates and a subsequent cut with II Ncol obtained larger fragment of plasmid pRHW10, which II 20 in Hindu I site of plasmid pER103 with DSM No. 2773 II (see Figure 6) contains the DNA fragment of formula II HindiII Sau3A Ncol II aAGCTTAAAG ATGTGTGATC TGCCTCAGAA CCATGGCCTA CTTAGCAGGA 50 II ACACCTTGGT GCTTCTGCAC CAAATGAGGA GAATCTCCCC TTTCTTGTGT 100 II CTCAAGGACA GAAGAGACTT CAGGTTCCCC CAGGAGATGG XAAAAGGGAG 150 II CCAGTTGCAG AAGGCCCATG TCATGTCTGT CCTCCATGAG ATGCTGCAGC 200 II AGATCACACA TCTTTAaact t II Sau3A, HindIII In DK 175194 B1 by ligase reaction inserted it by digesting Avail fragment of the clone E76E9 (DSM # 3003) using NcoI and Alul obtained fragment of formula C CAT GGC CTA CTT AGC AGG AAC ACC TTG 28 NCOl GTG CTT CTG CAC CAA ATG AGG AGA ATC TCC CCT TTC TTG TGT CTC 73 AAG GAC AGA AGA GAC TTC AGG TTC CCC CAG GAG ATG GTA AAA GGG 118 AGC CAG TTG CAG AAG GCC CAT GTC ATG TCT GTC CTC CAT GAG ATG 163 CTG CAG CAG ATC TTC AGC CTC TTC CAC AGA GAG CGC TCC TCT GCT 208 3GCC TGG AAC ATG ACC CTC CTA GAC CAA CTC CAC ACT GGA CTT CAT 253 CAG CAA CTG CAA CAC CTG GAG ACC TGC TTG CTG CAG GTA GTG GGA 298 GAA GGA GAA TCT GCT GAG GCA ATT AGC AGC CCT GCA CTG ACC TTG 343 AGG AGG TAC TTC CAG GGA ATC CGT GTC TAC CTG AAA GAG AAG AAA 388 TAC AGC GAC TGT GCC TGG GAA GT GTC AGA ATG GAA ATC ATG AAA 433 TCC TTG TTC TTA TCA ACA AAC ATG CAA GAA AGA CTG AGA AGT AAA 478 GAT AGA GAC CTG GGC TCA TCT TGAAATGATTCTCATTGATTAATTTGCCATA 530 TAACACTTGCACATGTGACTCTGGTCAATTCAAAAGACTCTTATTTCGGCTTTAATCAC 589 AGAATTGACTGAATTAGTTCTGCAAATACTTTGTCGGTATATTAAGCCAGTATATGTTA 648 AAAAGACTTAGGTTCAGGGGCATCAGTCCCTAAGATGTTATTTATTTTTACTCATTTAT 707 TTATTCTTACATTTTATCATATTTATACTATTT ATATTCTTATATAACAAATGTTTGCC 766 TTTACATTGTATTAAGATAACAAAACATGTTCAGCt 802 Alul and the plasmid thus obtained is transformed for replication in E. coli and cultured. 46. Synergistisk blanding ifølge krav 41, kendetegnet ved, at den yderligere inde holder y-interferon.The synergistic mixture according to claim 41, characterized in that it further contains γ-interferon. 46. Synergistisk blanding ifølge krav 41, kendetegnet ved, at den yderligere inde- 30 holder human tumornekrosefaktor.The synergistic mixture of claim 41, characterized in that it further contains human tumor necrosis factor.
DK198503463A 1984-08-01 1985-07-30 Recombinant DNA molecules, interferon omega-type genes, transformed hosts containing the DNA information, expression plasmids for interferon-omega types, E. coli transformed therewith, human type I interferons, method ....... DK175194B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE3428370A DE3428370A1 (en) 1984-08-01 1984-08-01 Interferon, genetic sequences which code therefor, and organisms producing these
DE3428370 1984-08-01
DE3505060 1985-02-14
DE19853505060 DE3505060A1 (en) 1985-02-14 1985-02-14 Type I interferons, genetic sequences which code therefor, and organisms producing these

Publications (3)

Publication Number Publication Date
DK346385D0 DK346385D0 (en) 1985-07-30
DK346385A DK346385A (en) 1986-02-02
DK175194B1 true DK175194B1 (en) 2004-07-05

Family

ID=25823496

Family Applications (1)

Application Number Title Priority Date Filing Date
DK198503463A DK175194B1 (en) 1984-08-01 1985-07-30 Recombinant DNA molecules, interferon omega-type genes, transformed hosts containing the DNA information, expression plasmids for interferon-omega types, E. coli transformed therewith, human type I interferons, method .......

Country Status (21)

Country Link
EP (1) EP0170204B1 (en)
JP (2) JP2566909B2 (en)
KR (1) KR0136799B1 (en)
AT (1) ATE67786T1 (en)
AU (1) AU600653B2 (en)
BG (1) BG60445B2 (en)
CA (1) CA1340184C (en)
DD (1) DD246318A5 (en)
DE (1) DE3584198D1 (en)
DK (1) DK175194B1 (en)
ES (2) ES8609475A1 (en)
FI (1) FI90667C (en)
GR (1) GR851866B (en)
HK (1) HK187896A (en)
HU (1) HU205779B (en)
IE (1) IE58942B1 (en)
IL (1) IL75963A (en)
MX (1) MX9203645A (en)
NO (1) NO177863C (en)
NZ (1) NZ212937A (en)
PT (1) PT80901B (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5231176A (en) * 1984-08-27 1993-07-27 Genentech, Inc. Distinct family DNA encoding of human leukocyte interferons
EP0490233A1 (en) * 1986-03-10 1992-06-17 BOEHRINGER INGELHEIM INTERNATIONAL GmbH Monoclonal antibodies against Bgl III-hybrid interferons, their use and process for preparing them
DE3607835A1 (en) * 1986-03-10 1987-09-24 Boehringer Ingelheim Int HYBRID INTERFERONS, THEIR USE AS MEDICINAL PRODUCTS AND AS INTERMEDIATE PRODUCTS FOR THE PRODUCTION OF ANTIBODIES AND THE USE THEREOF AND METHOD FOR THEIR PRODUCTION
US4863727A (en) * 1986-04-09 1989-09-05 Cetus Corporation Combination therapy using interleukin-2 and tumor necrosis factor
DE3633323A1 (en) * 1986-10-01 1988-04-07 Boehringer Ingelheim Int NEW MONOCLONAL ANTIBODIES AGAINST IFN-OMEGA, METHOD FOR THE PRODUCTION THEREOF AND THEIR USE FOR CLEANING AND DETECTING IFN-OMEGA
DE3635867A1 (en) * 1986-10-22 1988-05-11 Boehringer Ingelheim Int NEW YEAR EXPRESSION VECTORS FOR IFN-OMEGA, METHOD FOR THEIR PRODUCTION AND USE THEREOF
CA2309766C (en) 1997-11-20 2008-09-30 Vical Incorporated Treatment of cancer using cytokine-expressing polynucleotides and compositions therefor
WO2000040273A2 (en) * 1999-01-08 2000-07-13 Vical Incorporated Treatment of viral diseases using an interferon omega expressing polynucleotide
AU2004236174B2 (en) 2001-10-10 2011-06-02 Novo Nordisk A/S Glycopegylation methods and proteins/peptides produced by the methods
CA2818688A1 (en) * 2002-03-07 2003-09-12 Eidgenossische Technische Hochschule Zurich System and method for the production of recombinant glycosylated proteins in a prokaryotic host
DK1481057T3 (en) 2002-03-07 2006-05-15 Eidgenoess Tech Hochschule System and method for producing recombinant glycosylated proteins in a prokaryotic host
WO2004096852A1 (en) * 2003-04-25 2004-11-11 The Institute Of Microbiology And Epidemiology, Academy Of Military Medical Sciemces, Pla A RECOMBINANT HUMAN INTERFERON ϖ, THE METHOD FOR EXPRESSING IT AND THE USES OF IT
ES2353814T3 (en) 2005-05-11 2011-03-07 Eth Zuerich RECOMBINANT N-GLYCOSILATED PROTEINS OF PROCEDURAL CELLS.
CN101983070B (en) 2008-02-20 2016-03-30 格林考瓦因有限公司 The recombinant N-glycosylated proteins that origin comes from prokaryotic cell prepares bioconjugates
DK2501406T3 (en) 2009-11-19 2018-02-26 Glaxosmithkline Biologicals Sa BIOSYNTHESE SYSTEM PRODUCING IMMUNOGENIC POLYSACCHARIDES IN PROCARYOTIC CELLS
KR20130063510A (en) 2010-05-06 2013-06-14 글리코박신 아게 Capsular gram-positive bacteria bioconjugate vaccines
WO2013024158A1 (en) 2011-08-17 2013-02-21 INSERM (Institut National de la Santé et de la Recherche Médicale) Combinations of protein kinase inhibitors and interferons or of protein kinase inhibitors and direct acting antivirals for the treatment and the prevention of hcv infection
WO2013024156A2 (en) 2011-08-17 2013-02-21 INSERM (Institut National de la Santé et de la Recherche Médicale) Combinations of anti-hcv-entry factor antibodies and interferons for the treatment and the prevention of hcv infection
WO2014033266A1 (en) 2012-08-31 2014-03-06 INSERM (Institut National de la Santé et de la Recherche Médicale) Anti-sr-bi antibodies for the inhibition of hepatitis c virus infection

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1217440A (en) * 1982-08-18 1987-02-03 Michael A. Innis INTERFERON .alpha. 6L
AU1946283A (en) * 1982-08-18 1984-03-07 Cetus Corporation Interferon-alpha 6l
DE3247922A1 (en) * 1982-12-24 1984-06-28 Boehringer Ingelheim International GmbH, 6507 Ingelheim DNA SEQUENCES, THEIR PRODUCTION, PLASMIDES CONTAINING THESE SEQUENCES AND THE USE THEREOF FOR THE SYNTHESIS OF EUKARYOTIC GENE PRODUCTS IN PROKARYOTS
DE3574145D1 (en) * 1984-08-27 1989-12-14 Genentech Inc Novel, distinct family of human leukocyte interferons, compositions containing them, methods for their production, and dna and transfected hosts therefor

Also Published As

Publication number Publication date
DE3584198D1 (en) 1991-10-31
ATE67786T1 (en) 1991-10-15
KR870001310A (en) 1987-03-13
NO177863B (en) 1995-08-28
HK187896A (en) 1996-10-18
DK346385D0 (en) 1985-07-30
GR851866B (en) 1985-12-02
PT80901A (en) 1985-09-01
EP0170204A2 (en) 1986-02-05
IE58942B1 (en) 1993-12-01
NO853012L (en) 1986-02-03
FI90667B (en) 1993-11-30
NO177863C (en) 1995-12-06
FI852956A0 (en) 1985-07-31
JP2566909B2 (en) 1996-12-25
ES545725A0 (en) 1986-08-01
JP2567195B2 (en) 1996-12-25
HU205779B (en) 1992-06-29
PT80901B (en) 1989-01-17
EP0170204A3 (en) 1988-02-17
MX9203645A (en) 1992-09-01
NZ212937A (en) 1991-08-27
JPH06181771A (en) 1994-07-05
JPS61181381A (en) 1986-08-14
ES8609475A1 (en) 1986-08-01
IL75963A (en) 1992-05-25
AU4554985A (en) 1986-02-06
AU600653B2 (en) 1990-08-23
ES8708013A1 (en) 1987-09-01
BG60445B2 (en) 1995-03-31
IE851906L (en) 1986-02-01
DK346385A (en) 1986-02-02
FI852956L (en) 1986-02-02
FI90667C (en) 1994-03-10
EP0170204B1 (en) 1991-09-25
CA1340184C (en) 1998-12-15
ES552431A0 (en) 1987-09-01
DD246318A5 (en) 1987-06-03
HUT39477A (en) 1986-09-29
KR0136799B1 (en) 1998-04-25
IL75963A0 (en) 1985-12-31

Similar Documents

Publication Publication Date Title
DK175194B1 (en) Recombinant DNA molecules, interferon omega-type genes, transformed hosts containing the DNA information, expression plasmids for interferon-omega types, E. coli transformed therewith, human type I interferons, method .......
US7635466B1 (en) DNA sequences, recombinant DNA molecules and processes for producing human fibroblast interferon-like polypeptides
Goeddel et al. Synthesis of human fibroblast interferon by E. coli
AU604634B2 (en) Dog and horse interferons
EP0083777B1 (en) Physiologically active peptide with between 147 and 162 amino acid residues
CA1339776C (en) Equine-gamma-interferon
FR2481316A1 (en) Gene for expressing protein similar to human interferon - derived plasmid recombined materials, and modified bacterial cells
Velan et al. [64] Isolation of bovine IFN-α genes and their expression in bacteria
HRP950157A2 (en) Polypeptide with human interferon (ifn-gamma) characteristics
JPS62223200A (en) Novel physiologically active peptide
JPS62223199A (en) Novel peptide

Legal Events

Date Code Title Description
PUP Patent expired