SI8212335A8 - Polypeptide with human immune interferons (ifn-gamma)properties. - Google Patents

Polypeptide with human immune interferons (ifn-gamma)properties. Download PDF

Info

Publication number
SI8212335A8
SI8212335A8 SI8212335A SI8212335A SI8212335A8 SI 8212335 A8 SI8212335 A8 SI 8212335A8 SI 8212335 A SI8212335 A SI 8212335A SI 8212335 A SI8212335 A SI 8212335A SI 8212335 A8 SI8212335 A8 SI 8212335A8
Authority
SI
Slovenia
Prior art keywords
lys
leu
gamma
dna
ifn
Prior art date
Application number
SI8212335A
Other languages
Slovenian (sl)
Inventor
David V Goeddel
Patrick W Gray
Original Assignee
Genentech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Genentech Inc filed Critical Genentech Inc
Priority claimed from YU233582A external-priority patent/YU45871B/en
Publication of SI8212335A8 publication Critical patent/SI8212335A8/en

Links

Landscapes

  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

LJUDSKI IMUNOLOŠKI INTERFERONHUMAN IMMUNOLOGICAL INTERFERON

Oblast pronalaskaFIELD OF INVENTION

Sadyšnji pronalazak odnosi se na oblast rekceabinantne DNA tehnologije, na sredstva i postupke sa koriščenjem takve tehnologije u otkriču DNA sekvence i otkrivene amino-kiselinske sekvence za ljudski humani imunološki interferon i na njegovu proizvodnju i različite proizvode iz takve proizvodnje i na njihove primene.The present invention relates to the field of reccebinant DNA technology, to means and methods of utilizing such technology in the discovery of DNA sequences and discovered amino acid sequences for human human immune interferon and its production and various products from such production and their applications.

Odredjenije, sadašnji pronalazak se odnosi na izolovanje i identifikacija DNA sekvenci koje kodiraju za ljudski imunološki interferon i na konstrukciju nosača za izražava nje rekombinantne DNA koji sadrže takve DNA sekvence koje au operativno povezane za pramotorske sekvence koje vrše izražavanje i za tako konstruisane nosače za izražavanje.More specifically, the present invention relates to the isolation and identification of DNA sequences encoding for human immune interferon and the construction of carriers for the expression of recombinant DNA containing such DNA sequences that are operatively linked to expression sequences and to engineered expression carriers.

U drugam aspektu, sadašnji pronalazak odnosi se na sisteme kulture domačina, kao što su razni mikroorganizmi i kulture čelija kičmenjaka koji su transformisani sa takvim nosačima za izražavanje pa su tako u smer eni na izražavanje DNA sekvenci o ko j ima se govori gore. U dalj im aspektima, ovaj pronalazak odnosi se na sredstva i postupke za konverziju krajnjih proizvoda takvog izražavanja u nove vrste, kao što su farmaceutski preparati, koji su korisni za profilaktično i terapeutsko tretiranje ljudi.In another aspect, the present invention relates to host culture systems, such as various microorganisms and cell cultures of vertebrates that have been transformed with such expression carriers, and thus are directed to expressing the DNA sequences discussed above. In further aspects, the present invention relates to agents and methods for converting end products of such expression into novel species, such as pharmaceuticals, which are useful for the prophylactic and therapeutic treatment of humans.

U poželjnim realizacijama, ovaj pronalazak obezbedjuje odredjene nosače za izražavanje koji su pravilno sekvencirani tako da se proizvodi ljudski imunološki interferon i izlučuje se iz čelija domačina u žrelom obliku. Pored toga, pronalazak se odnosi na razne postupke koji su korisni za proizvodu ju pomenutih DNA sekvenci, nosača za izražavanje.· sisteme kulture domačina I krajnje proizvode i njihove celine kao i na njihove specifične i pridružene realizacije.In preferred embodiments, the present invention provides specific expression carriers that are properly sequenced to produce human immune interferon and to be excreted from the host cell in the gill form. In addition, the invention relates to various methods that are useful for the production of said DNA sequences, expression carriers. · Host culture systems and end products and their entities as well as their specific and associated embodiments.

Sadašnji pronalazak proizilazi delom iz otkriča DNA sekvence i dedukovaiie aminokiselinske sekvence koja kodira za ljudski imunološki interferon. Dalje, sadašnji pronalazak obezbedjuje informacije o sekvenci 3'- i 5fprirubnih sekvenci gena ljudskog imunološkog interferona, čime se olakšava njegovo in vitro vezivanje u nosače za ekspresija. Odredjeno, obezbedjen je 5'-DNA segment koji kodira za putativni endogeni signalni polipeptid koji neposredno prethodi aminokiselinskog sekvenci putativnog zrelog ljudskog imunološkog interferona.The present invention derives in part from the discovery of a DNA sequence and a deduced amino acid sequence encoding for human immune interferon. Furthermore, the present invention provides information on the sequence of the 3'- and 5 f flange sequences of the human immune interferon gene, thereby facilitating its in vitro binding into expression carriers. Specifically, a 5'-DNA segment encoding for a putative endogenous signaling polypeptide immediately preceding the amino acid sequence of a putative mature human immune interferon is provided.

Ova otkriča su za uzvrat omogučila razviče sredstava i postupaka za proizvodnju, preko rekombinantne DNA tehnologije, zadovoljavajudih količina ljudskog imunološkog interferona, što opet cmoguduje odredjeivanje njegovih biohemijskih osobina i bioaktivnosti.These findings, in turn, have enabled the development of means and methods of producing, through recombinant DNA technology, satisfactory amounts of human immune interferon, which again makes it possible to determine its biochemical properties and bioactivity.

Publikacije i drugi materijali koji su ovde korišdeni da se objasni teorijska odnova pronalaska, i u odredjenim slučajevima, da se obezbede dopunski detalji u vezi sa sprovodjenjem pronalaska, unete su ovde kao reference, i radi podesnosti, referisane su po brojevima posle slededeg teksta i grupisane su na odgovarajuči način u pridodanoj bibliografiji.The publications and other materials used herein to explain the theoretical reinvention of the invention, and in some cases to provide additional details regarding the implementation of the invention, are incorporated herein by reference, and for convenience, referenced by numbers after the following text and grouped appropriately in the attached bibliography.

Teorijska osnova pronalaskaThe theoretical basis of the invention

A. Ljudski imunološki interferonA. Human immune interferon

Ljudski' interferoni se mogu grupisati u tri grupe na bazi različitig antigenog ponašanja i ra2ličitih bioloških i biohemijskih osobina.Human interferons can be grouped into three groups based on different antigenic behavior and different biological and biochemical properties.

Prva grupa obuhvata familiju leukocitnih interferona (alfa-interferon, LeIF ili IFN-alfa), koji se normalno proizvode uglavnom pomodu konstituentnih delija ljudske krvi posle vurusne infekcije. Ovi su proizvedeni mikrobno i nadjeno je da su biološki aktivni (1, 2, 3) . Njihove biološke osobine ubrzale su njihovo koriščenje na klinikama kao terapeutski sredstava za tretiranje viruskih infekcija i malignih stanja (4).The first group comprises a family of leukocyte interferons (alpha-interferon, LeIF or IFN-alpha), which are normally produced mainly by constituents of human blood after viral infection. These have been produced microbially and have been found to be biologically active (1, 2, 3). Their biological properties have accelerated their use in clinics as therapeutic agents for the treatment of viral infections and malignancies (4).

U drugoj grupi je ljudski fibroblastni interferon (betainterferon, FIF ili IFN-beta) koji se normalno proizvodi pomodu fibroblasta posle virusne infekcije, i ovaj je na sličan način proizveden mikrobno i nadjeno je da ispolja- 4 ~ va široki interval bioloških aktivnosti (5). Kliničke probe su takodje označile njegov potencijal terapeutskih vrednosti. Leukocitni i fibroblastni interferoni ispoljavaju vrlo bliske sličnosti po svojim biološkim osobinama uprkos Činjenice da je stepen homologije na nivou aminokiselina relativno nizak. Dalje, obe grupe interferona sadrže od 165 do 166 aminokiselina i to su proteini stabilni prema kiselinama.In the second group, human fibroblast interferon (betainterferon, FIF, or IFN-beta), which is normally produced by fibroblasts after viral infection, is similarly microbial produced and found to exhibit a wide interval of biological activity (5). . Clinical trials have also highlighted its potential for therapeutic value. Leukocyte and fibroblast interferons exhibit very close similarities in their biological properties despite the fact that the degree of homology at the amino acid level is relatively low. Furthermore, both groups of interferons contain 165 to 166 amino acids and these are acid-stable proteins.

Ljudski imunološki interferon (gama-interferon, IIP ili IFN-gama), na koji se ovaj pronalazak odnosi, je nasuprot alfa- i bet-interferonima, labilan na pS 2, i proizvodi se uglavnom posle mitogene indukcije limfocita i takodje je jasno različit u pogledu antigenosti. Do nedavno ljudski imu nološki interferon mogao je biti detektovan u samo vrlo minornim količinama, što je očevidno otežavalo njegovu karakterizaciju. Do nedavno, objavljeno je prilično ekstenzivno ali ipak samo delimično prečiščavanje ljudskog imunološkog interferona (6) . Za jedinjenje je rečeno da se proizvodi iz limfocitnih kultura koje su stimulisane sa kombinacijom fitohemaglutina i forbol estra a prečiščeno je sekvenci j alnim hroma tografskim odvajanjima. Ovaj postupak doveo je do proizvoda koji ima molekulska težinu 58,000.The human immune interferon (gamma-interferon, IIP or IFN-gamma) to which this invention relates is alpha- and beta-interferons, labile on pS 2, and is produced mainly after mitogenic induction of lymphocytes and is also clearly different in in terms of antigenicity. Until recently, human immunological interferon could only be detected in very small quantities, which obviously made it difficult to characterize. Until recently, fairly extensive but still only partial purification of human immune interferon has been reported (6). The compound is said to be produced from lymphocyte cultures stimulated with a combination of phytohemagglutin and phorbol ester and purified by sequential chromographic separation. This process resulted in a product having a molecular weight of 58,000.

Ljudski imunološki interferon proizveden je u vrlo malim količinama translacijom mRNA u oocitima, koji pokazuju interferonsku aktivnost koja je karakteristična za ljudski imunološki interferon i to izražava nadu da bi se cDNA imunološkog interferona mogla sintetizovati i klonirati (7).Human immune interferon is produced in very small amounts by translation of mRNAs in oocytes, which exhibit interferon activity characteristic of human immune interferon, and this expresses the hope that immune interferon cDNA can be synthesized and cloned (7).

Količina imunološkog interferona koja je dosada dobivena je Izvesno nezadovoljavajuča za sprovodjenje nedvosmislenih eksperimenata za njegovu karakterizacij u i odredj Ivanje bioloških osobina prečiščene komponente. Medjutim, in vitro proučavanja koja su izvršena sa sirovim preparatima, kao i in vivo eksperimenti sa preparatima mišjeg gama-interferona, sugeriraju da primarna funkcija ljudskog interferona može biti da služi kao imunoregulatorsko sredstvo (8, 9) . Ljudski interferon ne samo da ima antivirusnu i antičelijsku aktivnost što je zajedničko za sve ljudske interferone, več takodje pokazuje potencijarajuči efekat na ove aktivnosti sa alfa- i beta-interferonom (10) .The amount of immune interferon obtained so far is certainly insufficient to conduct unambiguous experiments for its characterization and determination of the biological properties of the purified component. However, in vitro studies performed with crude preparations, as well as in vivo experiments with murine gamma interferon preparations, suggest that the primary function of human interferon may be to serve as an immunoregulatory agent (8, 9). Not only does human interferon have antiviral and anticellular activity common to all human interferons, it also shows a potentiating effect on these activities with alpha- and beta-interferon (10).

Takodje, navodi se da je in vitro antiproliferativni efekat gama-interferona na tumorne čelije približno 10do 100-puta veči od drugih klasa interferona (8, 11, 12) . Ovaj rezultat, zajedno sa njegovem naglašenem imunoregulatorskam ulogom (8, 9), sugerira naglašeniju snagu protiv tumora za IFN-gama, nego za IFN-alfa i IFN-beta. I zaista,Also, the in vitro antiproliferative effect of gamma-interferon on tumor cells has been reported to be approximately 10 to 100-fold greater than other classes of interferons (8, 11, 12). This result, together with its pronounced immunoregulatory role (8, 9), suggests a more pronounced anti-tumor potency for IFN-gamma than for IFN-alpha and IFN-beta. And indeed,

I zaista, in vivo eksperimenti sa misevima i preparatima mišjeg IFN-gama pokazuju jasnu superiornost u odnosu na antivirusno indukovane interferone u njihovem antitumornam efektu protiv osteogenih sarkema (13) .Indeed, in vivo experiments with mouse IFN-gamma mice and preparations show a clear superiority to antiviral-induced interferons in their antitumor effect against osteogenic sarcomas (13).

Sva od ovih proučavanja, sve do sadašnjeg pronalaska, morala su da se vrše sa prilično sirovim preparatima, zbog vrlo niške pristupačnosti. Medjutim, ona izvesno sugeriraju vrlo važne bilološke funkcije za imunološki interferon.All of these studies, up to the present invention, had to be done with fairly crude preparations, due to their very low accessibility. However, they certainly suggest very important biological functions for immune interferon.

Ne samo da imunološki Interferon ima snažnu prateču antivirusnu aktivnost, več takodje i jaku imunoregulatorsku i antitumomu aktivnost, što jasno ističe potenci j alno vrlo obečavajuči lek za primenu na klinikama.Not only does Immune Interferon have potent concomitant antiviral activity, it also has strong immunoregulatory and antitumor activity, which clearly highlights a potentially very promising drug for clinic use.

Shvačeno je da če primena rekombinantne DNA tehnologije biti najefikasniji način za obezbedjivanje potrebnih večih količina ljudskog imunološkog interferona. Bez obzira da li če ili ne ovi tako proizvedeni materijali uključivati glikozilovanje koje se smatra karakteristikom nativnog materijala izvedenog iz ljudi, oni če verovatno ispoljavati bioaktivnost koja če omogučiti njihovo kliničko koriščenje u tretiranju širokog intervala virusnih, neoplastičnih i imunosupresivnih stanja ili bolesti.It is understood that the use of recombinant DNA technology will be the most effective way to provide the required large amounts of human immune interferon. Whether or not these materials produced include glycosylation, which is considered a characteristic of native human-derived material, they are likely to exhibit bioactivity that will allow their clinical use in treating a wide range of viral, neoplastic and immunosuppressive conditions or diseases.

B. Rekombinantna DNA tehnologijaB. Recombinant DNA technology

Rekombinantna DNA tehnologija je dostigla doba izvesne usavršenosti. Molekularni biolozi mogu da rekombinuju razne DNA sekvence sa odredjenom lakočom, kreirajuči nove DNA celine koje mogu da proizvode obilne količine egzogenog proteinskog proizvoda u transformisanim mikrobima. Postoje sredstva i postupci za in vitro ligaciju raznih fragmenata DNA sa slepim ili lepljivim krajevima, tako da se proizvode nosači za izražavanje koji su korisni u transformisanju odredjenih organizama, Čirae se usmerava njihova efikasna sinteza željenog egzogenog proizvoda. Medjutim, na bazi pojedinačnog proizvoda, put ostaje donekle mukotrpan 1 nauka nije napredovala do stupnja da se mogu vršiti regularne uspešne proizvodnje. Zaista, oni koji ostvaruju uspešne rezultate bez odgovara j uče eksperimentalne osnove*, čine to sa značajnim rizikam od neoperativnosti.Recombinant DNA technology has reached a certain age of perfection. Molecular biologists can recombine various DNA sequences with some ease, creating new DNA entities that can produce copious amounts of exogenous protein product in transformed microbes. There are agents and methods for in vitro ligation of various DNA fragments with blind or sticky ends, so that expression carriers that are useful in transforming certain organisms are produced, and their effective synthesis of the desired exogenous product is directed. However, on a product-by-product basis, the path remains somewhat painstaking 1 science has not progressed to the point that regular successful production can take place. Indeed, those who achieve successful results without the proper learning of the experimental bases * do so with a considerable risk of inoperability.

Plazmid, nehromozomno kolo DNA sa dvostrukom niti koje se nalazi u bakterijama i drugim mikrobima, često uPlasmid, a non-chromosomal double strand DNA strand found in bacteria and other microbes, often in

- Ί viže kopija po deliji, ostaje osnovni element rekombinantne DNA tehnologije, t? informacije koje su kodirane u plazmidnoj DNA uk 1 j učene su i one koje su potrebne za reprodukcija plazaida u deli jama derkama (t.j., izvor replikacije) i obično, u jednoj ili više fenotipnih se loke ionih karakteristika kao što je, u slučaju bakterija, rezistentnost na antibiotike, što cmoguduje da se kloni delija domačina koje sadrže interesanten plazmid raspoznaju i preferencijalno kultivišu u izabranlm podlogama. Korisnost plasanida leži u činjenici da se mogu specifično raskinuti pomodu jedne ili druge restrikcione endonukleaze ili restrikcionog enzimaa, od kojih svaki raspoznaje različito mesto na plazmidnoj DNA. Posle toga mogu se urnetnuti fragmenti heterologog gena ili gena u plazmid spajanjem krajeva na raskinutom mestu ili na rekonstruisanim Jerajevima blizu mesta raskidanja. Tako se formira ju takozvani replicirajudi nosači za izražavanje. DNA rekombinacija se vrši van deli ja, ali se nastali rekorabinantni replicirajudi nosač za izražavanje, Ili plazmid, može uvesti u delije pomodu postupka koji je poznat kao transformacija i velike količine rekoenbinantnog nosača dobivaju se kultivišanjem trans formanta. Staviš e, kada je gen pravilno umetnut u odnosu na delcve plazmida koji kontrolišu transkripciju i translacija kodirane poruke DNA, dobiveni nosač za izražavanje moče se koristiti za stvarau proizvodnju sekvence polipeptida za ko ju umetnuti gen kodira, a to je proces poznat kao ekspresija (izražavanje).- že multiple copies per delia, remains the basic element of recombinant DNA technology, t? the information encoded in plasmid DNA uk 1 j is also learned that is necessary for the reproduction of plasaids in delaying holes (i.e., the source of replication) and usually, in one or more phenotypic loci characteristics such as, in the case of bacteria. antibiotic resistance, which makes it possible for clones of the host cell containing an interesting plasmid to be recognized and preferentially cultured in selected substrates. The usefulness of plasanids lies in the fact that they can be specifically terminated by one or the other restriction endonuclease or restriction enzyme a , each of which recognizes a different site on plasmid DNA. Subsequently, fragments of the heterologous gene or gene can be immersed in the plasmid by fusing the ends at the cleavage site or at the reconstructed Jerei near the cleavage site. This is how the so-called replicating carriers of expression are formed. DNA recombination is performed outside the moiety, but the resulting recombinant replicating expression carrier, Or plasmid, can be introduced into the moiety by a process known as transformation and large amounts of the recoenbinant carrier are obtained by culturing the trans formant. You put it, when the gene is properly inserted against the plasmid fragments that control the transcription and translation of the encoded DNA message, the resulting expression carrier can be used to produce the sequence of the polypeptide the gene encodes for, a process known as expression (expression). ).

Izražavanje se inicira u regionu koji je poznat kao promotor koji je raspoznat i vezan pomodu SNA polimeraze, U fazi transkripcije izrašavanja, DNA se odmotava izlašudi ga kao šablon za iniciranu sintezu mesindšer RNA iz DNA sekvence. Mesindšer RNA se opet translatira u polipeptid koji ima aminokiselinskn sekvenca koja je kodirana pcmodu mSNA. Svaka aminokiselina se kodira pcmodu nukleotidnog tripleta ili kodona koji kolektivno Sine strukturni gen” t.j., onaj deo koji kodira za aminokiselinsku sekvencu 'izraženog polipeptidnog proizvoda. Translacija se inicira na startnem” signalu (obično ATG, što dovodi do toga da mesindšer RNA postaje AUG). Takozvani zaustavni kodoni definišu kraj translacije i, zato, proizvodnje daljih aminokiselinskih jedinica. Dobiveni proizvod se može dobiti raskidanjem, prema potrebi, delija demadina, u mikrobnim sistemima, i proizvod se regeneriše odgovarajudim prečišdavanjeaa od drugih proteina.Expression is initiated in a region known as a promoter that is recognized and bound by SNA polymerase. In the transcription phase of expression, DNA is unwound and expose it as a template for the initiation of messenger RNA synthesis from a DNA sequence. The messenger RNA is again translated into a polypeptide having an amino acid sequence encoded by the mSNA. Each amino acid is encoded by a nucleotide triplet or codon that collectively Sines the structural gene "i.e., that portion that encodes for the amino acid sequence" of the expressed polypeptide product. Translation is initiated at the start 'signal (usually ATG, causing the RNA messenger to become AUG). The so-called stop codons define the end of translation and, therefore, the production of further amino acid units. The product obtained can be obtained by breaking down, if necessary, the demadine fraction in microbial systems, and the product is regenerated by appropriate purification from other proteins.

U praksi, koriščenje rekambinantne DNA tehnologije moše izražavati potpuno heterologe polipeptide — šzo se zove direktna ekspresija — ili alternativno može izrašavati heterolg polipeptid kondenzovan za protein aminokiselinske sekvence homologog polipeptida. D poslednjim slučajevima, nameravani bioaktivni proizvod je ponekad učinjen bioinaktivnia unutar kondenzovanog homologog/heterologog polipeptida dok se ne raskine u ekstradelijskoj okolini.In practice, the use of recombinant DNA technology may express fully heterologous polypeptides - what is called direct expression - or alternatively, may express a heterologous polypeptide fused to a protein of the amino acid sequence of a homologous polypeptide. In the latter cases, the intended bioactive product is sometimes made bioinactivated within the fused homologous / heterologous polypeptide until it is cleaved in the extracellular environment.

Vidi British Patent Publ. No. 2007676A and Netzel,See British Patent Publ. No. 2007676A and Netzel,

American Scientist 68, 664 (1980).American Scientist 68, 664 (1980).

C. Tehnologija delijske kultureC. Technology of share culture

Nauka o delijama ili kulturama tkiva za proučevanje genetike i fiziologije delije je dobro poznata. Sredstva i postupci su pristupačni za održavanje permanentnih čelijskih linija, napravljenih serijskim sukcesivnim transfer ima iz izolata normalnih čelija. Za primenu u istraživanju, takve čelijske linije se održava ju na čvrstam nosaču u tečno j podloži, ili pomoču rasta u suspenziji koja sadrži noseče hranlhive sastojke. Uvečavanje za velike preparate izgleda da pretstavlja samo mehaničke probleme. Za dalju teorijsku podlogu, pažnja se usinerava na &icrobilogy, 2nd Edit ion, Harper and Row,The science of delia or tissue cultures for the study of genetics and physiology of delia is well known. The means and procedures are affordable to maintain permanent cell lines, made by serial successive transfer of normal cell isolates. For use in research, such steel lines are maintained on a solid support in a liquid support, or growth aid in suspension containing nutrient carriers. Magnification for large preparations seems to present only mechanical problems. For further theoretical background, attention is focused on & icrobilogy, 2nd Edit ion, Harper and Row,

Publishers, Inc, Hagerstown, Maryland (1973), naročito pp.Publishers, Inc., Hagerstown, Maryland (1973), especially pp.

1122 i kasnije i Scientific American 245, 66 i kasnije (1981) , koji su ovde uneti kao referenca.1122 and later and Scientific American 245, 66 and later (1981), which are incorporated herein by reference.

Izvod iz pronalaskaExcerpt from the invention

Sadapnji pronalazak je zasnovan na otkriču da se rekcanbinantna DNA tehnologija može koristiti za uspešnu proizvoduju 1judskog imunološkog interferona, poželjno u direktnem obliku, i u zaaovoljavajučoj količini za iniciranje i vršenje testiranja na životinjama i kliničkog testiranja kao prerekvizita za prihvatanja na tržištu. Proizvod je podestan za koriščenje, u svim njegovim oblicima, za profilaktično ili terapeutsko tretiranje ljudskih biča za virusne infekcije i maligna i imunosupresorska ili imunodeficitarna stanja. Njegovi oblici uključuju razne moguče oligomeme oblike koji mogu uključivati pridruženo glikozilovanje. Proizvod se proizvodi genetski konstruisanim mikroorganizmima ili sistemima čelijske kulture. Tako sada poštoji potencijal za pravljenje i izolovanje ljudskog imunološkog interferona na efikasniji način nego što je dosada bilo moguče. Jedan značajan faktor iz sadašnjeg pronalaska, jeste genetsko usmeravanje mikroorganizma ili čelijske kulture za proizvodnju tako da proizvodi ljudski imunološki interferon u količinama koje se mogu izolovati, koji se izlučuje Iz čelije domačina u žrelom obliku.The present invention is based on the discovery that recanbinant DNA technology can be used to successfully produce human immune interferon, preferably in direct form, and in sufficient quantity to initiate and perform animal testing and clinical testing as prerequisites for market acceptance. The product is suitable for use, in all its forms, for the prophylactic or therapeutic treatment of human whips for viral infections and for malignant and immunosuppressive or immunodeficient conditions. Its forms include various possible oligomemic forms that may include associated glycosylation. The product is produced by genetically engineered micro-organisms or cell culture systems. Thus, it now respects the potential to make and isolate human immune interferon in a more efficient manner than has been possible so far. One significant factor of the present invention is the genetic targeting of a microorganism or cell culture for production to produce human immune interferon in isolable amounts, which is excreted from the host cell in the mature form.

Sadašnji pronalazak obuhvata tako proizveden ljudski imunološki interferon i sredstva i postupke za njegovu proizvodnju Sadašnji pronalazak je dalje usmeren na replicirajuče nosače izražavanja DNA koji daju sekvence gena koji kodira za ljudski imunološki interferon u obliku koji se može izražavati. Dalje, sadašnji pronalazak je usmeren na sojeve mikroorganizaraa ili čelijeke kulture takvih transformisanih sojeva ili kultura, koji mogu da proizvode ljudski imunološki interferon. D daljin aspektima, sadašnji pronalazak je usmeren na razne postupke koji su korisni 2a pravljenje sekvenci gena za pomenuti imunološki interferon, nosača za izražavanje DNA, sojeva mikroorganizaraa i čelijskih kultura i i na njihove specifične realizacije. Dalje, ovaj pronalazak je usmeren na pravljenje fermentacionih kultura pomenutih mikroorganizaraa i čelijskih kultura. Dalje, ovaj pronalazak je usmeren na pravljenje ljudskog iraunološkog interferona, kao proizvoda direktne ekspresije, izlučenog iz čelija domačina u žrelom obliku. Ovaj prilaz može koristiti gen koji kodira za sekvencu za zreli ljudski imunološki interferon plus 5' prirubnu DNA koja kodira za signalni polipeptid. Veruje se da signalni polipeptid pomaže transport molekula ka čelijskam zidu organizma domačina gde se ovaj raskida za vreme postupka izlučivanja zrelog ljudskog interferonskog proizvoda. Ova realizacija omogučuje izolovanje i prečiščavanje nameravanog zrelogThe present invention encompasses the human immune interferon thus produced and the means and methods for its production The present invention is further directed to replicating carriers of DNA expression that provide sequences of the gene encoding for human immune interferon in a form that can be expressed. Furthermore, the present invention is directed to strains of microorganisms or cells of culture of such transformed strains or cultures that can produce human immune interferon. In remote aspects, the present invention is directed to various methods useful for making sequences of genes for said immune interferon, carriers for expressing DNA, strains of microorganisms and cell cultures, and to their specific embodiments. Further, the present invention is directed to making fermentation cultures of said microorganisms and steel cultures. Further, the present invention is directed to making human irraunological interferon, as a direct expression product, extracted from the host cells in the gill form. This approach may utilize the gene encoding the sequence for mature human immune interferon plus 5 'flange DNA encoding for the signal polypeptide. The signaling polypeptide is believed to assist the transport of molecules to the cell wall of the host organism where it breaks down during the secretion process of a mature human interferon product. This realization enables isolation and purification of intended mature

- li imunološkog interferona bez uključivanja postupaka koji su namenjeni da eliminišu kontaminante intračelijskog proteina domačina ili čelijskih otpadaka.- Immune interferon without the inclusion of methods designed to eliminate the intracellular protein contaminants of the host or cellular debris.

Izraz koji se ovde koristi zreli ljudski imunološki interferon označava proizvodnju ljudskog imunološkog interferona u mikrobnoj ili čelijskoj kulturi koja nije pračena signalnim peptidom ili presekventnim peptidom koji neposredno omogučuje translaciju mRKA ljudskog imunološkog interferona. Tako se prema sadašnjem pronalasku obe2bedjuje zreli ljudski imunološki interferon koji ima metionin kao prvu aminokiselinu {koja je prisutna zbog umetanja ATG polaznog signalnog kodona ispred strukturnog gena), ili, kada je metionin intra- ili esktračelijski raskinut, ima svoju normalnu prvu aminokiselinu cistein. Zreli ljudski imunološki interferon se takodje može proizvesti, prema postupcima iz ove prijave, zajedno sa konjugovanim proteinom koji se razlikuje od konvencionalnog signalnog polipeptida, pri čemu se konjugat može specifično raskinuti u intra- ili ekstračelijskoj okolini. Vifi Britansku patentnu publikaciju no. 2007676A. Konačno,The term used herein mature human immune interferon means the production of human immune interferon in a microbial or cell culture that is not accompanied by a signal peptide or a cross-sectional peptide that directly enables the translation of human immune interferon mRNA. Thus, according to the present invention, a mature human immune interferon having methionine as the first amino acid (present due to the insertion of an ATG starting signal codon in front of a structural gene) is provided, or, when methionine is intra- or extracellularly cleaved, has its normal first amino acid cysteine. Mature human immune interferon can also be produced, according to the methods of this application, together with a conjugated protein distinct from a conventional signaling polypeptide, wherein the conjugate can be specifically cleaved in an intra- or extracellular environment. Vifi British Patent Publication no. 2007676A. Finally,

Konačno, zreli ljudski imunološki interferon se može proizvesti direktnom ekspresijam bez potrebe za raskidanjem makakvog stranog, veštačkog polipeptida. Cvo je naročito važno dati domačin ne moče, ili ne može efikasno, odvajati signalni peptid kada je nosač za ekspresija namenjen da izrazi zreli ljudski interferon zajedno sa njegovim signalnim peptidom. Tako proizvedeni zreli ljudski imunološki interferon regeneriše se i prečiščava do nivoa koji je podestan za njegovo koriščenje u tretiranju virusnih,Finally, mature human immune interferon can be produced by direct expression without the need to disrupt the macaque foreign, artificial polypeptide. It is particularly important that the host is unable or unable to efficiently separate the signal peptide when the expression carrier is intended to express mature human interferon together with its signal peptide. The mature human immune interferon thus produced is regenerated and purified to a level suitable for its use in the treatment of viral,

- 1?, malignih i imunosupresorskih i imunodeficitarnih stanja.- 1 ?, malignant and immunosuppressive and immunodeficient states.

Ljudski imunološki interferon dobiven je kako sledi :Human immune interferon was obtained as follows:

1. Ljudska tkiva, na primer, tkivo ljudske slezine ili limfociti periferne krvi, kultivišu se sa mitogenima da se stimuliše proizvodnja imunološkog interferona.1. Human tissues, for example, human spleen tissue or peripheral blood lymphocytes, are cultured with mitogens to stimulate the production of immune interferon.

2. čelijske granule iz takvih čelijskih kultura se ekstrahuju u prisustvu ribonukleaznog inhibitora tako da se izoluje sva RNA citoplazme.2. Cell granules from such cell cultures are extracted in the presence of a ribonuclease inhibitor such that all RNA cytoplasm is isolated.

3. Oligo-dT kolonom izoluje se ukupna raesindžer RNA (mRNA) u poliadenilovanom obliku. Ova mRNA se frakcioniše po veličini koriščenjem kromatografije sa saharozom gradientne gsutine i elektroforeze na gelu.kiselina-karbamid.3. The oligo-dT column isolates the total RNA (mRNA) scatter in polyadenylated form. This mRNA is fractionated by size by using sucrose gradient chromatography and gel electrophoresis.acid-carbamide.

4. Odgovarajuča mRNA (12 do 18 S) se prevede u odgovarajuču komplementarnu DNA sa jednom niti (cDNA) iz koje se proizvodi cDNA sa dvostrukom niti. Posle poli-dC vezivanja za rep, ova je umetnuta u vektor, kao što je plazmid koji nosi jedan ili više fenotipnih markera.4. The corresponding mRNA (12 to 18 S) is translated into the corresponding single strand complementary DNA (cDNA) from which the double strand cDNA is produced. After poly-dC binding to the tail, this is inserted into a vector, such as a plasmid carrying one or more phenotype markers.

5. Tako napravljeni vektori koriste se za transformisanje bakterijskih čelija obezbedjujuči biblioteku kolonija. Radiomarkirana cDNA napravljena i iz indukovane i iz neindukovane mRNA, ifcvedena kao što je opisano gore, koristi se za posebno sondiranje duplikatnih biblioteka kolonija. Višak cDNA se tada odvoji i kolonije se izlože filmu sa X-zracima tako da se indukuju cDNA kloni.5. Vectors thus made are used to transform bacterial cells by providing a library of colonies. Radiolabeled cDNA made from both induced and non-induced mRNA, ifinduced as described above, is used to specifically probe duplicate colonies libraries. The excess cDNA is then separated and the colonies are exposed to the X-ray film so that the cDNA clones are induced.

6. Izn indukovanih cDNA klona izoluje se i sekvencira odgovarajuda plazmidna DNA.6. The corresponding plasmid DNA is isolated and sequenced from the induced cDNA clones.

7. Sekvencirana DNA se tada kroji in vitro za umetanje u odgovarajuči nosač sa izražavanje koji se koristi za transformisanje odgovarajučih celija domačina kojima se tada omoguči da rastu u kulturi i da izra žavaju željeni ljudski imunološki interferonski proizvod.7. The sequenced DNA is then cut in vitro for insertion into a suitable expression vehicle used to transform the appropriate host cells which are then allowed to grow in culture and express the desired human immune interferon product.

8. Tako proizvedeni ljudski imunološki interferon bez sumnje ima 146 aminokiselina u svora žrelom obliku, počev od cisterna, i vrlo je baznog karaktera. Izračunato je da je njegova monomerna molekulska težina 17,140. Možda zbog prisustva brojnih baznih ostataka, hidrofobnosti, obrazovanja mosta tipa soli i tako dalje, molekul se može sjediniti u oligomerne oblike, n.pr., u oblik dimera, trimera ili tetramera. Visoke molekulske težine koje su rani ja zapažene sa prirodnim materijalom (6) koje se ne inogu obkasniti samo na bazi aminokiselinske sekvence, mogu biti posledica takvih oligomernih oblika kao i doprinosa ugljenih hidrata iz posttranslacionog glikozilovanja.8. The human immune interferon thus produced has, without doubt, 146 amino acids in the fungal form, starting with cisterns, and is of a very basic character. Its monomeric molecular weight was calculated to be 17,140. Perhaps due to the presence of numerous base residues, hydrophobicity, salt bridge type formation and so on, the molecule can be combined into oligomeric forms, e.g., into the form of dimers, trimers or tetramers. The high molecular weights observed early with natural material (6) that cannot be obscured by amino acid sequencing alone may be due to such oligomeric forms as carbohydrate contributions from posttranslational glycosylation.

9. U izvesnim sistemima čelija domačina, naročito kada se vrši ligacija u nosač za ekspresiju tako da se izražava zajedno sa njegovim signalnim peptidom od 20 aminokiselina, zreli oblik ljudskog imunološkog interferona eksportuje se u podlogu za čelijsku kulturu, fto nemerljivo pomaže postupke za izolovanje i prečiščavanje.9. In certain host cell systems, especially when ligation is carried out in an expression carrier so that it is expressed together with its 20 amino acid signal peptide, the mature form of human immune interferon is exported to the cell culture medium, which immeasurably aids isolation and purification.

Opis poželjnlh. realizacijaDescription desirable. realization

A. Mikroorganizmi/čelijske kulture 1 . Bakterijski sojevi/promotoriA. Microorganisms / cell cultures 1. Bacterial strains / promoters

Istraživanja koja su ovde opisana vršena su koriščenjem, inter alia, mikroorganizma E. coli K-12 soj 294 (kraj A, thi~, hsr”, ^hsm+), kao što je opisano u Britanskom Patentu Publikacija No. 2055382 A. Ovaj soj je deponovan u American Type Sulture Čollection, ATCC pristupni No. 31446. Medjutim korisni su razni drugi mikrobni sojevi, uključujuči poznate E. coli sojeve kao što su E. coli B, E. coli X 1776 (ATCC No. 31537) i E. coli W 3110 (F , lambda , protrofni) (ATCC No. 27325), ili drugi mikrobni sojevi od kojih su mnogi deponovani i (potencijalno) pristupačni od poznatih institucija za deponovanje raikroorganizama, kao što su American Type Culture Čollection (ATCC)— cf. ATCC katalog sa listom. Vidi, takodje German Offenlegungsschrirt 2644432. Cvi drugi mikroorganizmi uključuju, na primer, Bacilll kao što je Bači Hus subtilis i druge enterobacteriacae med ju ko j ima se mogu. spomeriuti kao šrimeri Salmonella typhimurium i Serratia marcescens, koriščenjem plazmida koji se mogu replicirati i na taj način izražavati sekvence heterologog gena.The studies described herein were performed using, inter alia, the micro-organism E. coli K-12 strain 294 (end A, thi ~, hsr ”, ^ hsm + ), as described in British Patent Publication No. 4/15. 2055382 A. This strain is deposited in American Type Sulture Chollection, ATCC accession no. 31446. However, various other microbial strains are useful, including known E. coli strains such as E. coli B, E. coli X 1776 (ATCC No. 31537) and E. coli W 3110 (F, lambda, protrophic) (ATCC No. 27325), or other microbial strains, many of which have been deposited and (potentially) accessible from known institutions for the deposition of richroorganisms, such as American Type Culture Collection (ATCC) - cf. ATCC list listing. See also German Offenlegungsschrirt 2644432. All other micro-organisms include, for example, Bacilli such as Bacchi Hus subtilis and other enterobacteriacae honey which may be present. referred to as shrimp Salmonella typhimurium and Serratia marcescens, using replicable plasmids to express heterologous gene sequences.

Kao primeri, promotorski sistemi za beta laktamazu i laktozu podesno su koriščeni za iniciranje i podržavanje proizvodnje heterologih polipeptida mikrobima. Detalji koji se odfaose na dopunu i konstrukciju ovih proraotorskih sistema publikovanl su u Chang et al·., Nature 275, 617 (1978) i Itakura et al., Science 198f, 1056 (1977) , koji su ovde inkorporirani kao referenca. 0 novije vreme razra• - Ϊ5 djen je sistem na bazi triptofana, takozvani trp promotorski sistem. Detalji koji se odnose na pravljenje i konstrukciju ovog sistema publikovani su u Goeddel et al. , Nucleic Acids Research &, 4057 (1980) i Kleid et al.,- O.S.S.N. 133,296, koji je podnet 24 marta, 1980, koji su ovde uneti kao referenca. Otkriveni su i koriščeni brojni drugi mikrobni promotori i detalji koji se tiču njihove sekvence nukleotida, koji omogučuju stručnjaku da ih funkcionalno veže unutar vektora plazmida su publikovani — vidi, n.pr., Siebenlist et al., Celi 20, 269 (1980), koji je ovde inkorporiran kao referenca.As examples, promoter systems for beta-lactamase and lactose have been suitably used to initiate and support the production of heterologous polypeptides by germs. Details concerning the addition and construction of these proraotor systems have been published in Chang et al. · Nature 275, 617 (1978) and Itakura et al., Science 198 f , 1056 (1977), which are incorporated herein by reference. 0 More recently, a tryptophan-based system, the so-called trp promoter system, has been developed. Details concerning the creation and construction of this system were published in Goeddel et al. , Nucleic Acids Research &, 4057 (1980) and Kleid et al., - OSSN 133,296, filed March 24, 1980, incorporated herein by reference. Numerous other microbial promoters and details concerning their nucleotide sequences have been discovered and used, enabling the expert to functionally bind them within the plasmid vector have been published - see, e.g., Siebenlist et al., Full 20, 269 (1980). which is incorporated herein by reference.

2. Sojebi kvasca/promotori kvasca2. Yeast yeast / yeast promoters

Ovdašnji sistem za ekspresiju može takodje koristiti plazmid YRp7 (14, 15, 16) koji može da se selekcionira i replicira i u E. coli i u kvascu, Saccharontyces cerevisiae. Za selekciju u kvascu plazmid sadrži TRP1 gen (14, 15, 16) koji je komplement kvasca koji sadrži mutacije (dozvoljava rast u otsustvu triptofana) u ovom genu koji je nad jen na hromozomu IV kvasca (17). Soj koji je ovde koriščen bio je soj RH218 (18) koji je deponovan u American Type Culture Collection bez ograničavanja (ATCC No. 44076). Medjutim, treba da je jasno da makoji soj Saccharomyces cerevisiae koji sadrži mutaciju koja čini čeliju trpi treba da bude efikasna okolina za izražavanje plazmida koji sadrži sistem za izražavanje. Primer drugog soja koji se može koristiti je pep4-1 (19). Ovaj triptofanski. auksotrofni soj takodje ima tačku mutacije u TRP1 genu.The expression system herein may also utilize the YRp7 plasmid (14, 15, 16), which can be selected and replicated in both E. coli and the yeast, Saccharontyces cerevisiae. For selection in yeast, the plasmid contains the TRP1 gene (14, 15, 16), which is a complement of yeast containing mutations (allows growth in the absence of tryptophan) in this gene, which is above the yen on chromosome IV of yeast (17). The strain used here was RH218 strain (18) deposited in the American Type Culture Collection without restriction (ATCC No. 44076). However, it should be clear that the Saccharomyces cerevisiae maca strain containing the mutation that makes the cell suffer should be an effective environment for the expression of a plasmid containing the expression system. An example of another strain that can be used is pep4-1 (19). This tryptophan. the auxotrophic strain also has a mutation point in the TRP1 gene.

Kada se postavi na 5‘ stranu gena ne-kvasca 5’-prirubnaWhen placed on the 5 'side of the non-yeast 5'-flange gene

- 16 DNA sekvenca (promotor) iz gena kvasca (za alkohol dehidrogenazu 1) može promovisati ekspresiju stranog gena u kvascu kada se stavi u plazmid koji je koriščen za transformisanje kvasca. Pored promotora, pravilna ekspresija gena ne-kvasca u kvascu zahteva drugu sekvencu kvasca postavijenu na 3*-kraj gena ne-kvasca na plazmidu tako da se omogučuje pravilna terminacija transkripcije i poliadenilovanja u kvascu. Ovaj promotcr se može podesno koristiti u sadašnjem pronalasku kao i drugi — vidi infra.- 16 A DNA sequence (promoter) from a yeast gene (for alcohol dehydrogenase 1) can promote expression of a foreign gene in yeast when inserted into a plasmid used to transform the yeast. In addition to the promoter, proper expression of the non-yeast gene in the yeast requires a second yeast sequence set at the 3 * end of the non-yeast gene on the plasmid to allow proper transcription and polyadenylation termination in the yeast. This promoter can be conveniently used in the present invention as well as others - see infra.

U poželjnim realizacijama, 5'-prirubna sekvenca 3-fosfoglicerat kinaznog gena kvasca (20) postavi se uzvodno od struktumog gena koji je opet pračen pomocu DNA koja sadrži signale za terminaciju poliadenilovanja, na primer, TRPI (14, 15, 16) gena ili PGK (20) gena.In preferred embodiments, the 5'-flange sequence of the yeast (3) phosphoglycerate kinase gene (20) is positioned upstream of the structural gene, which is again accompanied by DNA containing polyadenylation termination signals, for example, the TRPI (14, 15, 16) gene or PGK (20) genes.

Zato što 5’-prirubna sekvenca (zajedno sa 3’ DNA kvasca za terminaciju)(infra) može funkcionisati za promociju ekspresije stranih gena u kvascu, izgleda verovatno da se Ξ’-prirubne sekvence makojeg visoko-izraženog gena kvasca mogu koristiti za ekspresiju važnih genskih proizvoda. Pošto je u izvesnim okolnostima kvasac izražavao do 65 procenata rastvornih proteina u obliku glikolitičkih enzima (21) i pošto izgleda da je ovaj visoki nivo posledica proizvodnje visokih nivoa pojedinačnih mRNA (22), treba da je moguce da se koriste 5'-prirubne sekvence makojih drugih glikolitičkih gena za svrhe takvog izražavanja — n.pr., enolaza, gliceraldehid - 3-fosfat dehidrogenaza, heksokinaza. piruvat dekarboksilaza, fosfofruktokinaza, glukoza -6-fosfat izomeraza, 3-fosfoglicerat mutaza, piruvat kinaza, triosefosfat izomeraza, fosfoglukoza izomeraza i glukokinaza. Makoja od 3'-prtrnbnlh sekvenci ovih gena može se takodje koristiti za pravilnu terminaciju i mRNA poliaderiilovanje u takvom sistemu za ekspresi ju cf. Supra. Neki drugi visoko izraženi geni su oni za kisele fosfataze (23) i oni koji izražavaju visoke nivoe proizvodnje zbog mutacije u 5'-prirubnim regionima (mutanti koji povečavaju eskspresiju) - obično zbog prisustva ΤΥ1 transponujučeg elementa (24).Because the 5'-flange sequence (together with 3 'yeast DNA for termination) (infra) can function to promote expression of foreign genes in yeast, it seems likely that the Ξ'-flange sequences of a highly expressed yeast gene can be used to express important gene products. Because in some circumstances yeast expressed up to 65 percent of soluble proteins in the form of glycolytic enzymes (21) and since this high level appears to be due to the production of high levels of single mRNAs (22), it should be possible to use the 5'-flange sequences of mac other glycolytic genes for the purposes of such expression - e.g., enolase, glyceraldehyde - 3-phosphate dehydrogenase, hexokinase. pyruvate decarboxylase, phosphofructokinase, glucose -6-phosphate isomerase, 3-phosphoglycerate mutase, pyruvate kinase, triosephosphate isomerase, phosphoglucose isomerase and glucokinase. Macaque of the 3'-prtrnbnlh sequences of these genes can also be used for proper termination and mRNA polyaderiylation in such a cf. Supra. Some other highly expressed genes are those for acidic phosphatases (23) and those expressing high levels of production due to mutation in the 5'-flange regions (mutants that increase expression) - usually due to the presence of a ΤΥ1 transposing element (24).

Misli se da se svi gore spomenuti geni transkribuju pomoču RNA polimeraze II (24). Moguče je da promotori za RNA polimerazu I i III, koji transkribuju gene za ribozomne RNA, 5S RNA i tRNAs (25, 24), mogu takodje biti korisni u takvim konstrukcijama ekspresije.All the genes mentioned above are thought to be transcribed by RNA polymerase II (24). It is possible that promoters for RNA polymerase I and III, which transcribe genes for ribosomal RNAs, 5S RNAs and tRNAs (25, 24), may also be useful in such expression constructs.

Konačno, mnogi promotori kvasca takodje sadrže transkripcionu kontrolu tako da se mogu isključiti ili uključiti variranjem uslova za rast. Neki primeri takvih proraotora kvasca su geni koji proizvode sledeče proteine : Alkohol dehidrogenaza II, izocitohrora-c, kisela fosfatqaza, degradativni enzimi koji prate metabolizam azota, gliceraldehid-3fosfat dehidrogenaza, i enzimi koji su odgovorni za iskorisčenje maltoze i galaktoze (22). Takav kontrolni region če biti vrlo koristan u kontroli ekspresije proteinskog proizvoda - naročito kada je njihova proizvodnja toksična za kvasac. Takodje treba da je moguče da se postavi kontrolni region jedne 5’~prirubne sekvence sa 5'-prirubnoia sekvencom koja sadrži promotor iz visoko izraženog gena. Ovo če davati hibridni promotor i to treba da je moguče pošto izgleda da su kontrolni region i promotor fizički distinktne DNA sekvence.Finally, many yeast promoters also contain transcriptional control so that they can be switched off or on by varying growth conditions. Some examples of such yeast pro-rotors are genes that produce the following proteins: Alcohol dehydrogenase II, isocitochrora-c, acid phosphatqase, degradative enzymes that track nitrogen metabolism, glyceraldehyde-3phosphate dehydrogenase, and enzymes responsible for maltose and galactose utilization (22). Such a control region will be very useful in controlling the expression of a protein product - especially when their production is toxic to yeast. It should also be possible to position the control region of a 5 '~ flange sequence with a 5' flange sequence containing a promoter from a highly expressed gene. This will be given by the hybrid promoter and this should be possible since the control region and the promoter appear to be physically distinct DNA sequences.

...bir b*’1*... bir b * ' 1 *

λ...-- ..-- - ..- ----^-- -;·.,··-'. . ,. z.. μ<¥·ί.··ίι,· 5-· .'k-*·· ·-”<< ‘-v-··--'·.λ ...-- ..-- - ..- ---- ^ - -; ·., ·· - '. . ,. z .. μ <¥ · ί. ·· ίι, · 5- · .'k- * ·· · - ”<<'-v- ·· -' ·.

- '*^/3^(31 (Sistemi čelijske kulture/vektorl čelijske-kulture ~ j|^ ‘ *7·-^77‘λν« ''^E^opagacija čelija kičmenjaka u kulturi (kultura tkiva). ., _ .....postali je u zadnje vreme rutinski postupak (vidi Tissue . / ··'.··. ·.' Γ 1 ·....-· ·'/·- '* ^ / 3 ^ (31 (Steel culture systems / steel-culture vector ~ j | ^' * 7 · - ^ 77'λν «'' ^ E ^ ophthalmology of vertebrate cells in culture (tissue culture)., _ ..... have become a routine procedure lately (see Tissue. / ·· '. ··. ·.' Γ 1 · ....- · · '/ ·

A» *f 'J iCulture/Academie Press, Kruse and Patterson eds,A »* f 'J iCulture / Academie Press, Kruse and Patterson eds,

1973,)>. Ovde je korišcena COS-7 linija bubrežnih fibroblasta majmuaa kao'domačin za proizvodnja imunološkog interferona (25a),. Medjutim, ovde opisani eksperimenti mogu se vršiti c^^elJ^^p^lini Ji^ ko j a, .može. da - replicira^ izražava kompatibilan vektor, n.pr., WI38, ΒΗΚ, 3T3, CHO,1973,)>. The COS-7 monkey kidney fibroblast line was used here as a 'host' for the production of immune interferon (25a),. However, the experiments described here can be performed c ^^ elJ ^^ p ^ lini Ji ^ ko j a, .can. yes - replicates ^ expresses a compatible vector, e.g., WI38, ΒΗΚ, 3T3, CHO,

VERO i HeLa čelijske linije. Dalje, ono što se traži od vektora ža ekspresiju je poreklo replikacije i promotor koji je lociran ispred gena koji treba da se izražava, zajedno sa makoj im potrebnim ribozomnim mestima vezivanja, mestima za raskidanje RNA, mestima za poliadenilovanje, i' transkripcionim terminatorskim sekvencama. Mada su ovde iskoriščeni ovi suštinski elementi SV40, treba da je jasno da pronalazak, mada ovde opisan kao poželjna realizacija, nije ograničen na.ove sekvence. Na primer, može se koristiti poreklo replikacije drugih virusnih (n.pr.,VERO and HeLa steel lines. Further, what is required of the expression vector is the origin of the replication and the promoter located in front of the gene to be expressed, together with any ribosomal binding sites required, RNA cleavage sites, polyadenylation sites, and transcriptional terminator sequences. Although these essential elements of the SV40 have been utilized herein, it should be clear that the invention, although described as a preferred embodiment, is not limited to such sequences. For example, the origin of replication of other viral ones (e.g.,

Polyoma, Adeno, VSV, BPV i tako dalje) vektora, kao i čelijski izvori DNA replikacije koji mogu funkcionisati u neintegrisanom stanju.Polyoma, Adeno, VSV, BPV and so on) vectors, as well as steel sources of DNA replication that can function in the non-integrated state.

··.·<· ·

, B. Vektorski sistemi -7.1:/7, B. Vector Systems -7.1: / 7

77/// K,., K Direktaa ekspresija zrelog imunološkog ihterfe:w:: 'Λ.ί.>...·^ί,:·a*!4»-- v .·. , -· , . ' ‘ χ-i ·77 /// K,., K Direct expression of mature immune ihterfe: w :: 'Λ.ί.> ... · ^ ί,: · a *! 4 »- v. ·. , - ·,. '' χ-i ·

-UU C ?%£··· '«*»·'-UU C?% £ ··· '«*» ·'

Koriščeni'postupak; za dobivanje direktne ekspresije IFN-gama u E. coli u, obliku. zrelog interferonskoc polipentida (minus signalna sekvenca) bio je varijanta onoga koji je .λ.'s,/.; : K · ·» /'/' ' :Used'procedure; to obtain direct expression of IFN-gamma in E. coli in the form. the mature interferon-mediated polypentide (minus the signal sequence) was a variant of that which is .λ.'s, /; : K · · »/ '/'':

koriščen rani je za ljudski hormon rasta (26) i ljudski </· - -19 — ' g ·/ leukocltni interferon (1), jer nije uključivao kombinacija sintetskih (N-terminalne) i cDNA.the wound was used for human growth hormone (26) and human </ · - -19 - 'g · / leukocyte interferon (1), as it did not include a combination of synthetic (N-terminal) and cDNA.

f · &f · &

Kao što je zaključeno iz nukleotidne sekvence p69, kao Što je opisano niže, i na osnovu uporedjivanja sa poznatim mestom raskidanja izmedju signalnog peptida i zrelog polipeptida za nekoliko IFN-alfa (2) , IFN-gama ima hidrofobni signalni peptid od 20 aminokiselina posle čega slede 146 aminokiselina zrelog IFN-gama (Slika 5). Kao što je prikazano na Slici 7, mesto BstNI restrikcione endonukleaze se podesno locirano na aminokiselini 4 zrelog IFN-gama. Konstruisana su dva sintetska deoksioligonukleotida koji inkorporiraju ATG kodon za iniciranje translacije, kodone za aminokiseline 1,2i3 (cistein-tirozin-cistein) i kreiraj u EcoRI kohezivni kraj. Ovi deoksioligonukleotidi su podvrgnuti ligaciji za fragmenta sa 100 baznih parova BstNI-Pstl p69 tako da se konstruiše sintetski-prirodni hibridni gen sa 1115 parova baza koji kodira za IFN-gama i koji je vezan pomoču EcoRI i Pstl restrikcionih mesta. Ovaj gen je umetnut u plazmid pLeIF A A trp 103 izmedju EcoRI i Pstl mesta tako da se dobiva plazmid za ekspresiju pIFN-gama trp 48. U ovom plazmidu IFN-gama gen se izražava pod kontrolom E. coli trp promotora. (pLeIF A trp 103 je derivat pLeIF A 25 u kojem je distalno mesto EcoRI u odnosu na LeIF A gen odvojeno. Koriščehi postupak za odvajanje ovog EcoRI mesta opisan j <a rani je (27)).As inferred from the nucleotide sequence p69, as described below, and based on comparison with the known cleavage site between the signal peptide and the mature polypeptide for several IFN-alpha (2), IFN-gamma has a hydrophobic signal peptide of 20 amino acids followed by 146 amino acids of mature IFN-gamma follow (Figure 5). As shown in Figure 7, the BstNI restriction endonuclease site is conveniently located at amino acid 4 of the mature IFN-gamma. Two synthetic deoxyoligonucleotides have been constructed that incorporate the ATG codon to initiate translation, the codons for amino acids 1,2 and 3 (cysteine-tyrosine-cysteine) and create in the EcoRI cohesive end. These deoxyoligonucleotides were ligated for fragments of 100 base pairs of BstNI-Pst1 p69 to construct a synthetic-natural hybrid gene with 1115 base pairs encoding for IFN-gamma and bound by EcoRI and Pst1 restriction sites. This gene was inserted into plasmid pLeIF A A trp 103 between the EcoRI and Pst1 sites to produce a plasmid for expression of pIFN-gamma trp 48. In this plasmid, the IFN-gamma gene is expressed under the control of the E. coli trp promoter. (pLeIF A trp 103 is a derivative of pLeIF A 25 in which the distal EcoRI site relative to the LeIF A gene is separated. Using the procedure for separating this EcoRI site, j <is described (27).

2. Ekspresija u kvascu2. Expression in yeast

Za ekspresiju takvog heterologog gena; kao što je cDNA za imunološki interferon u kvascu, bilo je neophodno da se konstruiše vektor plazmida kojix sadrži četiri kompo-For the expression of such a heterologous gene; such as cDNA for immunological interferon in yeast, it was necessary to construct a vector of plasmid containing four compo-

nente. Prva komponenta je deo koji omogučuje transformisanje i E. coli i kvasca i tako mora sadržati gen koji se može selekcionisati iz svakog organizma. (U ovom slučaju, ovo je gen za rezistentnost na ampicilin iz E. coli i gena ·nente. The first component is the part that allows the transformation of both E. coli and yeast and so must contain a gene that can be selected from any organism. (In this case, this is the gene for ampicillin resistance from E. coli and the gene ·

TRPI iz kvasca). Ova komponenta takodje zahteva izvor replika cije iz oba organizma koji treba da se odršavaju kao plazmidna DNA u oba organizma. {U ovom slučaju, ovo je E. coli izvor iz pBR322 i ars1 izvor iz hromozorna III kvasca).Yeast TRPI). This component also requires a source of replicates from both organisms to be maintained as plasmid DNA in both organisms. {In this case, this is an E. coli source from pBR322 and ars1 source from chromosor III yeast).

Druga komponenta plazmida je 5’-prirubna sekvenca iz visoko izraženog gena kvasca tako da se promoviše transkripcija nizvodno-postavljenog strukturnog gena. U ovom slučaju, korišcena 5'-prirubna sekvenca je ona koja se koristi iz 3-fosfoglicerat kinaza (PGK) gena kvasca. Fragment je konstruisan na takav način da se odvaja ATG iz PGK strukturne sekvence kao i S bp (baznih parova) uzvodno od ovog ATG. Ova sekvenca je zamenjena sa sekvencom koja sadrži i Xbal i EcoRI restrikciono mesto za podesno spajanje ove 5’-prirubne sekvence za strukturni gen.The second component of the plasmid is the 5′-flange sequence from the highly expressed yeast gene so as to promote transcription of the downstream set structural gene. In this case, the 5'-flange sequence used is that used from the yeast 3-phosphoglycerate kinase (PGK) gene. The fragment was constructed in such a way that it separates ATG from the PGK structural sequence as well as S bp (base pairs) upstream of this ATG. This sequence has been replaced with a sequence containing both the Xbal and EcoRI restriction sites for the proper fusion of this 5′-flange sequence for the structural gene.

Treča komponenta sistema je strukturni gen konstruisan na takav način da sadrži i ATG translacione startne i translacione zaustavne signale. Izolovanje i konstrukcija takvog gena opisana je niže.The third component of the system is a structural gene constructed in such a way that it contains both ATG translational start and translational stop signals. The isolation and construction of such a gene is described below.

Četvrta komponenta je DNA sekvenca kvasca koja sadrži , 3‘-prirubnu sekvencu gena kvasca, koja,sadrži pravilne * signale za terminaciju transkripcije i poliadenilovanje.The fourth component is the yeast DNA sequence containing the 3′-flange yeast gene sequence, which contains the correct * signals for transcription termination and polyadenylation.

·: ~ 21 Kada su sve ove komponente prisutne, proizveden je imunološki interferon u’kvascu.·: ~ 21 When all these components are present, immune immunosuppressant interferon is produced.

3. Ekspresija u čelijskoj kulturi sisara3. Expression in mammalian cell culture

Strategija za sintezu imunološkog interferona u čelijskoj kulturi sisara zasnovana je na razvoju vektor koji je sposoban i za autonomnu replikaciju i za ekspresiju stranog gena pod kontrolom jedinice za heterologu transkripciju. Replikacija ovog vektora u kulturi tkiva postiže se obezbedjivanjem. izvora DNA replikacije (izveden iz SV40 virusa), i obezbedjivanjem pomagačke funkcije (T antigen) uvodjenjem vektora u celijsku liniju koja endogeno izražava ovaj antigen (28, 29). Poslednji promotor SV40 virusa prethodjen je strukturnim genom za interferon pa je tako obezbedjena transkripcija gena.The strategy for the synthesis of immune interferon in mammalian cell culture is based on the development of a vector capable of both autonomous replication and expression of a foreign gene under the control of a heterologous transcription unit. Replication of this vector in tissue culture is achieved by providing. sources of DNA replication (derived from the SV40 virus), and providing helper function (T antigen) by introducing a vector into a cell line endogenously expressing this antigen (28, 29). The last promoter of the SV40 virus is preceded by a structural interferon gene, thus providing gene transcription.

Koriščeni vektor za postizanje eskspresije IFN-gama sastojao se od pBR322 sekvenci koje su obezbedile selektivan marker za selekciju u E. coli (rezistentnost na ampicilin) kao i u izvoru E. coli za DNA replikaciju. Ove sekvence izvedene su iz plazmida pML-1 (28) I obuhvatale su region koji obuhvata EcoRI i BamHI restrikciona mesta. SV40 izvor je izveden i PvuII-Hindlll fragmenta sa 342 para baza koji obuhvata ovaj region (30, 31) (oba kraja se prevode u EcoRI krajeve). Ove sekvence, pored toga što obuhvataju virusni izvor za DNA replikaciju, kodiraju promotor i za ranu i zak kasnu jedinicu za transkrpipciju. Orijentacija -* reglona SV40 izvora bila je takva da je promotor za kasniju transkripcionu jedinicu bio postavljen u susedstvu gena koji kodira za interferon«The vector used to achieve IFN-gamma expression consisted of pBR322 sequences that provided a selective marker for selection in E. coli (resistance to ampicillin) as well as in the E. coli source for DNA replication. These sequences were derived from plasmid pML-1 (28) and encompassed a region comprising EcoRI and BamHI restriction sites. The SV40 source was also derived from a PvuII-HindIII fragment with 342 base pairs spanning this region (30, 31) (both ends translate to EcoRI ends). These sequences, in addition to encoding a viral source for DNA replication, encode the promoter for both early and late transcription transcription units. The orientation of the * SVlon source of the source was such that the promoter for the later transcriptional unit was positioned adjacent to the gene encoding for interferon. "

- 22 Kratak opis crteža- 22 Brief Description of Drawings

Slika 1 opisuje centrifugiranje sa gradientom saharoze indukovanih limfocita periferne krvi (PBL) Poly (A) + RNA. Zapažena su dva pika za interferonsku aktivnost (kao što je prikazano zasenčenim prostorima) sa veličinama 12S i tFigure 1 describes centrifugation with a sucrose gradient of peripheral blood (PBL) induced Poly (A) + RNA. Two peaks were observed for interferon activity (as shown in the shaded areas) with sizes 12S and t

S. Položaj i ribozomnih RNA markera (centrifugiranih nezavisno) markirani su iznad profila apsorbancije.S. The position and ribosomal RNA markers (centrifuged independently) were labeled above the absorbance profile.

Slika 2 prikazuje elektroforezu indukovanih PBL Poly(A) +Figure 2 shows the electrophoresis of PBL-induced Poly (A) +

SNA pomoču kiseline-karbamida-agaroze. Zapažen je 3amo jedan pik aktivnosti, koji je komigrirao sa 18S SNA.SNA assisted acid-urea-agarose. Only one peak of activity was observed, which interacted with 18S SNA.

Položaji ribozomnih RNA markera koji su elektroforezirani u susednoj liniji.i vizualizovani bojenjem sa etidijumbromidom markrirani su iznad profila aktivnosti.The positions of ribosomal RNA markers that were electrophoresed in the adjacent line.and visualized by staining with ethidium bromide were marked above the activity profile.

Slika 3 prikazuje šeme hibridizacije 96 kolonija sa indu32 kovanim i neindukovanim P-markiranim cDNA sondama.Figure 3 shows hybridization schemes of 96 colonies with induced and non-induced P-labeled cDNA probes.

po j edina čn ih trans formanata kultivisano je u mikrotitarskoj ploči, replikati su postavljeni na dve nitrocelulozne membrane, i tada su filtri hibridizovani sa P-cDNA sondama napravljenim ili iz indukovane mSNA (gore) ili iz mSNA izolovane iz neindukovanih PBL kultura (neindukovane, niže). Filtri su isprani da se odvoji ne-hibridizo— vana RNA i tada su izloženi na filmu za X-zrake. Ovaj set filtara pretstavlja 86 takvih setova (8300 nezavisnih kolonija) . Jedan primer indukovanog klona marki-ran ja kao & H12.single trans formants were cultured in a microtiter plate, replicates were mounted on two nitrocellulose membranes, and then the filters were hybridized with P-cDNA probes made either from induced mSNA (above) or from mSNA isolated from uninduced PBL cultures (uninduced, below). The filters were washed to separate non-hybridized RNAs and then exposed on an X-ray film. This filter set represents 86 such sets (8300 independent colonies). One example of an induced clone of brand-ran as & H12.

Slika 4 je restriktivna endonukleazna mapa cDNA inserta rFigure 4 is a restrictive endonuclease map of the insert cDNA

klona 69. cDNA insert je vezan pomoču Pst! mesta (tačke na oba kraja) i oligo dC-DG repova (proste linije). Broj I veliclone 69. cDNA insert is bound to the help of Pst! sites (points at both ends) and oligo dC-DG tails (simple lines). Number I says

- 23 čina fragraenata proizvedenih raskidanjem sa restrikcionom endonukleazom procenjeni su elektroforezom pomoču 6 procenl- .- 23 fractions produced by restriction endonuclease cleavage were assessed by electrophoresis using a 6 percent assay.

tnih akrilamidnih gelova. Položaji mesta potvrdjeni su sekvenciranjem nukleinskih kiselina (prikazano na Slici 5). Region za kodiranje najvedeg otvorenog rama za očitavanje je uokviren a zasenčeni region pretstavlja putativnu sekvencu signalnog peptida od 20 ostataka, dok tačkasti region pretstavlja sekkvencu zrelog IIP. (145 aminokiselina). 5' kraj mRNA je na levo dok je 3’ kraj na.desno.of acrylamide gels. The positions of the sites were confirmed by nucleic acid sequencing (shown in Figure 5). The coding region of the largest open reading frame is framed and the shaded region represents the putative sequence of the 20-residue signal peptide, while the dotted region represents the sequence of the mature IIP. (145 amino acids). The 5 'end of the mRNA is to the left while the 3' end is to the right.

Slika 5 ilustruje nukleotidnu sekvencu sDNA inserta plazmida p69, medjutim, ilustrativna je i za najobičniji alelni oblik IFN-gama. Takodje je prikazana zaključena aminokiselinska sekvenca najdužeg rama za očitavanje. Putativna signalna sekvenca prikazana je pomoču ostataka markiranih Sl do S20.Figure 5 illustrates the nucleotide sequence of the plasmid p69 insertion sDNA, however, it is also illustrative of the most common allelic form of IFN-gamma. A complete amino acid sequence of the longest reading frame is also shown. The putative signal sequence is shown by means of residues labeled Sl to S20.

Slika 6 je uporedjenje mRNA strukture IFN-gama sa strukturom leukocitnog (IFN-alfa) i fibroblastnog (IFN-beta) interferona. mRNA klona 69 (imunološki markirana) sadrži značajno veče količine netranslatisanih sekvenci.Figure 6 is a comparison of the mRNA structure of IFN-gamma with the structure of leukocyte (IFN-alpha) and fibroblast (IFN-beta) interferon. mRNA of clone 69 (immunolabeled) contains significantly higher amounts of untranslated sequences.

Slika 7 je shematski dijagram konstrukcije IFN-gama ekspresionog plazmida pIFN-gama trp 48. Polazni materijal je Pst cDNA insert sa 1250 parova baza iz plazmida p69.Figure 7 is a schematic diagram of the construction of the IFN-gamma expression plasmid pIFN-gamma trp 48. The starting material is a Pst cDNA insert with 1250 base pairs from plasmid p69.

Slika 8 prikazuje dijagram plazmida koji je koriŠden za ekspresiju IFN-gama u delijama majmuna.Figure 8 shows a diagram of a plasmid used for IFN-gamma expression in monkey portions.

Slika 9 prikazuje Južnu hibridizacija osam različitihFigure 9 shows Southern hybridization of eight different ones

EcoRI digerovanih ljudskih genomnih DNA hibridi2ovanih saEcoRI of digested human genomic DNA hybridized with

-X 32 ' s-xP-markiranim. Ddel fragmentom sa 600 parova baza iz tyhe cDNA inserta p69. EcoRI fragmenti se jasno hibridizuju sa sondom u svakom uzorku DNA.-X 32 ' with -xP-marked. Ddel fragment with 600 base pairs from the tyhe cDNA insert p69. EcoRI fragments are clearly hybridized to the probe in each DNA sample.

- 23ce»- 23ce »

Slika. 10 opisuje Južnu hibridizaciju ljudske genomne DNA digerovane sa šest različitih restrikcionih endonukleaza ' ' ' · ' \ : '> ; i 32' · - . '-4 ' .· · · ' hibridizovanih sa P-markirnom sondoia iz p69.Image. 10 describes Southern hybridization of human genomic DNA digested with six different restriction endonucleases''' · '\ : '>; and 32 '· -. '-4'. · · · 'Hybridized with P-marker probe from p69.

Slika 11 shematski ilustruje restrikcionu mapu Hindlll inserta vektor pB1 sa 3.1 kbp iz kojeg je izolovan PGK promotor. Naznačeno je umetanje EcoRI mesta i Xbal mesta u 5’-prirubnoj DNA PGK gena.Figure 11 schematically illustrates the restriction map of the Hindlll insert vector pB1 at 3.1 kbp from which the PGK promoter was isolated. The insertion of the EcoRI site and the Xbal site in the 5′-flange DNA of the PGK gene is indicated.

Slika 12 ilustruje 5’-prirubnu sekvencu plus početnu sekvencu za kodiranje za PGK gen pre umetanja Xbal i EcoRI mesta.Figure 12 illustrates the 5′-flange sequence plus the initial coding sequence for the PGK gene before inserting the Xbal and EcoRI sites.

Slika 13 shematski ilustruje'koriščene tehnike za umetanje Xbal mesta u položaju - 8 u PGK promotoru i za izolovanje fragmenta sa 39 bp 5’-prirubne sekvence PGK koji sadrži ovaj Xbal kraj i Sau3A kraj.Figure 13 schematically illustrates the techniques used to insert the Xbal site in position - 8 in the PGK promoter and to isolate the fragment with the 39 bp 5′-flange sequence of the PGK containing this Xbal end and Sau3A end.

Slika 14 shematski ilustruje konstrukciju fragmenta od 300 bp koji sadrži gornji fragment od 39bpf dopunsku PGK 5'-prirubnu sekvencu (265bp) iz Pvul za Sau3A (vidi Sl.Fig. 14 schematically illustrates the construction of a 300 bp fragment containing the 39bp upper fragment f supplementary PGK 5'-flange sequence (265bp) from Pvul for Sau3A (see Fig.

11) , i EcoRI mesto u susedstvu sa Xbal.11), and an EcoRI site adjacent to Xbal.

Slika 18 shematski ilustruje konstrukciju fragmenta PGK promotora od 1500 bp (Hindlll/EcoRI) koji sadrži, pored fragmenta koji je konstruisan na Sl. 14, Hindlll za Pvul fragment od 1300bp iz PGK 5' -prirubne sekvence (vidi Sl. 11).18 schematically illustrates the construction of a 1500 bp PGK promoter fragment (HindIII / EcoRI) containing, in addition to the fragment constructed in FIG. 14, Hindlll for a 1300bp Pvul fragment from the PGK 5 'flange sequence (see Fig. 11).

Slika 16 ilustruje sastav vektora za ekspresiju za ljudski imunološki interferon u kvascu, koji sadrži modifikovani PGK promotor, sDNA IFN-gama i terminatorski region PGK gena \ kvasca kao što je ovde detaljnije opisano.Figure 16 illustrates the composition of an expression vector for human immunostained interferon in yeast, which contains a modified PGK promoter, sDNA IFN-gamma, and the terminator region of the yeast PGK gene as described herein in more detail.

Deta1jan opisDetail description

A. Izvor IFN-gama mRNAA. Source of IFN-gamma mRNA

Limfociti periferne krvi (PBL) izvedeni su od ljudskih davaoca leukoforezom. PBL su dalje prečiščeni Ficoll-Kypaque gradientnim centrifugiranjem i tada su kultivisani pri koncentraciji 5x106 čelija/ml u RPMI 1640, 1-procentnom L-glutaminu, mM HEPES i 1-procentnom penicilin-streptomicinskom rastvoru (Glbco, Grand Island, NY). Ove čelije su indukovane da se proizvede IFN-gama pomoču mitogena stafilokoknog enterotoksina B (1 /Ug/ml) i kultivisaene su 24 do 48 Časova / na 37°C u 5-procentnom CO2· Dezacetiitimozin-alfa-1 (0.1 ^ug/ml) je dodan na PBL kulture da se poveča relativan prinos IFN-gama aktivnosti.Peripheral blood lymphocytes (PBL) are derived from human donors by leucophoresis. PBLs were further purified by Ficoll-Kypaque gradient centrifugation and then cultured at 5x10 6 cells / ml in RPMI 1640, 1% L-glutamine, mM HEPES, and 1% penicillin-streptomycin solution (Glbco, Grand Island, NY). These cells were induced to produce IFN-gamma by the mitogen staphylococcal enterotoxin B (1 / ug / ml) and cultured for 24 to 48 hrs / 37 ° C in 5% CO 2 · Desacetiitimosin-alpha-1 (0.1 ^ ug / ml) was added to PBL cultures to increase the relative yield of IFN-gamma activity.

B. Izolovanje mesindžer RNAB. Isolation of RNA messenger

Ukupna RNA iz PBL kultura ekstrahovana je suštinski kao Što je opisano u Berger, S.L. et al. (33). Čelije su granulovane centrifugiranjem i tada su resuspendcvane u 10 mM NaCl, mM Tris-HCl (pH 7.5), 1.5 mM MgCl2 i 10 mM ribonukleozid vanadil kompleksa. Čelije su raskinute dodavanjem NP--40 (1-procentna finalna koncentracija), i jezgra su granulovana centrifugiranjem. Superaatant je sadržao ukupnu RNA koja je dalje prečiščena višestrukim ekstrakcijama sa fenolom i hloroformom. Vodena faza je dovedena na 0.2 M u NaCl i tada je ukupna RNA staložena dodavanjem dve zapremine etanola. RNA iz neindukovanih (nestimulisanih) kultura izolovana je istim postupcima. Oligo-dT celulozna kromatografija koriščena je za prečiščavanjemRNA iz ukupnih RNA preparata (34). Tipični prinosi iž T-2 litra kultivisanih PBL bili su 5-10 miligrama ukupne RNA i 50-20 mikrogramaTotal RNA from PBL cultures was extracted essentially as described in Berger, SL et al. (33). Cells were granulated by centrifugation and then resuspended in 10 mM NaCl, mM Tris-HCl (pH 7.5), 1.5 mM MgCl 2 and 10 mM ribonucleoside vanadyl complex. Cells were dissolved by the addition of NP-40 (1 percent final concentration), and the nuclei were granulated by centrifugation. The superatantant contained total RNA which was further purified by multiple extractions with phenol and chloroform. The aqueous phase was brought to 0.2 M in NaCl and the total RNA was then precipitated by the addition of two volumes of ethanol. RNA from uninduced (unstimulated) cultures was isolated by the same procedures. Oligo-dT cellulose chromatography was used to purify the DNA from total RNA preparations (34). Typical yields of T-2 liter cultured PBLs were 5-10 milligrams total RNA and 50-20 micrograms

Poly(A) + RNA.Poly (A) + RNA.

C. Frakcionisanje mRNA po veličiniC. Size mRNA fractionation

Koriscena su dva postupka za frakcionisanje mRNA preparata.Two methods were used to fractionate mRNA preparations.

Ovi postupci su korišceni nezavisno (radije nego jedinstveno) i svaki je doveo do značajnog obogacivanja IFN-garaa mRNA.These methods were used independently (rather than uniquely) and each led to significant enrichment of IFN-garaa mRNA.

Za frakcionisanje mRNA koriščeno je centrifugiranje sa saharoznim gradientom u prisustvu formamida za denaturaciju. Gradienti od 5 procenata do 25 procenata saharoze u 70procentnom formamidu (32) centrifugirani su pri 154,000 x g 19 časova na 20°C. Sukcesivne frakcije su tada odvojene (0.5 ml) sa vrha gradienta, staložene sa etanolom i alikvot je inektiran u Xenopus laevis oocite 2a translaciju mRNA (35). Posle 24 časa na sobnoj temperaturi, podloga za inkubaciju je tada procenjena na antivirusnu aktivnost u standardnom testu za inhibiranje citopatskog efekta koriščenjem Vesicular Stomatitis Virus-a (Indiana soj) i Encephalomyocarditis Virus-a na WISH (ljudski amnion) čelijama kao što je opisao Stewart (36), izuzev što su uzorci inkubirani sa čelijama 24 časa (umesto 4) pre napada sa virusom. Konzistentno su zapažani pikovi aktivnosti u RNA koja je frakcionisana sa saharoznim gradientom (Slika 1). Jedem pik je sedimentiran sa izračunatom veličinom 125 i sadržao je 100-400 jedinica/ml antivirusne aktivnosti (u pored jen ju sa IFN-alfa standardom) po mikrogramu inektirane RNA. Drugi pik aktivnosti sedimentirao se je kao 16S po veličini i sadržao je oko pola aktivnosti pika koji se spori je sedimentira. Izgleda da je svaki od ovih pikova aktivnosti bio posledica IFN-gama, pošto nije zapažena aktivnost kada su iste frakcije procenjivane na ναlovstaj čeli j- 26 skoj liniji (MDBK) koja nije bila zaštičena pomoču ljudskog IFN-gama. I IFN-alfa i IFN-beta aktivnost bi se lako detektovale sa MDBK testom (5).Sucrose gradient centrifugation in the presence of denaturation formamide was used for mRNA fractionation. Gradients of 5 percent to 25 percent sucrose in 70 percent formamide (32) were centrifuged at 154,000 x g for 19 hours at 20 ° C. Successive fractions were then separated (0.5 ml) from the top of the gradient, ethanol-stained, and an aliquot was injected into Xenopus laevis oocyte 2a mRNA translation (35). After 24 h at room temperature, the incubation medium was then evaluated for antiviral activity in a standard assay to inhibit cytopathic effect using Vesicular Stomatitis Virus (Indiana strain) and Encephalomyocarditis Virus on WISH (human amnion) cells as described by Stewart (36), except that the samples were incubated with cells for 24 hours (instead of 4) before the virus attack. Peaks of activity in the RNA fractionated with sucrose gradient were observed consistently (Figure 1). The edema peak was sedimented with a calculated size of 125 and contained 100-400 units / ml of antiviral activity (in addition to the IFN-alpha standard) per microgram of injected RNA. The second activity peak was sedimented as 16S in size and contained about half the activity of the slow-moving sediment. Each of these activity peaks appears to have been due to IFN-gamma, since no activity was observed when the same fractions were evaluated on the να 26-line front line (MDBK) that was not protected by human IFN-gamma assistance. Both IFN-alpha and IFN-beta activity would be easily detected with the MDBK assay (5).

Frakcionisanje mRNA (200 ^ug) je takodje vršeno elektroforezom pomoču kiselih karbamid-agaroznih gelova. Komad agaroznog gela (37, 38) sastojao se je od 1.75 procenta agaroze, 0.025 M natrijum-citrata, pH 3.8 i 6 M karbamida. Elektroforeza je vršena 7 časova na 25 miliamp 1 4°C.The mRNA fractionation (200 µg) was also performed by electrophoresis using acidic carbamide-agarose gels. The piece of agarose gel (37, 38) consisted of 1.75 percent agarose, 0.025 M sodium citrate, pH 3.8, and 6 M urea. Electrophoresis was performed for 7 hours at 25 milliamps 1 4 ° C.

Gel je tada frakcionisan sa sečivom žileta. Pojedinačni izrezi su topljeni na 70°C i ekstrahovani dva puta sa fenolom i jednom sa hioroformom. Frakcije su tada staložene sa etanolom i kasnije procenjene na IFN-gama mRNA inektiranjem u Xenopus laevls oocite i antivirusnim testom.The gel was then fractionated with the blade of the blade. The individual cutouts were melted at 70 ° C and extracted twice with phenol and once with chloroform. The fractions were then precipitated with ethanol and subsequently evaluated for IFN-gamma mRNA by injection into Xenopus laevls oocytes and antiviral assay.

Zapažen je samo jedan pik aktivnosti u uzorcima frakcionisanim na gelu (Slika 2). Ovaj pik je komigrirao sa 18S RNA i imao je aktivnost 600 jedinica/ml po mikrogramu inektirane RNA. Izgleda da je ova aktivnost takodje specifična za IFN-gama, pošto nije štitila MDBK čelije.Only one peak of activity was observed in the samples fractionated on the gel (Figure 2). This peak commigrated with 18S RNA and had an activity of 600 units / ml per microgram of injected RNA. This activity also appears to be specific for IFN-gamma, since it did not protect MDBK cells.

Razlika u veličini izmedju pikova aktivnosti zapaženih na saharoznim gradientima (12S i 16S) i kiselim karbamidnim gelovima (18S) može se objasniti zapažanjem da ovi nezavisni postupei za frakcionisanje nisu vršeni pod uslovima za totalnu denaturaciju.The difference in size between activity peaks observed on sucrose gradients (12S and 16S) and acidic urea gels (18S) can be explained by the observation that these independent fractionation procedures were not performed under conditions of total denaturation.

D. Pravljenje biblioteke kolonija koja sadrži IFN-gama sekvence /Ug mRNA frakcionisane na gelu koriščeno je za pravljenje cDNA sa dvostrukom niti pomoču standardnih postupaka (26,D. Construction of a colony library containing IFN-gamma sequences / Ug mRNA fractionated on gel was used to make double strand cDNAs using standard procedures (26,

39). cDNA je frakcionisana po veličini na 6-procentnom39). cDNA was fractionated in size at 6 percent

- 27 poliakrilamidnom gelu. Frakcije dve veličine su elektroeluirane, 800-1500 bp (138 ng) i jireko 1500 bp (204 ng). Partije od 35 ng cDNA svake veličine proširene su sa deoksiC ostacima koriščenjem terminalne deoksinukleotidil transferaze (40) i kaljene su sa 300 ng plazmida pBR322 (41) koji je bio slično krojen sa deoksiG ostacima na Pstl mestu (40). Svaka kaljena smeša je tada transforraisana u E. coli K12 soj 294. Dobiveno je približno 8000 transformanata sa 800-1500 bp cDNA i 400 transformanata sa preko 1500 bp cDNA.- 27 polyacrylamide gel. Two size fractions were electroeluted, 800-1500 bp (138 ng) and jireko 1500 bp (204 ng). Sections of 35 ng of cDNA of each size were expanded with deoxyC residues using terminal deoxynucleotidyl transferase (40) and tempered with 300 ng of plasmid pBR322 (41), which was similarly tailored to deoxyG residues at the Pst1 site (40). Each tempered mixture was then transformed into E. coli K12 strain 294. Approximately 8000 transformants with 800-1500 bp cDNA and 400 transformants with over 1500 bp cDNA were obtained.

E. Testiranje biblioteke kolonija na indukovane cDNAE. Testing the colony library for induced cDNAs

Kolonije su pojedinačno inokulirane u rupice na mikrotitarskim pločama koje sadrže LB (58) + 5 ^ug/ml tetraciklina i stokirane su na -20°C posle dodavanja DMSO do 7 procenata. Dve kopije biblioteke kolonija kultivisane su na nitroceluloznim filtrima i DNA iz svake kolonije fiksirana je za filtar pomoču Grunstein-Hogness postupka (42).The colonies were individually inoculated into holes on microtiter plates containing LB (58) + 5 µg / ml tetracycline and stocked at −20 ° C after addition of DMSO up to 7 percent. Two copies of the colony library were cultured on nitrocellulose filters and DNA from each colony was fixed to the filter using the Grunstein-Hogness procedure (42).

P-markirane cDNA sonde napravljene su koriščenjem mRNA veličine 18S frakcionisane na gelu iz indukovanih i neindukovanih PBL kultura. Koriščen je oligo dT-j2-i8 Primer 1 reakcioni uslovi koji su opisani ranije (1). Filtri koji sadrže 8000 transformanata iz isečka cDNA veličine 6001500 bp i 400 transformanata iz isečka cDNA veličine prekoP-tagged cDNA probes were made using 18S size mRNA fractionated on gel from induced and non-induced PBL cultures. The oligo dT -j2-i8 P rimer 1 reaction conditions described previously were used (1). Filters containing 8000 transformants from a 6001500 bp cDNA clip and 400 transformants from a cDNA clip size via

1500 bp su hibridizovani sa 20 z 10θ cpm indukovane1500 bp were hybridized with 20 z 10θ cpm induced

32p-cDNA. Duplikatni set filtera hibrldizovan je sa *3 2 p-cDNA. Duplicate filter set is hybridized with *

32 x 10 cpm neindukovane P-cDNA. Hibridizacija je trajala 16 časova koriščenjem us lova koji su opisani u Fritsch et al. (43). Filtri su ekstenzivno isprani (43) i tada izloženi na Kodak XR-5 filmu za X-zrake sa DuPont Lightning intenSv- ·-« · ·'. .\.-.TA ,g .. '·*?·+ Λ·.>*··- *.<-·!. ·- .-7^*.·. ,·.. ' ‘ · ™ 4*0- *u ',· ’ zifikujučim sitima tokom 16-48 časova. šema hibridizacije svake kolonije uporedjena je sa dve sonde. Približno 40 procenata kolonija bilo je jasno hibridizovano sa obe sonde, dok je približno 50 procenata kolonija propustilo da se hibridizuje sa jednom od sondi (prikažemo na Slici 3). 124 kolonija je značajno hibridizovano sa indukovanom sondom ali su bile nedetektujuče ili sasvim slabo hibridizovane sa neindukovanom sondom. Ove kolonije su pojedinačno inokulirane u rupice na mikrotitarskim pločama, kultivisane su i prenete na nitrocelulozne filtre, i hibridizovane su sa iste dve sonde, kao što je opisano gore. Plazmidna DNA izolovana iz svake od ovih kolonija pomoču brzog postupka (44) takodje je vezana na nitroceluloznim filtrima i hibridizovana je sa indukovanom i neindukovanom sondom.32 x 10 cpm uninduced P-cDNA. Hybridization lasted for 16 hours using the conditions described in Fritsch et al. (43). The filters were extensively washed (43) and then exposed on a Kodak XR-5 X-ray film with DuPont Lightning intenSv- · - «· · '. . \ .-. T A, g .. '· *? · + Λ ·.> * ·· - *. <- · !. · -.-7 ^ *. ·. , · .. '' · ™ 4 * 0- * in ', ·' zipper sittings for 16-48 hours. the hybridization scheme of each colony was compared with two probes. Approximately 40 percent of the colonies were clearly hybridized with both probes, while approximately 50 percent of the colonies failed to hybridize with one of the probes (shown in Figure 3). 124 colonies were significantly hybridized with the probe but were undetectable or quite poorly hybridized with the non-induced probe. These colonies were individually inoculated into holes on microtiter plates, cultured and transferred to nitrocellulose filters, and hybridized with the same two probes as described above. Plasmid DNA isolated from each of these colonies by rapid procedure (44) was also bound to nitrocellulose filters and hybridized to the induced and uninduced probe.

DNA iz 22 kolonije hibridizovana je samo sa indukovanom sondom i te su kolonije nazvane indukovanim kolonijama.DNA from 22 colonies hybridized with the probe only and these colonies were termed induced colonies.

F. Karakterizacija indukovanih kolonijaF. Characterization of induced colonies

Plazmidna DNA je napravljena iz 5 Indukovanih kolonija (46) i koriščena je za karakterizaciju cDNA inserata. Restrikciono endonukleazno mapiranje pet indukovanih plazmida (p67, p68, p69, p71 i p72) sugeriralo je da su četiri imale slične restrikcione nukleazne mape. Ove četiri (p67, p69, p71 i p72) su sve imale četiri Ddel mesta,Plasmid DNA was made from 5 Induced Colonies (46) and used to characterize cDNA inserts. Restriction endonuclease mapping of five induced plasmids (p67, p68, p69, p71, and p72) suggested that four had similar restriction nuclease maps. These four (p67, p69, p71 and p72) all had four Ddel sites,

HinfI mesta, i jedno Rsal mesto u cDNA insertu. Peti plazmid (p68) sadržao je običan Ddel fragment i izgleda da je bio kratak cDNA klon u odnosu na druga četiri. Homologija sugerirana restrikcionim nukleaznim map ir an jem potvrdjena 32 je hibridizacijom. Napravljena je P-markirana DNA sonda (47) iz Ddel fragmenta od 600 bp p67 plazmida i koriščena je za hibridizaciju (42) drugih indukovanih kolonija.HinfI sites, and one Rsal site in the cDNA insert. The fifth plasmid (p68) contained an ordinary Ddel fragment and appeared to be a short cDNA clone relative to the other four. The homology suggested by the restriction nuclease map was confirmed by 32 by hybridization. A P-tagged DNA probe (47) was made from a 600 bp p67 plasmid Ddel fragment and used for hybridization (42) of other induced colonies.

- 29 Svih pet restrikciono nukleazno mapiranih. kolonija podlegale su ukrštenoj hibridizaciji sa ovom sondom, kao i 17 drugih kolonija od 124 izabranih u indukovanom/neindukovanom testiranju. Dužina cDNA inserta u svakom od ovih ukrštenohibridizovanih plazmida odredjena je Pstl digerovanjem i gel elektroforezom. Klon sa najdužim cDNA insertom izgleda da je bio klon 69 sa dužinom umetka 1200-1400 bp. Ova DNA koriščena je za sva četiri. dalja eksperimenta, i njena restrikciona endonukleazna mapa prikazana je na Slici 4.- 29 All five restriction nuclease mappings. colonies underwent cross-hybridization with this probe, as did 17 other colonies out of 124 selected in induced / non-induced testing. The length of the cDNA insert in each of these cross-hybridized plasmids was determined by PstI digestion and gel electrophoresis. The clone with the longest cDNA insert appears to have been clone 69 with an insert length of 1200-1400 bp. This DNA was used for all four. a further experiment, and its restriction endonuclease map is shown in Fig. 4.

Demonstrirano je da je cDNA insert u p69 IFN-gama cDNA na osnovu njegovog proizvoda ekspresije, proizvedenog u tri nezavisna sistema za ekspresiju, pri čemu je dobivena antivirusna aktivnost, kao Što je opisano detaljnije niže.It was demonstrated that the cDNA was inserted into the p69 IFN-gamma cDNA based on its expression product, produced in three independent expression systems, resulting in antiviral activity, as described in more detail below.

G. Sekvenciona analiza cDNA inserta p69.G. Sequential analysis of the p69 insert cDNA.

Kompletna nukleotidna sekvenca cDNA inserta plazmida p69 odredjena je postupkom terminacije deoksinukleotidnog niza (48) posle subkloniranja fragmenata u M13 vektor mp7 (49) i pomoču Maxam-Gilbert hemijskog postupka (52). Najduži otvoreni ram za očitavanje kodira za protein od 166 aminokiselina, prikazan na Slici 5. Prvi kodiran ostatak je prvi met kodon na koji se nailazi na 5’ kraju cDNA.The complete nucleotide sequence of the plasmid p69 insert cDNA was determined by the method of termination of the deoxynucleotide sequence (48) after subcloning the fragments into the M13 vector mp7 (49) and using the Maxam-Gilbert chemical process (52). The longest open reading frame encodes for the 166 amino acid protein shown in Figure 5. The first encoded residue is the first meth codon encountered at the 5 'end of the cDNA.

Prvih 20 ostataka na amino terminusu verovatno služe kao signalna sekvenca za izlučivanje preostalih 146 aminokiselina Ova putativna signalna sekvenca ima zakedničke osobine sa drugim okar akter is anim signalnim sekvencama, kao što su veličina i hidrofobnost. Dalje, četiri aminokiseline koje se nalaze kao putativna sekvenca za raskidanje (ser-leu-gly-cys) su identične sa četiri ostataka kojiThe first 20 residues at the amino terminus probably serve as a signal sequence to secrete the remaining 146 amino acids. This putative signal sequence has conspecific properties with other okar actors and with anim signal sequences such as size and hydrophobicity. Furthermore, the four amino acids found as a putative cleavage sequence (ser-leu-gly-cys) are identical with the four residues that

- 30 se nalaze na tački raskidanja nekoliko leukocitnih interferona (LeIF B, C, D, F, i H, (2)). Kodirana zrela 4 amino ki sel inska sekvenca 146 aminokiselina ista molekulsku težinu 17,140.- 30 are located at the breakpoint of several leukocyte interferons (LeIF B, C, D, F, and H, (2)). The encoded mature 4 amino acid sequence 146 amino acids have the same molecular weight of 17,140.

Poštoje dva pitencijalna položaja za glikozilovanje (50) u kodiranoj proteinskoj sekvenci, na aminokišelinama 28 do 30 (asn-gly-thr) i aminokišelinama 100 do 102 (asn-tyrser). Postojanje ovih položaja je konzsistentno sa zapaženim glikozilovanjem ljudskog IFN-gama (6, 51). Dalje, samo dva cisteinska ostataka (položaji 1 i 3) su prostorno suviše blizu da obrazuju disulfidni most, što je konsistentno sa zapaženom stabilnošču IFN-gama u prisustvu takvih redukcionih sredstava kao što je beta-merkaptoetanol (51). Izvedena zrela aminokiselinska sekvenca je uglavnom sasvim bazna, sa ukupno 30 ostataka lizina, arginina i histidina i samo 19 ukupnih ostataka asparaginske kiseline i glutaminske kiseline.There are two potential glycosylation positions (50) in the encoded protein sequence, at amino acids 28 to 30 (asn-gly-thr) and amino acids 100 to 102 (asn-tyrser). The existence of these positions is consistent with the observed glycosylation of human IFN-gamma (6, 51). Furthermore, only two cysteine residues (positions 1 and 3) are spatially too close to form a disulfide bridge, which is consistent with the observed stability of IFN-gamma in the presence of such reducing agents as beta-mercaptoethanol (51). The derived mature amino acid sequence is generally quite basic, with a total of 30 residues of lysine, arginine and histidine and only 19 total residues of aspartic acid and glutamic acid.

mRNA struktura IFN-gama kao što je zaključena iz DNA sekvence plazmida p69 je jasno različita od IFN-alfa (1, 2) ili IFN-beta (5) mRNA. Kao što je prikazano na Slici 6, region za kodiranje IFN-gama je krači dok su 5' netranslatisani i 3' netranslatisani regioni mnogo duži nego i kod IFN-alfa ili kod IFN-beta.The mRNA structure of IFN-gamma as inferred from the DNA sequence of plasmid p69 is clearly different from IFN-alpha (1, 2) or IFN-beta (5) mRNA. As shown in Figure 6, the IFN-gamma coding region is shorter while the 5 'untranslated and 3' untranslated regions are much longer than either IFN-alpha or IFN-beta.

H. Direktna ekspresija zrelog ljudskog interferoba u E. colH. Direct expression of mature human interferobe in E. col

Imajuči za referencu Sliku 7, 50 ^g plazmida p69 digerovano je sa Pstl i izolovan je insert od 1250 parova baza pomoču gel elektroforeze· na 6 procentnom poliakrilamidnom gelu. Približno 10 n g ovog inserta je elektroeluirano iz gela.For reference Figure 7, 50 ^ g of plasmid p69 was digested with Pstl and an insert of 1250 base pairs was isolated by gel electrophoresis · on a 6 percent polyacrylamide gel. About 10 ng of this insert was electroeluted from the gel.

'.Tt ’ ^ug ovog Pstl fragmenta je delimično digerovano sa jedinice BstNI (Bethesda Research Labs) tokom 15 minuta o na 37 C i reakciona smeša je prečiščena na 6-procentnom poliakrilamidnom gelu. Izolovano je približno 0.5 ^ug željenog BstNI - Pstl fragmenta od 1100 parova baza.The '.tt' ^ ug of this Pstl fragment was partially digested from unit BstNI (Bethesda Research Labs) for 15 minutes at 37 C and the reaction mixture was purified on a 6% polyacrylamide gel. Approximately 0.5 µg of the desired BstNI - Pstl fragment of 1100 base pairs was isolated.

Dva naznačena deoksioligonukleotida, 5 ’ -dAATTCATGTGTTATTGTC i 5’-dTGACAATAACACATG (Slika 7) sintetizovana su pomoču fosfortriestarskog postupka (53) i fosforilovana su kako sledi. 100 pmolova svakog deoksinukleotida kombinovano je u 30 yul 60 mM Tris-HCl (pH 8), 10 mM MgCl2, 15 mM beta32 merkaptoetanola i 240 ^uCi (gama- P) ATP (Amersham, 5000 Ci/mmol). Dodano je 12 jedinica T4 polinukleotid kinaze i ©stavljeno je da se reakcija vrši na 37°C 30 minuta.Two indicated deoxyligonucleotides, 5 '-dAATTCATGTGTTATTGTC and 5'-dTGACAATAACACATG (Figure 7), were synthesized by the phosphoester ester procedure (53) and phosphorylated as follows. 100 pmol of each deoxynucleotide was combined in 30 µl of 60 mM Tris-HCl (pH 8), 10 mM MgCl 2 , 15 mM beta32 mercaptoethanol and 240 µCi (gamma-P) ATP (Amersham, 5000 Ci / mmol). 12 units of T4 polynucleotide kinase were added and the reaction was allowed to proceed at 37 ° C for 30 minutes.

JJ

Dodan je 1 yil 10 mM ATP i pušteno je da se reakcija vrši još 20 minuta. Posle ekstrakcije sa 0-OH/CHCl2 oligomeri su kombinovani sa 0.25 ^ug BstNI-Pstl fragmentom od 1100 parova baza i staloženi su etanolom. Ovi fragementi su podvrgnuti ligaciji na 20°C tokom 2 časa u 30 ^ul 20 mM Tris-HCl (pH 7.5), 10 mM MgCl , 10 mM ditiotreitola,1 µl of 10 mM ATP was added and the reaction was allowed to proceed for another 20 minutes. After extraction with 0-OH / CHCl 2, the oligomers were combined with a 0.25 µg BstNI-Pst1 fragment of 1100 base pairs and precipitated with ethanol. These fragments were subjected to ligation at 20 ° C for 2 h in 30 ^ ul of 20 mM Tris-HCl (pH 7.5), 10 mM MgCl, 10 mM dithiothreitol.

0.5 mM ATP i 10 jedinica T4 DNA ligaze. Smeša je digerovana 1 čas sa 30 jedinica Pstl i 30 jedinica EcoRI (da se eliminiše ligacija kohezivnih terminusa koja vodi do polimerizacije) i vršena je elektroforeza na 6-procentnom poliakrilamidnom gelu. Eletroeltiiranjem izolovan je proizvod od 1115 parova baza (110,000 cpm).0.5 mM ATP and 10 units of T4 DNA ligase. The mixture was digested for 1 hour with 30 units of Pstl and 30 units of EcoRI (to eliminate ligation of cohesive terminals leading to polymerization) and electrophoresis was performed on a 6 percent polyacrylamide gel. Electro-eluting isolated a product of 1,115 base pairs (110,000 cpm).

Plazmid pbeiP A trp 103 (Slika 7) je derivat plazmida * pLeiF A 25 (1) u ko jem je uda 1 j eno EcoRI mesto od LelF gena odvojeno (27). 3 yug pLeiF A trp 103 digerovano je sa 20 jedinica EcoRI i 20 jedinica Pstl tokom 90 minuta na 37°C i podvrgnuto je elektroforezi na 6-procentnom poliakril- 3 ? amidnom gelu. Veliki (oko 3900 parova baza) vektorski fragment izolovan je elektroeluiranjea. EcoRI-Pstl IFN-gama DNA fragmenta od <115 parova baza podvrgnut je ligaciji u 0.15 ^ug ovog napravljenog vektora. Transformisanje E. coli K-12 soja 294 (ATCC No. 31446) dalo je 120 kolonija rezistentnih na tetraciklin. Plazmidna DNA je napravljena iz 60 ovih transformanata i digerovana je sa EcoRI i Pstl.Plasmid pbeiP A trp 103 (Fig. 7) is a derivative of plasmid * pLeiF A 25 (1) in which it is married 1 EcoRI site from the LelF gene separately (27). 3 yug pLeiF A trp 103 was digested with 20 units of EcoRI and 20 units of Pstl for 90 minutes at 37 ° C and subjected to electrophoresis on 6 percent polyacryl-3? amide gel. A large (about 3900 base pairs) vector fragment was isolated by electroelution. The EcoRI-Pstl IFN-gamma DNA fragment of <115 base pairs was ligated in 0.15 µg of this vector made. Transforming E. coli K-12 strain 294 (ATCC No. 31446) yielded 120 tetracycline resistant colonies. Plasmid DNA was made from 60 of these transformants and digested with EcoRI and Pstl.

Tri od ovih plazmida sadržali su želj eni EcoRI-Pstl fragment od 1115 parova baza. Analiza DNA sekvence pokazala je da su ovi plazmidi imali željenu nukleotidnu sekvencu na spojevima izmedju trp promotora, sintetske DNA i cDNA.Three of these plasmids contained the desired EcoRI-Pst1 fragment of 1,115 base pairs. DNA sequence analysis showed that these plasmids had the desired nucleotide sequence at the junctions between the trp promoter, synthetic DNA, and cDNA.

Jedan od ovih plazmida pIFN-gama trp 48 izabran je za dalja proučavanja, Ovaj plazmid koriščen je za transformisanje E. coli K-12 soja W3110 (ATCC No. 27325).One of these pIFN-gamma trp 48 plasmids was selected for further study, This plasmid was used to transform E. coli K-12 strain W3110 (ATCC No. 27325).

I. Struktura gena sa sekvencom za kodiranje IFN-gamaI. Structure of genes with the IFN-gamma coding sequence

Struktura gena koji kodira za IFN-gama naalizirana jeThe structure of the gene encoding for IFN-gamma has been analyzed

Južnom hibridizacijom.. D; ovom postupku (54), 5 grama-mikro ljudske limf očitne DNA velike molekulske težine (napravljena kao u 55) digeruje se do kompletiranja sa raznim restrikcionim endonukleazama, elektroforezira se na 1.0 procentnim agaroznim gelovima (56) i stavi se na nitrocelulozni 32 filtar (54). Napravljena je P-raarkirana DNA sonda (47) iz Ddel fragmenta od 600 bp cDNA inserta p69 i hibridizovana je (43) sa nltroceluloza-DNA sondom. 10 odbrojavanja na minut sonde hibridizovano je 16 časova i tada je isprano kao što je opisano (43). Osam genomnih DNA uzoraka iz različitih ljudskih davaoca digerovano je sa EcoRI restrikciont 32 endonukleazom i hibridizovano je sa p69 P-markiranom sondom. Kao što je prikazano na Slici 9, zapažena su dvaSouthern hybridization .. D; by this method (54), 5 grams of micro-human lymphoma of apparent high molecular weight DNA (made as in 55) is digested to complete with various restriction endonucleases, electrophoresed on 1.0 percent agarose gels (56) and placed on a nitrocellulose 32 filter ( 54). A P-labeled DNA probe (47) was made from a Ddel fragment of a 600 bp cDNA insert p69 and hybridized (43) with an ntrocellulose-DNA probe. 10 counts per minute of the probe were hybridized for 16 hours and then washed as described (43). Eight genomic DNA samples from different human donors were digested with EcoRI restriction endonuclease 32 and hybridized with a p69 P-labeled probe. As shown in Figure 9, two were observed

-V—-V—

- 33 jasna hibridizaciona signala sa veličinama 8.8 kilobaznih parova (kbp) i 2.0 kbp kao što je uporedjeno uporedjivanjem sa mobilnostima sa Hindlll digerovanom lambdaDNA. Ovo bi moglo biti rezultat dva IFN-gama gena ili jednog gena koji je podeljen pomoču EcoRI mesta. Pošto p69 cDNA ne sadrži EcoRI mesto, interventna sekvenca (intron) sa internim EcoRI mestom bila bi neophodna da se objasni jedan gen.- 33 clear hybridization signals with sizes of 8.8 kilobase pairs (kbp) and 2.0 kbp as compared by comparison with mobility with Hindlll digested lambdaDNA. This could be the result of two IFN-gamma genes or one gene that is shared by the EcoRI site. Because p69 cDNA does not contain the EcoRI site, an intervening sequence (intron) with an internal EcoRI site would be necessary to explain one gene.

Da se izvrši razlika izmedju ove dve mogučnosti izvršena je druga Južna hibridizacija sa istom sondom naspram pet drugih 3endonukleaznih digerovanja jedne ljudske DNA (Slika 10). Zapažena su dva hibridizovana DNA fragmenta sa dva druga endonukleazna digesta, PvuII (6.7 kbp i 4.0 kbp) i HincII (2.5 kbp i 2.2 kbp). Medjutim, tri šeme digerovanja endonukleazom obezbedjuju samo jedan fragment hibridizovane KB DNA : Hindlll (9.0 kbp), Bglll (11.5 kbp) i BamHI (9.5 kbp). Dva IFN-gama gena morali bi da budu vezani na neobično blisko udaljenosti (manje od 9.0 kbp) da bi se nalazili unutar istog Hindlll hibridizujučeg fragmenta. Ovaj rezultat sugerira da je prisutan samo jedan homologi IFN-gama gen (za razliku od mnogih srodnih IFN-alfa gena) u ljudskoj genoranoj DNA i da je ovaj gen prekinut sa jednim ili više introna koji sadrže EcoRI, PvuII i HincII mesta. Ovo prdvidjanje 32 podržano je hibridizacijom P-markiranog (47) fragmenta koji je napravljen tačno iz 3* netranslatisanog regiona cDNA iz p69 (fragment od 130 bp Ddel iz 860 bp do 990 bp na Slici 5) naspram EcoRI digesta ljudske genomne DNA.To differentiate between these two possibilities, a second Southern hybridization was performed with the same probe versus five other 3endonuclease digests of one human DNA (Figure 10). Two hybridized DNA fragments with two other endonuclease digests, PvuII (6.7 kbp and 4.0 kbp) and HincII (2.5 kbp and 2.2 kbp), were observed. However, three endonuclease digestion schemes provide only one fragment of hybridized KB DNA: Hindlll (9.0 kbp), Bglll (11.5 kbp) and BamHI (9.5 kbp). Two IFN-gamma genes would have to be bound at an unusually close distance (less than 9.0 kbp) to reside within the same HindIII hybridizing fragment. This result suggests that only one homologue of the IFN-gamma gene (unlike many related IFN-alpha genes) is present in human generated DNA and that this gene is interrupted by one or more introns containing EcoRI, PvuII and HincII sites. This prediction 32 is supported by the hybridization of a P-tagged (47) fragment made exactly from the 3 * untranslated cDNA region from p69 (the 130 bp Ddel fragment from 860 bp to 990 bp in Figure 5) against the EcoRI digest of human genomic DNA.

1 * 1 *

Samo EcoRI fragment od 2.0 kbp hlbridlzovao je sa ovom sondom što sugerira da ovaj fragment sadrži 3* netranslatisane sekvence, dok 8.8 kbp EcoRI fragment sadrži 5* sekvence.Only a 2.0 kbp fragment of hlbridbed with this probe suggested that this fragment contains 3 * untranslated sequences, whereas an 8.8 kbp EcoRI fragment contains 5 * sequences.

*ίϊ-'Λ· '*·” -.-τί·'. ·'? - «·· 3 'ΛΧ“ ’<<·'-. - “<<-· ' ν -·.·> .= -*·.-;·.;- . ~ -·-' ‘' — --.t» '.* ίϊ-'Λ · '* · ”-.- τί ·'. · '? - «·· 3 'ΛΧ“'<< · '-. - "<< - · 'ν - ·. ·>. = - * · .- ; ·. ; -. ~ - · - '''- -. T »'.

Struktura gena IFN-gama (jedan gen sa najmanje jednim intronom) je jasno različita od IFN-alfa (više gena (2) bez introna (56)) ili IFN-beta (jedan gen bez introna (57)).The structure of the IFN-gamma gene (one gene with at least one intron) is clearly different from IFN-alpha (multiple genes (2) without introns (56)) or IFN-beta (one gene without introns (57)).

J. Pravljenje bakterijskih ekstrakataJ. Making bacterial extracts

Prekonodna kultura E. coli W3110/pIFN-gama trp 48 u Luria čorbi + 5 mikrograma na ml tetraciklina korišdena je za inokulaciju M9 (58) podloge koja sadrži 0.2 procenta glukoze, 0.5 procenta kazamino kiselina, i 5 mikrograma na ml tetraciklina pri 1:100 razblaženju. Dodana je indolakrilna kiselina do finalne koncentracije 20 mikrograma na ml kada je Α55θ bio izmedju 0.1 i 0.2. Ozorci od 10 ml su obrani centrifugiranjem pri Α^5θ = 1.0 i trenutno su resuspendovani u 1 ml fosfatnog puferovanog slanog rastvora koji sadrži 1 mg na ml albumina iz volovskog seruma (PBS-BSA). čelije su otvorene sonikacijom i otpaci delija su očišdeni centrifugiranjem. Supernatanti su stokirani na 4°C do analize. Odredjeno je da je aktivnost interferona u supernatantu 250 jedinica/ml uporedjivanjem sa IFN-alfa standardom poraodu testa za inhibiranje citopatskog efekta (CPE).The precocious E. coli W3110 / pIFN-gamma trp 48 culture in Luria broth + 5 micrograms per ml of tetracycline was used to inoculate the M9 (58) medium containing 0.2 percent glucose, 0.5 percent casamino acids, and 5 micrograms per ml tetracycline at 1: 100 dilution. Indolacrylic acid was added to a final concentration of 20 micrograms per ml when Α 55 θ was between 0.1 and 0.2. Samples of 10 ml were defended by centrifugation at Α ^ 5 θ = 1.0 and are currently resuspended in 1 ml of phosphate buffered saline containing 1 mg per ml of bovine serum albumin (PBS-BSA). the cells were opened by sonication and the debris was cleared by centrifugation. The supernatants were stacked at 4 ° C until analyzed. The activity of interferon in the supernatant was determined to be 250 units / ml by comparison with the IFN-alpha standard after the cytopathic effect inhibition test (CPE).

K. Transformisanje kvasca/sojeva i podlogaK. Transforming yeast / strains and substrates

Sojevi kvasca su transformisani kao što je opisano ranije (59). Izabran je E. coli soj JA300 (thr leuB6 thi thyA — — R trpC1117 hsdm hsdR str ) (20) za selekcioniranje plazmida koji sadrže funkcionalni TRPI gen. Korišden je soj kvasca RH218 koji ima genotip (trpi ga!2 SUC2 mal ČOPI) (18) kao kvasac domadin za transformisanje. RH218 je deponovan bez ograničenja u American Type Culture Collection, ATCC No.Yeast strains were transformed as described previously (59). The E. coli strain JA300 (thr leuB6 thi thyA - - R trpC1117 hsdm hsdR str) (20) was selected to select plasmids containing the functional TRPI gene. The yeast strain RH218 having the genotype (tolerated by 2 SUC2 mal CHOPI) (18) was used as the yeast host for transformation. RH218 was deposited without restriction in the American Type Culture Collection, ATCC No.

g > ·' - 35 - 'L <L «-U X. v _ . -..T*-. bg> · '- 35 -' L <L «-U X. v _. - .. T * -. b

44076. M9 (minimalna podloga) sa 0.25 procenta kazaminokiselina (CAA) i LB (bogata podloga), kao što ih je opisao Miller (58), koriščene su sa dodatkom 20 fig/ial ampicilina (Sigma) i posle su podloge autoklavirane i ohladjene.44076. M9 (minimum substrate) with 0.25 percent casino acids (CAA) and LB (rich substrate), as described by Miller (58), were used with the addition of 20 µg / ial ampicillin (Sigma) and subsequently autoclaved and cooled. .

Kvasac je ponovo kultivisan na sledečim podlogama :The yeast was re-cultivated on the following grounds:

YEPD koji je sadržao 1 procenat ekstrakta kvasca, 2 procenta peptona i 2 procenta glukoze +3 procenta Difco agara.YEPD containing 1 percent yeast extract, 2 percent peptone, and 2 percent glucose +3 percent Difco agar.

ΥΝΒ + CAA su sadržali 6.7 grama azotne osnove kvasca (bez aminokiselina) (ΥΝΒ) (Difco), 10 mg adenina, 10 mg uracila.ΥΝΒ + CAAs contained 6.7 grams of yeast nitrogen base (without amino acids) (ΥΝΒ) (Difco), 10 mg adenine, 10 mg uracil.

grama CAA, 20 grama glukoze i +. 30 grama agara na litar.grams of CAA, 20 grams of glucose and +. 30 grams of agar per liter.

L. Konstrukcija vektora za ekspresiju kvascaL. Construction of yeast expression vector

1. 10 jug YRp7 (14, 15, 16) digerovano je sa EcoRI.1. 10 South YRp7 (14, 15, 16) was digested with EcoRI.

Dobiveni lepljivi krajevi DNA su učinjeni tupim koriščenjem DNA Polimeraze I (Klenov fragment). Vektor i insert su su hromatografisani na 1 procentnom agaroznom (SeaKem) gelu, isečeni su sa gela, elektroeluirsani su i ekstrahovani 2x sa jednakira zapreminama kloroforma i fenola pre taloženja sa etanolom. Dobiveni DNA molekuli sa tupim krajem su tada podvrgnuti ligaciji u finalnoj zapremini od 50 ^ul tokom 12 časova na 12°C. Ovaj miks za ligaciju je tada koriščen za transformisanje E. coli soja JA300 na otpornost na ampicilin i triptofansku prototrofiju. Izolovani su plazmidi koji sadrže TRPI gen u obe orijentacije. pFRW1 je imao TRP gen u isto j orijentaciji kao YRp7 dok je pFRW2 sadržao TRP gen u suprotnoj orijentaciji.The resulting sticky ends of DNA were made by bluntly using DNA Polymerase I (Klen fragment). The vector and insert were chromatographed on a 1 percent agarose (SeaKem) gel, excised from the gel, electroelected, and extracted 2x with equal volumes of chloroform and phenol before ethanol precipitation. The resulting blunt-ended DNA molecules were then subjected to ligation in a final volume of 50 µl for 12 hours at 12 ° C. This ligation mix was then used to transform E. coli strain JA300 to resistance to ampicillin and tryptophan prototrophy. Plasmids containing the TRPI gene in both orientations were isolated. pFRW1 had a TRP gene in the same j orientation as YRp7 while pFRW2 contained a TRP gene in the opposite orientation.

* )ig pFRW2 linearizovano je sa Hindlll i podvrgnuto je elektroforezi na 1 peocentnom agaroznom gelu. Linearni molekuli su eluirani sa gela i tada je 200 ng podvrgnuto ligaciji sa 500 ng 3.1 kb Hindlll inserta plazmida pB1 (13)*) ig pFRW2 was linearized with HindIII and subjected to electrophoresis on a 1% agarose gel. The linear molecules were eluted from the gel and then 200 ng was subjected to ligation with 500 ng 3.1 kb Hindlll plasmid insert pB1 (13)

&.· -;&. · -;

•ci»• ci »

· koji je restrikcioni fragment koji sadrži kvaščev 3-fosfoglicerat kinaza gen. Koriščen je mike za ligaciju za transfor misanje E. coli soja 294 na otpornostf na ampicilin i osetljivost na tetraciklin. Plazmid napravljen iz jednog takvog rekombinanta imao je netaknuti TRPI gen sa 3.1 kbp· Which is a restriction fragment containing yeast 3-phosphoglycerate kinase gene. Ligation mike was used to transforce E. coli strain 294 for ampicillin resistance and tetracycline sensitivity. A plasmid made from one such recombinant had an intact TRPI gene at 3.1 kbp

Hindlll fragmentom iz pB1 umetka DNA u Hindlll mestu gena za rezistentnost na tetraciklin. Ovaj plazmid je pPRM31. 5 ^ag pPRM31 je potpuno digerovano sa EcoRI, ekstrahovano je dva puta sa fenolom i hioroformom i staloženo je etanolom. Kohezivni krajevia molekula su popunjeni koriščenjem DNA polimeraze I (Klenov fragment) u reakciji koja je dopunjena sa po 250 yuM svakog deoksinukleozid trifosfata. Reakcija je vršena 20 minuta na 14°C i u to vreme DNA je ekstrahovana dva puta sa fenol-hloroformom, i tada staložena sa etanolom. Resuspendovana DNA je tada potpuno digerovana sa Clal i podvrgnuta je elektroforezi na 6 procentnom akrilamidnom gelu. Vektorski fragment je elulran sa gela, ekstrahovan je sa fenol-hloroformom i staložen je etanolom.A HindIII fragment from the pB1 DNA insert at the HindIII site of the tetracycline resistance gene. This plasmid is pPRM31. 5 ^ ag pPRM31 was completely digested with EcoRI, extracted twice with phenol and chloroform and precipitated with ethanol. The cohesive ends of the molecules were filled using DNA polymerase I (the Klen fragment) in a reaction supplemented with 250 µM of each deoxynucleoside triphosphate. The reaction was carried out for 20 minutes at 14 ° C and at that time the DNA was extracted twice with phenol-chloroform and then precipitated with ethanol. The resuspended DNA was then completely digested with Clal and subjected to electrophoresis on a 6 percent acrylamide gel. The vector fragment was eluted from the gel, extracted with phenol-chloroform and precipitated with ethanol.

šest N-terminalnih aminoklselina 3-fosfogliceratnog enzima prečiščenog iz ljudi su kako sledi xthe six N-terminal amino acids of the 3-phosphoglycerate enzyme purified from humans are as follows x

- 2- 3- 4- 5- 6 SER - LEU - SER - H5M - LTS - LEU Jedan od ramova za očitavanje translacije generisanih iz DNA sekvence Sau3A-do-Sau3 restrikcionog fragmenta od 141 bp (koji sadrži interno HincII mesto; vidi PGK reatrikcionu * mapa na Slici 11) proizvodi sledeču aminokiselinsku aekvencu.- 2- 3- 4- 5- 6 SER - LEU - SER - H5M - LTS - LEU One of the translation readout frames generated from the DNA sequence of the 141 bp Sau3A-to-Sau3 restriction fragment (containing the internal HincII site; see PGK the reattraction * map in Fig. 11) produces the following amino acid sequence.

ti?/ - '-'.—Λ . tyou? / - '-'.— Λ. t

Λ —V . ,V —V. ,

MET - SER - LEU - SER - SER - LYS - LEUMET - SER - LEU - SER - SER - LYS - LEU

Posle odvajanja inicijatorskog metionina vidi se da PGK N-tenainalna aminokiselinska sekvenca ima takvu homologiju amino kiselina da je 5 od 6 aminokiselina jednako sa N-terminalnom aminokiselinskom sekvencom ljudskog PGK.After separation of the initiator methionine, it can be seen that the PGK N-tenain amino acid sequence has such amino acid homology that 5 of the 6 amino acids are the same as the N-terminal amino acid sequence of human PGK.

Ovaj rezultat sekvenciranja sugerirao je da je start kvaščevog PGK strukturnog gena kodiran sa DNA u restrikcionora Sau3A fragmentu pB1 sa 141 bp. Raniji rad (20) je sugerirao da se DNA sekvence koje specifikuju PGK mRNA mogu nalaziti u ovoj oblasti Hind III fragmenta. Dalje sekvenc ranje 141 bp Sau3A fragmenta dalje dalju DNA sekvencu PGK promotora (Slika 12).This sequencing result suggested that the start of the yeast PGK structural gene was encoded by DNA in the restriction Sau1A fragment pB1 at 141 bp. Earlier work (20) suggested that DNA sequences specifying PGK mRNAs may be located in this region of the Hind III fragment. Further sequencing of the 141 bp Sau3A fragment further the DNA sequence of the PGK promoter (Figure 12).

Sintetski oligonukleotid sa sekvencom 5’ATTTGTTGTAAA3’ sintetizovan je standardnim postupcima (Crea et al.,A synthetic oligonucleotide with sequence 5′ATTTGTTGTAAA3 ′ was synthesized by standard procedures (Crea et al.,

Nucleic Acids Res. 8, 2331 (1980)). 100 ng ovog primera markirano je na 5’ kraju koriščenjem 10 jedinica T4 polinukleotid kinaze u reakciji od 20 ul koja takodje 32 sadrži 200 yUCi /gama -P/ ATP. Ova rastvor markiranog primera koriščen je u reakciji za popravljanje-primera koja je namenjena da bude prva faza višefaznog postupka koji treba da postavi EcoRI restrikciono mesto u PGK 5*-prirubnoj DNA koja tačno prethodi sekvenci PGK strukturnog gena.Nucleic Acids Res. 8, 2331 (1980)). 100 ng of this example was labeled at the 5 'end using 10 units of T4 polynucleotide kinase in a 20 μl reaction which also 32 contained 200 yUCi / gamma-P / ATP. This labeled primer solution was used in a repair-primer reaction intended to be the first phase of a multiphase process that is to place an EcoRI restriction site in PGK 5 * flange DNA that precedes the sequence of the PGK structural gene.

100 yig pB1 (20) je potpuno digerovano sa HaeHI i tada je vržena hromatografi ja na 6-procentnom poliakrilamidnon gelu. Naj viša traka na etidijum obojenom gelu (koja sadrži PGK promotorski region) je izolovana elektroeluiranjem kao što je opisano gore. Ovaj 1200 bp HaeHI komad DNA je ogra3ε ničen sa HincII i tada hromatografisan na 6-procentnom akrilamidnom gelu. 650 bp traka je izolovana elektroeluiranjem [100 µg of pB1 (20) was completely digested with HaeHI and then chromatographed on a 6% polyacrylamide gel. The highest band on the ethidium stained gel (containing the PGK promoter region) was isolated by electroelution as described above. This 1200 bp HaeHI piece of DNA was bound with HincII and then chromatographed on a 6 percent acrylamide gel. 650 bp tape isolated by electroelution [

Izolovanje je 5 ja g DNA. Ovaj 650 bp Haelll-za-HincII komad DNA je resuspendovan u 20 ^ul E^O, tada je mešan sa 20 yul rastvora fosforilovanog primera kao što je opisan gore.Isolation is 5 I g of DNA. This 650 bp Haelll-for-HincII piece of DNA was resuspended in 20 ^ ul E ^ O, then mixed with 20 µl of phosphorylated primer solution as described above.

Ova smeša je 1x ekstrahovana sa fenol-hloroformom i tada je staložena etanolom. Sušena DNA je resuspendovana u 50 yul H^O i tada je zagrevana u kupatilu sa ključa lom vodom tokom sedam minuta. Ovaj rastvor je tada brzo jako ohladjen na kupatilu suvi led-etanol (10-20 sekundi) i tada je prenet na kupatilo sa ledenom vodom. Ovom rastvoru se doda 50 yul rastvora koji sadrži 10 yul 10Χ DNA polimeraza I pufera (Boehringer Mannheim), 10 ^ul rastvora koji je prethodno učinjen 2.5mM sa svakim deoksinukleozid trifosfatom (dATP, dTTP, dGTP i dCTP), 25 1 H2O i 5 jedinica DNA polimeraze I,This mixture was 1x extracted with phenol-chloroform and then precipitated with ethanol. The dried DNA was resuspended in 50 [mu] L H &lt; 0 &gt; O and then heated in the bath with boiling water for seven minutes. This solution was then rapidly cooled in a dry ice-ethanol bath (10-20 seconds) and then transferred to an ice-water bath. To this solution was added 50 µl of solution containing 10 µl of 10Χ DNA polymerase I buffer (Boehringer Mannheim), 10 µl of solution previously made 2.5mM with each deoxynucleoside triphosphate (dATP, dTTP, dGTP and dCTP), 25 1 H 2 O and 5 units of DNA polymerase I,

Klenov fragmenta. Ova reakcija od 100 jal je inkubirana na 37°C tokom 4 časa. Rastvor je tada 1x ekstrahovan sa fenol-hloroformom, staložen je etanolom, sušen liofilizacijom i tada ekstenfeivno ograničen sa 10 daljih jedinica Sau3A. Ovaj rastvor je tada hromatografisan na 5-procentnom akrilamidnom gelu. Traka koja po veličini odgovara 39 bp se iseče sa gela i tada se izoluje elektroeluiranjem kao što je opisano gore. Ova 39 bp traka ima jedan tup kraj i jedan Sau3A lepljiv kraj. Ovaj fragment je kloniran u modifikovani pFIF trp 69 vektor (5). 10 ja g pFIF trp 69 se linearizuje sa Xbalm ekstrahuje se jednom sa fenolhloroformom i tada se staloži etanolom. Xbal lepljivi kraj je popunjen koriščenjem DNA polimeraza I Klenov fragmenta u reakciji od 50 ml koja sadrži po 250 yum svakog nukleofeidtrifosfata. Ova DNA je isečena sa BamHI i tada je hromatografMaple Fragment. This 100 µl reaction was incubated at 37 ° C for 4 h. The solution was then 1x extracted with phenol-chloroform, precipitated with ethanol, dried by lyophilization and then extensively limited with 10 further units of Sau3A. This solution was then chromatographed on a 5 percent acrylamide gel. A band corresponding to 39 bp in size is cut off from the gel and then isolated by electro-elution as described above. This 39 bp tape has one blunt end and one Sau3A adhesive end. This fragment was cloned into a modified pFIF trp 69 vector (5). 10 I g pFIF trp 69 was linearized with Xbalm extracted once with phenol chloroform and then precipitated with ethanol. The Xbal adhesive end was filled using DNA polymerase I Klenov fragment in a 50 ml reaction containing 250 µm of each nucleofeid triphosphate. This DNA was excised with BamHI and then chromatographed

- 39 sana na 6-procentnom akrilamidnom gelu. Vektorski fragment je izolovan iz gela elektroeluiranjem i tada je resuspendovan u 20 yUl H2O. 20 ng ovog vektora podvrgnuto je ligaciji sa 20 ng 39 bp fragmenta napravljenog gore tokom 4 časa na sobnoj temperaturi. Jedna petina miksa za ligaciju koriščena je za transformisanje E. coli soja 294 na otpornost na ampicilin (na LB + 20 yug/ml amp. pločama).- 39 dreams on a 6 percent acrylamide gel. The vector fragment was isolated from the gel by electroelution and then resuspended in 20 yUl H 2 O. 20 ng of this vector was subjected to ligation with a 20 ng 39 bp fragment made above for 4 hours at room temperature. One-fifth of the ligation mix was used to transform E. coli strain 294 to ampicillin resistance (on LB + 20 µg / ml amp. Plates).

Plazmidi iz transformanata ispitani su brzim postupkom za testiranje (44). Jedan plazmid, pPGK-39 izabran je za sekvencionu analizu. 20 ^ug ovog plazmida digerovano je saPlasmids from transformants were examined by a rapid test procedure (44). One plasmid, pPGK-39, was selected for sequence analysis. 20 ^ of this plasmid was digested with

Xbal, staložemp je etanolom I tada se tretira sa 1000 jedinica bakterijske alkalne fosfataze na 68° C tokom 45 minuta. DNA je 3x ekstrahovana sa fenol-hloroformom, tada je staložena etanolom. Defosforilovani krajevi su tada markirani u reakciji od 20 ^ul koja sadrži 200 ^uCi 32 /gama -P/ ATP i 10 jedinica polinukleotid kinaze.Xbal, the stanozemp is ethanol and then treated with 1000 units of bacterial alkaline phosphatase at 68 ° C for 45 minutes. The DNA was extracted 3x with phenol-chloroform, then precipitated with ethanol. The dephosphorylated ends were then labeled in a 20 µl reaction containing 200 µCi 32 / gamma -P / ATP and 10 units of polynucleotide kinase.

Plazmid je isečen sa Šali i hromatografisan je na 6-procentnom akrilamidnom gelu.The plasmid was cut with Shali and chromatographed on a 6 percent acrylamide gel.

Traka markiranog inserta izolovana je sa gela i sekvencirana je postupkom hemijske degradacije (52). DNA sekvenca na 3’-kraju ovog promotorskog komada bila je kao što je očekivano.The band of the labeled insert was isolated from the gel and sequenced by a chemical degradation process (52). The DNA sequence at the 3'end of this promotional piece was as expected.

2. Konstrukcija 312 bp Pvul-za-EcoRI PGK promotorskog fragmenta ^ug pPGK-39 (Sl. 13) se istovremeno digeruje sa Sall i Xbal (po 5 jedinica svaki) 1 tada se podvrgne elektroforezi na 6-procentnom gelu. 390 bp traka koja sadrži 39 bp promotorski komad se izoluje elektroeluiranjem. Resuspendovana DNA je ograničena sa Sau3A i tada je podvrgnuta c·' J*.2. The construction of the 312 bp Pvul-for-EcoRI PGK promoter fragment ^ ug pPGK-39 (Fig. 13) was simultaneously digested with Sall and Xbal (5 units each) 1 then subjected to electrophoresis on a 6 percent gel. A 390 bp band containing a 39 bp promoter piece is isolated by electroelution. The resuspended DNA was bounded by Sau3A and then subjected to c · 'J *.

. ·...*· elektroforezi na β procentnom akrilamidnom gelu. 39 bp PGK promotorska traka je izolovana elektroeluiranjem.. · ... * · electrophoresis on β percent acrylamide gel. 39 bp PGK promoter band was isolated by electroelution.

Ova DNA je sadržala 39 bp 5’ kraja PGK promotora na Sau3A-za-XbaI fragmentu.This DNA contained the 39 bp 5 'end of the PGK promoter on the Sau3A-for-XbaI fragment.

yig pB1 ograniči se sa Pvul i KpnI i tada se podbrgne elektroforezi na 6-procentnom akrilamidnom gelu. .8 kbp traka DNA se izoluje elektroeluiranjem, tada se ograniči sa Sa*3A i podvrgne se elektroforezi na 6-procentnom akrilamidnom gelu. 265 bp traka iz PGK promotora (Sl. 11) se izoluje elektroeluiranjem.yig pB1 is bounded with Pvul and KpnI and then electrophoresed on a 6 percent acrylamide gel. The .8 kbp strip of DNA is isolated by electroelution, then confined with Sa * 3A and subjected to electrophoresis on a 6 percent acrylamide gel. The 265 bp band from the PGK promoter (Fig. 11) is isolated by electroelution.

Ova DNA se tada podvrgne ligaciji sa 39 bp promotorskim fragmentom iz gornjeg paragrafa tokom dva časa na sobnoj temperaturi. Miksa za ligaciju se ograniči sa Xbal i Pvul i tada se podvrgne elektroforezi na 6-procentnom akrilamidnom gelu. 312 bp Xba-za-PvuI restrikcioni fragment se izoluje elektroeluiranjem, tada se doda na miks za ligaciju koji sadrži 200 ng pBR322 (41)(prethodno izolovan nedostajuči Pvul-za-Pstl restrikcioni fragment) i 200 ng XbaI-za-PstI LeIF A cDNA gen koji je prethodno izolovan iz 20 ^ug pLeIF trp A 25. Ovaj miks za ligaciju sa tri faktora se koristi za transformisanje E. coli soja 294 na rezistentnost na tetracilklin. Kolonije transformanata se miniseju (44) i jedna od kolonija, pPGK-300, se izoluje i ima 304 bp PGK 5’-prirubne DNA kondenzovanu za LeIF A gen u pBR322 baznom vektoru. 5 ’ kraj LeIF A gena ima sledeču sekvencu :This DNA is then subjected to ligation with the 39 bp promoter fragment from the above paragraph for two hours at room temperature. The ligation mix was bounded with Xbal and Pvul and then subjected to electrophoresis on a 6 percent acrylamide gel. The 312 bp Xba-for-PvuI restriction fragment was isolated by electroelution, then added to a ligation mix containing 200 ng of pBR322 (41) (previously isolated missing Pvul-for-PstI restriction fragment) and 200 ng of XbaI-for-PstI LeIF A cDNA gene previously isolated from 20 [mu] g of pLeIF trp A 25. This three-factor ligation mix is used to transform E. coli strain 294 to tetracycline resistance. The transformant colonies are miniscule (44) and one of the colonies, pPGK-300, is isolated and has 304 bp PGK 5′-flange DNA fused to the LeIF A gene in the pBR322 base vector. The 5 'end of the LeIF A gene has the following sequence:

5’-CTAGAATTC-3’. Tako kondenzacija Xbal mesta iz PGK promotorskog fragmenta u ovu sekvencu omogučuje dodavanje na Xbal mesto EcoRImesta. Tako pPGK sadrži deo PGK promotora koji je izolovan u Pvul-za-EcoRI fragmentu.5'-CTAGAATTC-3 '. Thus, the condensation of the Xbal site from the PGK promoter fragment into this sequence allows it to be added to the Xbal site of the EcoRI site. Thus, pPGK contains a portion of the PGK promoter that is isolated in the Pvul-to-EcoRI fragment.

'J. * * ''J. * * '

Γ. . ·’Γ ι._ .:.: :Γ. . · 'Γ ι._.:.::

I..,.,' ' ...f. j - - * -···. - - ' a.·.-- - ·,··- ' V*V.·...·,. 'I ..,., '' ... f. j - - * - ···. - - 'a. · .-- - ·, ·· -' V * V. · ... ·,. '

3. Konstrukcija 1500 bp EcoRI-za-EcoRI PGK promotorskog fragmenta yug pB1 digerovano je sa Pvul i EcoRI i hromatografisano je na 6-procentnom akrilamidnom gelu. 1.3 kb Pvul-za-EcoRI DNA traka iz PGK 5’-prirubne DNA izolovana je elektroeluiranjei 10 p. g pPGK-300 digerovano je sa EcoRI i Pvul i promotorski fragment od 312 bp izolovan je elektroeluiranjem posle elektroforeze miksa za digerovanje na 6-procentnom akrilamidnom gelu. 5 ^ug pFRL4 iseče se sa EcoRI, staloži se etanolom i tada se tretira sa bakterijskom alkalnom fosfatazom na 68°C tokom 45 minuta. Posle tri ekstrakcije DNA sa fenol/hloroformom, taloženja etanolom i resuspendovanja u 20 ml Η2θί 200 ng vektora podvrgne se ligaciji sa 100 ng 312 bp EcoRI-za-PvuI DNA iz pPGK-300 i 100 ng EcoRI-za-Pvu DNA iz pBl. Miks za ligaciju korišden je- za transformisanje E. coli soja 294 na otpomost za ampicilin. Jedan od dobivenih transformanata bio je pPGK-1500.3. Construction of the 1500 bp EcoRI-for-EcoRI PGK promoter fragment yug pB1 was digested with Pvul and EcoRI and chromatographed on a 6 percent acrylamide gel. 1.3 kb Pvul-for-EcoRI DNA strand from PGK 5'-flange DNA was isolated by electroelution and 10 p. g pPGK-300 was digested with EcoRI and Pvul and the promoter fragment of 312 bp was isolated by electroelution after electrophoresis of the digest mixer on a 6 percent acrylamide gel. 5µg of pFRL4 was digested with EcoRI, precipitated with ethanol and then treated with bacterial alkaline phosphatase at 68 ° C for 45 minutes. After three extractions of phenol / chloroform DNA, ethanol precipitation and resuspension in 20 ml Η 2 θί 200 ng vector ligation with 100 ng 312 bp EcoRI-for-PvuI DNA from pPGK-300 and 100 ng EcoRI-for-Pvu DNA from pBl. The ligation mix was used to transform E. coli strain 294 to ampicillin resistance. One of the transformants obtained was pPGK-1500.

Ovaj plazmid sadrži 1500 bp PGK promotorski fragment kao jedan EcoRI-za-EcoRI ili Hindlll-za-EcoRI komad DNA.This plasmid contains a 1500 bp PGK promoter fragment as a single EcoRI-for-EcoRI or HindIII-for-EcoRI piece of DNA.

yug pPGK-1500 je potpuno digerovano sa Clal i EcoRI i tada je miks za digerovanje podvrgnut dektroforezi na 6-procentnom akrilamidnom gelu. 900 bp fragment koji sadrži PGK promotor je izolovan elektroeluiranjem. 10 p. g pIFN-gama trp 48 je potpuno digerovano sa EcoRI i HincII i podvrgnuto je elektroforezi na 6-procentnom akrilamidnom gelu. 938 bp traka koja sadrži «DNA IFN-gama koja se može direktno izražavati izolovana je iz gela elektroeluiranjem.yug pPGK-1500 was completely digested with Clal and EcoRI and then the digester mix was subjected to dextrophoresis on a 6 percent acrylamide gel. A 900 bp fragment containing the PGK promoter was isolated by electroelution. 10 p. g pIFN-gamma trp 48 was completely digested with EcoRI and HincII and subjected to electrophoresis on a 6 percent acrylamide gel. A 938 bp band containing "DNA directly expressable IFN-gamma was isolated from the gel by electroelution.

Vektor za ekspresija kvasca konstruisan je u reakciji sa tri faktora zajedničkom ligacijom PGK promotorskog frag-The yeast expression vector was constructed in a three-factor reaction by joint ligation of the PGK promoter frag-

menta (na Clal-za-EcoRI komadu), izostavljenog pFRM-31 i gore izolovane IFN-gama cDNA. Reakcija ligacije inkubirana je na 14°C 12 časova. Miks za ligaciju je tada koriščen za transformisanje E. coli soja 294 na rezistentnost na ampicilin. Transformanti su analizirani na prisustvo pravilno konstruisanog plazmida za ekspresiju, pPGK-IFNgama. (Slika 16). Plazmid! koji sadrže sistem za ekspresiju koriščeni. su za. transformisanje sferoplasta soja kvasca RH218 za triptofansku prototropiju u agaru bez triptofana. Ovaj rekombinantni kvasac je tada analiziran na prisustvo imunološkog interferona.mint (on a Clal-for-EcoRI piece), omitted pFRM-31, and IFN-gamma cDNA isolated above. The ligation reaction was incubated at 14 ° C for 12 hours. The ligation mix was then used to transform E. coli strain 294 to ampicillin resistance. Transformants were analyzed for the presence of a properly engineered expression plasmid, pPGK-IFNgam. (Figure 16). Plasmid! containing the expression system used. are for. transformation of the yeast RH218 spheroplast strain for tryptophan prototropy into tryptophan-free agar. This recombinant yeast was then analyzed for the presence of immune interferon.

Ekstrakti kvasaca napravljeni su kako sledi : 10 ml kulutura kultivisano je u ΥΝΒ+CAA dok se ne dostigne Α$βθ^1-2, sakupi se centrifugiranjem i tada se resuspenduje u 500 ji 1 PBS pufera (20 raM NaH2PO4, pH=7.4, 150 mM NaCl). Doda se jednaka zapremina staklenih perli (0.45-0.5 mm) i smeša se tada podvrgne vrtložnora mešanju tokom 2’. Ekstrakti se spinuju 30 sekundi pri 14,000 rpm i supernatant se odvoji. Odredjeno je da je interferonska aktivnost u supernatantu 16,000 jedinica/ml na osnovu uporedjenja sa IFN-alfa standardom koriščenjem testa za inhibiranje CPE.The yeast extracts were made as follows: 10 ml of the cultures were cultured in ΥΝΒ + CAA until Α $ β θ ^ 1-2 was reached, collected by centrifugation and then resuspended in 500 µL of 1 PBS buffer (20 raM NaH 2 PO 4 . pH = 7.4, 150 mM NaCl). An equal volume of glass beads (0.45-0.5 mm) was added and the mixture was then vortexed for 2 '. The extracts were spun for 30 seconds at 14,000 rpm and the supernatant separated. The interferon activity in the supernatant was determined to be 16,000 units / ml based on comparison with the IFN-alpha standard using a CPE inhibition assay.

M. Konstrukcija vektora pSVgama69 čelijske kultureM. Construction of the pSVgama69 vector of steel culture

Hindlll-PvuII fragment od 342 bazna para koji obuhvata SV40 izvor preveden je u fragment vezan za EcoRl restrikciono mesto. Hindlll mesto se može prevesti dodavanjem sintetskog oligomera (5’dAGCTGAATTC) a PvuII mesto je prevedeno ligacijom tupog kraja u EcoRl mestu koje je popunjeno koriščenjem polimeraze 1 (Klenov fragment). Dobiveni EcoRl fragment je umetnut u EcoRl mesto pML-1 (28).The 342 base pair Hindlll-PvuII fragment comprising the SV40 source was translated into the fragment bound to the EcoR1 restriction site. The HindIII site can be translated by the addition of a synthetic oligomer (5 showingAGCTGAATTC) and the PvuII site is translated by blunt-ended ligation in an EcoR1 site that is filled using polymerase 1 (Klen fragment). The resulting EcoR1 fragment was inserted into the EcoR1 site of pML-1 (28).

Plazmid sa SV40 kasnim promotorom koji je orijentisan R od amp gena je dalje modifikovan odvajanjem EcoRI mesta R najbližeg amp gemu pML-1 (27). «The plasmid with the SV40 late promoter oriented R from the amp gene was further modified by separating the EcoRI site R of the nearest amp gem pML-1 (27). «

Hpal-Bglll fragment klonirane HBV DNA od 1023 parova baza (60) je izolovan i Hpal mesto hepatitis B virusa (HBV) prevedeno je u EcoRI mesto sa sintetskim oligomerom (5’ dGCGAATTCGC). Ovaj EcoRI-Bglll vezani fragment je direktno kloniran u EcoRI-BamHI mesta plazmida koji je opisan gore koji nosi izvor SV40.The Hpal-Bglll fragment of a cloned HBV DNA of 1023 base pairs (60) was isolated and the Hpal site of hepatitis B virus (HBV) was converted to an EcoRI site with a synthetic oligomer (5 'dGCGAATTCGC). This EcoRI-Bglll bound fragment was directly cloned into the EcoRI-BamHI site of the plasmid described above carrying the SV40 source.

U preostalo EcoRI mesto umetnut je IFN-gama gen na Pstl fregmentu p69 od 1250 parova baza posle konverzije Pstl krajeva u EcoRI krajeve. Izolovani su kloni u kojima je SV40 kasni promotor pret&odio strukturnom genu IFN-gama. Dobiveni plazmidi su tada uvedeni u tkivo čelijskih kultura (29) koriščenjem DEAE-dekstran tehnike (61) koja je tako modifikovana da je transfekcija u prisustvu DEAE-dekstrana viršena 8 časova. Čelijske podloge su menjane svaka 2-3 dana. Odvajano je 200 mikrolitara dnevno sa ciljem da se vrši biotestiranje interferona. Tipični prinosi bili su 50-100 jedinica/ml na uzorcima koji su testirani tri ili četiri dana posle transfekcije.An IFN-gamma gene was inserted into the remaining EcoRI site on the Pstl fragment of p69 from 1250 base pairs after conversion of Pst1 ends into EcoRI ends. Clones in which the SV40 late promoter converted to the IFN-gamma structural gene were isolated. The resulting plasmids were then introduced into the tissue of the cell cultures (29) using a DEAE-dextran technique (61) that was modified so that transfection in the presence of DEAE-dextran was left for 8 hours. The substrates were changed every 2-3 days. 200 microliters per day was collected to interfere with interferon bioassay. Typical yields were 50-100 units / ml on samples tested three or four days after transfection.

N. Paroljalno prečiščavanje imunološkog interferona izvedenog iz majmunskih čelijaN. Parolee purification of monkey cell derived immune interferon

O cilju proizvodnje večih količina ljudskog IFN-gama izvedenog iz majmunskih čelija, sveži monoslojevi COS-7 čeli j a u deset ploča od 10 cm transfekcirani su sa ukupno 30 j&g pDLIF3 u 110 ml DEAE-dektrana (200 yug/ml DEAE/dekstrana 500,000 MW, .05 M Tris pH 7.5, u DMEM). Posle 16 časova na 37° ploče su isprane dva puta sa DMEM. Tada se na svakuFor the purpose of producing larger quantities of human IFN-gamma derived from monkey cells, fresh COS-7 monolayers of ten 10 cm plates were transfected with a total of 30 µg of pDLIF3 in 110 ml DEAE-dextran (200 µg / ml DEAE / dextran 500,000 MW). .05 M Tris pH 7.5, in DMEM). After 16 hours at 37 ° the plates were washed twice with DMEM. Then on to each

·. .-Si..·. .-Si ..

- 44 ploču doda 15 ml svežeg DMEM dopunjenog sa 10 procenata f.b.s., 2 mM glutamina, 50 ^u/ml penicilina G, i 50 mg/ml streptomicina. Podloge se sledečeg dana zamene sa DMEM bez seruma. Tada se dodaju sveže podloge bez seruma svakog dana. Sakupljene podloge se drže na 4° dok se ili testiraju ili vežu za CPG. Nadjeno je da sakupljene frakcije iz 3 i 4 dana post-transfekciranih uzoraka sadrže suštinski celokupnu aktivnost.- 44 plates were added 15 ml of fresh DMEM supplemented with 10 percent f.b.s., 2 mM glutamine, 50 µg / ml penicillin G, and 50 mg / ml streptomycin. The substrates are replaced with serum-free DMEM the next day. Then fresh, serum-free substrates are added every day. The collected substrates were kept at 4 ° while either being tested or bound for CPG. The collected fractions from 3 and 4 days post-transfected samples were found to contain substantially all of the activity.

0.5 g CPG (kontrolisano porozno staklo, Electronucleonics, CPG 350, meš veličina 120/200) doda se na 100 ml čelijskog supernatanta i smeša se meša 3 časa na 4°C. Posle kratkog centrifugiranja u centrifugi staložene perle se pakuju u kolonu i potpuno se isperu sa 20 mM NaHPO^ 1 M NaCl,0.5 g of CPG (Controlled Porous Glass, Electronucleonics, CPG 350, mix size 120/200) was added to 100 ml of steel supernatant and the mixture was stirred for 3 hours at 4 ° C. After brief centrifugation in the centrifuge, the deposited beads are packed in a column and completely washed with 20 mM NaHPO ^ 1 M NaCl,

0.1 procentnim beta-merkaptoetanolom, pH 7.2. Aktivnost se tada eluira sa istim puferom koji sadrži 30 procenata etilenglikola i zatim se dalje eluira sa gornjim puferom koji sadrži 50 procenata etilenglikola. Ove frakcije se sakupe i razblaže sa 20 mM NaHPO^, 1 M NaCl pH 7.2 do finalne koncentracije od 10 procenata etilenglikola i direktno se primene na Con Sefaroza (Pharmacia) kolonu od 10 ml. Posle potpunog ispiranja sa 20 mM NaPO^, 1 M NaCl pH 7.2, aktivnost je eluirana sa 20 mM NaPO^ 1 M NaCl 0.2 M alfa-metil-D-manozida. Suštinska količina aktivnosti (55 procenata) ni je se vezala za ovaj lektin. 45 procenata aktivnosti eluirano je sa alfa-metil-D-manozidom.0.1% by beta-mercaptoethanol, pH 7.2. The activity is then eluted with the same buffer containing 30 percent ethylene glycol and then further eluted with the above buffer containing 50 percent ethylene glycol. These fractions were collected and diluted with 20 mM NaHPO 4, 1 M NaCl pH 7.2 to a final concentration of 10 percent ethylene glycol and applied directly to a 10 ml Con Sepharose (Pharmacia) column. After complete washing with 20 mM NaPO4, 1 M NaCl pH 7.2, the activity was eluted with 20 mM NaPO4 1 M NaCl 0.2 M alpha-methyl-D-mannoside. A significant amount of activity (55 percent) did not bind to this lectin. 45 percent of the activity was eluted with alpha-methyl-D-mannoside.

•it• it

Farmaceutski preparatiPharmaceutical preparations

Jedinjenja iz sadašnjeg pronalaska mogu se formulisati prema poznatim postupcima za pravljenje farmaceutski korisnih preparata, pri čemu se ljudski imunološki interferonskiThe compounds of the present invention can be formulated according to known methods for making pharmaceutically useful preparations, wherein human immunological interferon

-- 45 ~ν“ϊ proizvod kombinuje u smeši sa farmaceutski prihvatljivim nosačima. Podesni nosači i njihovo formulisanje opisani su u Remington's Pharmaceutical Sciences by E.W. Martin, i ova publikacija je ovde uneta kao referenca. Takvi preparati če sadržati efikanu količina ovdašnjeg interferonskog proteina zajedno sa podesnom količinom nosača u cilju pravljenja farmaceutski prihvatljivih preparata koji su podesni za efikasno davanje pacijentu.- 45 ~ ν “ϊ combines the product in admixture with pharmaceutically acceptable carriers. Suitable carriers and their formulation are described in Remington's Pharmaceutical Sciences by E.W. Martin, and this publication is incorporated herein by reference. Such preparations will contain an effective amount of interferon protein herein, together with an appropriate amount of carrier, for the purpose of making pharmaceutically acceptable preparations suitable for effective administration to a patient.

A. Parenteralno davanjeA. Parenteral administration

Ljudski imunološki interferon se može parenteralno davati pacijentima kojima je potrebno antitumorno ili antivirusno tretiranje, i onima koji pokazuju imunosupresivna stanja. Doza i brzina doziranja mogu biti paralelni sa onima koji se trenutno koriste u kliničkim ispitivanjima sa drugim gHuman immunological interferon can be administered parenterally to patients requiring antitumor or antiviral treatment and to those exhibiting immunosuppressive conditions. Dose and dose rates may be parallel to those currently used in clinical trials with other g

ljudskim interferonima, n.pr., oko (1-40) x 10 jedinica na dan, i u slučaju materijala veče čistoče od 1 procenta, /r verovatno do, n.pr., 50 x 10 jedinica na dan. Doze IFN-gama mogu se značajno povečati radi večeg efekta zbog suštinskog otsustva ljudskih proteina koji se razlikuju od IIN-gama, pri čemu ovi proteini u materijalima izvedenim iz ljudi mogu indukovati izvesne nepoželjne efekte.human interferons, e.g., about (1-40) x 10 units per day, and in the case of evening material purity of 1 percent, / r probably up to, e.g., 50 x 10 units per day. Doses of IFN-gamma can be significantly increased for greater effect due to the essential absence of human proteins that are different from IIN-gamma, whereby these proteins in human-derived materials may induce certain undesirable effects.

Kao jedan primer odgovarajučeg doznog oblika za suštinski homogen IFN-gama u parenteralnom obliku koji se može gAs one example of a suitable dosage form for substantially homogeneous parenteral IFN-gamma formulation

primeniti, IFN-gama specifična aktivnost od, recimo, 2 x 10 O/mg može se rastvoriti u 25 ml. 5 N albuminskog seruma (ljudski) - USP, rastvor se propusti kroz bakteriološki filtar i filtrovani rastvor se aseptično podpodeli u 100 fiola, pri Čemu svaka sadrži 6 x 10$ jedinica čistog interferona koji je podestan za parenteralno davanje. Flole se poželjno stokiraju na hladno (-20°C) — s - W ·· ,ί^ϊς,'ί;apply, an IFN-gamma specific activity of, say, 2 x 10 O / mg can be dissolved in 25 ml. 5 N Albumin Serum (Human) - USP, the solution is passed through a bacteriological filter and the filtered solution is aseptically subdivided into 100 vials, each containing 6 x 10 $ units of pure interferon, which is suitable for parenteral administration. The fleas are preferably stacked in the cold (-20 ° C) - s - W ··, ί ^ ϊς, 'ί;

pre koriščenja.before use.

;.,<·' · - . -J ;., <· '· -. - J

Podaci o biotestiranjuBiotest data

A. Karakterizacija antivirusne aktivnostiA. Characterization of antiviral activity

Za neutralizacije antitela, uzorci su razblaženi, prema potrebi, do koncentracije 500-1000 jedinica/ml sa PBS-BSA. Jednake zapremine uzarka inkubiraju se 2-12 časova na 4 stepena sa serijskim razblaženjima antihrmanih leukocita kuniča, fibroblasta ili antisertmima immološkog interferona. Anti-IEN-alfa i beta dobiveni su od National Institute of Allergy and Infectious Diseases. Anti-IEN-gama je napravljen koriščenjem autentičnog IEN-gama (čistoča 5-20 procenata) prečiščenog iz stimuli san ih limfocita periferne krvi. Uzorci su centrifugiranj 3 minuta na 12,000 x g tokom 3 minuta pre testiranja. Za testiranje stabilnosti na pH 2, uzorci su podešeni na pH 2 dodavanjem 1 N HCI, inkubirani su 2-12 časova na 4°, i neutralisani dodavanjem 1N NaCH pre testiranja.For neutralizing antibodies, samples were diluted, if necessary, to a concentration of 500-1000 units / ml with PBS-BSA. Equal sample volumes are incubated for 2-12 hours at 4 degrees with serial dilutions of rabbit anticancer leukocytes, fibroblasts, or immunological interferon antisertims. Anti-IEN-alpha and beta were obtained from the National Institute of Allergy and Infectious Diseases. Anti-IEN gamma was made using authentic IEN gamma (5-20 percent purity) purified from stimulated peripheral blood lymphocytes. Samples were centrifuged for 3 minutes at 12,000 x g for 3 minutes before testing. For pH 2 stability testing, samples were adjusted to pH 2 by addition of 1 N HCl, incubated for 2-12 h at 4 °, and neutralized by addition of 1N NaCH before testing.

Za testiranje na osetljivost prana natrijum-dodecilsulfatu (SDS) uzorci su inkubirani sa jednakcm zapremincm 0.2 procentnog SDS tokom 2-12 časova na 4° pre testiranja.To test for the sensitivity of pran sodium dodecyl sulfate (SDS), samples were incubated with an equal volume of 0.2 percent SDS for 2-12 hours at 4 ° before testing.

B. Karakterizacija IEN-gama proizvedenog pcrooču čeli ja E.ooli i COS-7B. Characterization of the IEN-gamma produced by pcrooche of E.ooli and COS-7

Antivitusna aktivnost (Jedinlce/ml)Antivitus activity (Units / ml)

E. coli «3110/ pI5N-gamatrp48E. coli «3110 / pI5N-gamatrp48

COS-7 čelije/ . pSVgama69COS - 7 cells. pSVgama69

Tretiranje Treatment HN-alfa IEN-beta IEN-gama HN-alpha IEN-beta IEN-gamma ekstrakt extract supematant supernatant Netretiran Untreated 375 375 125 125 250 250 250 250 62.5 62.5 pH 2 pH 2 375 375 125 125 <6 <6 <12 <12 <4 <4 0.1 % SDS 0.1% SDS 375 375 - 4 4 <8 <8 - Anti-IEN^ kuniča Anti-IEN ^ rabbit <8 <8 125 125 250 250 250 250 187 187 Anti-IEN-fl kuniča Anti-IEN-fl rabbit 375 375 <8 <8 187 187 250 250 125 125 Anti-IFN-tTkmiča Anti-IFN-tTmichi 375 375 125 125 <4 <4 <8 <8 <4 <4

Ova tablica prikazuje karakteristično ponašanje IFN-alfa, beta i gama standarda posle raznih tretiranja. Interferonska aktivnost proizvedenaThis table shows the characteristic behavior of IFN-alpha, beta and gamma standards after various treatments. Interferon activity produced

- 47 pomoču E. coli W3110/pIFN-gama trp 48 i pomoču COS-7/ pSVgama69 je osetljiva na kiselost, SDS-osetljiva i- 47 with E. coli W3110 / pIFN-gamma trp 48 and with COS-7 / pSVgama69 acidity sensitive, SDS sensitive and

Λ neutrališe se pomoču antiseruma imunološkog interferona.Λ It is neutralized with the help of immune interferon antiserum.

Ne neutrališe se pomoču antitela na IFN-alfa ili beta.It is not neutralized by antibody to IFN-alpha or beta.

Ovi podaci potvrdjuju da je interferon proizveden u ovim sistemima IFN-gama i da cDNA insert plazmida p69 kodira za IFN-gama.These data confirm that interferon is produced in these IFN-gamma systems and that the cDNA insert of plasmid p69 encodes for IFN-gamma.

PrečiščavanjePurification

Jedan postupak pomoču koga se IFN-gama može prečistiti iz n.pr., bakterija opisan je sledečom opštom šemom :One method by which IFN-gamma can be purified from, e.g., bacteria is described by the following general scheme:

1. Ekstrakcija čelija u puferu za visoko raskidanje čelija (na oko pH 8) provodjenjem kroz homogenizator na visokom pritisku, hladjenjem isteka na ledenom kupatilu.1. Extraction of cells in buffer for high cell dissolution (at about pH 8) by passing through a high pressure homogenizer, cooling the expiration on an ice bath.

2. Taloženje DNA dodavanjem polietilen-imina sa mešanjem, na primer, na 4°C.2. DNA deposition by adding polyethylene imine with stirring, for example, at 4 ° C.

3. pH taloženje bakterijskih proteina, opet raskidanjem i ostavljanjem IFN-gama u rastvoru.3. pH precipitation of bacterial proteins, again breaking and leaving IFN-gamma in solution.

4. Odvajanje čvrstih supstanci centrifugiranjem na 4°C.4. Separation of solids by centrifugation at 4 ° C.

5. Koncentrovanje supematanta (posle ponovnog podešavanja pH) ultracentrifugiranjem.5. Concentrating the supernatant (after adjusting the pH) by ultracentrifugation.

6. Dijaliza koncentrata naspram pufer niške provodljivosti.6. Dialysis of concentrate versus low conductivity buffer.

7. Odvajanje čvrstih supstanci centrifugiranjem uz ostavljanje IFN-gama u rastvoru.7. Separation of solids by centrifugation leaving IFN-gamma in solution.

8. Jonoizmenjivačka hromatografija na karboksimetilcelulozi, eluiranjem sa gradientom povečavajuče jonske jačine.8. Ion exchange chromatography on carboxymethylcellulose, eluting with a gradient of increasing ionic strength.

9. Hromatografija na kalcijum-fosfatnom gelu eluiranjem sa gradientom povečavajuče jonske jačine.9. Chromatography on calcium phosphate gel eluting with a gradient of increasing ionic strength.

1 .W>£«rv·,.· — - 47a 1 .W> £ «rv ·,. · - - 47a

10. Jonoizmenjivačka hromatografija na karboksimetilcelulozi pod slabim uslovima za denaturaciju eluira4 njem sa gradientom povečavajuče Jonske jačine.10. Carboxymethylcellulose ion exchange chromatography under poor conditions for elution denaturation with a gradient of increasing ionic strength.

11. Odvajanje hromatografijora sa gel filtracijom.11. Separation of Gel Filtration Chromatographs.

Gornji postupak omogučuje prinose materijala vede od 95% čistoče.The above procedure yields material yields greater than 95% purity.

Imunološki interferenski protein definisan je odredjivanjem DNA gena i deduktivnim sekvenciranjem aminokiselina — vidi Sliku 5. Biče jasno da za ovaj odredjeni interferon, koji je ovde opisan, poštoje prirodne aleilne varijacije i javi ja ju se od pojedinca do ptbjedinca. Ove varijacije se mogu demonstrirati razlikom(ama) u ukupnoj sekvenci ili izostavljanjima, zamenama, umetanjima, inverzijama ili dodavanjima aminokiseline(a) u pomenutoj sekvenci.The immunological interference protein is defined by DNA gene determination and deductive amino acid sequencing - see Figure 5. It will be clear that for this particular interferon described herein, natural allelic variations occur and occur from individual to individual. These variations can be demonstrated by the difference (s) in the total sequence or omissions, substitutions, insertions, inversions, or additions of the amino acid (s) in said sequence.

Sve takve aleilne varijacije uključene su u obim ovog pronalaska.All such allelic variations are included within the scope of the present invention.

Zadsta, pošto ji potenci jal za koriščenje rekombinantne DNA tehnologije za pravljenje raznih derivata ljudskog IFN-gama, koji su različito raodifikovani jednostrukim ili višestrukim supstitucijama, izostavljanjima, dodavanjima ili zamenama aminokiselina. Sve takve modifikacije koje dovode do takvih derivata ljudskog IFN-gama uključene su u obim ovog pronalaska sve dotle dok se ne utiČe na suštinsku, karakterističnu aktivnost ljudskog IFN-gama.In addition, it is potent for utilizing recombinant DNA technology to produce various human IFN-gamma derivatives, which are differentially modified by single or multiple substitutions, omissions, additions or substitutions of amino acids. All such modifications that give rise to such derivatives of human IFN-gamma are included within the scope of the present invention, as long as the essential, characteristic activity of human IFN-gamma is not affected.

&&

Sa DNA i aminokiselinskim sekvencama IFN-gama pri raci (vidi Sliku 5), najpoželjniji tok za reprodukciji! sadašnjeg pronalaska nesumnjivo če uključivati pravljenje makojeg komletnog gena sintetskim sredstvima (vidi, na primer, 26),With DNA and amino acid sequences of IFN-gamma in cancer (see Figure 5), the most desirable reproduction flow! the present invention will undoubtedly involve the production of a poppy complex gene by synthetic means (see, for example, 26),

- 47b 47b ili sintetskih deoksinukleotida sa kojima se cDNA izvor može sondirati u cilju izolovanja gena standardnim- 47b 47b or synthetic deoxynucleotides with which a cDNA source can be probed to isolate genes by standard

Λ tehnikama hibridizacije. Pošto se jedhom dobije nukleotidna sekvenca koja kodira za potreban IFN-gama protein, sredstva za postizanje ekspresije, izolovanja i prečiščavanja radi dobivanja vrlo čistih preparata IFN-gama, mogu se obezbediti prema gornjem opisu.Hib hybridization techniques. As the nucleotide sequence is encoded for the required IFN-gamma protein, the means of expression, isolation and purification to obtain very pure IFN-gamma preparations can be provided as described above.

Mada je u ovom opisu opisana odredjena poželjna realizacija, biče jasno da sadašnji pronalazak ne treba da bude ograničen na takvu realizaciju, več radije na zakonski opseg pridodanih Zahteva.Although some desirable embodiments are described herein, it will be clear that the present invention should not be limited to such embodiments, but rather to the legal scope of the appended claims.

- 47ο· ί- 47ο · ί

cc

BibliografijaBibliography

1. Goeddel et al., Nature 287, 411 (1980).1. Goeddel et al., Nature 287, 411 (1980).

2. Goeddel et al., Nature 290, 20 (1981).2. Goeddel et al., Nature 290, 20 (1981).

3. Yelverton et al_., Nucleic Acids Research 9 , 731 (1981 ).3. Yelverton et al., Nucleic Acids Research 9, 731 (1981).

4. Gutterman et a)., Annals of Int. Med. 93, 399 (1980).4. Gutterman et a)., Annals of Int. Med. 93, 399 (1980).

5. Goeddel et a) , Nucleic Acids Reseach 8 , 4057 (1980).5. Goeddel et a), Nucleic Acids Reseach 8, 4057 (1980).

ί 6, - Y i p et a 1 . > Proc· Nat); Acad. Sci. (USA) 78 , 1601. (1981 ).ί 6, - Y ip et a 1. > P roc · Nat); Acad. Sci. (USA) 78, 1601. (1981).

7, Taniguchi et al., Proč. Nat). Acad, Sci. (USA) 78, 3469 (1981).'7, Taniguchi et al., Proc. Nat). Acad, Sci. (USA) 78, 3469 (1981). '

8, Bloom, Nature 289, 593 (1980).8, Bloom, Nature 289, 593 (1980).

9, Sonnenfeld et a)., Cel i ul a r Immuno 1 . 40, 285 (1978).9, Sonnenfeld et a)., Cel i ul a r Immuno 1. 40, 285 (1978).

10. Fleishmann et al., Infectlon and Immum'ty 26, 248 (1979 ).10. Fleishmann et al., Infectlon and Immum'ty 26, 248 (1979).

11. Blalock et a)., Cellular Ininiunolo9y 49, 390 (1980).11. Blalock et a.), Cellular Ininiunolo9y 49, 390 (1980).

12. Rudin et a)., Proč. Nat). Acad. Sci. (USA) 77, 5928 (1980)7 .12. Rudin et a)., Proc. Nat). Acad. Sci. (USA) 77, 5928 (1980) 7.

13.i‘>Crane et a) ., J Nat) Cancer Inst. 61 , 871 (1978).13.i '> Crane et a)., J Nat) Cancer Inst. 61, 871 (1978).

14. Stinchcomb et al., Nature 282 , 39 (1979).14. Stinchcomb et al., Nature 282, 39 (1979).

15. Kingsman et a)., Gene 7 , 141 (1979 ).15. Kingsman et a)., Gene 7, 141 (1979).

16. Tschumper et al., Gene 10, 157 (1980).16. Tschumper et al., Gene 10, 157 (1980).

17. Mortimer et a)., Microbio)ogical Reviews 44, 519 (198 ),17. Mortimer et al., Microbio ogical Reviews 44, 519 (198),

18. Miozzari et al., Journal of Bacter1ology 134, 48 (1978).18. Miozzari et al., Journal of Bacter1ology 134, 48 (1978).

19. Jones, Genetics 85, 23 (1977).19. Jones, Genetics 85, 23 (1977).

20. Hitzeman, et al., J. Biol. Chem. 255 , 12073 (1980).20. Hitzeman, et al., J. Biol. Chem. 255, 12073 (1980).

21. Hess et a) ., J. Adv. Enzyme Regul . T_, 149 (1968).21. Hess et a)., J. Adv. Enzyme Regul. T_, 149 (1968).

22. Holland et a)., Biochemistry 17 , 4900 (1978).22. Holland et al., Biochemistry 17, 4900 (1978).

23. Bostlan et al ., Proc. Nat). Acad. Sci. (USA) 77 , 4504 (1980). :23. Bostlan et al., Proc. Nat). Acad. Sci. (USA) 77, 4504 (1980). :

24. The Molecular Bio)ogy of Yeast.(Aug 11-18, 1981), Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.24. The Molecular Bio) ogy of Yeast (Aug 11-18, 1981), Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

25. Chambon, Ann. Rev. Biocherci stry, 44 , 613 (1975 ).25. Chambon, Ann. Rev. Biocherci stry, 44, 613 (1975).

25a. Gluzman, Cel) 23, 175 (1981).25a. Gluzman, Cel) 23, 175 (1981).

26. Goeddel et a_l_., Nature 231 , 544 (1979).26. Goeddel et al., Nature 231, 544 (1979).

27. Itakura et al., Science 198, 1056 (1977),27. Itakura et al., Science 198, 1056 (1977),

28. 'Lus ky et al ., Nature 293 , 79 (1981 ).28. 'Lus ky et al., Nature 293, 79 (1981).

29. Gluzman et al., Cold Spring Harbor Syrap. Quant. Biol.29. Gluzman et al., Cold Spring Harbor Syrap. Quant. Biol.

,. 293 τΓ97Τυ).,. 293 τΓ97Τυ).

1 1 r' - 18 - rr '- 18 - r 30. 30. F i e rs et F i e rs et ΔΙ-» ΔΙ- » Nature 273, 113 (1978). Nature 273, 113 (1978). 31. 31. Reddy et Reddy et il·· il · · Science 200, 494 (1978 ). Science 200, 494 (1978). 32. 32. 8oedtker 8oedtker et al et al ., Prog. in Nucleic Acids Res. Mol. Biol ., Prog. and Nucleic Acids Res. Mol. Biol

Γ9, 253 (17757.' ~ ' ~~Γ9, 253 (17757. '~' ~~

33. Berger et al ., 8iochemistry 18 , 5143 (1979).33. Berger et al., 8iochemistry 18, 5143 (1979).

. A vi v e t a 1 ., Proč. Natl. Acad. Sci. USA 59 , 1408 (1972).. A vi v e t a 1., away. Natl. Acad. Sci. USA 59, 1408 (1972).

35. Gurdon et al., J. Moleč. Biol. 80 , 539 (1975).35. Gurdon et al., J. Molec. Biol. 80, 539 (1975).

36. Stewart, The Interferon System. Springer, New York, p.36. Stewart, The Interferon System. Springer, New York, p.

13-26 (197ΤΠ13-26 (197ΤΠ

37. Lehrach et a)., Bi oc henii stry 16 , 4743 (1977).37. Lehrach et a)., Bi oc henii stry 16, 4743 (1977).

38. Lynch et al.·, Vi rol ogy 98, 251 (1979 ).38. Lynch et al., Vi rol ogy 98, 251 (1979).

39. Hickens et al., J. 8 ί o T. Chem, 253 , 2483 (1978).39. Hickens et al., J. 8 ί o T. Chem, 253, 2483 (1978).

40. Chang et a)., Natu re 275 , 617 (1978 ).40. Chang et a)., Natu re 275, 617 (1978).

41. Bolivar et al., Gene 2, 95 (1977).41. Bolivar et al., Gene 2, 95 (1977).

42. Grunsteln et al., Proč. Natl. Acad. Sef. U.S.A. 72, 3961 (1975). ~42. Grunsteln et al., Proc. Natl. Acad. Chief. U.S.A. 72, 3961 (1975). ~

43. Fritsch et al., Celi 19, 959 (1980).43. Fritsch et al., Whole 19, 959 (1980).

44. ’ Birnboim et al., NUcleic Acids Res’. 7_, 1513 (1979 ).44. 'Birnboim et al., NUcleic Acids Res'. 7_, 1513 (1979).

45. Kafatos et a 1.Nucleic Acids Res. 7_, 1541 (1979 ),45. Kafatos et a 1. Nucleic Acids Res. 7_, 1541 (1979),

46. Clewell et al., Biochemistry 9, 4428 (1970).46. Clewell et al., Biochemistry 9, 4428 (1970).

47. Taylor et al., Biochim. Biophys. Acta 442 , 324 (1976 ).47. Taylor et al., Biochim. Biophys. Acta 442, 324 (1976).

48. Smith, Methods Enzymol. 65, 560 (1980).48. Smith, Methods Enzymol. 65, 560 (1980).

49. Messing et al., Nucleic Acids Res. 9_, 309 (1981 ),49. Messing et al., Nucleic Acids Res. 9_, 309 (1981),

50. Hinzler, Hormona! Proteins and Peptides (ed. Li) Academic50. Hinzler, Hormone! Proteins and Peptides (ed. Li) Academic

Press, New York, p. 1 (1973 ).Press, New York, p. 1 (1973).

51. Nathan et al., Nature 292, 842 (1981).51. Nathan et al., Nature 292, 842 (1981).

52. Maxam et a 1., Methods in Enzymol. 65 , 490 (1980).52. Maxam et a 1., Methods in Enzymol. 65, 490 (1980).

53. Crea e_t al.., Prog Natl Acad. Sc-i (USA) 7_5, 5765 (1978).53. Crea e_t al .., Prog Natl Acad. Sc-i (USA) 7_5, 5765 (1978).

54. Southern, J. Moleč. Biol. 98, 503 (1975).54. Southern, J. Prayer. Biol. 98, 503 (1975).

55. Slin e_t aj_., Nucleic Acids Res. 3, 2303 (1976 ).55. Saliva e_t aj_., Nucleic Acids Res. 3, 2303 (1976).

56. Lawn et al., Science 212 , 1159 (1981 ).56. Lawn et al., Science 212, 1159 (1981).

57. Lawn et al., Nucleic Acids Res. 9, 1045 (1981).57. Lawn et al., Nucleic Acids Res. 9, 1045 (1981).

58. Miller, £xperiraents in Molecular Genetics, p. 431-3, Cold58. Miller, £ xperiraents in Molecular Genetics, p. 431-3, Cold

Spring Harbor Lab., Cold Spring Harbor, New York (1972).Spring Harbor Lab., Cold Spring Harbor, New York (1972).

59. Beggs, Nature 275, 104 (1978).59. Beggs, Nature 275, 104 (1978).

ii

- 4S .60.- 4S .60.

61.61.

Valenzuela et al., Animal Virus Genetics (ed. Fields, Jaenisch and Fox) p. 57, Academic Press, New York (1980). McCuthan et al., J. Natl. Cancer Inst. 41, 351 (1968)Valenzuela et al., Animal Virus Genetics (ed. Fields, Jaenisch and Fox) p. 57, Academic Press, New York (1980). McCuthan et al., J. Natl. Cancer Inst. 41, 351 (1968)

Claims (13)

Patentni zahteviPatent claims 1. Polipeptid sa humanim imunointerferonskim (TFN-nama) svojstvima, naznačen time, što obuhvata sledeču amino kiselinsku sekvencu:A polypeptide having human immunointerferon (TFN) properties, comprising the following amino acid sequence: 5'5 ' SlFIG TnAOTCAGCTAnAGAAGAGAAAGATCAGTTAAGTCCTTTGGACCTGATCAGCTTGATACAAGAACTACreATrTCAACTTCTTTGGCTTAATTCTCTCGGAAACG ATG MA TAT - io 100TnAOTCAGCTAnAGAAGAGAAAGATCAGTTAAGTCCTTTGGACCTGATCAGCTTGATACAAGAACTACreATrTCAACTTCTTTGGCTTAATTCTCTCGGAAACG ATG MA TAT - io 100 S10 S20 1 10 he gin leu eys ile val leu p.ly ser leu gly CYS TYR CYS CLN ASP PRO TYR VAL LYS CLU ALA CLU ASN chr ser tvr ile leu ala nhe gin leu eys ne val leu pty str leu gly tli uk ti» ttn Air mu uk ml ι.ι» ι.ι.ιι ai.a vi.ij asS10 S20 1 10 he gin leu eys ile val leu p.ly ser leu gly CYS TYR CYS CLN ASP PRO TYR VAL LYS CLU ALA CLU ASN chr ser claimed leu ala nhe gin leu eys no val leu pty str leu gly tli uk ti »Ttn Air mu uk ml ι.ι» ι.ι.ιι ai.a vi.ij as ACA AGT TAT ATC TTG GCT ITT CAG CTC TGC ATC GTT TTG GGT TCT CTT GGC TGT TAC TGC CAG GAC CCA TAT GTA ΑΛΑ GAA GCA GAA 150 200ACA AGT TAT ATC TTG GCT ITT CAG CTC TGC ATC GTT TTG GGT TCT CTT GGC TGT TAC TGC CAG GAC CCA TAT GTA ΑΛΑ GAA GCA GAA 150 200 20 30 4020 30 40 LEU LYS LYS TVS PHE ASN ALA CLY HIS SER ASP VAL ALA ASP ASM CLY TUR LEU PI1E LEU CLY ILE LEU LYS ASN TRP LYS CLU CLU SER CK AAG AAA Ϊ~Τ TTT ΑΛΤ GCA. GGT CAT TCA GAT GTA GCG GAT AAT GGA ACT CTT TTC TTA GGC ATT TTG AAG ΑΛΤ TGG AAA GAG GAG AGTLEU LYS LYS TVS PHE ASN ALA CLY HIS SER ASP VAL ALA ASP ASM CLY TUR LEU PI1E LEU CLY ILE LEU LYS ASN TRP LYS CLU CLU SER CK AAG AAA Ϊ ~ Τ TTT ΑΛΤ GCA. GGT CAT TCA GAT GTA GCG GAT AAT GGA ACT CTT TTC TTA GGC ATT TTG AAG ΑΛΤ TGG AAA GAG GAG AGT 250250 50 60 2050 60 20 ASP AP.C LYS ILE HET CLN SER CLN ILE VAL SER PHE TYR PHE LYS LEU PHE LYS ASN PHE LYS ASP ASP CLN SER ILE CLN LYS SER VAL &£ KA AAA ATA ATG V£ N£ UA 'ATT GTC TCC TIT TAC TTC AAA CTT TTT AAA AAC TTT AAA GAT GAC CAG AGC ATC CAA AAG AGT GTG 300 350ASP AP.C LYS ILE HET CLN SER CLN ILE VAL SER PHE TYR PHE LYS LEU PHE LYS ASN PHE LYS ASP ASP CLN SER ILE CLN LYS SER VAL & £ KA AAA ATA ATG V £ N £ UA 'ATT GTC TCC TIT TAC TTC AAA CTT TTT AAA AAC TTT AAA GAT GAC CAG AGC ATC CAA AAG AGT GTG 300 350 80 90 10080 90 100 CLU TUR ILE LYS CLU ASP MET ASN VAL LYS PHE PHE ASN SER ASN LYS LYS LYS ARC ASP ASP PHE CLU LYS LEU THR ASN TYR SER VAL GAG ACC ATC AAG GAA GAC ATG AAT GTC AAG TTT TTC AAT AGC AAC AAA AAG AAA CGA GaT GAC TTC GAA AAG CTG ACl ml Irti IUj blftCLU TUR ILE LYS CLU ASP MET ASN VAL LYS PHE PHE ASN SER ASN LYS LYS LYS ARC ASP ASP PHE CLU LYS LEU THR ASN TYR SER VAL GAG ACC ATC AAG GAA GAC ATG AAT GTC AAG TTT TTC AAT AGC AAC AAA AAG AAA CGA GaT GAC TTC GAA AAG CTG ACl ml Irti IUj blft 400 450400 450 110 120 130 THR ASP LEU ASN VAL CLN ARC LYS ALA ILE HIS CLU LEU ILE CLN VAL KKT ALA CLU LEU SER PRO ALA ΑΙ.Λ I.YS TUR CI.Y ACT GAC TTG V-.-T GTC CAA CGC AAA GCA ATA CAT GAA CTC ATC CAA GTG ATG GCT GAA CTG TCG CCA GCA GCT ΑΛΑ NA GGG110 120 130 THR ASP LEU ASN VAL CLN ARC LYS ALA ILE HIS CLU LEU ILE CLN VAL KKT ALA CLU LEU SER PRO ALA ΑΙ.Λ I.YS TUR CI.Y ACT GAC TTG V -.- T GTC CAA CGC AAA GCA ATA CAT GAA CTC ATC CAA GTG ATG GCT GAA CTG TCG CCA GCA GCT ΑΛΑ NA GGG 500 550500 550 LYSLYS AAGAAG ARC I.YSARC I.YS Λ'A vCn «nΛ'A vCn «n 160 146 STOP160 146 STOP ARC SER CLN ΧΞΤ LEU P11E ARC CLY ARC ARC ALA SER CLN _ARC SER CLN ΧΞΤ LEU P11E ARC CLY ARC ARC ALA SER CLN _ AGG AGT CAG ATG CTG TTT CGA GGT CGA Λ6Α GCA TCC CAG ΤΑΛ TGGTTGTCCTGCCTIZMTATnGAAnTrAAATCTAAATCTATnATTAATATnA/VLATTA 6U0 650AGG AGT CAG ATG CTG TTT CGA GGT CGA Λ6Α GCA TCC CAG ΤΑΛ TGGTTGTCCTGCCTIZMTATnGAAnTrAAATCTAAATCTATnATTAATATnA / VLATTA 6U0 650 TTTATATGGGGAATATATTTTTAGACTCATCAATCAAATAAGTATTTATAATAGCAACTTTTGTGTAATGAAAATGAATATCTATTAATATATGTATTATTTATAATTCCTATATCCTG 7U0 75UTTTATATGGGGAATATATTTTTAGACTCATCAATCAAATAAGTATTTATAATAGCAACTTTTGTGTAATGAAAATGAATATCTATTAATATATGTATTATTTATAATTCCTATATCCTG 7U0 75U TGACTGTCTCACTTAATCCTTTGTTTTCTGACTAATTAGGCAAGGCTATGTGATTACAAGGCTTTATCTCAGGGGCCAACTAGGCAGCCAACCTAAGCAAGATCCCATGGTTGTGTGTT 800 850 900TGACTGTCTCACTTAATCCTTTGTTTTCTGACTAATTAGGCAAGGCTATGTGATTACAAGGCTTTATCTCAGGGGCCAACTAGGCAGCCAACCTAAGCAAGATCCCATGGTTGTGTGTT 800 850 900 TATTTCACTTGATGATACAATGAACACTTATAAGTGAAGTGATACTATCCAGTTACTGCCGGTTTGAAAATATGCCTGCAATCTGAGCCAGTGCTTTAATGGCATGTCAGACAGAACTT 950 · 1000TATTTCACTTGATGATACAATGAACACTTATAAGTGAAGTGATACTATCCAGTTACTGCCGGTTTGAAAATATGCCTGCAATCTGAGCCAGTGCTTTAATGGCATGTCAGACAGAACTT 950 · 1000 GAATGTGTCAGGTG-ACCCTGATGAAAACAT/iGCATCTCAGGAGATTTCATGCCTGGTGCnCCMATATTGITGACAACTGTGACTGTACCCAAATGGAAMjTAACTCATTTGnAAAA 1050 uooGAATGTGTCAGGTG-ACCCTGATGAAAACAT / iGCATCTCAGGAGATTTCATGCCTGGTGCnCCMATATTGITGACAACTGTGACTGTACCCAAATGGAAMjTAACTCATTTGnAAAA 1050 uoo TTATCAATATCTAATATATATGAATAAAGTGTAAGTTCACAACTAAAAAAAAAAAAAAAAAAA H 50 120UTTATCAATATCTAATATATATGAATAAAGTGTAAGTTCACAACTAAAAAAAAAAAAAAAAAAAAA H 50 120U 3'3 ' 0184M0184M 51.51. 2. Polipeptid prema zahtevu 1, naznačen time, što nedostaje na N-terminalnom kraju prikazane sekvence 1-146, tripetid CYS-TYR-CYS.The polypeptide of claim 1, which is lacking at the N-terminal end of the shown sequence 1-146, tripetide CYS-TYR-CYS. 3. Polipeptid prema zahtevu 1, naznačen time, što dodatno sadrži metionin vezan na N-terminalnom. kraju prve aminokiseline intreferona.3. The polypeptide of claim 1, further comprising methionine bound at the N-terminal. the end of the first amino acid of intferon. 4. Polipeptid prema zahtevu 1, naznačen time, ?to dodatno sadrži odcepljiv konjugat ili signalni protein,koji je vezan na N-. terminalnom kraju prve amino kiseline interferona.The polypeptide of claim 1, wherein ? it additionally contains a cleavable conjugate or signaling protein, which is N- bound. the terminal end of the first amino acid of interferon. 5. Polipeptid prema nekom od zahteva l>-3 i 4, naznačen time, što nije vezan sa prirodnom glikolizaci jonr.A polypeptide according to any one of claims 1> -3 and 4, which is not bound to the natural glycolysis of Jonr. 6. DNA-izolat sa jednom za polipeptid prema zahtevima 1-4, kodirajučom.DNA-sekvencom.A DNA isolate with one for the polypeptide according to claims 1-4, encoding a DNA sequence. 7. Replicirajuči ekspresioni nosač, nazančen time, što je u mikroorganizmu ili kulturi čelija sposoban da vrši ekspresiju polipeptida prema nekom od zahteva 1-4.A replicating expression carrier, which is capable of expressing a polypeptide according to any one of claims 1-4 in a microorganism or cell culture. tt 8. Plazmid odabran iz grupe koju čine pIFN-gama-trp 48, pSV-gama-69 i pPGK-IFN-gama.8. A plasmid selected from the group consisting of pIFN-gamma-trp 48, pSV-gamma-69 and pPGK-IFN-gamma. 9. Mikroorganizem ili kultura čelija, naznačena time, što je transforraisana sa nosačem ekspresije,prema zahtevima 7 i 8.A microorganism or cell culture transforated with an expression carrier according to claims 7 and 8. 10 Kultura čelija prema zahtevu 9,naznačena time,što je dobivena transformacijom COS-7-lini.je fibroblasta bubreoa majmuna.Cell culture according to claim 9, obtained by transformation of COS-7-line.is monkey kidney fibroblasts. 11. Mikroorganizem prema zahtevu 9,naznačena time, što je dobiven transformacijom čiste kulture E.coli.A microorganism according to claim 9, obtained by transformation of pure E. coli culture. 12. Mikroorganizam prema zahtevu 9, naznačena time, što je dobiven transformacijom čiste kulture kvasca.A microorganism according to claim 9, obtained by transformation of a pure yeast culture. 52.52. 13. Postupak za proizvodnju polipeptida sa humanim imunointerfe ronskim (IFN-gama) svojstvima prema jednom od zahteva 1-4, nazančen time, što se u transformisanom roikrooraanizmu ili tarnsformisanoj kulturi čelija,prema zahtevima 9-12, vrši ekspresija gena ,koji kodira polipeptid prema jednom od zahtevaA method for producing a polypeptide with human immunointerferon (IFN-gamma) properties according to one of claims 1-4, characterized in that the transformed roichroananism or transformed cell culture according to claims 9-12 expresses the gene encoding the polypeptide according to one of the requirements
SI8212335A 1981-10-19 1982-10-18 Polypeptide with human immune interferons (ifn-gamma)properties. SI8212335A8 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US31248981A 1981-10-19 1981-10-19
YU233582A YU45871B (en) 1981-10-19 1982-10-18 POLYPEPTIDE WITH HUMAN IMMUNOINTERFERON (IFN-GAMMA) PROPERTIES

Publications (1)

Publication Number Publication Date
SI8212335A8 true SI8212335A8 (en) 1995-10-31

Family

ID=26978402

Family Applications (1)

Application Number Title Priority Date Filing Date
SI8212335A SI8212335A8 (en) 1981-10-19 1982-10-18 Polypeptide with human immune interferons (ifn-gamma)properties.

Country Status (2)

Country Link
HR (1) HRP950157B1 (en)
SI (1) SI8212335A8 (en)

Also Published As

Publication number Publication date
HRP950157A2 (en) 1997-08-31
HRP950157B1 (en) 1999-06-30

Similar Documents

Publication Publication Date Title
FI86559C (en) FOERFARANDE FOER FRAMSTAELLNING AV HUMANT IMMUNINTERFERON, DAERVID ANVAENDBARA MEDEL OCH DESSAS FRAMSTAELLNING.
US5096705A (en) Human immune interferon
Vilcek et al. Fibroblast growth enhancing activity of tumor necrosis factor and its relationship to other polypeptide growth factors.
US5582824A (en) Recombinant DES-CYS-TYR-CYS human immune interferon
FI100972B (en) DNA sequence encoding colony-stimulating factor-1 (CSF-1) and the method of producing a CSF-1 protein
EP0257406B1 (en) Recombinant B-cell differentiation factor
HU196457B (en) Process for producing interferons
EP0272779A2 (en) New forms of colony stimulating factor-1
FI103987B (en) Interleukin-7
SI8212335A8 (en) Polypeptide with human immune interferons (ifn-gamma)properties.
KR940011533B1 (en) Method of producing protein
BG60939B2 (en) Human immune interferon
CA2167942A1 (en) Method of inhibiting kaposi&#39;s sarcoma
BG60888B2 (en) Human immune interferon
BG60890B2 (en) Human immune interferon
FI82713C (en) Plasmid capable of expressing human mature leukocyte interferon, process for its preparation, and its use in the preparation of human leukocyte interferon
BG61060B2 (en) Human immune inteferon
BG60889B2 (en) Human immune interferon
Miwa et al. Tumor growth-inhibitory glycoprotein secreted from the mouse brain at terminal stage of the ontogeny: molecular homogeneity and requirement of the retained protein conformation for exhibition of the cytotoxic action
PH26492A (en) Recombinant human immune interferon
NZ214261A (en) Human immune interferon: production by recombinant dna technology
CS274401B2 (en) Method of polypetide production with sequence of animal interferon&#39;s amino acids