HRP950157A2 - Polypeptide with human interferon (ifn-gamma) characteristics - Google Patents

Polypeptide with human interferon (ifn-gamma) characteristics Download PDF

Info

Publication number
HRP950157A2
HRP950157A2 HRP-2335/82A HRP950157A HRP950157A2 HR P950157 A2 HRP950157 A2 HR P950157A2 HR P950157 A HRP950157 A HR P950157A HR P950157 A2 HRP950157 A2 HR P950157A2
Authority
HR
Croatia
Prior art keywords
human
dna
sequence
immune interferon
interferon
Prior art date
Application number
HRP-2335/82A
Other languages
Croatian (hr)
Inventor
David V Goeddel
Patrick W Gray
Original Assignee
Genentech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from YU233582A external-priority patent/YU45871B/en
Application filed by Genentech Inc filed Critical Genentech Inc
Publication of HRP950157A2 publication Critical patent/HRP950157A2/en
Publication of HRP950157B1 publication Critical patent/HRP950157B1/en

Links

Landscapes

  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

Područje izuma Field of invention

Predmetni izum odnosi se na područje tehnologije rekombinantne, DNA, na sredstva i metode koje koriste takovu tehnologiju u otkrivanju DNA niza i izvedene nizove amino kiseline za humani imuno interferon, te na njihovo dobivanje i razne proizvode takove proizvodnje, te njihovo korištenje. The present invention relates to the field of recombinant DNA technology, to the means and methods that use such technology in the detection of DNA sequences and derived amino acid sequences for human immune interferon, as well as to their production and various products of such production, and their use.

Posebno se takav izum odnosi na izoliranje i identifikaciju DNA niza koji kodiraju humani imuno interferon, te na sastav sredstva ekspresije rekombinantne DNA koja sadrže takove DNA nizove, operativno vezane na promotorske nizove koji utječu na ekspresiju, te na nosioce ekspresije koji su tako sastavljeni. U drugom aspektu, predmetni izum se odnosi na sisteme kulture domaćina, kao što su razni mikroorganizmi i kulture stanica kralježnjaka transformirane sa takovim nosiocima ekspresije i time usmjerene u ekspresiju gore spomenutih DNA nizova. U drugom aspektu, ovaj izum se odnosi na sredstva i metode pretvaranja krajnjeg proizvoda takove ekspresije u nove cjeline, kao što su farmaceutski sastavi koji se koriste za profilaksu ili liječenje ljudi. Kod preporučenog oblika izvedbe, ovaj izum daje posebne nosioce ekspresije koji su u pravilnom nizu, tako da se humani imuno interferon dobiva i izlučuje iz stanica domaćina u potpuno razvijenom obliku. Osim toga se ovaj izum odnosi na razne postupke koji se koriste za dobivanje spomenutih DNA nizova, nosioca ekspresija, sistema kultura domaćina i njihovih krajnjih proizvoda i cjelina, te na njihove posebne i popratne oblike. In particular, such an invention relates to the isolation and identification of DNA sequences that encode human immune interferon, and to the composition of recombinant DNA expression agents containing such DNA sequences, operatively linked to promoter sequences that influence expression, and to expression carriers that are thus composed. In another aspect, the subject invention relates to host culture systems, such as various microorganisms and vertebrate cell cultures transformed with such expression carriers and thereby directed to the expression of the aforementioned DNA sequences. In another aspect, the present invention relates to means and methods of converting the end product of such expression into novel entities, such as pharmaceutical compositions used for the prophylaxis or treatment of humans. In a preferred embodiment, the present invention provides specific expression carriers that are in the correct sequence, so that human immune interferon is produced and secreted from host cells in a fully developed form. In addition, this invention relates to various methods used to obtain said DNA sequences, expression carriers, host culture systems and their final products and entities, as well as to their special and accompanying forms.

Predmetni izum djelomično proizlazi iz otkrića DNA niza i niza izvedene amino kiseline koja kodira humani imuno interferon. Osim toga, predmetni izum daje sekvencijske informacije za nizove na 3'- i 5'- bočnim nizovima gena humanog imuno interferona, olakšavajući njihovo in vitro spajanje u nosioca ekspresije. The subject invention derives in part from the discovery of the DNA sequence and the derived amino acid sequence encoding human immune interferon. In addition, the present invention provides sequence information for sequences on the 3'- and 5'-flanking sequences of the human immunointerferon gene, facilitating their in vitro splicing into an expression carrier.

Naročito je dat 5'-DNA segment koji kodira takozvani endogeni signalni polipeptid koji neposredno prethodi nizu amino kiseline tzv. zrelog humanog imuno interferona. Ta otkrića su omogućila razvoj sredstava i metoda za dobivanje - preko tehnologije rekombinanta DNA - dostatne količine humanog imuno interferona i određivanje njegovih biokemijskih svojstava i bioaktivnosti. In particular, the 5'-DNA segment that encodes the so-called endogenous signal polypeptide that immediately precedes the sequence of amino acids, the so-called of mature human immunointerferon. These discoveries enabled the development of means and methods for obtaining - through recombinant DNA technology - a sufficient amount of human immunointerferon and determining its biochemical properties and bioactivity.

Publikacije i drugi materijali koji se koriste za objašnjenje pozadine izuma, a naročito slučajeva, da bi se dobile dodatne pojedinosti u odnosu na korištenje, ovdje su navedeni kao referenca, označeni brojevima i grupirani u bibliografiju koja je u prilogu. Publications and other materials used to explain the background of the invention, and particularly cases, to obtain additional details in relation to use, are herein incorporated by reference, numbered and grouped in the attached bibliography.

Porijeklo izuma The origin of the invention

A. Humani imuno interferon A. Human immune interferon

Humani imuno interferon može se rasporediti u tri grupe na temelju različitog antigenskog djelovanja, te bioloških i biokemijskih svojstava. Human immune interferon can be divided into three groups based on different antigenic activity and biological and biochemical properties.

Prva grupa obuhvaća porodicu interferona leukocita (α-interferon, LeIF ili IFN-α), koje uglavnom proizvode stanice koje su sastavni dio ljudske krvi, nakon indukcije virusa. Oni su dobiveni mikropski i utvrđeno je da su biološki aktivni (1, 2, 3). Njihova biološka svojstva ubrzala su njihovo korištenje u bolnicama kao lijek za liječenje virusnih infekcija, malignih stanja, imunološke supresije i nedostatka imuniteta (4). The first group includes the family of leukocyte interferons (α-interferon, LeIF or IFN-α), which are mainly produced by cells that are an integral part of human blood, after virus induction. They are obtained microbially and have been found to be biologically active (1, 2, 3). Their biological properties have accelerated their use in hospitals as a medicine for the treatment of viral infections, malignant conditions, immune suppression and immune deficiency (4).

U drugoj grupi je humani interferon matičnih vezivnih stanica (β-interferon, FIF ili IFN-β), kojeg obično proizvode matične vezivne stanice nakon indukcije virusa i koji je također dobiven mikropski. Ustanovilo se da je u velikom rasponu biološki aktivari (5). Klinička ispitivanja također ukazuju na njegovu potencijalnu vrijednost u liječenju. Interferoni leukocita i matičnih vezivnih stanica pokazuju jasne sličnosti u njihovim biološkim svojstvima usprkos činjenice, da je stupanj homologije na razini amino kiseline, relativno nizak. Osim toga, obje grupe interferona sadrže od 165 do 166 amino kiselina i obje su proteini otporni na kiseline. In the second group is human stem cell interferon (β-interferon, FIF or IFN-β), which is usually produced by stem cells after viral induction and is also microbially derived. It was found that there is a wide range of biological activators (5). Clinical trials also indicate its potential value in treatment. Interferons of leukocytes and stem connective cells show clear similarities in their biological properties despite the fact that the degree of homology at the amino acid level is relatively low. In addition, both groups of interferons contain from 165 to 166 amino acids and both are acid-resistant proteins.

Humani interferon (γ-interferon, IIF ili IFN-γ), na koji se odnosi ovaj izum, je suprotno α- i β-interferonu, pH 2 labilan, dobiva se uglavnom nakon mitogenske indukcije limfocita i također ima antigensko djelovanje. Do nedavno se humani interferon mogao pronaći samo u veoma malim količinama, što je sigurno sprečavalo njegovu karakterizaciju. Nedavno je dat izvještaj o prilično velikom, no još uvijek djelomičnom pročišćavanju humanog imuno interferona (6). Spoj je proizveden iz kultura limfocita stimuliranih sa kombinacijom fitohemoglutina i estera forbola, te pročišćen sekvencijalnim kromatografskim separacijama. Taj postupak dao je proizvod sa molekularnom težinom od 58,000. Human interferon (γ-interferon, IIF or IFN-γ), to which this invention refers, is opposite to α- and β-interferon, pH 2 labile, obtained mainly after mitogenic induction of lymphocytes and also has antigenic activity. Until recently, human interferon could only be found in very small quantities, which certainly prevented its characterization. A rather large but still partial purification of human immunointerferon has recently been reported (6). The compound was produced from lymphocyte cultures stimulated with a combination of phytohemogglutin and phorbol ester, and purified by sequential chromatographic separations. This procedure gave a product with a molecular weight of 58,000.

Humani imuno interferon dobio se u veoma malim količinama translacijom mRNA u oocite, koji pokazuju aktivnost interferona karakterističnu za humani interferon, što daje nadu da bi se interferon cDNA mogao sintetizirati i klonirati (7). Human immune interferon was obtained in very small quantities by translation of mRNA in oocytes, which show interferon activity characteristic of human interferon, which gives hope that interferon cDNA could be synthesized and cloned (7).

Količina imuno interferona koja se dobila do sada, sigurno nije dostatna za provođenje jasnih eksperimenata u svrhu karakterizacije i bioloških svojstava pročišćene komponente. No, proučavanja in vitro sa sirovim preparatima, kao i eksperimenti in vivo sa preparatima γ-interferona murine, pokazuju, da bi primarna funkcija imuno interterona mogla biti sredstvo za reguliranje imuniteta (8, 9). Imuno interferon nema samo antivirusno i anticelularno djelovanje koje posjeduju svi humani interferoni, nego pokazuje i pojačani utjecaj na ta djelovanja sa α- i (β-interferonom (10). Isto tako je objavljeno, da je in vitro antiproliferacijsko djelovanje γ-interferona na tumorske stanice oko 10 do 100 puta veće od drugih kategorija interferona (8, 11, 12). Ovaj rezultat, zajedno sa njegovom naglašenom ulogom regulatora imumteta (8, 9), ukazuje na izraženiju antitumorsku potenciju za IFN-γ nego za IFN-α i IFN-β. In vivo eksperimenti sa IFN-γ preparatima miševa i murine, pokazuju jasnu prevlast nad antivirusno induciranim interferonima kod njihovog antitumorskog djelovanja na osteogeni sarkom (13). The amount of immunointerferon that has been obtained so far is certainly not sufficient for carrying out clear experiments for the purpose of characterizing and biological properties of the purified component. However, in vitro studies with crude preparations, as well as in vivo experiments with murine γ-interferon preparations, show that the primary function of immune interteron could be a means of regulating immunity (8, 9). Immune interferon does not only have antiviral and anti-cellular effects that all human interferons possess, but also shows an increased influence on these effects with α- and (β-interferon (10). It has also been reported that the in vitro antiproliferative effect of γ-interferon on tumor cells cells about 10 to 100 times higher than other categories of interferons (8, 11, 12). This result, together with its emphasized role as an immune regulator (8, 9), indicates a more pronounced antitumor potency for IFN-γ than for IFN-α and IFN-β In vivo experiments with mouse and murine IFN-γ preparations show a clear superiority over antiviral-induced interferons in their antitumor effect on osteogenic sarcoma (13).

Sva ova istraživanja, morala su se do predmetnog izuma, provoditi sa prilično sirovim preparatima, zbog veoma male raspoloživosti, no sigurno ukazuju na veoma važne biološke funkcije za imuno interferon. Ne samo da imuno interferon ima jako antivirusno djelovanje, nego vjerojatno i jako imunoregulatorno i antitumorsko djelovanje, što jasno ukazuje na njegovu buduću primjenu u bolnicama. All these studies, until the present invention, had to be carried out with rather crude preparations, due to their very low availability, but they certainly indicate very important biological functions for immune interferon. Not only does immune interferon have a strong antiviral effect, but probably also a strong immunoregulatory and antitumor effect, which clearly indicates its future use in hospitals.

Zapazilo se, da bi primjena tehnologije rekombinanta DNA mogla biti najučinkovitiji način za dobivanje potrebnih velikih količina humanog imuno interferona. Bilo da tako dobivene supstance obuhvaćaju glikozilaciju koja se smatra karakterističnom za prirodnu, iz humanih stanica dobivenu supstancu ili ne, vjerojatno će pokazati bioaktivnost na osnovu koje će se dopustiti njihovo korištenje u bolnicama za liječenje širokog spektra virusnih i malignih stanja ili oboljenja, te oboljenja uslijed imunološke supresile ili nedostatka imuniteta. It was noted that the application of recombinant DNA technology could be the most effective way to obtain the necessary large quantities of human immune interferon. Whether or not the substances thus obtained include the glycosylation that is considered characteristic of a natural substance derived from human cells or not, they are likely to show bioactivity on the basis of which their use in hospitals will be allowed for the treatment of a wide range of viral and malignant conditions or diseases, and diseases due to immunosuppressants or lack of immunity.

B. Tehnologija DNA rekombinanta B. Recombinant DNA technology

Tehnologija DNA rekombinanta u određenoj je mjeri usavršena. Molekularni biolozi mogu relativno lako rekombinirati razne DNA nizove, stvarajući nove DNA cjeline koje proizvode veliku količinu egzogenih proteinskih proizvoda kod transformiranih mikroba. Opća sredstva i metode su na raspolaganju za in vitro ligaciju različitih tupo završenih ili "ljepljivo" završenih fragmenata DNA, čime se dobivaju nosioci jake ekspresije koji se koriste kod transformiranja određenih organizama i na taj način usmjeruju svoju djelotvornu sintezu željenog egzogenog proizvoda. No, na bazi pojedinačnog proizvoda, put do dobivanja proizvoda je težak i nauka nije došla do stupnja, na kojem bi se mogao postići siguran uspjeh. Oni koji predviđaju uspješne rezultate ne uzimajući u obzir eksperimentalnu bazu, čine to uz velik rizik, da će im rezultati izostati. Recombinant DNA technology has been perfected to some extent. Molecular biologists can relatively easily recombine various DNA sequences, creating new DNA units that produce large amounts of exogenous protein products in transformed microbes. General tools and methods are available for in vitro ligation of various blunt-ended or "sticky"-ended DNA fragments, thereby obtaining strong expression carriers that are used to transform certain organisms and thereby direct their efficient synthesis of the desired exogenous product. However, on the basis of an individual product, the path to obtaining a product is difficult and science has not reached a stage where sure success could be achieved. Those who predict successful results without taking into account the experimental base, do so at great risk, that their results will be missing.

Plazmid, nekromosomski otvor DNA sa dvostrukom niti, pronađen kod bakterija i drugih mikroba, često u mnogo primjeraka po stanici, ostaje osnovni element tehnologije DNA rekombinanta. Informacija koja je kodirana u plazmidu DNA zahtijeva da se poveća plazmid u stanicama kćerima (tj. porijeklo replikacije) i obično jedna ili više fenotipskih karakteristika selekcije, kao što je u slučaju bakterija otpornost na antibiotike, što omogućava da se klonovi stanica domaćina koji sadržavaju plazmid, prepoznaju i preferencijalno prerastu u selektivnu supstancu. Prednost plazmida je u činjenici, da se mogu specifično cijepati jednom ili drugom restriktivnom endonukleazom ili "restriktivnim enzimom", od kojih svaki dolazi na različite pozicije na plazmidu DNA. Nakon toga se u plazmid mogu umetnuti heterologni geni ili fragmenti gena, spajanjem na mjestu cijepanja ili na rekonstruiranim krajevima blizu mjesta cijepanja. Tako oblikovane su tzv. replicirajuća sredstva ekspresije. DNA rekombinacija provodi se izvan stanice, no dobiveni "rekombinantni" replicirajući nosilac ekspresije ili plazmid, može se staviti u stanicu postupkom koji je poznat kao transformacija i velike količine rekombinantnih sredstava dobivaju se povećanjem transformanta. Osim toga, kad je gen ispravno unešen s obzirom na udjele plazmida koji upravljaju transkripciju i translaciju kodiranog DNA naloga, dobiveni nosilac ekspresije može se koristiti za stvarnu proizvodnju niza polipeptida za koju je kodiran uneseni gen (u daljnjem tekstu se postupak naziva ekspresija). Plasmid, a nonchromosomal double-stranded DNA opening found in bacteria and other microbes, often in many copies per cell, remains a basic element of recombinant DNA technology. The information encoded in plasmid DNA requires the plasmid to be amplified in daughter cells (ie, the origin of replication) and usually one or more phenotypic selection characteristics, such as antibiotic resistance in the case of bacteria, which allow clones of host cells containing the plasmid to , recognize and preferentially grow into a selective substance. The advantage of plasmids lies in the fact that they can be specifically cleaved by one or another restriction endonuclease or "restriction enzyme", each of which comes to different positions on the DNA plasmid. Afterwards, heterologous genes or gene fragments can be inserted into the plasmid, by splicing at the cleavage site or at reconstructed ends close to the cleavage site. This is how the so-called replicating means of expression. DNA recombination is carried out outside the cell, but the resulting "recombinant" replicating expression vector, or plasmid, can be introduced into the cell by a process known as transformation and large quantities of recombinant agents are obtained by growing the transformant. In addition, when the gene is inserted correctly with respect to the portions of the plasmid that control the transcription and translation of the encoded DNA order, the resulting expression carrier can be used for the actual production of the polypeptide sequence for which the inserted gene is coded (hereinafter, the process is called expression).

Ekspresija započinje u području koje se naziva promotor koje je poznato po i spojeno RNA polimerazom. U fazi transkripcije ekspresije, DNA se odvija, eksponirajući se kao kalup za započetu sintezu vjesnika RNA od DNA niza. Vjesnik DNA se translatira u polipeptid sa sekvencom amino kiseline kodirane sa mRNA. Svaka amino kiselina je kodirana nukleotidnim tripletom ili "kodonom" koji zajedno čine "strukturalni gen", tj. dio koji kodira sekvencu amino kiseline izraženog proizvoda polipeptida. Translacija započinje kod "početnog" signala (obično ATG, koji kod dobivenog vjesnika RNA postaje AUG). Takozvani stop kodoni određuju završetak translacije i stoga proizvodnju daljnjih jedinica amino kiseline. Nastali proizvod može se dobiti rastvaranjem - ako je potrebno stanica domaćina u mikropskom sistemu, a ponovno dobivanje proizvoda može se postići odgovarajućim pročišćavanjem iz drugih proteina. Expression begins at a region called a promoter known to be joined by RNA polymerase. In the transcription phase of expression, the DNA unfolds, exposing itself as a template for the initiation of messenger RNA synthesis from the DNA strand. The messenger DNA is translated into a polypeptide with the amino acid sequence encoded by the mRNA. Each amino acid is encoded by a nucleotide triplet or "codon" which together form a "structural gene", i.e. the part that codes for the amino acid sequence of the expressed polypeptide product. Translation starts at the "start" signal (usually ATG, which becomes AUG in the resulting messenger RNA). So-called stop codons determine the end of translation and therefore the production of further amino acid units. The resulting product can be obtained by dissolving - if necessary, the host cell in a microbial system, and the recovery of the product can be achieved by appropriate purification from other proteins.

U praksi korištenje tehnologije DNA rekombinanta može izražavati isključivo heterologne polipeptide - tako zvana direktna ekspresija - ili alternativno može izražavati heterologne polipeptide spojene na dio niza amino kiseline homolognog polipeptida. U daljnjim slučajevima, bioaktivni produkt ponekad je bioneaktivan unutar spojenog homolognog/heterolognog polipeptida, sve dok nije rascijepljen u vanstaničnom okolišu. Vidi British Patent Publ. No. 2007676A i Wetzel, American Scientist 68, 664 (1980.) In practice, the use of recombinant DNA technology can express exclusively heterologous polypeptides - so-called direct expression - or alternatively, it can express heterologous polypeptides joined to a part of the amino acid sequence of a homologous polypeptide. In further cases, the bioactive product is sometimes bioinactive within the fused homologous/heterologous polypeptide, until cleaved in the extracellular environment. See British Patent Publ. But. 2007676A and Wetzel, American Scientist 68, 664 (1980)

C. Tehnologija stanične kulture C. Cell culture technology

Utvrđena je metodologija kultura stanica ili tkiva za proučavanje genetike i fiziologije stanice. Poznati su načini i metode za održavanje permanentnih staničnih linija, pripremljenih sukcesivnim serijskim transferom iz izoliranih normalnih stanica. Za korištenje u istraživanjima, takove stanične linije se održavaju na krutom podlošku u tekućem mediju, ili putem uzgoja u suspenziji koja sadrži hranjive tvari. Kod pripremanja većih količina postoje jedino mehanički problemi. Više podataka o izumu sadržano je u Microbiology, 2. izdanje, Harper and Row, izdavači Inc. Hagerstown, Maryiand (1973), posebice str. 1122 nadalje i Scientific American 245,66 (1981 ). The methodology of cell or tissue cultures for the study of cell genetics and physiology has been established. There are known ways and methods for maintaining permanent cell lines, prepared by successive serial transfer from isolated normal cells. For use in research, such cell lines are maintained on a solid support in a liquid medium, or by cultivation in a suspension containing nutrients. When preparing larger quantities, there are only mechanical problems. More information on the invention is contained in Microbiology, 2nd edition, Harper and Row, Inc. publishers. Hagerstown, Maryiand (1973), especially p. 1122 et seq. and Scientific American 245,66 (1981).

Sažetak izuma Summary of the invention

Predmetni izum se temelji na otkriću, da se tehnologija rekombinanta DNA može uspješno koristiti za proizvodnju humanog imuno interferona, poželjno u direktnom obliku, te u količinama dostatnim za iniciranje i provođenje testova na životinjama i kliničkih testova kao uvjet za ponudu na tržištu. Produkt je prikladan za upotrebu u svim svojim oblicima, u profilaksi i liječenju ljudi koji boluju od virusnih infekcija, malignih oboljenja i imunološke supresije ili manjka imuniteta. Njegovi oblici uključuju različite oligomerne oblike koji mogu obuhvaćati prateću glikozilaciju. Produkt se dobiva genetski upravljanim mikroorganizmima ili sustavima staničnih kultura. Na taj način, postoji mogućnost dobivanja i izoliranja humanog imuno interferona na učinkovitiji način nego što je bilo do sada. Znakovit čimbenik predmetnog izuma u njegovom najpovoljnijem obliku, je postignuće genetskog usmjeravanja mikroorganizama ili stanične kulture, da bi proizvele humani imuno interferon u količinama koje je moguće izolirati, odnosno izlučiti u zrelom obliku iz stanice domaćina. The subject invention is based on the discovery that recombinant DNA technology can be successfully used for the production of human immune interferon, preferably in direct form, and in quantities sufficient to initiate and conduct animal tests and clinical tests as a condition for offering on the market. The product is suitable for use in all its forms, in the prophylaxis and treatment of people suffering from viral infections, malignant diseases and immune suppression or lack of immunity. Its forms include various oligomeric forms that may include accompanying glycosylation. The product is obtained by genetically controlled microorganisms or cell culture systems. In this way, there is a possibility of obtaining and isolating human immune interferon in a more efficient way than it was until now. A significant factor of the subject invention in its most advantageous form is the achievement of genetic guidance of microorganisms or cell cultures, in order to produce human immune interferon in amounts that can be isolated, that is, secreted in a mature form from the host cell.

Predmetni izum obuhvaća tako proizvedeni humani imuno interferon, kao i sredstva i metode njegovog dobivanja. Predmetni izum je nadalje usmjeren na replicirajuće nosioce ekspresije DNA u kojima se nalaze nizovi gena koji kodiraju humani imuno interferon u ekspresivnom obliku. Nadalje, predmetni izum je usmjeren na sojeve mikroorganizama ili staničnih kultura transformiranih sa gore opisanim nosiocima ekspresije i na mikropske ili stanične kulture tako transformiranih sojeva odnosno kultura, sposobnih za proizvodnju humanog imuno interferona. U daljnjem aspektu, predmetni izum se odnosi na različite postupke, korisne za pripremanje nizova gena imuno interferona, nosilaca ekspresije DNA, sojeva mikroorganizama i staničnih kultura, te njihovih specifičnih oblika. Nadalje, ovaj izum se odnosi na pripremanje fermentacijskih kultura spomenutih mikroorganizama i staničnih kultura. Nastavno, ovaj izum se bavi pripremanjem humanog imuno-interferona kao direktnog produkta ekspresije, izlučenog u zrelom obliku iz stanice domaćina. Ovaj pristup može koristiti gen koji kodira niz zrelog humanog imuno interterona plus 5' bočni DNA koji kodira signalni polipeptid. Smatra se, da signalni polipeptid pomaže u transportu molekule do stanične stijenke organizama domaćina gdje se cijepa tijekom procesa sekrecije produkta zrelog humanog interferona. Ovaj oblik omogućuje izoliranje i pročišćavanje zrelog imuno interferona bez postupaka namijenjenih za eliminiranje kontaminanata intracelularnog proteina domaćina ili staničnog otpada. The present invention includes human immune interferon produced in this way, as well as means and methods for its production. The subject invention is further directed to replicating DNA expression carriers in which gene sequences encoding human immune interferon are found in an expressible form. Furthermore, the present invention is directed to strains of microorganisms or cell cultures transformed with the expression carriers described above and to microbial or cell cultures of such transformed strains or cultures, capable of producing human immune interferon. In a further aspect, the subject invention relates to various procedures, useful for the preparation of immune interferon gene arrays, DNA expression carriers, strains of microorganisms and cell cultures, and their specific forms. Furthermore, this invention relates to the preparation of fermentation cultures of the mentioned microorganisms and cell cultures. Next, this invention deals with the preparation of human immuno-interferon as a direct expression product, secreted in mature form from the host cell. This approach can use the gene encoding the mature human immunointerteron sequence plus the 5' flanking DNA encoding the signal polypeptide. It is believed that the signal polypeptide helps transport the molecule to the cell wall of the host organism where it is cleaved during the process of secretion of the mature human interferon product. This form allows the isolation and purification of mature immunointerferon without procedures designed to eliminate host intracellular protein contaminants or cellular debris.

Izraz "zreli humani imuno-interferon" označava proizvodnju mikropske ili stanične kulture humanog imuno-interferona bez signalnog peptida ili predniza peptida koji neposredno sudjeluje u translaciji humanog imuno interferona mRNA. Na taj način se dobiva zreli humani imuno interferon sukladnd predmetnom izumu, koji sadrži metionin kao prvu amino kiselinu (prisutnu putem ATG početnog signala unošenja kodona ispred strukturnog gena) ili, na pozicijama gdje je metionin rascijepljen unutar i izvan stanice, a cistein je prva amino kiselina. Zreli humani imuno interferon također se može dobiti zajedno sa konjuiranim proteinom koji nije konvencionalni signalni polipeptid. Konjugat ima sposobnost cijepanja unutar ili izvan stanice. Vidi British patent publication br. 2007676A. Konačno, zreli humani imuno interferon može se dobiti direktnom ekspresijom bez potrebe odcjepljivanja vanjskog, suvišnog polipeptida. Ovo je osobito važno u slučajevima, gdje domaćin ne može djelotvorno ukloniti signalni peptid gdje je nosilac ekspresije namijenjen za ekspresiju zrelog humanog interferona, zajedno s njegovim signalnim peptidom. Tako proizveden zreli humani imuno interferon se obnavlja i pročišćava do razine prikladne za upotrebu u liječenju virusnih i malignih oboljenja, imunološke supresije i nedostatka imuniteta. The term "mature human immunointerferon" refers to the microbial or cell culture production of human immunointerferon without a signal peptide or peptide presequence that directly participates in the translation of human immunointerferon mRNA. In this way, a mature human immune interferon according to the present invention is obtained, which contains methionine as the first amino acid (present through the ATG start signal of codon insertion in front of the structural gene) or, in positions where methionine is cleaved inside and outside the cell, and cysteine is the first amino acid acid. Mature human immune interferon can also be obtained together with a conjugated protein other than a conventional signal polypeptide. The conjugate has the ability to cleave inside or outside the cell. See British patent publication no. 2007676A. Finally, mature human immune interferon can be obtained by direct expression without the need to cleave off the extraneous polypeptide. This is particularly important in cases where the host cannot efficiently remove the signal peptide where the expression carrier is intended to express mature human interferon, together with its signal peptide. The mature human immune interferon thus produced is regenerated and purified to a level suitable for use in the treatment of viral and malignant diseases, immune suppression and immunodeficiency.

Humani imuno interferon dobiva se na sljedeći način: Human immune interferon is obtained as follows:

1. Ljudsko tkivo, na primjer tkivo slezene ili limfociti periferne krvi, uzgajaju se sa mitogenima, u svrhu stimuliranja stvaranja imuno interferona. 1. Human tissue, for example spleen tissue or peripheral blood lymphocytes, are cultured with mitogens, in order to stimulate the production of immune interferon.

2. Fragmenti takovih staničnih kultura se ekstrahiraju u prisutnosti inhibitora ribonukleaze, kako bi se izolirale sve citoplazmatske RNA. 2. Fragments of such cell cultures are extracted in the presence of ribonuclease inhibitors, in order to isolate all cytoplasmic RNA.

3. Oligo-dT stupac izolira vjesnika RNA (mRNA) u poliadeniliranom obliku. Taj mRNA je granulometrijski frakcioniran pomoću gradijenta gustoće sukroze i elektroforeze gela kisele uree. 3. Oligo-dT column isolates messenger RNA (mRNA) in polyadenylated form. This mRNA was granulometrically fractionated using sucrose density gradient and acid urea gel electrophoresis.

4. Odgovarajuća mRNA (12 do 18 S) je konvertirana u prikladnu komplementarnu DNA jednostruke niti (cDNA) od koje se dobiva cDNA dvostruke niti. Nakon stvaranja poli-dC, unosi se u vektor kao što je plazmid sa jednim ili više fenotipskih markera. 4. The corresponding mRNA (12 to 18 S) is converted into suitable complementary single-stranded DNA (cDNA) from which double-stranded cDNA is obtained. After poly-dC is generated, it is introduced into a vector such as a plasmid with one or more phenotypic markers.

5. Tako pripremljeni vektori koriste se za transformiranje bakterijskih stanica stvarajući kolonije. Radiooznačena cDNA pripremljena iz inducirane i neinducirane mRNA, derivirane kao što je gore opisano, koriste se za odvojeno ispitivanje duplikata kolonije. Višak cDNA se potom uklanja, a kolonije se izlažu rendgenskom filmu, kako bi se identificirali klonovi inducirane cDNA. 5. Vectors prepared in this way are used to transform bacterial cells creating colonies. Radiolabeled cDNA prepared from induced and uninduced mRNA, derived as described above, are used to screen duplicate colonies separately. Excess cDNA is then removed, and colonies are exposed to X-ray film to identify clones of the induced cDNA.

6. Iz klonova inducirane cDNA izoliran je odgovarajući DNA plazmid i sekvencioniran. 6. The corresponding DNA plasmid was isolated from the induced cDNA clones and sequenced.

7. Sekvencionirana DNA se potom oblikuje in vitro radi unošenja u odgovarajući nosilac ekspresije koji se koristi za transformiranje stanice domaćina, kojoj je pak omogućen rast u kulturi i ekspresija željenog produkta humanog imuno interferona. 7. The sequenced DNA is then shaped in vitro for introduction into the appropriate expression carrier used to transform the host cell, which in turn is allowed to grow in culture and express the desired human immunointerferon product.

8. Tako proizveden humani imuno interferon nesumnjivo ima 146 amino kiselina u svom zrelom obliku, počevši sa cisteinom i veoma je bazičan. Njegova monomerna molekularna težina iznosi 17,140. Vjerojatno zbog prisutnosti brojnih baznih ostataka, hidrofobnosti, stvaranja mosta soli itd., molekula se može sama pridružiti u oligomernom obliku, tj. u dimernom, trimernomili tetramernom obliku. Visoke molekularne težine zamijećene kod prirodnih tvari (6) koje se ne mogu pripisati samo nizu amino kiseline, vjerojatno su uzrokovane takvim oligomernim oblicima, kao i kontribucijom ugljikohidrata iz post- translacijske glikozilacije. 8. Human immune interferon thus produced undoubtedly has 146 amino acids in its mature form, starting with cysteine, and is very basic. Its monomer molecular weight is 17,140. Probably due to the presence of numerous basic residues, hydrophobicity, salt bridge formation, etc., the molecule can self-associate in an oligomeric form, i.e., in a dimeric, trimernomial, or tetrameric form. The high molecular weights observed in natural substances (6), which cannot be attributed to the amino acid sequence alone, are probably caused by such oligomeric forms, as well as by the contribution of carbohydrates from post-translational glycosylation.

9. Kod određenih sustava stanica domaćina, .naročito kad su spojeni u nosioca ekspresije, da bi se izrazili zajedno sa njegovim signalnim peptidom od 20 amino kiselina, zreli oblik humanog imuno interferona se stavlja u medij stanične kulture, uveliko pomažući kod metoda regeneracije i pročišćavanja. 9. In certain host cell systems, especially when fused to an expression carrier, to be expressed together with its 20 amino acid signal peptide, the mature form of human immunointerferon is placed in the cell culture medium, greatly aiding regeneration and purification methods. .

Opis preferentnog oblika Description of the preferred form

Mikroorganizmi/stanične kulture Microorganisms/cell cultures

1. Sojevi bakterija/promotori 1. Bacterial strains/promoters

Ovdje opisan postupak provodi se uz korištenje između ostalog, mikroorganizama E. coli K-12 soj 294 (završetak A, thi-, hsr-, khsm+), kao što je opisano u British Patent Publication br. 2055382 A. Taj soj je pohranjen kod American Type Culture Collection, ATCC Accession br. 31446. No, mogu se koristiti i drugi mikropski sojevi, uključivši poznate E: coli sojeve kao što su E.coli B, E. coli X 1776 (ATCC br. 31537) i E.coli W 3110 (F-, γ-, protropski) (ATCC br. 27325) ili drugi mikorpski sojevi, od kojih su mnogi pohranjeni i mogu se (eventualno) dobiti iz priznatih institucija za pohranu mikroorganizama, kao što je American Type Culture Collection (ATCC)--cf. ATCC katalog. Vidi i German Offenlegungsschrift 2644432. Ti ostali mikroorganizmi obuhvaćaju na primjer, bacile kao što je bacillus subtilis i druge enterobakterije, od kojih navodimo kao primjer salmonella typhimurium i serratia marcesans, uz korištenje plazmida koji u njima može replicirati i izraziti nizove heterolognih gena. The process described here is carried out using, among others, the microorganism E. coli K-12 strain 294 (terminus A, thi-, hsr-, khsm+), as described in British Patent Publication no. 2055382 A. This strain is deposited with the American Type Culture Collection, ATCC Accession no. 31446. However, other microbial strains may be used, including known E: coli strains such as E. coli B, E. coli X 1776 (ATCC No. 31537) and E. coli W 3110 (F-, γ-, protropic) (ATCC No. 27325) or other mycorrhizal strains, many of which are stored and can (eventually) be obtained from recognized microorganism depository institutions, such as the American Type Culture Collection (ATCC)--cf. ATCC catalog. See also German Offenlegungsschrift 2644432. These other microorganisms include, for example, bacilli such as bacillus subtilis and other enterobacteria, of which we cite as examples salmonella typhimurium and serratia marcesans, with the use of plasmids that can replicate and express sequences of heterologous genes in them.

Kao primjer, promotorski sustav beta laktamaze i laktoze, uspješno se koristi za iniciranje i održavanje mikropske produkcije heterolognih polipeptida. Pojedinosti u vezi dobivanja i sastava tih sustava promotora objavili su Chang et. al., Nature 275, 617 (1978) i Itakura et al., Science 198, 1056 (1977), koje publikacije ovdje navodimo kao referencu. Nedavno je razvijen sustav koji se temelji na triptofanu, takozvani sustav trp promotora. Pojedinosti u vezi dobivanja i sastava ovog sustava objavili su Goeddel et al., Nucleic Acids Research 8, 4057 (1980) i Kleid et al., U.S.S.N. 133, 296. Te publikacije predate su 24. ožujka 1980, a ovdje se navode kao referenca. Otkriveni su i korišteni brojni drugi mikropski promotori, a pojedinosti u vezi njihovih nukleotidnih nizova, koji stručnjaku omogućavaju spajanje istih unutar vektora plazmida, su objavljeni vidi npr. Siebenlist et al., Cell 20, 269 (1980), što je ovdje navedeno kao referenca. As an example, the beta lactamase and lactose promoter system has been successfully used to initiate and maintain microbial production of heterologous polypeptides. Details regarding the preparation and composition of these promoter systems were published by Chang et. al., Nature 275, 617 (1978) and Itakura et al., Science 198, 1056 (1977), which publications are incorporated herein by reference. Recently, a tryptophan-based system, the so-called trp promoter system, has been developed. Details regarding the preparation and composition of this system are published by Goeddel et al., Nucleic Acids Research 8, 4057 (1980) and Kleid et al., U.S.S.N. 133, 296. Those publications were filed March 24, 1980, and are incorporated herein by reference. Numerous other microbial promoters have been discovered and used, and details of their nucleotide sequences, which allow one skilled in the art to incorporate them into plasmid vectors, have been published, see, e.g., Siebenlist et al., Cell 20, 269 (1980), which is incorporated herein by reference. .

2. Sojevi kvasca/kvaščevi promotori 2. Yeast strains/yeast promoters

Kod ovog sustava ekspresije također se može koristiti plazmid YRp7 (14. 15, 16), koji omogućava selekciju i replikaciju i kod E.coli i kod kvasca, saccharomyces cerevisiae. Za selekciju kod kvasca plazmid sadrži TRP1 gen (14, 15, 16) koji komplementira (omogućava rast u odsustvu triptofana) kvasac koji sadrži mutacije u tom genu pronađenom na kromosomu IV kvasca (17). Soj koji je ovdje korišten je soj RH218 (18) koji je pohranjen u American Type Culture Collection bez ograničenja (ATCC br. 44076). No, podrazumijeva se da svaki soj saccharomyces cerevisiae koji sadrži mutaciju koja čini stanicu mora biti djelotvoran okoliš za ekspresiju plazmida koji sadrži sustav ekspresije. Primjer drugog soja koji se može koristiti je pep4-1 (19). Ovaj triptofanski auksotrofni soj također ima mutaciju točke u TRP1 genu. With this expression system, the plasmid YRp7 (14, 15, 16) can also be used, which enables selection and replication both in E.coli and in the yeast, saccharomyces cerevisiae. For selection in yeast, the plasmid contains the TRP1 gene (14, 15, 16) which complements (enables growth in the absence of tryptophan) yeast containing mutations in that gene found on chromosome IV of yeast (17). The strain used here is strain RH218 (18) deposited in the American Type Culture Collection without restriction (ATCC No. 44076). However, it is understood that any strain of saccharomyces cerevisiae containing a cell-forming mutation must be an efficient environment for the expression of the plasmid containing the expression system. An example of another strain that can be used is pep4-1 (19). This tryptophan auxotrophic strain also has a point mutation in the TRP1 gene.

Kad se stavi na 5' poziciju nekvaščevog gena, 5'-bočni DNA niz (promotor) iz kvaščevog gena (za alkoholnu dehidrogenazu 1) može ubrzati ekspresiju stranog gena u kvascu kad se stavi u plazmid koji se koristi za transformaciju kvasca. Osim promotora, za ispravnu ekspresiju nekvaščevog gena u kvascu potreban je drugi kvaščev niz koji se stavlja na 3'-završetak nekvaščevog gena na plazmidu, da bi se omogućio ispravan završetak transkripcije i poliadenilacije u kvascu. Taj promotor se u predmetnom izumu može isto koristiti kao i drugi - vidi infra. When placed at the 5' position of a non-yeast gene, the 5'-flanking DNA sequence (promoter) from a yeast gene (for alcohol dehydrogenase 1) can accelerate expression of the foreign gene in yeast when placed in a plasmid used to transform yeast. In addition to the promoter, the correct expression of the non-yeast gene in yeast requires a second yeast sequence that is placed at the 3'-end of the non-yeast gene on the plasmid, to allow for proper termination of transcription and polyadenylation in yeast. This promoter can be used in the subject invention in the same way as others - see infra.

Kod preferentnog oblika izvedbe 5'-bočni niz kvaščevog gena kinaze 3-fosfoglicerata (20) smješten je na višem položaju od strukturnog gena, nakon kojeg opet dolazi DNA koja sadrži završne signale poliadenilacije, na primjer TRP1 (14, 15, 16) gen ili PGK (20) gen. In a preferred embodiment, the 5' flanking sequence of the yeast 3-phosphoglycerate kinase gene (20) is located at a higher position than the structural gene, which is again followed by DNA containing the final polyadenylation signals, for example the TRP1 (14, 15, 16) gene or PGK (20) gen.

Budući kvaščev 5'-bočni niz (u spoju sa 3' kvaščevim završnim DNA) (infra) može ubrzati ekspresiju stranog gena kod kvasca, veoma je vjerojatno da bi se 5'-bočni nizovi bilo kojeg visoko izraženog kvaščevog gena, mogli koristiti za ekspresiju važnih produkta gena. Kako pod nekim uvjetima, kvasac izražen do 65 posto od njegovog topivog proteina kao glikolitski enzimi (21 ) i kako ta visoka razina izgleda proizlazi iz produkcije visokih razina individualnih mRNA (22), bilo bi moguće koristiti 5'-bočne nizove bilo kojih drugih glikolitskih gena za takove svrhe ekspresije - npr. enolaza, dehidrogenaza gliceraldehid-3-fosfata, heksokinaza, dekarboksilaza piruvata, fosfofruktokinaza, izomeraza glukoze-6-fosfata, izomeraza triosefosfata, izomeraza fosfoglukoze i glukokinaza. Svaki od 3'-bočnih nizova tih gena može se koristiti i za točan završetak mRNA poliadenilacije kod takovog sustava ekspresije - cf. Supra. Neki drugi visoko izraženi geni su oni za fosfatazu kiseline (23) i oni koji izražavaju visoke razine proizvodnje uslijed mutacija u 5'-bočnim područjima (mutanti koji povećavaju ekspresiju) - uglavnom uslijed prisustva TY1 elementa koji se može transponirati (24). Since the yeast 5'-flanking sequence (in conjunction with the yeast 3' end DNA) (infra) can accelerate the expression of a foreign gene in yeast, it is very likely that the 5'-flanking sequences of any highly expressed yeast gene could be used for expression important gene products. Since, under some conditions, yeast expressed up to 65 percent of its soluble protein as glycolytic enzymes (21 ) and since this high level appears to result from the production of high levels of individual mRNAs (22), it would be possible to use the 5'-flanking sequences of any other glycolytic genes for such expression purposes - eg enolase, glyceraldehyde-3-phosphate dehydrogenase, hexokinase, pyruvate decarboxylase, phosphofructokinase, glucose-6-phosphate isomerase, triosephosphate isomerase, phosphoglucose isomerase and glucokinase. Each of the 3'-side sequences of these genes can also be used for the exact termination of mRNA polyadenylation in such an expression system - cf. Supra. Some other highly expressed genes are those for acid phosphatase (23) and those that express high levels of production due to mutations in the 5'-flanking regions (mutants that increase expression) - mainly due to the presence of the TY1 transposable element (24).

Svi gore navedeni geni smatraju se transkribiranom polimerazom (II) kvaščeve RNA. Promotori za RNA polimerazu I i III koji transkribiraju gene za ribosomski RNA, 5S RNA i tRNa (24, 25) mogu se također koristiti kod takovih konstrukcija ekspresije. All of the above genes are considered to be transcribed by yeast RNA polymerase (II). Promoters for RNA polymerase I and III that transcribe genes for ribosomal RNA, 5S RNA, and tRNa (24, 25) can also be used in such expression constructs.

Konačno, mnogi kvaščevi promotori sadrže i transkripcijsku kontrolu, tako da se mogu isključiti ili uključiti varijacijom uvjeta rasta. Neki primjeri takovih kvaščevih promotora su geni koji proizvode sljedeće proteine: Finally, many yeast promoters also contain transcriptional control, so they can be turned off or on by varying growth conditions. Some examples of such yeast promoters are genes that produce the following proteins:

alkoholna dehidrogenaza II, izocitokrom-c, fosfataza kiseline, degradacijski enzimi spojeni sa metabolizmom dušika, dehidrogenaza gliceraldehid-3-fosfata i enzimi odgovorni za iskorištavanje maltoze i galaktoze (22). Takova kontrolna područja bila bi veoma korisna kod kontrole ekspresije proteinskog produkta - naročito ako je njegova produkcija otrovna za kvasac. Također bi bilo moguće staviti kontrolno područje jednog 5'-bočnog niza sa 5'-bočnim nizom koji sadrži promotor visoko izraženog gena. To bi dovelo do promotora hibrida i bilo bi moguće, jer izgleda da su kontrolno područje i promotor fizički različiti DNA nizovi. alcohol dehydrogenase II, isocytochrome-c, acid phosphatase, degradative enzymes connected with nitrogen metabolism, glyceraldehyde-3-phosphate dehydrogenase and enzymes responsible for the utilization of maltose and galactose (22). Such control regions would be very useful in controlling the expression of a protein product - especially if its production is toxic to yeast. It would also be possible to insert the control region of one 5'-flanking sequence with the 5'-flanking sequence containing the promoter of a highly expressed gene. This would lead to a hybrid promoter and would be possible, as the control region and promoter appear to be physically different DNA sequences.

3. Sustavi stanične kulture/vektori stanične kulture 3. Cell culture systems/cell culture vectors

Propagiranje stanica kralježnjaka u kulturama (kultura tkiva), postao je rutinski postupak u posljednjim godinama (vidi Tissue Culture, Academic Press, Kruse and Patterson izdanje, 1973.). Kod tog postupka su se koristile COS-7 matične vezivne stanice bubrega majmuna kao domaćin za proizvodnju imuno interferona (25a). Ovdje opisan ekspreiment može se provoditi u svakoj staničnoj liniji koja može replicirati i izraziti kompatibilni vektor, npr. W138, BHK, 3T3, VERO i HeLa stanične linije. Osim toga, ono što se traži od vektora ekspresije jest izvor replikacije i promotor lociran ispred gena koji se izražava, zajedno sa svim potrebnim pozicijama vezanja ribozoma, RNA mjestima spajanja, pozicijom poliadenilacije i nizovima transkripcijskog terminatora. lako su ti bitni elementi SV40 korišteni kod ovdje opisanog postupka, podrazumijeva se da se izum ovdje opisan u terminima preferentnog oblika, ne smije tumačiti kao da je ograničen na te nizove. Na primjer, izvor replikacije drugih virusnih (napr. poliom, adeno, VSV, BPV itd.) vektora može se koristiti i kao celularni izvori DNA replikacije, koji mogu funkcionirati u neintegriranom stanju. Propagation of vertebrate cells in cultures (tissue culture) has become a routine procedure in recent years (see Tissue Culture, Academic Press, Kruse and Patterson edition, 1973). In this procedure, COS-7 stem connective cells of the monkey kidney were used as a host for the production of immunointerferon (25a). The experiment described herein can be performed in any cell line capable of replicating and expressing a compatible vector, eg W138, BHK, 3T3, VERO and HeLa cell lines. In addition, what is required of an expression vector is a source of replication and a promoter located upstream of the gene being expressed, along with all necessary ribosome binding sites, RNA splice sites, polyadenylation sites, and transcription terminator sequences. easily these essential elements of SV40 are used in the process described herein, it is understood that the invention described herein in terms of the preferred form should not be construed as being limited to these sequences. For example, the source of replication of other viral (eg, polyoma, adeno, VSV, BPV, etc.) vectors can also be used as cellular sources of DNA replication, which can function in a non-integrated state.

B. Sustavi vektora B. Systems of vectors

1. Direktna ekspresija zrelog imuno interferona kod E.koli 1. Direct expression of mature immune interferon in E. coli

Postupak koji se koristi za dobivanje direktne ekspresije IFN-γ kod E.koli kao zrelog polipeptida interferona (minus signalni niz) bio je varijanta onoga koji se koristio prije za hormon humanog rasta (26) i humani interferon leukocita (1 ), utoliko ukoliko obuhvaća kombinacije sintetskog (N-terminal) i cDNA. The procedure used to obtain the direct expression of IFN-γ in E.coli as a mature interferon polypeptide (minus the signal sequence) was a variant of the one used previously for human growth hormone (26) and human leukocyte interferon (1 ), insofar as it includes combinations of synthetic (N-terminal) and cDNA.

Kao što je izvedeno iz nukleotidnog niza od p69, opisanog infra i usporedbom sa poznatom pozicijom cijepanja između signalnog peptida i zrelog polipeptida za neke IFN-α, s (2), IFN-γ ima hidrofobni signalni peptid od 20 amino kiselina, nakon čega slijedi 146 amino kiselina zrele IFN-γ (slika 5). Kao što je prikazano na slici 7, BstNI pozicija restrikcione endonukleaze je smještena na amino kiselini 4 zrele IFN-γ. Određena su dva sintetska deoksioligonukleotida koja inkorporiraju ATG translacijski početni kodon, kodone za amino kiseline 1, 2 i 3 (cistein-tirozin-cistein) i stvaraju EcoRI kohezijski završetak. Ti deoksioligonukleotidi bili su spojeni na BstNI-PstI fragment 100 osnovnog para od p69, da bi se dobio gen sintetsko-prirodnog hibrida 1115 osnovnog para, koji kodira za IFN-γ i koji je spojen putem EcoRI i PstI restrikcijskim pozicijama. Taj gen unesen je u plazmid pLeIF A trp 103 između EcoRI i PstI pozicija, da bi se dobio plazmid ekspresije pIFN-γ trp 48. U tom plazmidu IFN-γ gen je izražen pod kontrolom E. coli trp promotora. (pLeIF A trp 103 je derivat od pLelF A 25 u kojem je EcoRI pozicija distalno prema LeIF A genu, bila odstranjena). Postupak koji se koristi za odstranjivanje te EcoRI pozicije prethodno je opisan (27). As deduced from the nucleotide sequence of p69, described infra and by comparison with the known cleavage position between the signal peptide and the mature polypeptide for some IFN-α, s (2), IFN-γ has a hydrophobic signal peptide of 20 amino acids, followed by 146 amino acids of mature IFN-γ (Figure 5). As shown in Figure 7, the BstNI restriction endonuclease site is located at amino acid 4 of mature IFN-γ. Two synthetic deoxyoligonucleotides were identified that incorporate the ATG translation start codon, codons for amino acids 1, 2, and 3 (cysteine-tyrosine-cysteine) and create an EcoRI cohesive terminus. These deoxyoligonucleotides were ligated to a 100 bp BstNI-PstI fragment of p69, to obtain a 1115 bp synthetic-natural hybrid gene, which codes for IFN-γ and was ligated via EcoRI and PstI restriction sites. This gene was inserted into the plasmid pLeIF A trp 103 between the EcoRI and PstI positions, to obtain the expression plasmid pIFN-γ trp 48. In this plasmid, the IFN-γ gene is expressed under the control of the E. coli trp promoter. (pLeIF A trp 103 is a derivative of pLelF A 25 in which the EcoRI position distal to the LeIF A gene was removed). The procedure used to remove this EcoRI position has been previously described (27).

2. Ekspresija u kvascu 2. Expression in yeast

Da bi se izrazio heterologni gen kao što je cDNA za imuno interferon u kvascu, morao se dobiti vektor plazmida koji sadrži četiri komponente. Prva komponenta je dio koji omogućava transformaciju E.coli i kvasca i prema tome mora sadržavati gen koji se može selektirati iz svakog organizma (u ovom slučaju, to je gen za otpornost na ampicilin iz E.coli i gena TRP1 iz kvasca). Ta komponenta također zahtijeva izvor replikacije iz oba organizama, da bi se održala kao plazmid DNA u oba organizma (u ovom slučaju, to je E.coli izvor iz pBR322 i ars1 izvor iz kromosoma III kvasca). In order to express a heterologous gene such as cDNA for immune interferon in yeast, a plasmid vector containing four components had to be obtained. The first component is the part that enables the transformation of E.coli and yeast and therefore must contain a gene that can be selected from each organism (in this case, it is the ampicillin resistance gene from E.coli and the TRP1 gene from yeast). That component also requires a source of replication from both organisms, to be maintained as plasmid DNA in both organisms (in this case, it is an E.coli source from pBR322 and an ars1 source from yeast chromosome III).

Druga komponenta plazmida je 5'-bočni niz iz visoko izraženog gena kvasca, da bi se ubrzala transkripcija prema dolje smještenog strukturalnog gena. U ovom slučaju je 5'-bočni niz koji se koristio onaj iz kvaščevog gena 3-fosfogliceratne kinaze (PGK). Fragment je oblikovan tako, da odstranjuje ATG PGK strukturnog niza, kao i 8 bp prema gore iz tog ATG-a. Taj niz zamijenjen je sa nizom koji sadrži i XbaI i EcoRI restrikcijske pozicije za prikladno pripajanje tog 5'-bočnog niza strukturnom genu. Another plasmid component is a 5'-flanking sequence from a highly expressed yeast gene, to accelerate transcription of a downstream structural gene. In this case, the 5'-flanking sequence used is that of the yeast 3-phosphoglycerate kinase (PGK) gene. The fragment was designed to remove the ATG of the PGK structural sequence as well as 8 bp upstream of that ATG. This sequence was replaced with a sequence containing both XbaI and EcoRI restriction sites for convenient joining of this 5'-flanking sequence to the structural gene.

Treća komponenta sistema je strukturni gen oblikovan tako, da sadrži ATG translacijski startni i translacijski stop signal. Izolacija i oblikovanje takovog gena je opisana infra. The third component of the system is a structural gene designed to contain an ATG translational start and translational stop signal. Isolation and cloning of such a gene is described infra.

Četvrta komponenta je kvaščev DNA niz koji sadrži 3'-bočni niz kvaščevog gena, koji sadrži ispravne signale za transkripcijski završetak i poliadenilaciju. The fourth component is the yeast DNA sequence containing the 3'-flanking sequence of the yeast gene, which contains the correct signals for transcription termination and polyadenylation.

Sa svim tim komponentama dobiven je imuno interferon u kvascu. With all these components, immune interferon was obtained in yeast.

Ekspresija u staničnoj kulturi sisavaca Expression in mammalian cell culture

Strategija za sintezu imuno interferona u kulturi stanica sisavaca ovisi o razvoju vektora koji je sposoban za autonomnu replikaciju i ekspresiju stranog gena pod kontrolom heterologne transkripcijske jedinice. Replikacija ovog vektora u kulturi tkiva završena je izvorom DNA replikacije (derivirane iz SV40 virusa) i pomoćnom funkcijom (T antigen), uvođenjem vektora u staničnu liniju endogeno izražavajući taj antigen (28, 29). Kasni promotor tog SV40 virusa prethodio je strukturnom genu interferona i osigurao transkripciju gena. The strategy for the synthesis of immunointerferon in mammalian cell culture depends on the development of a vector capable of autonomous replication and expression of a foreign gene under the control of a heterologous transcription unit. Replication of this vector in tissue culture is completed with a source of DNA replication (derived from the SV40 virus) and a helper function (T antigen), by introducing the vector into a cell line endogenously expressing that antigen (28, 29). The late promoter of that SV40 virus precedes the interferon structural gene and ensures transcription of the gene.

Vektor koji se koristio za dobivanje ekspresije IFN-γ sastojao se od pBR322 nizova koji su osigurali marker za selekciju kod E.coli (otpornost na ampicilin) kao i E.coli izvor DNA replikacije. Ti nizovi su izvedeni iz plazmida pML-1 (28) i okružuju područje koje premošćuje EcoRI i BamHI restrikcijske pozicije. SV40 izvor je izveden iz fragmenta 342 bazna para PvuII-HindIII koji okružuje ovo područje (30,31) (oba kraja su konvertirana u EcoRI završetke). Ovi nizovi, osim što sadrže virusne izvore DNA replikacije, kodiraju promotor za ranu i kasnu transkripcijsku jedinicu. Usmjerenje SV40 područja izvora bilo je takovo, da je promotor za kasnu transkripcijsku jedinicu bio pozicioniran proksimalno prema genu koji kodira interferon. The vector used to obtain IFN-γ expression consisted of pBR322 arrays that provided a selection marker in E.coli (ampicillin resistance) as well as an E.coli source of DNA replication. These sequences are derived from plasmid pML-1 (28) and surround the region bridging the EcoRI and BamHI restriction sites. The SV40 source was derived from a 342 bp PvuII-HindIII fragment flanking this region (30,31) (both ends converted to EcoRI termini). These sequences, in addition to containing the viral sources of DNA replication, encode the promoter for the early and late transcription units. The orientation of the SV40 source region was such that the promoter for the late transcription unit was positioned proximal to the gene encoding the interferon.

Kratki opis crteža Brief description of the drawing

Slika 1 prikazuje centrifugiranje gradijentom sukroze induciranog perifernog limfocita krvi (PBL) poli(A)+RNA. Zapažena su dvije točke maksimalne aktivnosti interferona sa veličinama od 12S i 165. Pozicije ribozomalnih RNA markera (od kojih je svaki zasebno centrifugiran) označene su iznad profila ekstinkcije. Figure 1 shows sucrose gradient centrifugation of induced peripheral blood lymphocyte (PBL) poly(A)+RNA. Two points of maximal interferon activity were observed with sizes of 12S and 165. The positions of the ribosomal RNA markers (each of which was centrifuged separately) are marked above the extinction profile.

Slika 2 prikazuje elektroforezu inducirane PBL Polx(A)+RNA kroz agarozu kisele uree. Promatrana je samo jedna točka maksimalne aktivnosti, koja komigrira sa 18S RNA. Pozicije ribozomalnih RMA markera koji su bili podvrgnuti elektroforezi u susjednom prostoru i vizualizirani obojenjem sa etidium bromidom, naznačeni su iznad profila aktivnosti. Figure 2 shows electrophoresis of induced PBL Polx(A)+RNA through acid urea agarose. Only one point of maximum activity was observed, which comigrates with 18S RNA. The positions of ribosomal RMA markers that were subjected to electrophoresis in the adjacent space and visualized by staining with ethidium bromide are indicated above the activity profile.

Slika 3 prikazuje uzorke hibridizacije 96 kolonija sa induciranim i neinduciranim 32P-označenim cDNA ispitnim supstancama. 96 individualnih transformanata uzgojeno je na mikrotitarskoj ploči, preneseno na dvije nitrocelulozne membrane, a potom su filteri hibridizirani sa 32P-CDNA ispitnim supstancama, koje su dobivene ili iz inducirane mRNA (gore) ili mRNA izolirane iz neinduciranih PBL kultura (neinduciranih, dolje). Filtri su dobro isprani da bi se odstranila nehibridizirana RNA, a potom izloženi rendgenskom filmu. Ovaj set filtara je reprezentant 86 takovih setova (8300 samostalnih kolonija). Primjer "induciranog" klona je označen kao H 12. Figure 3 shows hybridization patterns of 96 colonies with induced and uninduced 32 P-labeled cDNA test substances. 96 individual transformants were grown on a microtiter plate, transferred to two nitrocellulose membranes, and then the filters were hybridized with 32P-CDNA test substances, which were obtained from either induced mRNA (top) or mRNA isolated from non-induced PBL cultures (non-induced, bottom). Filters were washed thoroughly to remove unhybridized RNA and then exposed to X-ray film. This filter set is representative of 86 such sets (8300 independent colonies). An example of an "induced" clone is designated as H 12.

Slika 4 je restrikcija mape endonukleaze cDNA unosom klona 69. cDNA unos spojen je PstI pozicijama (točke na oba kraja) i oligo dC-dG repovima (jednostruke linije). Broj i veličina fragmenata dobivenih restrikcionim cijepanjem nukleaze procijenjeni su elektroforezom kroz 6 postotne gelove akrilamida. Pozicije strana potvrđene su sekvenciranjem nukleinske kiseline (prikazano na slici 5). Kodirano područje najvećeg otvorenog okvira za očitavanje je odijeljeno i iscrtkano područje i predstavlja tzv. niz 20 preostalih signalnih peptida, dok punktirano područje predstavlja zreli IIF niz (146 amino kiselina). 5' završetak od mRNA je na lijevoj strani, dok je 3' završetak na desnoj strani. Figure 4 is a restriction endonuclease map of the cDNA entry of clone 69. The cDNA entry was joined by PstI positions (dots at both ends) and oligo dC-dG tails (single lines). The number and size of fragments obtained by nuclease restriction digestion were evaluated by electrophoresis through 6 percent acrylamide gels. The positions of the sides were confirmed by nucleic acid sequencing (shown in Figure 5). The coded area of the largest open frame for reading is a separated and crossed-out area and represents the so-called sequence of 20 remaining signal peptides, while the dotted area represents the mature IIF sequence (146 amino acids). The 5' end of the mRNA is on the left side, while the 3' end is on the right side.

Slika 5 predstavlja nukleotidni niz unosa plazmida p69. Prikazan je i izvedeni niz amino kiseline najduljeg otvorenog okvira za očitavanje. Takozvani signalni niz prikazan je ostacima označenim sa S1 do S20. Figure 5 presents the nucleotide sequence of the p69 plasmid entry. The deduced amino acid sequence of the longest open reading frame is also shown. The so-called signal sequence is shown by residues labeled S1 to S20.

Slika 6 je usporedba IFN-γ mRNA strukture sa onom interferona leukocita (IFN-α) i matične vezivne stanice (IFN-β). Klon 69 mRNA (označen imuno) sadrži znatno veću količinu netranslatiranih nizova. Figure 6 is a comparison of IFN-γ mRNA structure with that of leukocyte interferon (IFN-α) and stem cell interferon (IFN-β). Clone 69 mRNA (immunolabeled) contains a significantly higher amount of untranslated sequences.

Slika 7 je šematski dijagram sastava IFN-γ plazmida ekspresije pIFN-β trp 48. Početni materijal je 1250 unos baznog para PstI od plazmida p69. Figure 7 is a schematic diagram of the composition of the IFN-γ expression plasmid pIFN-β trp 48. The starting material is a 1250 base pair entry of PstI from plasmid p69.

Slika 8 prikazuje dijagram plazmida korištenog za ekspresiju IFN-γ u stanicama majmuna. Figure 8 shows a diagram of the plasmid used to express IFN-γ in monkey cells.

Slika 9 prikazuje južnu hibridizaciju osam različitih EcoRI digestiranih humanih genomskih DNA hibridiziranih sa 32p-označenim Ddel fragmentom 600 baznog para iz unosa p69 tyhe cDNA. Dva EcoRI fragmenta jasno hibridiziraju sa ispitnom supstancom u svakom DNA uzorku. Figure 9 shows a Southern hybridization of eight different EcoRI-digested human genomic DNAs hybridized with a 32p-labeled Ddel fragment of 600 base pairs from the p69 tyhe cDNA input. Two EcoRI fragments clearly hybridize with the test substance in each DNA sample.

Slika 10 prikazuje južnu hibridizaciju humane genomske DNA digestirane sa šest različitih restrikcijskih . endonukleaza hibridiziranim sa 32P-označenom ispitnom supstancom od p69. Figure 10 shows the Southern hybridization of human genomic DNA digested with six different restriction enzymes. endonuclease hybridized with a 32P-labeled p69 test substance.

Slika 11 šematski prikazuje restrikcijsku mapu unosa 3.1 kbp HindIII vektora pB1 iz kojeg je izoliran PGK promotor. Označen je unos EcoRI pozicije i Xbal pozicije u 5'-bočnu DNA PGK gena. Figure 11 schematically shows the restriction map of the entry of the 3.1 kbp HindIII vector pB1 from which the PGK promoter was isolated. The entry of the EcoRI position and the XbaI position into the 5'-side DNA of the PGK gene is indicated.

Slika 12 prikazuje 5'-bočni niz plus početni kodirani niz za PGK gen prije unosa Xbal i EcoRI pozicija. Figure 12 shows the 5'-flanking sequence plus the initial coding sequence for the PGK gene before the insertion of the XbaI and EcoRI positions.

Slika 13 šematski prikazuje tehnike koje se koriste za unos Xbal pozicije na položaj -8 u PGK promotoru i za izoliranje 39bp fragmenta 5'-bočnog niza PGK koji sadrži taj Xbal završetak i Sau3A završetak. Figure 13 schematically shows the techniques used to introduce an XbaI site at position -8 in the PGK promoter and to isolate a 39bp fragment of the 5'-flanking sequence of PGK containing that XbaI terminus and the Sau3A terminus.

Slika 14 šematski prikazuje sastav 300 bp fragmenta koji sadrži gornji 39bp fragment, dodatni PGK 5'-bočni niz (265bp) iz PvuI do Sau3A (vidi sliku 1 1) i EcoRI poziciju uz Xbal. Figure 14 schematically shows the composition of the 300 bp fragment containing the upper 39bp fragment, an additional PGK 5'-flanking sequence (265bp) from PvuI to Sau3A (see Figure 1 1 ) and an EcoRI position adjacent to XbaI.

Slika 15 šematski prikazuje sastav fragmenta 1500 bp promotora (HindIII EcoRI) koji sadrži osim fragmenta prikazanog na slici 14, fragment 1300bp HindII do Pvul iz PGK 5'-bočnog niza (vidi sliku 1 1). Figure 15 schematically shows the composition of the 1500 bp promoter fragment (HindIII EcoRI) which contains, in addition to the fragment shown in Figure 14, a 1300 bp HindII to Pvul fragment from the PGK 5'-side sequence (see Figure 1 1).

Slika 16 prikazuje sastav vektora ekspresije za humani imuno interferon u kvascu, koji sadrži modificirani PGK promotor, IFN-v CDNA i završno područje kvaščevog PGK gena kao što je dolje detaljno opisano. Figure 16 shows the composition of an expression vector for human immune interferon in yeast, which contains a modified PGK promoter, IFN-v cDNA and the terminal region of the yeast PGK gene as described in detail below.

Detaljan opis Detailed description

A. Izvor IFN-γ mRNA A. Source of IFN-γ mRNA

Limfociti periferne krvi (PBL) dobiveni su leukoforezom, a krv je dobivena od dobrovoljnih davalaca. PBL se kasnije pročišćava gradijentnim centrifugiranjem FicoII-Hapaque, a potom uzgaja na koncentraciji od 5x106 stanice/ml u RPMI 1640, 1 posto L-glutamina, 25 mM HEPES i 1 % otopine penicilina/streptomicina (Gibco, Grand Islan, Ny). Te stanice su inducirane, da bi se dobila IFN-γ mitogenim stafilokoknim enterotoksinom B (1 µg/ml) i uzgajane 24 do 48 sati na 37ºC u 5 postotnom CO2. Dezacetiltimozin-alfa-1 (0.1 µg/ml) se doda u PBL kulture, da bi se povećala relativna količina IFN-γ aktivnosti. Peripheral blood lymphocytes (PBL) were obtained by leukophoresis, and blood was obtained from voluntary donors. PBL are later purified by FicoII-Hapaque gradient centrifugation and then cultured at a concentration of 5x10 6 cells/ml in RPMI 1640, 1 percent L-glutamine, 25 mM HEPES, and 1% penicillin/streptomycin solution (Gibco, Grand Islan, Ny). These cells were induced to produce IFN-γ with the mitogen staphylococcal enterotoxin B (1 µg/ml) and cultured for 24 to 48 hours at 37ºC in 5% CO2. Desacetylthymosin-alpha-1 (0.1 µg/ml) was added to PBL cultures to increase the relative amount of IFN-γ activity.

B. Vjesnik RNA izolacije B. Journal of RNA Isolation

Ukupne RNA iz PBL kultura ekstrahirane su uglavnom kao što su opisali Berger, S.L. et al. (33). Stanice su centrifugiranjem peletizirane, a potom ponovno suspendirane u 10 mM NaCl, 10 mM tris-HCl (pH 7.5), 1.5 mM MgCl2 i 10 mM ribunukleozid vanadil kompleksa. Stanice su rastvorene dodatkom NP-40 (1 posto koncentracije), a jezgre su peletizirane centrifugiranjem. Supernatant je sadržavao ukupnu RNA koja je prije pročišćena višestrukim ekstrakcijama fenola i kloroforma. Vodena faza izrađena je 0.2 M u NaCl, a potom je ukupna RNA precipitirana dodatkom dvije količine etanola. RNA od neinduciranih (nestimuliranih) kultura izolirana je istim metodama. Oligo-dT celulozna kromatografija koristila se za pročišćavanje mRNA iz ukupnih RNA preparata (34). Obično su dobivene količine iz 1-2 litre uzgojenog PBL-a iznosile 5-10 miligrama od ukupne RNA i 50-200 mikrograma Poly(A)+RNA. Total RNAs from PBL cultures were extracted essentially as described by Berger, S.L. et al. (33). The cells were pelleted by centrifugation and then resuspended in 10 mM NaCl, 10 mM tris-HCl (pH 7.5), 1.5 mM MgCl2 and 10 mM ribonucleoside vanadyl complex. The cells were dissolved by adding NP-40 (1 percent concentration), and the nuclei were pelleted by centrifugation. The supernatant contained total RNA previously purified by multiple phenol and chloroform extractions. The aqueous phase was made 0.2 M in NaCl, and then the total RNA was precipitated by adding two amounts of ethanol. RNA from non-induced (non-stimulated) cultures was isolated using the same methods. Oligo-dT cellulose chromatography was used to purify mRNA from total RNA preparations (34). Typically, the amounts obtained from 1-2 liters of cultured PBL were 5-10 milligrams of total RNA and 50-200 micrograms of Poly(A)+RNA.

C. Frakcioniranje mRNA C. Fractionation of mRNA

Dvije metode su korištene za frakcioniranje mRNA preparata. Te metode koristile su se neovisno jedna od druge (radije nego li zajedno) i svaka je rezultirala i znatnom povišenju IFN-γ mRNA. Two methods were used for fractionation of mRNA preparations. These methods were used independently of each other (rather than together) and each resulted in a significant increase in IFN-γ mRNA.

Za frakcioniranje mRNA korišteno je centrifugiranje gradijenta sukroze u prisustvu denaturirajućeg sredstva formamida. 19 sati i na 20ºC centrifugirani su gradijenti od 5 posto do 25 posto sukroze u 70 posto formamida (32) na 154,000 x g. Sukcesivne frakcije (0.5 ml) su potom odstranjene sa vrha gradijenta, etanol se nataložio i alikvot je injiciran u Xenopus laevis oocite za translaciju mRNA (35). Nakon 24 sata na sobnoj temperaturi, inkubacijsko sredstvo se ispituje na antivirusnu aktivnost u analizi inhibiranja standardnog citopatskog učinka, uz korištenje virusa vezikularnog stomatitisa (indijanski soj) ili virusa encefalomiokarditisa na WISH stanicama (humani amnion) kao što je opisao Stewart (36), osim, što su uzorci inhibirani sa stanicama 24 sata (umjesto 4) prije rada sa virusom. Konzistentno su promatrane dvije točke maksimalne aktivnosti u RNA frakcioniranom gradijentom sukroze (slika 1). Jedna maksimalna točka nataložila se u izračunatoj količini od 125 i sadržavala je 100-400 jedinica/ml antivirusne aktivnosti (uspoređeno sa IFN-alfa standardom) po mikrogramu injicirane RNA. Druga točka maksimalne aktivnosti nataložila se kao 16S u veličini sadržavala je oko polovinu aktivnosti točke maksimalne aktivnosti koja se polaganije taložila. Sucrose gradient centrifugation in the presence of the denaturing agent formamide was used for mRNA fractionation. At 19 hours and at 20ºC, gradients from 5 percent to 25 percent sucrose in 70 percent formamide (32) were centrifuged at 154,000 x g. Successive fractions (0.5 ml) were then removed from the top of the gradient, ethanol precipitated, and an aliquot was injected into Xenopus laevis. oocytes for mRNA translation (35). After 24 hours at room temperature, the incubation medium is tested for antiviral activity in a standard cytopathic inhibition assay using vesicular stomatitis virus (Indian strain) or encephalomyocarditis virus on WISH cells (human amnion) as described by Stewart (36), except , which samples were inhibited with cells for 24 hours (instead of 4) before working with the virus. Two points of maximum activity were consistently observed in RNA fractionated by a sucrose gradient (Figure 1). A single peak precipitated at a calculated amount of 125 and contained 100-400 units/ml of antiviral activity (compared to an IFN-alpha standard) per microgram of injected RNA. The second maximum activity point deposited as 16S in size contained about half the activity of the slower settling maximum activity point.

Do svake od ovih najviših točka aktivnosti dolazi uslijed IFN-γ, jer nikakova aktivnost nije promatrana kad su iste frakcije ispitivane na goveđim stanicama (MDBK) koje nisu zaštićene humanim IFN-γ. Obje aktivnosti, tj. i IFN-alfa aktivnost i IFN-beta aktivnost lako bi se bile otkrile sa MDBK testom (5). Each of these highest activity points is due to IFN-γ, as no activity was observed when the same fractions were tested on bovine cells (MDBK) that were not protected by human IFN-γ. Both activities, i.e. both IFN-alpha activity and IFN-beta activity, would be easily detected with the MDBK test (5).

Frakcioniranje mRNA (200 µg) također je provedeno elektroforezom kroz gelove agaroze kisele uree. Gusti gel agaroze (37, 38) bio je sastavljen od 1.75 posto agaroze, 0.025 M citrata, pH 3.8 i 6 M uree. Elektroforeza se provodila 7 sati na 25 miliamp. i 4ºC. Potom je gel frakcioniran sa žiletom. Pojedini režnjevi su topljeni na 70ºC i dvaput ekstrahirani sa fenolom i jednom sa kloroformom. Frakcije su se tada nataložile u etanolu i nakon toga ispitivale na IFN-γ mRNA injiciranjem u Xenopus laevis oocite i antivurusno. U gelom frakcioniranim uzorcima promatrana je samo jedna točka maksimalne aktivnosti (slika 2). Ta točka maksimalne aktivnosti komiogrirala je sa 18S i imala je aktivnost od 600 jedinica/ml po mikrogramu injcirane RNA. Ova aktivnost je izgleda također IFN-γ specifična, jer ne štiti MDBK stanice. Fractionation of mRNA (200 µg) was also performed by electrophoresis through acid urea agarose gels. The dense agarose gel (37, 38) was composed of 1.75 percent agarose, 0.025 M citrate, pH 3.8, and 6 M urea. Electrophoresis was carried out for 7 hours at 25 milliamps. and 4ºC. Then the gel was fractionated with a razor blade. Individual lobes were melted at 70ºC and extracted twice with phenol and once with chloroform. Fractions were then precipitated in ethanol and subsequently tested for IFN-γ mRNA by injection into Xenopus laevis oocytes and antivirally. In the gel-fractionated samples, only one point of maximum activity was observed (Figure 2). This point of maximum activity co-localized with 18S and had an activity of 600 units/ml per microgram of injected RNA. This activity seems to be also IFN-γ specific, as it does not protect MDBK cells.

Diskrepancija u veličini između maksimalnih aktivnosti promatranih na gradijentima sukrouze (12S i 16S) i gelovima kisele uree (18S) mogu se objasniti zapažanjem, da se te dvije nezavisne metode frakcioniranja ne provode pod totalnim uvjetima denaturiranja. The discrepancy in size between the maximal activities observed on sucrose gradients (12S and 16S) and urea acid gels (18S) can be explained by the observation that these two independent fractionation methods are not performed under total denaturing conditions.

D. Pripremanje kolonije koja sadrži IFN-γ nizove D. Colony preparation containing IFN-γ arrays

3 µg mRNA, frakcionirane gelom, koristilo se u standardnim postupcima priprave cDNA sa dvostrukom niti (26, 39). cDNA je frakcioniran na 6 postotnom poliakrilamidnom gelu. Dvije frakcijske veličine su elektroeluirane, 800 - 1500 bp (138 ng) i manje od 1500 bp (204 ng). 35 ng dijela svake veličine cDNA podvrgnuto je ekstenziji s ostatkom deoksil C koristeći terminalnu deoksilnukleotidilnu transferazu (40), te topljeno sa 300 ng plazmida pBR322 (41) koji je na sličan način spojen s ostatkom deoksilG na poziciju Pstl (40). Svaka topljena smjesa potom je transformirana u E. coli K12 soj 294. Sa 800 1500 bp cDNA dobiveno je oko 8000 transformanata, a 400 transformanata je dobijeno sa manje od 1500 'bp cDNA. 3 µg of gel-fractionated mRNA was used in standard double-stranded cDNA preparation procedures (26, 39). cDNA was fractionated on a 6% polyacrylamide gel. Two size fractions were electroeluted, 800 - 1500 bp (138 ng) and less than 1500 bp (204 ng). A 35 ng portion of each cDNA size was extended with a deoxyl C residue using terminal deoxylnucleotidyl transferase (40), and digested with 300 ng of plasmid pBR322 (41) similarly fused with a deoxylG residue at the PstI position (40). Each fused mixture was then transformed into E. coli K12 strain 294. About 8000 transformants were obtained with 800 1500 bp cDNA, and 400 transformants were obtained with less than 1500 'bp cDNA.

E. Separacija kolonija za inducirane cDNA E. Separation of colonies for induced cDNAs

Kolonije su pojedinačno inokulirane u mikrotitarske ploče koje sadrže LB (58) + 5 µg/ml tetraciklina, te pohranjene na temp. od - 20°C nakon dodavanja DMSO do 7%. Dva primjerka kolonije uzgajana su na nitroceluloznim filtrima, a DNA iz svake kolonije je fiksirana na filtar putem postupka Grunstein-Hogness (42). Colonies were individually inoculated into microtiter plates containing LB (58) + 5 µg/ml tetracycline, and stored at temp. from - 20°C after adding DMSO up to 7%. Two copies of the colony were grown on nitrocellulose filters, and DNA from each colony was fixed on the filter using the Grunstein-Hogness procedure (42).

32p- označene cDNA ispitne supstance pripremljeno je pomoću 18S veličine gelom frakcionirane mRNA iz induciranih i neinduciranih kultura PBL-a. Upotrijebljen je dT 12-18, a uvjeti za reakciju su opisani ranije (1). Filtri sa 8000 transformanata cDNA veličine od 600 - 1500 bp i 400 transformanata cDNA veličine manje od 1500 bp hibridizirani su sa 20 x 106 cpm inducirane 32pcDNA. Dvostruki set filtara hibridiziran je sa 20 x 106 cpm neinducirane 32pcDNA. U hibridizaciji su se 16 sati koristili uvjeti koje su opisali Fritsch et al. (43). Filtri su pomno oprani (43) i 16 - 48 sati izloženi Kodak XR-5 rendgenskom filmu s DuPont Lightning-Plus filtrima pojačanja. Izvršena je usporedba modela hibridizacije svake kolonije s dvije ispitne supstance. Oko 40% kolonija hibridiziralo se s obje ispitne supstance, dok se približno 50% kolonija nije hibridiziralo niti s jednom ispitnom supstancom (prikazano na slici 3). 124 kolonija je znatno hibridiziralo s induciranom ispitnom supstancom, no slabije ili neznatno sa neinduciranom ispitnom supstancom. Te su kolonije pojedinačno inokulirane na mikrotitarske ploče, uzgojene i prenesene na nitrocelulozne filtere, te hibridizirane s iste dvije ispitne supstance kao što je gore opisano. Plazmid DNA izoliran brzim postupkom (44) iz svake od kolonija također je fiksiran na nitrocelulozne filtre i hibridiziran (45) s induciranom i neinduciranom ispitnom supstancom. DNA iz 22 kolonije su hibridizirane samo s induciranom ispitnom supstancom, te su nazvane "induciranim" kolonijama. 32p-labeled cDNA of the test substance was prepared using 18S size gel-fractionated mRNA from induced and non-induced PBL cultures. dT 12-18 was used, and the reaction conditions were described earlier (1). Filters with 8000 cDNA transformants with a size of 600 - 1500 bp and 400 cDNA transformants with a size of less than 1500 bp were hybridized with 20 x 106 cpm induced 32pcDNA. A double set of filters was hybridized with 20 x 106 cpm of uninduced 32pcDNA. In the hybridization, the conditions described by Fritsch et al. were used for 16 hours. (43). Filters were thoroughly washed (43) and exposed to Kodak XR-5 X-ray film with DuPont Lightning-Plus amplification filters for 16 - 48 hours. The hybridization model of each colony with two test substances was compared. About 40% of colonies hybridized with both test substances, while approximately 50% of colonies did not hybridize with either test substance (shown in Figure 3). 124 colonies significantly hybridized with the induced test substance, but weakly or slightly with the non-induced test substance. These colonies were individually inoculated onto microtiter plates, grown and transferred onto nitrocellulose filters, and hybridized with the same two test substances as described above. Plasmid DNA isolated by the rapid procedure (44) from each of the colonies was also fixed on nitrocellulose filters and hybridized (45) with induced and uninduced test substance. DNAs from 22 colonies were hybridized only with the induced test substance, and were called "induced" colonies.

F. Obilježja induciranih kolonija F. Characteristics of induced colonies

Plazmid DNA je pripremljen iz 5 induciranih kolonija (46), te je korišten za karakterizaciju cDNA unosa. Prikaz restrikcione endonukleaze pet induciranih plazmida (p67, p68, p69, p71 i p72) ukazuje da četiri plazmida imaju sličan izgled restrikcione nukleaze. Ta četiri plazmida (p67, p69, p71 i p72) imala su četiri Ddel pozicije, 2 Hinfl pozicije i jednu Rsal poziciju kod unosa cDNA. Peti plazmid (p68) sadržavao je običan Ddel fragment i u usporedbi s ostala četiri predstavlja kratak klon cDNA. Plasmid DNA was prepared from 5 induced colonies (46), and was used to characterize the cDNA entry. Restriction endonuclease display of the five induced plasmids (p67, p68, p69, p71 and p72) indicates that the four plasmids have similar restriction nuclease appearance. Those four plasmids (p67, p69, p71 and p72) had four DdeI positions, 2 HinfI positions and one RsaI position in the cDNA input. The fifth plasmid (p68) contained a normal Ddel fragment and, compared to the other four, represented a short cDNA clone.

Podudarnost na koju ukazuje mapa restrikcione nukleaze potvrđena je hibridizacijom. 32p-označena DNA ispitna supstanca pripremljena je (47) iz 600 bp Ddel fragmenta plazmida p67 i upotrijebljena za hibridizaciju (42) sa drugim induciranim kolonijama. Svih pet kolonija s izraženom restrikcionom nukleazom poprečno su hibridizirane s predmetnom ispitnom supstancom, a isti slučaj je bio i sa 17 drugih kolonija od 124 izabranih kod separacije induciranih/neinduciranih. The match indicated by the restriction nuclease map was confirmed by hybridization. A 32p-labeled DNA test substance was prepared (47) from a 600 bp Ddel fragment of plasmid p67 and used for hybridization (42) with other induced colonies. All five colonies with expressed restriction nuclease were cross-hybridized with the test substance in question, and the same was the case with 17 other colonies out of 124 selected in the induced/non-induced separation.

Duljina cDNA unosa u svakom od ovih poprečno hibridiziranih plazmida mjerena je digestijom Pstl i gel elektroforezom. Klon s najduljim cDNA unosom bio je klon 69 s unosom duljine od 1200 -1400 bp. Ova DNA je upotrebljena u svim daljnjim pokusima, a prikaz njene restrikcione endonukleaze vidi se na Slici 4. The length of the cDNA insert in each of these cross-hybridized plasmids was measured by PstI digestion and gel electrophoresis. The clone with the longest cDNA input was clone 69 with an input length of 1200-1400 bp. This DNA was used in all further experiments, and a representation of its restriction endonuclease can be seen in Figure 4.

Kod plazmida p69 se pokazalo da je cDNA unos, po izražajnosti svog proizvoda, IFN-γ cDNA, proizveden u tri nezavisna ekspresivna sustava, sa antivirusnom aktivnošću, kao što je niže pobliže opisano. In the case of plasmid p69, it was shown that the cDNA entry, by the expression of its product, is IFN-γ cDNA, produced in three independent expression systems, with antiviral activity, as described in more detail below.

G. Analiza niza cDNA unosa u plazmidu p69 G. Array analysis of the cDNA insert in the p69 plasmid

Cjelokupni nukleotidni niz cDNA unosa u plazmidu p69 određivan je metodom prekida (48) dideoksilnukleotidnog lanca nakon subkloniranja fragmenata u M13 vektoru mp7 (49), te kemijskim postupkom Maxam - Gilbert (52). Najdulji očitani oblik obuhvaća protein od 166 amino kiselina, prikazanih na slici 5. Prvi kodirani ostatak je prvi kodon nađen u 5' završetku cDNA. Prvih 20 ostataka na amino krajevima vjerojatno služe kao signalni niz za sekreciju preostalih 146 amino kiselina. Ovaj takozvani signalni niz ima obilježja zajednička s drugim signalnim nizovima, a to su veličina i hidrofobicitet. Nadalje, četiri amino kiseline nađene pri cijepanju niza (ser - leu - gli - cis) identične su četirima ostacima nađenim kod točke cijepanja nekolicine leukocitnih interferona (LeIF B, C, D, F, i H, (2)). Kodirani zreli niz amino kiseline sa 146 amino kiselina ima molekularnu težinu 17,140. The entire nucleotide sequence of the cDNA entry in the p69 plasmid was determined by the dideoxyl nucleotide chain termination method (48) after subcloning the fragments in the M13 vector mp7 (49), and by the Maxam-Gilbert chemical procedure (52). The longest read form comprises a protein of 166 amino acids, shown in Figure 5. The first coded residue is the first codon found in the 5' end of the cDNA. The first 20 residues at the amino ends probably serve as a signal sequence for the secretion of the remaining 146 amino acids. This so-called signal sequence has features in common with other signal sequences, namely size and hydrophobicity. Furthermore, the four amino acids found at the cleavage site (ser - leu - gly - cis) are identical to the four residues found at the cleavage point of several leukocyte interferons (LeIF B, C, D, F, and H, (2)). The encoded mature amino acid sequence with 146 amino acids has a molecular weight of 17,140.

Postoje dva potencijalna položaja glikozilacije (50) u kodiranom proteinskom nizu, kod amino kiselina 28 do 30 (asn - gli - thr) i amino kiselina 100 do 102 (asn - tir - ser). Postojanje ovih pozicija konzistentno je s opaženom glikozilacijom humanog IFN-γ (6, 51 ). Nadalje, jedina dva ostatka cisteina (pozija 1 i 3) prostorno su isuviše blizu da bi formirali disulfidni most koji je konzistentan s opaženom stabilnošću IFN-γ u prisutnosti redukcionih agensa kao što je beta-merkaptoetanol (51). Izvedeni razvijeni amino kiselinski niz je uglavnom dosta bazičan, sa ukupno 30 ostataka lizina, arginina i histidina, te samo 19 ostataka asparaginske i glutaminske kiseline. There are two potential glycosylation sites (50) in the encoded protein sequence, at amino acids 28 to 30 (asn - gly - thr) and amino acids 100 to 102 (asn - tyr - ser). The existence of these positions is consistent with the observed glycosylation of human IFN-γ (6, 51 ). Furthermore, the only two cysteine residues (positions 1 and 3) are spatially too close to form a disulfide bridge that is consistent with the observed stability of IFN-γ in the presence of reducing agents such as beta-mercaptoethanol (51). The derived developed amino acid sequence is mostly quite basic, with a total of 30 residues of lysine, arginine and histidine, and only 19 residues of aspartic and glutamic acid.

mRNA struktura IFN-γ izvedena iz DNA niza plazmida p69 znakovito je drugačija od IFN-α (1, 2 ili IFN-(3 (5) mRNA. Kao što je prikazano na slici 6, područje kodiranja IFN-γ je kraće dok su 5' netranslatirana i 3' netranslatirana područja mnogo dulja od IFN-α ili IFN-β. The mRNA structure of IFN-γ derived from the DNA sequence of plasmid p69 is significantly different from IFN-α (1, 2 or IFN-(3 (5)) mRNA. As shown in Figure 6, the coding region of IFN-γ is shorter while 5 ' untranslated and 3' untranslated regions much longer than IFN-α or IFN-β.

H. Izravna ekspresija imuno interferona u E. coli H. Direct expression of immune interferon in E. coli

Vezano na sliku 7, 50 µg plazmida p69 digestira sa Pstl i sa unosom 1250 baznog para izoliranim putem gel elektroforeze na 6 postotnom poliakrilamid gelu. Približno 10 µg ovog unosa elektroeluirano je iz gela. 5 µg Pstl fragmenta djelomice digestira 15 minuta sa 3 jedinice BstNl (Bethesda Research Labs) na temperaturi od 37ºC, a reakcijska smjesa se pročišćava na 6 postotnom poliakrilamid gelu. Od željenog 1100 baznog para BstNl - Pstl fragmenta, obnavlja se oko 0.5 µg. Dva naznačena deoksiloligonukleotida, 5' dATTCATGTGTTATTGTC i 5' - dTGACAATAACACATG (slika 7) sintetizirani su fosfotriester metodom (53) i fosforilizirani kako slijedi: Referring to Figure 7, 50 µg of plasmid p69 digested with PstI and with input of 1250 base pairs isolated by gel electrophoresis on a 6% polyacrylamide gel. Approximately 10 µg of this input was electroeluted from the gel. 5 µg of the Pstl fragment is partially digested for 15 minutes with 3 units of BstNl (Bethesda Research Labs) at a temperature of 37ºC, and the reaction mixture is purified on a 6% polyacrylamide gel. Of the desired 1100 base pair BstNl - Pstl fragment, about 0.5 µg is recovered. The two indicated deoxyloligonucleotides, 5' dATTCATGTGTTATTGTC and 5' - dTGACAATAACACATG (Figure 7) were synthesized by the phosphotriester method (53) and phosphorylated as follows:

100 p mola svakog deoksiloligonukleotida spojeno je u 30 µl 60 mM Tris-HCl (pH 8), 10 mM MgCl2, 15 mN beta-merkaptanetanola i 240 µCi (y-32p)ATP (Amersham, 5000 Ci/mmole). Dodaje se 12 jedinica T4 polinukleotid kinaze i reakcija se odvija 30 minuta na temperaturi od 37°C. Dodaje se 1 µl 10 mM ATP i slijedi reakcija daljnjih 20 minuta. Nakon ekstrakcije o-OH/CHCI3 oligomeri se spajaju sa 0.25 µg fragmentom baznog para BstNl-Pstl 1100, a etanol se taloži. Ovi fragmenti se vežu na temperaturi od 20ºC, 2 sata u 30 µl 20 mM Tris-HCI (pH 7.5), 10 mM MgCl2, 10 mM ditiotreitola, 0.5 mM ATP i 10 jedinica T4 DNA ligaze. Smjesa digestira 1 sat sa 30 jedinica Pstl i 30 jedinica EcoRl (kako bi se eliminirala polimerizacija putem spajanja kohezivnih završetaka), te se podvrgava elektroforezi na 6 postotnom poliakrilamid gelu. 1115 produkt baznog para (110,000 cpm) se obnavlja elektroelucijom. 100 p moles of each deoxyloligonucleotide were combined in 30 µl 60 mM Tris-HCl (pH 8), 10 mM MgCl2, 15 mN beta-mercaptanethanol and 240 µCi (y-32p)ATP (Amersham, 5000 Ci/mmole). 12 units of T4 polynucleotide kinase are added and the reaction takes place for 30 minutes at a temperature of 37°C. 1 µl of 10 mM ATP is added and the reaction is continued for a further 20 minutes. After the o-OH/CHCl3 extraction, oligomers are combined with 0.25 µg fragment of the base pair BstNl-Pstl 1100, and ethanol is precipitated. These fragments are bound at a temperature of 20ºC, for 2 hours in 30 µl of 20 mM Tris-HCl (pH 7.5), 10 mM MgCl2, 10 mM dithiothreitol, 0.5 mM ATP and 10 units of T4 DNA ligase. The mixture is digested for 1 hour with 30 units of PstI and 30 units of EcoRl (to eliminate polymerization via cohesive end joining), and electrophoresed on a 6% polyacrylamide gel. 1115 base pair product (110,000 cpm) is recovered by electroelution.

Plazmid pLeIF A trp 103 (slika 7) je derivat plazmida pLeIF A 25 (1) u kojem je uklonjena EcoRl pozicija distalna na gen LeIF A (27). 3 µg PLeIF A trp 103 digestira s 20 jedinica EcoRl i 20 jedinica Pstl u trajanju od 90 minuta pri temperaturi od 37ºC, te se podvrgava elektroforezi na 6 postotnom poliakrilamid gelu. Elektroelucijom se obnavlja veliki (3900 bazni par) fragment vektora. Fragment baznog para 1115 EcoRl- Pstl IFN-γ DNA spaja se u 0.15 µg pripremljenog vektora. Transformacijom E. coli K12, soj 294 (ATCC br. 31446) dobiva se 120 kolonija otpornih na tetraciklin. Plazmid DNA pripravlja se iz ovih 60 tranformanata i digestira sa EcoRl i Pstl. Tri od plazmida sadržavaju željeni fragment baznog para 1115 EcoRl-Pstl. Analiza DNA niza potvrđuje da ovi plazmidi sadrže željeni nukleotidni niz na spoju između trp promotora, sintetičke DNA i cDNA. Za daljnje razmatranje izabran je jedan od ovih plazmida pIFN-γ trp 48. Ovaj se plazmid koristio za transformiranje E. coli K-12 soj W3110 (ATCC br. 27325). Plasmid pLeIF A trp 103 (Figure 7) is a derivative of plasmid pLeIF A 25 (1) in which the EcoRl position distal to the LeIF A gene (27) has been removed. 3 µg of PLeIF A trp 103 is digested with 20 units of EcoRl and 20 units of Pstl for 90 minutes at a temperature of 37ºC, and is subjected to electrophoresis on a 6 percent polyacrylamide gel. A large (3900 base pair) fragment of the vector is recovered by electroelution. A fragment of base pair 1115 EcoRl-Pstl IFN-γ DNA is joined in 0.15 µg of the prepared vector. Transformation of E. coli K12, strain 294 (ATCC No. 31446) resulted in 120 colonies resistant to tetracycline. Plasmid DNA is prepared from these 60 transformants and digested with EcoRl and PstI. Three of the plasmids contain the desired fragment of the 1115 base pair EcoRl-PstI. DNA sequence analysis confirms that these plasmids contain the desired nucleotide sequence at the junction between the trp promoter, synthetic DNA and cDNA. One of these plasmids, pIFN-γ trp 48, was chosen for further consideration. This plasmid was used to transform E. coli K-12 strain W3110 (ATCC No. 27325).

I. Struktura gena kodiranog IFN-γ niza I. Structure of the gene encoding the IFN-γ sequence

Struktura gena kodiranog za IFN-γ analizirana je putem južne hibridizacije. U ovom postupku (54), 5 mikrograma humanog limfocita DNA (pripravljenog kao u 55), velike molekularne težine, digestira u potpunosti sa različitim restrikcionim endonukleazama, podvrgava se elektroforezi na 1.0 postotnom gelu agaroze (56) i nanosi na nitrocelulozni filter (54). 32p- označena DNA ispitna supstanca priprema se (47) iz 600 bp Ddel fragmenta cDNA unosa p69 i hibridizira (43) sa mrljom nitroceluloze-DNA. 107 brojenja u minuti ispitne supstance se hibridizira 16 sati i potom se pere kao što je opisano (43). Osam genomskih uzoraka DNA, od različitih davatelja, digestira s restrikcionom endonukleazom EcoRl i hibridizira sa p69 32p-označenom ispitnom supstancom. Kao što je prikazano na slici 9, opažaju se dva jasna signala hibridizacije s veličinama od 8.8 kilobaznih parova (kbp) i 2.0 kbp, procijenjenim usporedbom pokretljivosti sa Hind III digestirane -DNA. To bi mogao biti rezultat dva IFN-γ gena ili jednog gena rascijepljenog EcoRl pozicijom. Pošto p69 cDNA ne sadrži EcoRl poziciju, potreban bi bio interventni niz (intron) s internom EcoRl pozicijom da bi se objasnio samo jedan gen. Za razlikovanje ovih dviju mogućnosti, izvedena je još jedna južna hibridizacija sa istom ispitnom supstancom na pet drugih endonukleaznih digestija pojedinačne DNA (slika 10). Dva hibridizirajuća DNA fragmenta promatrana su sa druga dva digesta endonukleaze, Pvull (6.7 kbp i 4.0 kbp) i Hincll (2.5 kbp i 2.2 kbp). Medutim, tri uzorka endonukleazne digestije daju samo jedan hibridizirajući DNA fragment: Hindlll (9.0 kbp), Bglll (11.5 kbp) i BamHl (9.5 kbp). Dva IFN-γ gena morala bi biti povezana na neuobičajeno maloj udaljenosti (manjoj od 9.0 kbp) kako bi bili sadržani u istom Hindlll hibridizirajućem fragmentu. Ovakav rezultat ukazuje da je samo jedan homologni IFN-v gen prisutan u humanoj genomskoj DNA, te da taj gen cijepa jedan ili više introna koji sadrže EcoRl, Pvull, i Hincll pozicije. Ovu pretpostavku podržava hibridižacija 32p-označenog (47) fragmenta pripravljenog iz samo 3' netranslatirana područja cDNA iz p69 (130 bp Ddel fragment od 860 do 990 bp na slici 5) sa EcoRl digestom humane genomske DNA. Samo 2.0 kbp EcoRl fragmenta hibridiziralo je s ovom ispitnom supstancom, ukazujući da ovaj fragment sadrži 3' netranslatirana niza, dok 8.8 kbp EcoRl fragment sadrži 5' nizova. Struktura gena kod IFN-γ (jedan gen s najmanje jednim intronom) bitno je drugačija od IFN-α (višestruki geni (2) bez introna (56)) ili IFN-β (jedan gen bez introna (57)). The structure of the gene coding for IFN-γ was analyzed by Southern hybridization. In this procedure (54), 5 micrograms of human lymphocyte DNA (prepared as in 55), of high molecular weight, is digested completely with various restriction endonucleases, subjected to electrophoresis on a 1.0 percent agarose gel (56), and applied to a nitrocellulose filter (54). . A 32p-labeled DNA test substance is prepared (47) from a 600 bp Ddel fragment of the p69 cDNA entry and hybridized (43) to a nitrocellulose-DNA stain. 107 counts per minute of test substance are hybridized for 16 hours and then washed as described (43). Eight genomic DNA samples, from different donors, were digested with restriction endonuclease EcoRl and hybridized with p69 32p-labeled test substance. As shown in Figure 9, two clear hybridization signals were observed with sizes of 8.8 kilobase pairs (kbp) and 2.0 kbp, as assessed by mobility comparison with Hind III digested -DNA. This could be the result of two IFN-γ genes or one gene cleaved by the EcoRl position. Since the p69 cDNA does not contain an EcoRl position, an intervening sequence (intron) with an internal EcoRl position would be required to explain only one gene. To distinguish between these two possibilities, another Southern hybridization was performed with the same test substance on five other endonuclease digests of individual DNA (Figure 10). Two hybridizing DNA fragments were observed with two other endonuclease digests, Pvull (6.7 kbp and 4.0 kbp) and Hincll (2.5 kbp and 2.2 kbp). However, three endonuclease digestion samples yield only one hybridizing DNA fragment: HindIII (9.0 kbp), BglII (11.5 kbp) and BamHI (9.5 kbp). The two IFN-γ genes would have to be linked at an unusually short distance (less than 9.0 kbp) to be contained in the same HindIII hybridizing fragment. This result indicates that only one homologous IFN-v gene is present in human genomic DNA, and that this gene cleaves one or more introns containing EcoRl, Pvull, and Hincll positions. This assumption is supported by hybridization of a 32p-labeled (47) fragment prepared from only the 3' untranslated region of cDNA from p69 (130 bp Ddel fragment from 860 to 990 bp in Figure 5) with an EcoRl digest of human genomic DNA. Only the 2.0 kbp EcoRl fragment hybridized with this test substance, indicating that this fragment contains the 3' untranslated sequence, while the 8.8 kbp EcoRl fragment contains the 5' sequence. The gene structure of IFN-γ (one gene with at least one intron) is significantly different from IFN-α (multiple genes (2) without introns (56)) or IFN-β (one gene without introns (57)).

J. Pripremanje bakterijskih ekstrakta J. Preparation of bacterial extracts

Preko noći uzgojena kultura E. coli W3110/pIFN-γ trp 48 u Luria hranjivoj otopini + 5 mikrograma/ml tetraciklina koristi se za inokulaciju M9 (58) medija koji sadrži 0.2 postotaka glukoze, 0.5 % kazaminskih kiselina i 5 mikrograma/ml tetraciklina razrijeđenog 1:100. Indol akrilna kiselina dodaje se finalnoj koncentraciji od 20 mikrograma/ml, kada je A550 između 0.1 i 0.1 Deset ml uzorka se dobiva centrifugiranjem kod A550 = 1.0 i odmah razrijedi sa 1 ml fiziološke otopine fosfatnog pufera koji sadrži 1 mg/ml albumina goveđeg seruma. Stanice se otvaraju sonikacijom i čiste od ostataka centrifugiranjem. Supernatanti se do početka analize pohranjuju na temperaturu od 4°C. Utvrđeno je da je aktivnost interferona u supernatantima 250 jedinica/ml u usporedbi s IFN-α standardima izmjerenim inhibicionom analizom citopatičkog djelovanja (CPE). An overnight culture of E. coli W3110/pIFN-γ trp 48 in Luria nutrient solution + 5 micrograms/ml tetracycline is used to inoculate M9 (58) medium containing 0.2% glucose, 0.5% casamic acids and 5 micrograms/ml tetracycline diluted 1:100. Indole acrylic acid is added to a final concentration of 20 micrograms/ml, when A550 is between 0.1 and 0.1. Ten ml of the sample is obtained by centrifugation at A550 = 1.0 and immediately diluted with 1 ml of physiological phosphate buffer solution containing 1 mg/ml of bovine serum albumin. Cells are opened by sonication and cleaned of debris by centrifugation. The supernatants are stored at a temperature of 4°C until the start of the analysis. The interferon activity in the supernatants was found to be 250 units/ml compared to IFN-α standards as measured by the cytopathic effect inhibition (CPE) assay.

K. Transformiranje kvasca / sojevi i medij K. Transformation of yeast / strains and medium

Kvaščeve gljivice se transformiraju kao što je ranije opisano (59). E. coli soj JA300 thr IeuB6 thyA trp C1117 hsdm- hsdR- strR) (20) se koristi u odabiru plazmida koji sadrže funkcionaian TRPI gen. Soj kvasca RH218 genotipa trp1 gal2 SUC2 mal CUPI) (18) koristi se kao domaćin transformacije kvasca. RH 218 je deponiran bez ograničenja u " American Type Culture Collection", ATTC br. 44076. M9 (minimalni medij) sa 0.25 % kazaminskih kiselina (CAA) i LB (puni medij) opisao je Miller (58) sa dodatkom 20 µg/ml ampicilina (Sigma) nakon što je medij bio u autoklavu i potom ohlađen. Kvaščeve gljivice uzgojene su u sljedećim medijim: YEPD je sadržavao 1% ekstrakta kvasca, 2% peptona i 2% glukoze +/- 3% Difco agara. YNB + CAA je sadržavala 6.7 grama kvaščeve dušikove baze (bez amino kiselina) (YNB) (Difco), 10 mg adenina, 10 mg uracila, 5 grama CAA, 20 grama glukoze i +/- 30 grama agara po litri. Yeasts were transformed as previously described (59). E. coli strain JA300 thr IeuB6 thyA trp C1117 hsdm- hsdR- strR) (20) is used in the selection of plasmids containing a functional TRPI gene. Yeast strain RH218 of genotype trp1 gal2 SUC2 mal CUPI) (18) is used as host for yeast transformation. RH 218 has been deposited without restriction in the American Type Culture Collection, ATTC no. 44076. M9 (minimal medium) with 0.25% casamic acids (CAA) and LB (full medium) was described by Miller (58) with the addition of 20 µg/ml ampicillin (Sigma) after the medium was autoclaved and then cooled. Yeasts were grown in the following media: YEPD containing 1% yeast extract, 2% peptone and 2% glucose +/- 3% Difco agar. YNB + CAA contained 6.7 grams of yeast nitrogen base (without amino acids) (YNB) (Difco), 10 mg of adenine, 10 mg of uracil, 5 grams of CAA, 20 grams of glucose and +/- 30 grams of agar per liter.

L. Sastav vektora ekspresije kvasca L. Composition of yeast expression vectors

1. 10, ug YRp& (14, 15, 16) digestira sa EcoRl. Dobiveni ljepljivi krajevi DNA učinjeni su tupima pomoću DNA polimeraze I (Klenow fragment). Vektor i unos stavljeni su na 1 postotni (SeaKem) gel agaroze, maknuti sa gela, elektroeluirani i ekstrahirani 2X s jednakim količinama kloroforma i fenola prije precipitacije s etanolom. Dobivene DNA molekule tupih završetaka potom su se 12 sati spajale u sadržaju od 50 µl na temperaturi od 12°C. Ova smjesa se potom koristila za transformiranje E. coli soja JA300 za otpornost na ampicilin i triptofansku prototrofiju. lzolirani su plazmidi koji u obje orijentacije sadrže gen TRPl. pFRW1 je imao gen TRP1 iste orijentaciji kao YRp7, dok je pFRW2 imao gen TRP1 suprotne orjentacije. 1. 10, ug YRp& (14, 15, 16) digested with EcoRl. The resulting sticky DNA ends were blunted using DNA polymerase I (Klenow fragment). The vector and input were loaded onto a 1% (SeaKem) agarose gel, removed from the gel, electroeluted, and extracted 2X with equal amounts of chloroform and phenol before precipitation with ethanol. The obtained DNA molecules with blunt ends were then combined for 12 hours in a volume of 50 µl at a temperature of 12°C. This mixture was then used to transform E. coli strain JA300 for resistance to ampicillin and tryptophan prototrophy. Plasmids containing the TRP1 gene in both orientations were isolated. pFRW1 had the TRP1 gene in the same orientation as YRp7, while pFRW2 had the TRP1 gene in the opposite orientation.

20 µg pFRW2 linearno je postavljen s Hind III i podvrgnut elektroforezi na gelu 1 postotne agaroze. Iz gela su eluirane linearne molekule i 200 ng je pomiješano sa 500 ng 3.1 kb Hindlll unosa piazmida pB1 (13) koji je restrikcioni fragment sa genom kvaščeve 3-fosfogliceratne kinaze. Ova smjesa se koristila za transformiranje E.coli soja 294 na rezistentnost na ampicilin i osjetljivost na tetraciklin. Plazmid spravljen iz takvog rekombinanta imao je intaktni gen TRPl sa 3.1 kbp Hindlll fragmentom iz pB1 unosa DNA na Hindlll poziciji gena rezistentnog na tetraciklin. Ovo je plazmid pFRM3l. 5 µg pFRM31 potpuno digestira sa EcoRl, dva puta je ekstrahiran s fenolom i klororofrmom i potom precipitira s etanolom. Kohezivni krajevi molekula se pune pomoću DNA polimeraze I (Klenow fragment) u reakciji od 250 µM u svakom deoksilnukleozidnom trifosfatu. Reakcija se izvodi 20 minuta pri temperaturi od l4ºC za koje vrijeme se DNA ekstrahira dva puta s fenolom - kloroformom, a potom precipitira s etanolom. 20 µg of pFRW2 was linearized with Hind III and electrophoresed on a 1% agarose gel. Linear molecules were eluted from the gel and 200 ng were mixed with 500 ng of the 3.1 kb HindIII entry of plasmid pB1 (13), which is a restriction fragment with the yeast 3-phosphoglycerate kinase gene. This mixture was used to transform E.coli strain 294 to ampicillin resistance and tetracycline sensitivity. A plasmid made from such a recombinant had an intact TRP1 gene with a 3.1 kbp HindIII fragment from the pB1 DNA entry at the HindIII position of the tetracycline resistance gene. This is the plasmid pFRM3l. 5 µg of pFRM31 was completely digested with EcoRl, extracted twice with phenol and chloroform and then precipitated with ethanol. The cohesive ends of the molecules are filled in by DNA polymerase I (Klenow fragment) in a reaction of 250 µM in each deoxynucleoside triphosphate. The reaction is carried out for 20 minutes at a temperature of 14ºC, during which time the DNA is extracted twice with phenol - chloroform, and then precipitated with ethanol.

Ponovno razrijeđena DNA tada potpuno digestira sa Clal i podvrgava se elektroforezi na 6 postotnom akrilamid gelu. Vektorski fragment se otapalom uklanja s gela, ekstrahira fenolom - kloroformom i precipitira s etanolom. The re-diluted DNA is then completely digested with Clal and electrophoresed on a 6% acrylamide gel. The vector fragment is removed from the gel with a solvent, extracted with phenol-chloroform and precipitated with ethanol.

Šest N-terminalnih amino kiselina 3-fosfogliceratnog encima dobivenih iz ljudskog subjekta su sljedeće: The six N-terminal amino acids of the 3-phosphoglycerate enzyme obtained from a human subject are as follows:

1 - 2 - 3 - 4 - 5 - 6 1 - 2 - 3 - 4 - 5 - 6

SER - LEU - SER - HSM - LYS - LEU SER - LEU - SER - HSM - LYS - LEU

Jedan od translacijskih oblika očitanja generiranih iz DNA niza 141 bp restrikcionog fragmenta Sau3A-do-Sau3A (koji sadrži nutarnju poziciju Hincll; vidi PKG kartu restrikcije na slici-1 1 ) proizvodi slijedeći niz amino kiselina: One of the translational reads generated from the DNA sequence of the 141 bp Sau3A-to-Sau3A restriction fragment (containing the internal Hincll position; see the PKG restriction map in Figure 1 1 ) produces the following sequence of amino acids:

1 - 2 - 3 - 4 - 5 - 6 1 - 2 - 3 - 4 - 5 - 6

MET-SER - LEU - SER - SER - LYS - LEU MET-SER - LEU - SER - SER - LYS - LEU

Nakon otklanjanja inicijatora - metionina, vidljivo je da N-terminalni amino kiseli niz PGK-a ima 5 od 6 amino kiselina homolognih sa N-terminalnim amino kiselim nizom ljudskog PGK. After removing the initiator - methionine, it is evident that the N-terminal amino acid sequence of PGK has 5 out of 6 amino acids homologous with the N-terminal amino acid sequence of human PGK.

Ovako dobiveni niz ukazuje, da početak kvaščevog PGK strukturnog gena kodira DNA u 141 bp Sau3A restrikcionom fragmentu pBl. Prethodan postupak ukazuje da nizovi DNA koji specifiziraju PGK mRNA mogu postojati u ovom području Hindlll fragmenta. Daljnje stvaranje nizova od 141 bp Sau3A fragmenta daje više DNA nizova PGK promotora (slika 12). The sequence obtained in this way indicates that the beginning of the yeast PGK structural gene is coded by DNA in the 141 bp Sau3A restriction fragment of pBl. The preceding procedure indicates that DNA sequences specifying PGK mRNA may exist in this region of the HindIII fragment. Further sequencing of the 141 bp Sau3A fragment yields multiple DNA sequences of the PGK promoter (Figure 12).

Sintetski oligonukleotid sa nizom 5'ATTTGTTGTAAA3' sintetiziran je standardnim metodama (Crea i dr., Nucleic Acids Res. 8, 2331 (1980)). 100 ng ovog osnovnog elementa označeno je na 5 ' završetku pomoću 10 jedinica T4 polinukleotidne kinaze u reakciji od 20 ul koja je također sadržavala i 200 uCi /y32-P/ ATP. Ova označena osnovna otopina koristila se u reakciji za popravljanje osnovnog elementa predviđenog da bude prvi korak u složenom postupku stavljanja EcoRl restrikcione pozicije u PGK 5'-bočne DNA koja prethodi PGK nizu strukturnog gena. A synthetic oligonucleotide with the sequence 5'ATTTGTTGTAAA3' was synthesized by standard methods (Crea et al., Nucleic Acids Res. 8, 2331 (1980)). 100 ng of this basic element was labeled at the 5' end with 10 units of T4 polynucleotide kinase in a 20 µl reaction that also contained 200 µCi of /y32-P/ ATP. This labeled stock solution was used in a primer repair reaction intended to be the first step in the complex process of placing an EcoRl restriction site in the PGK 5'-flanking DNA preceding the PGK sequence of the structural gene.

100 ug pB1 (20) potpuno digestira sa Haelll, te se stavlja na 6 postotni poliakrilamidni gel. Najgornji sloj na gelu obojenom etidumom (koji sadrži PGK područje promotora) izolira se elektroelucijom kao što je gore opisano. Ovaj 1200 bp Haelll komad DNA ograničava se sa Hincll i potom stavlja na 6 postotni akrilamid gel. 650 bp sloj se izolira elektroelucijom. Izolirano je 5 µg DNA. Ovaj 650 bp Haelll - do - Hincll komad DNA ponovno se razrjeđuje u 20 µI H2O, potom miješa sa 20 µl fosforilizirane osnovne otopine. Ova smjesa se 1x ekstrahira s fenolom - kloroformom, potom precipitira s etanolom. Osušena DNA razrjeđuje seč"u 50 µl H2O, te se 7 minuta zagrijava u kupki ključale vode. Takva otopina se potom brzo rashlađuje u suhoj kupki ledenog etanola (10 - 20 sekundi) i premješta u kupku ledene vode. Ovoj otopini se dodaje 50 µl otopine koja sadrži 10 µl 10X DNA polimeraze 1 pufera (Boehringer Mannheim), 10 µl prethodno spravljene otopine 2.5 mM u svakom deoksilnukleosid trifosfatu (dATP, dTTP, dGTP i dCTP), 25 µl H2O i 5 jedinica DNA polimeraze I, Klenow fragment. Ova reakcijska smjesa od 100 µl se inkubira 4 sata na temperaturi od 37°C. Potom se otopina 1 x ekstrahira fenolom - kloroformom, precipitira s etanolom, suši liofilizacijom i potom iscrpno ograničava s 10 jedinica Sau3A. Potom se otopina stavlja na 6 postotni akriiamid gel. Sloj koji veličinom odgovara 39 bp vadi se iz gela, te izolira elektroelucijom kako je ranije opisano. Ovaj 39 bp sloj ima jedan tupi završetak i jedan Sau3A. ljepljivi završetak. Fragment se klonira u modificirani pFIF trp 69 vektor (5). 10 µg pFIF trp 69 linearno se postavlja sa Xbal, 1x se ekstrahira fenolom - kloroformom, te precipitira s etanolom. Xbal ljepljivi završetak puni se pomoću DNA polimeraze I Klenow fragmenta u 50 µl reakciji koja sadrži 250 µM u svakom nukleosidnom trifosfatu. Ova DNA se reducira sa BamHl, te stavlja na 6 postotni akrilamid gel. Vektorski fragment se izolira sa gela elektroelucijom te razrjeđuje u 20 µl H2O. 20 ng ovog vektora povezuje se 20 ng 39bp fragmenta spravljanog 4 sata na sobnoj temperaturi: jedna petina ligacijske smjese koristi se za transformiranje E. coli soj 294 na otpornost na ampicilin (na LB + 20 µg/ml amp ločama). Plazmidi iz transnformanata se ispituju postupkom brzog prosijavanja (44). Jedan plazmid, pPGK-39 odabire se za analizu niza. 20 µg ovog plazmida digestira sa Xbal, precipitira s etanolom i potom se 45 minuta tretira s 1000 jedinica bakterijske alkalin fosfaze pri temperaturi od 68ºC. DNA se 3X ekstrahira fenolom - kloroformom, potom precipitira s etanolom. Defosforilizirani završeci se potom označuju u 20 µl reakciji koja sadrži 200 µl / y32-p/ ATP i 10 jedinica T4 polinukleotidne kinaze. Plazmid se reducira sa Sall i stavlja na 6 postotni akrilamid gel. 100 µg of pB1 (20) is completely digested with HaelII and placed on a 6% polyacrylamide gel. The uppermost layer on the ethidium-stained gel (containing the PGK promoter region) is isolated by electroelution as described above. This 1200 bp Haelll piece of DNA is restricted with Hincll and then run on a 6% acrylamide gel. The 650 bp layer is isolated by electroelution. 5 µg of DNA was isolated. This 650 bp Haelll - to - Hincll DNA fragment is re-diluted in 20 µl H2O, then mixed with 20 µl phosphorylated stock solution. This mixture is extracted 1x with phenol - chloroform, then precipitated with ethanol. The dried DNA is diluted in 50 µl of H2O, and heated in a boiling water bath for 7 minutes. This solution is then rapidly cooled in a dry ice-cold ethanol bath (10 - 20 seconds) and transferred to an ice-water bath. 50 µl is added to this solution. solution containing 10 µl of 10X DNA polymerase 1 buffer (Boehringer Mannheim), 10 µl of a previously prepared solution of 2.5 mM in each deoxynucleoside triphosphate (dATP, dTTP, dGTP and dCTP), 25 µl of H2O and 5 units of DNA polymerase I, Klenow fragment. the reaction mixture of 100 µl is incubated for 4 hours at a temperature of 37° C. Then the solution is extracted 1x with phenol - chloroform, precipitated with ethanol, dried by lyophilization and then exhaustively limited with 10 units of Sau3A. Then the solution is placed on a 6% acrylamide gel A layer corresponding to 39 bp in size is excised from the gel and isolated by electroelution as described earlier. This 39 bp layer has one blunt end and one Sau3A sticky end. The fragment is cloned into a modified pFIF trp 69 vector (5). 10 µg p FIF trp 69 is linearized with Xbal, extracted 1x with phenol - chloroform, and precipitated with ethanol. The Xbal sticky end is loaded with DNA polymerase I Klenow fragment in a 50 µl reaction containing 250 µM in each nucleoside triphosphate. This DNA is reduced with BamHl, and placed on a 6 percent acrylamide gel. The vector fragment is isolated from the gel by electroelution and diluted in 20 µl H2O. 20 ng of this vector is ligated to 20 ng of the 39bp fragment prepared for 4 hours at room temperature: one fifth of the ligation mixture is used to transform E. coli strain 294 to ampicillin resistance (on LB + 20 µg/ml amp plates). Plasmids from transformants are screened by rapid screening (44). One plasmid, pPGK-39 is selected for array analysis. 20 µg of this plasmid is digested with Xbal, precipitated with ethanol and then treated for 45 minutes with 1000 units of bacterial alkaline phosphase at a temperature of 68ºC. DNA is extracted 3X with phenol - chloroform, then precipitated with ethanol. The dephosphorylated ends are then labeled in a 20 µl reaction containing 200 µl /y32-p/ ATP and 10 units of T4 polynucleotide kinase. The plasmid is reduced with SalI and loaded on a 6% acrylamide gel.

Označeni sloj unosa se izolira iz gela i sekvencira kemijskom metodom degradacije (52). Niz DNA na 3 ' - završetku ovog promotora bio je kako se i očekivalo. The labeled input layer is isolated from the gel and sequenced by a chemical degradation method (52). The DNA sequence at the 3' end of this promoter was as expected.

2. Sastav 312 bp Pvul - do - EcoRl PGK fragmenta promotora 2. Composition of the 312 bp Pvul - to - EcoRl PGK promoter fragment

25 č.g od pPGK-39 (slika 13) simultano digestira sa Sall i Xbal (5 jedinica od svakog), potom se podvrgava elektroforezi na 6 postotnom gelu. 390 bp sloj koji sadrži 39 bp promotora izolira se elektroelucijom. Razrijeđena DNA se ograničava sa Sau3A, te podvrgava elektroforezi na 8 postotnom akrilamid gelu. 39 bp sloj promotora se izolira elektroelucijom. Ova DNA sadržavala je 39 bp 5' završetka PGK promotora na Sau3A - do -Xbal fragmenta. 25 µg of pPGK-39 (Figure 13) is simultaneously digested with SalI and XbaI (5 units of each), then subjected to electrophoresis on a 6 percent gel. The 390 bp layer containing the 39 bp promoter is isolated by electroelution. Diluted DNA is restricted with Sau3A, and subjected to electrophoresis on an 8 percent acrylamide gel. The 39 bp promoter layer is isolated by electroelution. This DNA contained 39 bp of the 5' end of the PGK promoter to the Sau3A - to -XbaI fragment.

25 µg pB1 se ograničava sa Pvul i Kpnl i tada podvrgava elektroforezi na 6 postotnom akrilamid gelu. 0.8 kbp sloja DNA se izolira elektroelucijom i potom ograničava sa Sau3A. te izlaže elektroforezi na 6 postotnom akrilamid gelu. 265 bp sloja iz PGK promotora (slika 11 ) se izolira elektroelucijom. 25 µg of pB1 is restricted with Pvul and Kpn1 and then electrophoresed on a 6% acrylamide gel. A 0.8 kbp layer of DNA is isolated by electroelution and then restricted with Sau3A. and subjected to electrophoresis on a 6 percent acrylamide gel. The 265 bp layer from the PGK promoter (Figure 11) is isolated by electroelution.

Ova DNA se potom spaja 2 sata sa 39 bp gore opisanog fragmenta promotora pri sobnoj temperaturi. Ligacijska smjesa se ograničava sa Xbal i Pvul, te podvrgava elektroforezi na 6 postotnom akrilamid gelu. 312 bp Xba - do - Pvul restrikcionog fragmenta se izolira elektroelucijom. potom se dodaje ligacijskoj smjesi koja sadrži 200 ng pBR322 (41 ) i 200 ng Xbal - do - Pstl LeIF A cDNA gena prethodno izoliranog iz 20 µg pLeIF trp A 25. Ova ligacijska smjesa od tri faktora se koristi za transformiranje E. coli soj 294 na tetraciklinsku rezistentnost. Kolonije transformanta su separirane (44) i jedna od njih, pPGK-300 je izolirana sa 304 bp PGK 5'-bočne DNA sraštene sa LelF A genom u pBR322 vektoru. 5' završetak LeIF A gena ima slijedeći niz: 5'- CTAGAATTC - 3'. Na taj način fuzija pozicije Xbal iz fragmenta PGK promotora u ovom nizu omogućuje dodavanje jedne EcoRl pozicije položaju Xbal. Tako pPGK-300 sadrži dio PGK promotora izoliranog u Pvul - do -EcoRl fragmenta. This DNA is then combined for 2 hours with 39 bp of the promoter fragment described above at room temperature. The ligation mixture is restricted with Xbal and Pvul, and subjected to electrophoresis on a 6% acrylamide gel. The 312 bp Xba - to - Pvul restriction fragment is isolated by electroelution. it is then added to a ligation mixture containing 200 ng of pBR322 (41 ) and 200 ng of the Xbal - to - Pstl LeIF A cDNA gene previously isolated from 20 µg of pLeIF trp A 25. This three-factor ligation mixture is used to transform E. coli strain 294 to tetracycline resistance. Transformant colonies were separated (44) and one of them, pPGK-300 was isolated with 304 bp of PGK 5'-flanking DNA fused to the LelF A gene in the pBR322 vector. The 5' end of the LeIF A gene has the following sequence: 5'- CTAGAATTC - 3'. Thus, the fusion of the XbaI position from the PGK promoter fragment in this sequence allows the addition of one EcoRl position to the XbaI position. Thus, pPGK-300 contains part of the PGK promoter isolated in the Pvul - to -EcoR1 fragment.

3. Sastav 1500 bp EcoRl -do-EcoRl fragmenta PGK promotora 3. Composition of the 1500 bp EcoRl -to-EcoRl fragment of the PGK promoter

10 µg pB1 se digestira sa Pvul i EcoRl te se stavlja na 6 postotni akrilamid gel. 1.3 kb Pvul -do- EcoRl DNA sloja iz PGK 5' - bočne DNA izolira se elektroelucijom. 10 µg pPGK-300 digestira sa EcoRl i Pvul, a 312 bp fragmenta promotora se izolira elektroelucijom nakon elektroforeze digestione smjese na 6 postotnom akrilamid gelu. 5 µg pFRL4 reducira se sa EcoRl, precipitira s etanolom i potom 45 minuta tretira s bakterijskom alkalinskom fosfatazom pri temperaturi od 68°C. Nakon tri ekstrakcije DNA sa fenolom/kloroformom, precipitacije s etanolom i ponovnog razrjeđivanja u 20 ml H2O; 200 ng vektora se spaja s 100 ng 312 bp EcoRl-do-Pvul DNA iz pPGK-3oo i 100 ng EcoRl-do Pvul DNA iz pB1. Ligacijska smjesa se koristi za transformiranje E. coli soja 294 na ampicilinsku rezistentnost. Jedan od dobijenih transformanata je pPGK1500. Ovaj plazmid sadrži 1500 bp PGK fragmenta promotora u obliku EcoRl-do-EcoRl ili Hindlll-do-EcoRl komada DNA. 10 µg of pB1 is digested with Pvul and EcoRl and placed on a 6% acrylamide gel. 1.3 kb of Pvul -to- EcoRl DNA layer from PGK 5' - flanking DNA is isolated by electroelution. 10 µg of pPGK-300 is digested with EcoRl and Pvul, and the 312 bp fragment of the promoter is isolated by electroelution after electrophoresis of the digestion mixture on a 6% acrylamide gel. 5 µg of pFRL4 is reduced with EcoRl, precipitated with ethanol and then treated with bacterial alkaline phosphatase for 45 minutes at a temperature of 68°C. After three extractions of DNA with phenol/chloroform, precipitation with ethanol and re-dilution in 20 ml H2O; 200 ng of vector is ligated with 100 ng of 312 bp EcoRl-to-Pvul DNA from pPGK-3oo and 100 ng of EcoRl-to Pvul DNA from pB1. The ligation mixture is used to transform E. coli strain 294 to ampicillin resistance. One of the obtained transformants is pPGK1500. This plasmid contains a 1500 bp PGK promoter fragment in the form of an EcoRl-to-EcoRl or HindIII-to-EcoRl piece of DNA.

10 µg pPGK-1500 u potpunosti se digestira sa Clal i EcoRl, potom se digestiona smjesa podvrgava elektroforezi na 6 postotnom akrilamid gelu. 900 bp fragmenta koji sadrži PGK promotor izolira se elektroelucijom. 10 µg pIFN-γ trp 48 potpuno se digestira sa EcoRl i Hincll, te se podvrgava elektroforezi na 6 postotnom akrilamid gelu. 938 bp sloj koji sadrži direktan IFN-γ CDNA izolira se iz gela elektroelucijom. 10 µg of pPGK-1500 is completely digested with ClaI and EcoRl, then the digested mixture is subjected to electrophoresis on a 6% acrylamide gel. A 900 bp fragment containing the PGK promoter is isolated by electroelution. 10 µg of pIFN-γ trp 48 is completely digested with EcoRl and Hincll, and subjected to electrophoresis on a 6% acrylamide gel. A 938 bp layer containing the direct IFN-γ cDNA was isolated from the gel by electroelution.

Vektor ekspresije kvasca sastavljen je od tri reakcije faktora povezivanjem PKG fragmenta promotora (na komadu Clal-do-EcoRl), poništenog pFRM-31 i izolirane IFN-γ cDNA. Ligacijska reakcija se inkubira 12 sati na temperaturi od 14°C. Ligacijska smjesa se koristi za transformiranje E. coli soja 294 na ampicilinsku rezistentnost. Transformanti su analizirani na prisustvo prikladne ekspresije plazmida, pPGK-IFN-γ (slika 16). Plazmidi koji sadrže sustav ekspresije korišteni su za tranformiranje sferoplasta kvasca soj RH218 u triptofan prototropiju u triptofanu kojemu nedostaje agar. Ovi rekombinanti kvasca su potom ispitivani na prisutnost imuno interferona. The yeast expression vector was composed of three reaction factors by ligating the PKG fragment of the promoter (on a Clal-to-EcoRl piece), nulled pFRM-31 and isolated IFN-γ cDNA. The ligation reaction is incubated for 12 hours at a temperature of 14°C. The ligation mixture is used to transform E. coli strain 294 to ampicillin resistance. Transformants were analyzed for the presence of appropriate expression of the plasmid, pPGK-IFN-γ (Figure 16). Plasmids containing the expression system were used to transform spheroplasts of yeast strain RH218 into tryptophan prototropy in tryptophan-deficient agar. These yeast recombinants were then tested for the presence of immunointerferon.

Ekstrakti kvasca su pripravljeni na slijedeći način: deset ml kulture uzgaja se u YNB + CAA dok ne postigne A 660- 1 - 2, sakuplja centrifugiranjem i razrjeđuje u 500 µl PBS puferu (20 mM NaH2PO4, pH - 7.4, 150 mM NaCI). Dodaje se jednaka količina staklenih perlica (0.45 - 0.5 mm) i smjesa se potom brzo vrti 2 sata. Ekstrakti se rotiraju 30 sekundi brzinom od 14.000 o/m, a suprenatant se odstrani. U supernatantu je utvrđena aktivnost interferona 16.000 jedinica/ml putem usporedbe sa IFN-α standardom koristeći CPE inhibicijski test. Yeast extracts were prepared as follows: ten ml of the culture was grown in YNB + CAA until it reached A 660- 1 - 2, collected by centrifugation and diluted in 500 µl PBS buffer (20 mM NaH2PO4, pH - 7.4, 150 mM NaCl). An equal amount of glass beads (0.45 - 0.5 mm) is added and the mixture is then rapidly spun for 2 hours. The extracts are rotated for 30 seconds at a speed of 14,000 rpm, and the supernatant is removed. In the supernatant, an interferon activity of 16,000 units/ml was determined by comparison with the IFN-α standard using the CPE inhibition test.

M. Sastav vektora stanične kulture pSVγ69 M. Composition of cell culture vector pSVγ69

342 fragment baznog para Hindlll - Pvull koji okružuje rod SV40 konvertiran je u EcoRl fragment restrikcione pozicije. Hindlll pozicija se konvertira dodavanjem sintetskog oligomera (5'dAGCTGAATTC), a Pvull pozicija se konvertira ligacijom tupog završetka u Ecorl poziciju punjenu pomoću polimeraze I (klenow fragment). Dobiveni EcoRl fragment se umeće u EcoRl poziciju od pML-1 (28). Plazmid sa SV40 promotorom okrenut od ampR gena dalje se modificira uklanjanjem EcoRl pozicije koja je najbliža ampR genu pML-1 (27). 342 fragment of the HindIII - Pvull base pair surrounding the SV40 gene was converted to an EcoR1 restriction site fragment. The Hindlll position is converted by adding a synthetic oligomer (5'dAGCTGAATTC), and the Pvull position is converted by blunt-end ligation to an Ecorl position filled in by polymerase I (klenow fragment). The resulting EcoRl fragment is inserted into the EcoRl position of pML-1 (28). The plasmid with the SV40 promoter facing away from the ampR gene is further modified by removing the EcoRl position closest to the ampR gene of pML-1 (27).

1023 fragment baznog para Hpal - Bglll klonirane HBV DNA (60) se izolira, a Hpal pozicija virusa hepatitisa B (HBV) se konvertira pomoću sintetskog oligomera (5'dGCGAATTCGC) u EcoRl poziciju. Ovaj EcoRl - Bglll vezani fragment direktno se klonira u EcoRl - BamHl pozicije gore opisanog plazmida koji nosi SV40. A 1023 base pair HpaI - BglII fragment of cloned HBV DNA (60) is isolated, and the HpaI position of hepatitis B virus (HBV) is converted using a synthetic oligomer (5'dGCGAATTCGC) to the EcoRl position. This EcoRl - Bglll linked fragment is cloned directly into the EcoRl - BamHl positions of the SV40-carrying plasmid described above.

U preostalu EcoRl poziciju umeće se IFN-γ gen na 1250 fragmentu baznog para Pstl nakon konverzije Pstl završetaka u EcoRl završetke. Izoliran je klon u kojem SV40 promotor prethodi strukturalnom genu IFN-γ. Dobiveni plazmidi tada se uvode u stanično tkivo kulture (29) pomoću DEAE-dekstran metode (61) modificirane na način da se transfekcija u prisutnosti DEAE-dekstrana izvodi u trajanju od 8 sati. Medij stanice se mijenjao svaka 2 - 3 dana. 200 mikrolitara se svaki dan uzimalo za biotest interferona. Tipične vrijednosti su 50-100 jedinica/ml na uzorcima ispitivanim tri ili četiri dana nakon transfekcije. In the remaining EcoRl position, the IFN-γ gene is inserted at the 1250 base pair fragment of Pstl after the conversion of the Pstl ends into EcoRl ends. A clone was isolated in which the SV40 promoter precedes the IFN-γ structural gene. The obtained plasmids are then introduced into the tissue culture (29) using the DEAE-dextran method (61) modified in such a way that the transfection in the presence of DEAE-dextran is carried out for 8 hours. The cell medium was changed every 2-3 days. 200 microliters were taken every day for the interferon bioassay. Typical values are 50-100 units/ml in samples examined three or four days after transfection.

N. Djelomično pročišćavanje imuno interferona deriviranog iz stanice majmuna N. Partial purification of monkey cell-derived immune interferon

Kako bi se proizvele veće količine humanog IFN-γ iz stanica majmuna, svježi slojevi COS-7 stanica na deset ploča od 10 cm transfektirane su sa ukupno 30 µg pDLIF3 u 110 ml DEAE-Dekstrana (200 µg/ml DEAE Dextran 500,000 MW, 0.5 M Tris pH 7.5, u DMEM). Nakon 16 sati pri temperaturi od 37ºC, ploče su dva puta oprane sa DMEM. 15 ml svježe DMEM dopunjene s 10 % f.b.s., 2 mM glutamina, 50 mg/ml penicilina G i 50 mg/ml streptomicina se potom dodalo svakoj ploči. Medij je slijedeći dan zamijenjen sa DMEM bez seruma. Svaki dan se dodavao svježi medij bez seruma. Sakupljeni medij se držao na temperaturi od 4ºC do ispitivanja ili vezivanja za CPG. Ustanovljeno je da dijelovi uzoraka starih 3 i 4 dana, nakon transfekcije posjeduju gotovo sve aktivnosti. To produce larger amounts of human IFN-γ from monkey cells, fresh layers of COS-7 cells in ten 10 cm plates were transfected with a total of 30 µg pDLIF3 in 110 ml DEAE-Dextran (200 µg/ml DEAE Dextran 500,000 MW, 0.5 M Tris pH 7.5, in DMEM). After 16 hours at a temperature of 37ºC, the plates were washed twice with DMEM. 15 ml of fresh DMEM supplemented with 10% f.b.s., 2 mM glutamine, 50 mg/ml penicillin G and 50 mg/ml streptomycin was then added to each plate. The next day, the medium was replaced with serum-free DMEM. Fresh medium without serum was added every day. The collected medium was kept at 4ºC until assayed or binding to CPG. It was found that after transfection, parts of the 3- and 4-day-old samples possess almost all activities.

0.5 g CPG (kontrolirano porozno staklo, Elektronukleonika, CPG 350, veličina oka sita 120/200) dodaje se u 100 m) supernatanta štanice i smjesa se miješa 3 sata na temperaturi od 4ºC. Nakon kratkog centrifugiranja u stolnoj centrifugi, nataložene perlice se stavljaju u stupac i temeljito se peru s 20 mM NaPO4 1 M NaCl 0.1 % beta-merkaptoetanola pH 7.2. Aktivnost se potom eluira s istim puferom koji sadrži 30% etilenglikola, nakon čega slijedi elucija s puferom koji sadrži 50% etilenglikola. U osnovi se sva aktivnost vezala na CPG. 75 postotaka eluirane aktivnosti utvrđeno je u fragmentima eluiranim sa 30% etilenglikola. Ovi su fragmenti razdijeljeni i razrijeđeni sa 20 mM NaPO4 1 M NaCl pH 7.2 do koncentracije od 10% etilenglikola, te direktno uneseni u stupac od 10 ml Con A Sefaroze (Pharmacia). Nakon temeljnog ispiranja sa 20 mM NaPO4 1 M NaCl pH 7.2, aktivnost se eluira .sa 20 mM NaPO4 1 M NaCl 0.2 M alfa-metil-Dmanozida. Znatna količina aktivnosti (55%) nije se vezala za taj lektin. 45 postotaka aktivnosti je eluiralo sa alfa-metil-D-manozida. 0.5 g of CPG (controlled porous glass, Elektronucleonika, CPG 350, sieve mesh size 120/200) is added to 100 m) of cell supernatant and the mixture is stirred for 3 hours at a temperature of 4ºC. After a short centrifugation in a table centrifuge, the precipitated beads are placed in the column and thoroughly washed with 20 mM NaPO4 1 M NaCl 0.1 % beta-mercaptoethanol pH 7.2. The activity is then eluted with the same buffer containing 30% ethylene glycol, followed by elution with a buffer containing 50% ethylene glycol. Basically, all activity was linked to CPG. 75 percent of eluted activity was determined in fragments eluted with 30% ethylene glycol. These fragments were separated and diluted with 20 mM NaPO4 1 M NaCl pH 7.2 to a concentration of 10% ethylene glycol, and directly introduced into a column of 10 ml Con A Sepharose (Pharmacia). After thorough washing with 20 mM NaPO4 1 M NaCl pH 7.2, the activity is eluted with 20 mM NaPO4 1 M NaCl 0.2 M alpha-methyl-Dmannoside. A significant amount of activity (55%) did not bind to that lectin. 45 percent of the activity was eluted from alpha-methyl-D-mannoside.

Farmaceutski sastavi Pharmaceutical compositions

Spojevi predmetnog izuma se mogu formulirati u skladu s poznatim metodama za pripremanje farmaceutski korisnih sastava. Proizvod humanog imuno interferona, u ovom kontekstu, spaja se u smjesi sa farmacetski prihvatljivim nosačem. Prikladni nosači i njihov sastav opisani su u Remingtonovom Pharmaceutical Sciences, E.W. Martin-a. Takav sastav sadržavat će djelotvornu količinu proteina interferona zajedno s odgovarajućom količinom nosača kako bi se dobili farmaceutski prihvatljivi sastavi, prikladni za učinkovitu primjenu. The compounds of the present invention can be formulated in accordance with known methods for the preparation of pharmaceutically useful compositions. The human immunointerferon product, in this context, is combined in admixture with a pharmaceutically acceptable carrier. Suitable carriers and their compositions are described in Remington's Pharmaceutical Sciences, E.W. Martin. Such a composition will contain an effective amount of interferon protein together with a suitable amount of carrier to provide pharmaceutically acceptable compositions suitable for effective administration.

A. Parenteralno davanje A. Parenteral administration

Humani imuno interferon može se parenteralno davati osobama koje se liječe od tumora ili virusa, te onima koji ispoljuju supresiju imuniteta. Doziranje je sukladno praksi koja se koristi u kliničkom ispitivanju drugih humanih interferona npr.: oko (1 - 10) x 106 jedinica dnevno, a ukoliko se radi o supstancama čistoće preko 1 %, doza iznosi 50 x 106 jedinica dnevno. Doze IFN-γ mogu se znatno povisiti u cilju većeg učina, zahvaljujući odsutnosti drugih humanih proteina osim IIN-γ, a koji proteini u supstancama deriviranim od humanih subjekata mogu proizvesti izvjesne neželjene posljedice. Human immune interferon can be given parenterally to people who are being treated for tumors or viruses, and to those who exhibit immune suppression. The dosage is in accordance with the practice used in the clinical testing of other human interferons, for example: about (1 - 10) x 106 units per day, and if it concerns substances with a purity of more than 1%, the dose is 50 x 106 units per day. Doses of IFN-γ can be significantly increased in order to achieve a greater effect, due to the absence of other human proteins than IIN-γ, which proteins in substances derived from human subjects can produce certain unwanted consequences.

Primjer odgovarajućeg doziranja za esencijalno homogeni 1FN-γ u parenteralnoj primjeni: 3 mg 1FN-γ specifične aktivnosti, recimo. 2 x 108 U/mg otapa se u 25 ml 5 N albumin seruma (humanog) - USP, otopina prolazi kroz bakteriološki filtar, a filtrirana otopina se aseptički raspoređuje u 100 bočica, od kojih svaka sadrži 6 x 106 jedinica čistog interferona, prikladnog za parenteralnu primjenu. Poželjno je bočice držati do upotrebe na hladnom (temp. od - 20°C). Example of appropriate dosage for essentially homogeneous 1FN-γ in parenteral administration: 3 mg of 1FN-γ specific activity, say. 2 x 108 U/mg is dissolved in 25 ml of 5 N albumin serum (human) - USP, the solution is passed through a bacteriological filter, and the filtered solution is aseptically distributed into 100 vials, each of which contains 6 x 106 units of pure interferon, suitable for parenteral administration. It is preferable to keep the bottles in a cold place (temp. of - 20°C) until use.

Bio - testiranje Bio - testing

A. Karakterizacija antivurisne aktivnosti A. Characterization of antiviral activity

Za neutralizaciju antitijela uzorci se, ukoliko je potrebno razrjeđuju do koncentracije od 500 - 1000 jedinica/ml sa PBS-BSA. Jednake količine uzorka se inkubiraju 2 - 12 sati na 4 stupnja sa serijskim razrjeđenjima leukocitima kunića, matičnim vezivnim stanicama ili antiserumima imuno interferona. Anti- IFN - α i β dobiveni su od Državnog instituta za alergije i infektivne bolesti. Anti-IFN-γ pripremljen je pomoću autentičnog IFN-γ (5 - 20 % čistoće), pročišćenog iz stimuliranih limfocita periferne krvi. Uzorci su prije testiranja centrifugirani 3 minute pri 12.000 x g za 3 min. Za ispitivanje pH 2 stabilnosti uzorci su namješteni na vrijednost pH 2 dodavanjem 1 N HCI, inkubirani 2 - 12 sati na 4 stupnja i neutralizirani dodavanjem 1 N NaOH prije ispitivanja. Za testiranje osjetljivosti na natrijev dodecil sulfat (SDS), uzorci su inkubirani 2 - 12 sati s jednakom količinom 0.2% SDS na temperaturi od 4ºC. For antibody neutralization, the samples are, if necessary, diluted to a concentration of 500 - 1000 units/ml with PBS-BSA. Equal amounts of the sample are incubated for 2 - 12 hours at 4 degrees with serial dilutions of rabbit leukocytes, stem binding cells or immune interferon antisera. Anti-IFN-α and β were obtained from the National Institute of Allergy and Infectious Diseases. Anti-IFN-γ was prepared using authentic IFN-γ (5 - 20% purity), purified from stimulated peripheral blood lymphocytes. Before testing, the samples were centrifuged for 3 minutes at 12,000 x g for 3 minutes. For testing pH 2 stability, samples were adjusted to pH 2 by adding 1 N HCI, incubated for 2 - 12 hours at 4 degrees and neutralized by adding 1 N NaOH before testing. To test sensitivity to sodium dodecyl sulfate (SDS), samples were incubated for 2 - 12 hours with an equal amount of 0.2% SDS at a temperature of 4ºC.

Obilježja IFN-γ proizvedenog od E. coli i stanica COS-7 Characteristics of IFN-γ produced by E. coli and COS-7 cells

[image] [image]

Ova tabela pokazuje karakteristično ponašanje IFN-alfa, beta i gama standarda nakon različitih postupaka. Aktivnost interferona proizvedenog pomoću E.coli W3110/pIFN-γ trp 48 i COS-7/pSVγ69 je kiselo osjetljiva, osjetljiva na SDS, a neutralizirana antiserumom imuno interferona. Anti-tijela ga ne neutraliziraju na IFN-alfa ili beta. Ovi podaci potvrđuju da je interferon, proizveden u takvim sustavima IFN-γ i da unos cDNA plazmida p69 kodira za IFN-γ. This table shows the characteristic behavior of IFN-alpha, beta and gamma standards after different procedures. The activity of interferon produced by E.coli W3110/pIFN-γ trp 48 and COS-7/pSVγ69 is acid-sensitive, sensitive to SDS, and neutralized by antiserum of immune interferon. Antibodies do not neutralize it to IFN-alpha or beta. These data confirm that the interferon produced in such systems is IFN-γ and that the plasmid p69 cDNA entry encodes IFN-γ.

Protein imuno interferona se definira putem određenog gena DNA i deduktivnog sekvenciranja --cf amino kiseline. Slika 5. Razumljivo je da kod interferona iz ovog konteksta, od slučaja do slučaja postoje i dešavaju se prirodne varijacije. Ove varijacije se mogu demonstrirati amino kiselinskom razlikom u sveukupnom nizu ili putem isključenja, supstitucije, umetanja. inverzije ili dodavanja amino kiseline spomenutom nizu. U okviru ovog izuma obuhvaćene su sve takve alelomorofne varijacije. The immune interferon protein is defined by a specific DNA gene and deductive sequencing of the --cf amino acid. Figure 5. It is understandable that with interferon from this context, natural variations exist and occur from case to case. These variations can be demonstrated by amino acid differences in the overall sequence or by deletions, substitutions, insertions. inversion or addition of amino acid to said sequence. All such allelomorphic variations are included within the scope of this invention.

Iako su opisani posebni preferentni oblici, razumljivo je da se predmetni izum ne ograničava samo na njih. Although particular preferred forms have been described, it is to be understood that the present invention is not limited to them.

Claims (31)

1. Humani imuno interferon, naznačen time, da ima redoslijed amino kiselina prikazanih na slici 5 i njihove alele pročišćene od ostalih proteina s kojima je uobičajeno spojen.1. Human immune interferon, characterized in that it has the sequence of amino acids shown in Figure 5 and their alleles purified from other proteins with which it is usually combined. 2. Derivat humanog imuno interferona, naznačen time, da ima redoslijed amino kiselina prikazanih na slici 5 i njihove alele pri čemu spomenuti derivat ima djelovanje humanog imuno interferona.2. Derivative of human immune interferon, characterized in that it has the sequence of amino acids shown in Figure 5 and their alleles, whereby the said derivative has the action of human immune interferon. 3. Derivat humanog imuno interferona prema zahtjevu 2, naznačen time, da je amino kiselina metionin na N-završetku .3. Human immunointerferon derivative according to claim 2, characterized in that the amino acid is methionine at the N-terminus. 4. Humani imuno interferon prema zahtjevu 3, naznačen time, da ima amino kiselinu metionin na N-završetku.4. Human immune interferon according to claim 3, characterized in that it has the amino acid methionine at the N-terminus. 5. Humani imuno interferon, naznačen time, da ima redoslijed amino kiselina prikazanih na slici 5 ili njihove alele ili derivati koji imaju djelovanje humanog interferona, a nisu praćeni prirodnom glikolizacijom.5. Human immune interferon, characterized in that it has the sequence of amino acids shown in Figure 5 or their alleles or derivatives that have the effect of human interferon, and are not accompanied by natural glycolysis. 6. Humani imuno interferon, naznačen time, da ima redoslijed amino kiselina prikazanih na slici 5 ili njihove alele ili derivati koji imaju djelovanje humanog interferona, dobiven ekspresijom u rekombiniranoj stanici domaćina pomoću kodirane DNA za redoslijed amino kiselina interferona.6. Human immune interferon, characterized in that it has the sequence of amino acids shown in Figure 5 or their alleles or derivatives that have the action of human interferon, obtained by expression in a recombined host cell using the coded DNA for the sequence of amino acids of interferon. 7. Humani imuno interferon prema zahtjevu 6, naznačen time, da je dobiven ekspresijom rekombiniranog slijeda kodirane DNA u stanici sisavca.7. Human immune interferon according to claim 6, characterized in that it is obtained by expression of the recombined sequence of coded DNA in a mammalian cell. 8. Humani imuno interferon prema zahtjevu 7, naznačen time, da je stanična linija COS-7 stanična linija majmuna.8. Human immune interferon according to claim 7, characterized in that the COS-7 cell line is a monkey cell line. 9. DNA izolat, naznačen time, da sadrži kod DNA humanog imuno interferona koji ima redoslijed amino kiselina prikazanih na slici 5 ili njegove alele ili derivati, koji imaju djelovanje kao humani imuno interferon.9. DNA isolate, characterized by the fact that it contains the human immune interferon DNA code that has the sequence of amino acids shown in Figure 5 or its alleles or derivatives, which act as human immune interferon. 10. Rekombinirani klonirajući vektor, naznačen time, da sadrži kod DNA humanog imuno interferona redoslijeda amino kiselina prikazanog na slici 5 ili njegove alele ili derivati koji imaju djelovanje kao humani imuno interferon.10. Recombinant cloning vector, characterized by the fact that it contains the human immune interferon DNA code of the sequence of amino acids shown in Figure 5 or its alleles or derivatives that act as human immune interferon. 11. Replicirajući ekspresijski vektor, naznačen time, da može u transformiranom mikroorganizmu ili staničnoj kulturi izlučivati kod DNA humanog imuno interferona redoslijeda amino kiselina prikazanog na slici 5 ili njegove alele ili derivati koji imaju djelovanje kao humani imuno interferon.11. A replicating expression vector, characterized by the fact that it can secrete, in a transformed microorganism or cell culture, human immunointerferon DNA with the sequence of amino acids shown in Figure 5 or its alleles or derivatives that act as human immunointerferon. 12. Rekombinirani mikroorganizam ili stanična kultura, naznačen time, da je sposoban izlučivati imuno interferon redoslijeda amino kiselina prikazanog na slici 5 ili njegove alele ili derivati koji imaju djelovanje kao humani imuno interferon.12. Recombinant microorganism or cell culture, characterized by the fact that it is capable of secreting immune interferon of the sequence of amino acids shown in Figure 5 or its alleles or derivatives that act as human immune interferon. 13. Mikroorganizam prema zahtjevu 12 , naznačen time, da je soj E. coli.13. The microorganism according to claim 12, characterized in that it is an E. coli strain. 14. Mikroorganizam prema zahtjevu 12, naznačen time, da je soj kvasnica.14. The microorganism according to claim 12, characterized in that it is a yeast strain. 15. Stanična kultura prema zahtjevu 12, naznačena time, da je stanična linija sisavaca.15. Cell culture according to claim 12, characterized in that it is a mammalian cell line. 16. Stanična kultura prema zahtjevu 15, naznačena time, da je stanična linija COS-7 stanična linija majmuna.16. Cell culture according to claim 15, characterized in that the COS-7 cell line is a monkey cell line. 17. Pripravak, naznačen time, da sadrži terapeutski učinkovitu količinu humanog imuno interferona prema bilo kojem zahtjevu od 1 do 8 zajedno s farmaceutski prihvatljivom podlogom.17. A preparation, characterized in that it contains a therapeutically effective amount of human immunointerferon according to any one of claims 1 to 8 together with a pharmaceutically acceptable carrier. 18. Pripravak prema zahtjevu 17, naznačen time, da je prikladan za parenteralnu primjenu.18. The preparation according to claim 17, characterized in that it is suitable for parenteral administration. 19. Postupak, naznačen time, da obuhvaća izlučivanje humanog imuno interferona u staničnoj liniji sisavaca transformiranoj pomoću DNA prikazan na slici 5 ili varijanti njezinih alela.19. The method, characterized in that it comprises the secretion of human immune interferon in a mammalian cell line transformed by the DNA shown in Figure 5 or variant alleles thereof. 20. Postupak prema zahtjevu 19 , naznačen time, da je stanična linija COS-7 stanična linija majmuna.20. The method according to claim 19, characterized in that the COS-7 cell line is a monkey cell line. 21. Postupak prema zahtjevu 19 ili 20, naznačen time, da uključuje otkrivanje humanog imuno interferona iz kulture.21. The method according to claim 19 or 20, characterized in that it includes detection of human immunointerferon from the culture. 22. Postupak, naznačen time, da obuhvaća izlučivanje u rekombiniranoj stanici domaćina koda DNA humanog imuno interferona što je moguće dobiti postupkom prema zahtjevu 21.22. The method, characterized in that it comprises the secretion in the recombined host cell of the DNA code of human immunointerferon, which can be obtained by the method according to claim 21. 23. Postupak, naznačen time, da obuhvaća izlučivanje u rekombiniranoj stanici domaćina koda DNA humanog imuno interferona redoslijeda amino kiselina prikazanog na slici 5 ili njegove alele ili derivati koji imaju djelovanje kao humani imuno interferon.23. The method, indicated by the fact that it comprises the secretion in the recombined host cell of the DNA code of human immunointerferon of the sequence of amino acids shown in Figure 5 or its alleles or derivatives that have an effect as human immunointerferon. 24. Postupak prema zahtjevima 22 ili 23 , naznačen time, da dodatno obuhvaća korak otkrivanja spomenutog humanog imuno interferona.24. The method according to claims 22 or 23, characterized in that it additionally comprises the step of detecting said human immunointerferon. 25. Postupak dobivanja humanog imuno interferona, naznačen time, da obuhvaća: (a) kultiviranje rekombiniranih stanica domaćina koje su bile promijenjene ekspresijskim vektorom koji sadrži kod DNA humanog imuno interferona redoslijeda amino kiselina prikazanog na slici 5 ili njegove alele ili derivati koji imaju djelovanje kao humani imuno interferon, uz uvjete koji omogućuju izlučivanje spomenutog DNA redoslijeda da bi se dobio spomenuti humani imuno interferon; te otkrivanje spomenutog humanog imuno interferona.25. The process of obtaining human immune interferon, characterized in that it includes: (a) culturing recombinant host cells that have been transformed with an expression vector containing the human immunointerferon DNA code of the amino acid sequence shown in Figure 5 or its alleles or derivatives having human immunointerferon activity, under conditions that enable the secretion of said DNA sequence to the aforementioned human immune interferon was obtained; and the discovery of the aforementioned human immune interferon. 26. Postupak prema zahtjevu 25, naznačen time, da uključuje preliminarne korake (i) pripremu replicirajućeg ekspresijskog vektora koji može izlučivati kod DNA spomenutog humanog imuno interferona u stanici domaćina; te (ii) transformiranje stanične kulture domaćina da bi se dobila spomenuta rekombinirana stanica domaćina.26. The method according to claim 25, characterized in that it includes preliminary steps (i) preparation of a replicating expression vector capable of secreting the DNA of said human immunointerferon in a host cell; you (ii) transforming the host cell culture to obtain said recombinant host cell. 27. Postupak prema bilo kojem zahtjevu od 22 do 26 , naznačen time, da je domaćin soj E. coli.27. The method according to any of claims 22 to 26, characterized in that the host is an E. coli strain. 28. Postupak prema bilo kojem zahtjevu od 22 do 26, naznačen time, da je domaćin soj kvasnica.28. The method according to any one of claims 22 to 26, characterized in that the host is a yeast strain. 29. Postupak prema bilo kojem zahtjevu od 22 do 26 , naznačen time, da je stanica domaćina stanična linija sisavca.29. The method according to any one of claims 22 to 26, characterized in that the host cell is a mammalian cell line. 30. Postupak prema zahtjevu 29, naznačen time, da je stanična linija COS-7 stanična linija majmuna.30. The method according to claim 29, characterized in that the COS-7 cell line is a monkey cell line. 31. Uporaba humanog imuno interferona prema bilo kojem zahtjevu od 1 do 8, ili pripremljenog postupkom prema bilo kojem zahtjevu od 19 do 30, naznačena time, da služi za pripremu farmaceutskih pripravaka.31. The use of human immunointerferon according to any claim from 1 to 8, or prepared by a process according to any claim from 19 to 30, characterized in that it serves for the preparation of pharmaceutical preparations.
HRP-2335/82A 1981-10-19 1995-03-28 Polypeptide with human interferon (ifn-gamma) characteristics HRP950157B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US31248981A 1981-10-19 1981-10-19
YU233582A YU45871B (en) 1981-10-19 1982-10-18 POLYPEPTIDE WITH HUMAN IMMUNOINTERFERON (IFN-GAMMA) PROPERTIES

Publications (2)

Publication Number Publication Date
HRP950157A2 true HRP950157A2 (en) 1997-08-31
HRP950157B1 HRP950157B1 (en) 1999-06-30

Family

ID=26978402

Family Applications (1)

Application Number Title Priority Date Filing Date
HRP-2335/82A HRP950157B1 (en) 1981-10-19 1995-03-28 Polypeptide with human interferon (ifn-gamma) characteristics

Country Status (2)

Country Link
HR (1) HRP950157B1 (en)
SI (1) SI8212335A8 (en)

Also Published As

Publication number Publication date
HRP950157B1 (en) 1999-06-30
SI8212335A8 (en) 1995-10-31

Similar Documents

Publication Publication Date Title
JP2515308B2 (en) Human immune interferon
US5096705A (en) Human immune interferon
KR940010864B1 (en) Mathod of making interferons
US5582824A (en) Recombinant DES-CYS-TYR-CYS human immune interferon
DK170054B1 (en) DNA sequences, transformed host organisms, polypeptide having biological activity as gamma-horse interferon, process for its preparation, and pharmaceutical preparation containing the polypeptide
PL149079B1 (en) Method of obtaining polypeptides of ifn-beta type
HRP950157A2 (en) Polypeptide with human interferon (ifn-gamma) characteristics
Carvalho et al. Culture of human amniotic cells: a system to study interferon production
BG61060B2 (en) Human immune inteferon
BG60939B2 (en) Human immune interferon
BG60889B2 (en) Human immune interferon
BG60888B2 (en) Human immune interferon
BG60890B2 (en) Human immune interferon
PH26492A (en) Recombinant human immune interferon
NZ214261A (en) Human immune interferon: production by recombinant dna technology
CS274401B2 (en) Method of polypetide production with sequence of animal interferon's amino acids

Legal Events

Date Code Title Description
A1OB Publication of a patent application
AIPI Request for the grant of a patent on the basis of a substantive examination of a patent application
B1PR Patent granted
ODRP Renewal fee for the maintenance of a patent

Payment date: 20011018

Year of fee payment: 20

PB20 Patent expired after termination of 20 years

Effective date: 20021019