DK168003B1 - METHOD OF MAKING SILICONE - Google Patents

METHOD OF MAKING SILICONE Download PDF

Info

Publication number
DK168003B1
DK168003B1 DK557384A DK557384A DK168003B1 DK 168003 B1 DK168003 B1 DK 168003B1 DK 557384 A DK557384 A DK 557384A DK 557384 A DK557384 A DK 557384A DK 168003 B1 DK168003 B1 DK 168003B1
Authority
DK
Denmark
Prior art keywords
briquettes
reducing agent
quartz
carbon
shaft furnace
Prior art date
Application number
DK557384A
Other languages
Danish (da)
Other versions
DK557384D0 (en
DK557384A (en
Inventor
Gert-Wilhelm Lask
Original Assignee
Applied Ind Materials
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Ind Materials filed Critical Applied Ind Materials
Publication of DK557384D0 publication Critical patent/DK557384D0/en
Publication of DK557384A publication Critical patent/DK557384A/en
Application granted granted Critical
Publication of DK168003B1 publication Critical patent/DK168003B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/023Preparation by reduction of silica or free silica-containing material
    • C01B33/025Preparation by reduction of silica or free silica-containing material with carbon or a solid carbonaceous material, i.e. carbo-thermal process

Description

i DK 168003 B1in DK 168003 B1

Den foreliggende opfindelse angår en fremgangsmåde til fremstilling af silicium ud fra kvartsråmateriale i en elektroskaktovn, i hvilken der indføres kornformigt kvartsråmateriale og reduktionsmiddelbriketter beståen-5 de af kvarts og carbon med et overskud af carbon i henseende til reaktionen SiC^ + 3C = SiC + 2C0, ved hvilken kvartsen i reduktionsmiddelbriketterne først omsættes til SiC i elektroskaktovnens øvre del ved en temperatur mindre end 1600 °C, hvorefter det flydende 10 kvartsråmateriale reduceres i elektroskaktovnens nedre del ved en temperatur større end 1600 °C, fortrinsvis ved 1800-2000 °C.The present invention relates to a process for the production of silicon from quartz feedstock in an electric shaft furnace, in which granular quartz feedstock and reducing agent briquettes consisting of quartz and carbon are introduced with excess carbon in response to the SiCC + 3C = SiC + 2C0 reaction. , wherein the quartz in the reducing agent briquettes is first converted to SiC in the upper part of the electric shaft furnace at a temperature less than 1600 ° C, after which the liquid 10 quartz raw material is reduced in the lower part of the electric shaft furnace at a temperature greater than 1600 ° C, preferably at 1800-2000 ° C.

Reduktionsmiddelbriketterne fremsstilles fortrinsvis ved varmbrikettering. Udtrykket "kvartsråmateriale" 15 anvendes til betegnelse af alle til fremstilling af silicium anvendte siliciumdioxid-holdige materialer, især kvartsit og kvartssand. Til fremstilling af reduktionsmiddelbriketterne anvendes sædvanligvis kvarts-sand. "Varmbrikettering" betegner en bindemiddelfri 20 brikettering, ved hvilken udgangsstofferne opvarmes til en temperatur på 430-540 °C og formes til briketter under anvendelse af tryk, jfr. DE-PS 19 15 905.The reducing agent briquettes are preferably made by hot briquetting. The term "quartz raw material" is used to denote all silica-containing materials used for the production of silicon, especially quartzite and quartz sand. Quartz sand is usually used to prepare the reducing agent briquettes. "Hot briquetting" means a binder-free briquetting at which the starting materials are heated to a temperature of 430-540 ° C and formed into briquettes using pressure, cf. DE-PS 19 15 905.

Ved den her omhandlede fremgangsmåde kan man imidlertid også arbejde med reduktionsmiddelbriketter, der 25 er fremstillet på anden måde.However, in the process of the present invention, one can also work with reducing agent briquettes which are otherwise manufactured.

Ved en kendt fremgangsmåde af den ovenfor omtalte art, jfr. DE-PS 30 32 720, arbejdes med reduktionsmiddelbriketter, som højst udviser et ringe overskud af carbon i henseende til reaktionen SiO^ + 3C = SiC + 30 2C0. Faktisk stræber man efter en så fuldstændig om sætning som muligt af reaktionsdeltagerne i den angivne reaktion i reduktionsmiddelbriketterne, nemlig til SiC og CO, for derpå at gennemføre reduktionen af det flydende kvartsråmateriale i skaktovnens nedre del DK 168003 B1 2 ved de angivne høje temperaturer med SiC som reduktions-middel. Carbonoverskuddet er kun til stede, fordi car-bonet ved reduktionen af siliciumoxidet i reduktionsmiddelbriketterne også reagerer med oxygen, hvorved en 5 del carbon går tabt til reduktionen af siliciumdioxidet.In a known method of the kind mentioned above, cf. DE-PS 30 32 720, is employed with reducing agent briquettes which exhibit at most a slight excess of carbon in the reaction SiO 2 + 3 C = SiC + 30 2 CO. In fact, one seeks as complete a reaction as possible of the reaction participants in the indicated reaction in the reducing agent briquettes, namely SiC and CO, to then effect the reduction of the liquid quartz feedstock in the lower part of the chimney furnace DK 168003 B1 2 at the indicated high temperatures with SiC. as a reducing agent. The carbon excess is present only because the carbon in the reduction of the silica in the reducing agent briquettes also reacts with oxygen, whereby a 5 part carbon is lost to the reduction of the silica.

Ued den kendte teknik består reduktionsmiddelbriketterne efter reduktionen af siliciumdioxidet imidlertid praktisk taget af siliciumcarbid og indeholder ikke længere carbon. Denne kendte fremgangsmåde har vist 10 sig velegnet til fremstilling af silicium, men det er imidlertid ønskeligt at forbedre denne fremgangsmåde i henseende til siliciumudbytte og således tilvejebringe en mindre energikrævende fremgangsmåde.However, in the prior art, the reducing agent briquettes, after the reduction of the silica, are practically silicon carbide and no longer contain carbon. This known process has proved suitable for the production of silicon, but it is desirable, however, to improve this process in terms of silicon yield and thus provide a less energy-intensive process.

Den til grund for opfindelsen liggende opgave går ud på 15 at tilvejebringe en fremgangsmåde af den indledningsvis nævnte art, ved hvilken der fås silicium i højt udbytte ved reduceret energianvendelse.The object of the invention is to provide a process of the kind mentioned above, in which silicon is obtained in high yield by reduced energy use.

Det har nu vist sig, at denne opgave kan løses ved en fremgangsmåde af den ovenfor angivne art, som er ejen-20 dommelig ved, at der anvendes reduktionsmiddelbriketter, som udviser et overskud af carbon på mere end 50 vægtpct. i henseende til reaktionen SiO^ + 3C = SiC + 2C0, hvorved der i elektroskaktovnens øvre del ved en temperatur mindre end 1600 °C foruden SiC dannes aktiveret 25 carbon i reduktionsmiddelbriketterne, hvorved disse antager en-koksagtig struktur, samt at kvartsråmaterialet reduceres dels med dette aktiverede carbon, dels med SiC i elektroskaktovnens nedre del.It has now been found that this problem can be solved by a method of the kind set forth above which is advantageous in the use of reducing agent briquettes which exhibit an excess carbon of more than 50% by weight. with respect to the reaction SiO 2 + 3 C = SiC + 2 CO, whereby in the upper part of the electric shaft furnace, activated carbon at the temperature of less than 1600 ° C is formed in the reducing agent briquettes, thereby assuming a coke-like structure and reducing the quartz raw material partly by this activated carbon, partly with SiC in the lower part of the electric shaft furnace.

Der arbejdes fortrinsvis med et carbonoverskud i reduk-30 tionsmiddelbriketterne, som er mindre end 90 vægtpct., fortrinsvis ca. 80 vægtpct. En optimal gennemførelse af fremgangsmåden tilvejebringes, når mindst ca. 50 vægtpct. af det anvendte kvartsråmateriale reduceres med DK 168003 B1 3 det aktiverede carbon i elektroskaktovnens nedre del. I-alt indstilles fødematerialet således, at materialebalancen er korrekt. Det er imidlertid ikke nødvendigt udelukkende at arbejde med reduktionsmiddelbriketter af 3 den beskrevne sammensætning. Man kan tværtimod inden for visse grænser tilsætte et klassisk fødemateriale (f.eks. bestående af 3 t kvarts/0,4 t trækul/0,4 t tørvekoks/0,3 t petroleumskoks/O,5 t askefri kul), så længe det blot sikres, at der tilvejebringes en tilstræk-10 kelig mængde aktiveret carbon fra reduktionsmiddelbriketterne .Preferably, a carbon excess is employed in the reducing agent briquettes which are less than 90% by weight, preferably approx. 80% by weight An optimal execution of the method is provided when at least about 50% by weight of the quartz raw material used is reduced by DK 168003 B1 3 the activated carbon in the lower part of the electric shaft furnace. In all, the feed material is adjusted so that the material balance is correct. However, it is not necessary to work exclusively with reducing agent briquettes of the composition described. On the contrary, within certain limits, a classic feed material can be added (eg consisting of 3 t quartz / 0.4 t charcoal / 0.4 t peat coke / 0.3 t petroleum coke / 0.5 t ashless coal) as long as it is merely ensured that an adequate amount of activated carbon is provided from the reducing agent briquettes.

Som allerede nævnt kan reduktionsmiddelbriketterne til den her omhandlede fremgangsmåde i princippet fremstilles på vilkårlig måde. Man må imidlertid sørge for, at 15 reduktionsmiddelbriketterne er tilstrækkelig bestandige, således at de kan indføres i en elektroskaktovn sammen med kvartsråmaterialet og reagere på den beskrevne måde i elektroskaktovnen. Ved en foretrukken udførelsesform for opfindelsen anvendes reduktionsmiddelbriketter, der 20 er fremstillet ved varmbrikettering i form af ægbriketter eller pudebriketter og udviser en størrelse på 15-60 cm^. I denne forbindelse er det fordelagtigt at anvende reduktionsmiddelbriketter, hvis carbon indhold består af en til varmbrikettering nødvendig mængde bagende 25 kul samt desuden af indifferente carbonholdige materialer, såsom petroleumskoks, antracit, grafit, brun- og stenkulskoks. Det skal bemærkes, at den her omhandlede fremgangsmåde også kan gennemføres til fremstilling af ferro-silicium og silicometal, idet man foruden kvartsråma-30 teriale tilfører elektroskaktovnen passende stoffer, f.eks. jernspåner eller jerngranulat.As already mentioned, the reducing agent briquettes for the process of the present invention can in principle be manufactured in any manner. However, care must be taken that the reducing agent briquettes are sufficiently resistant so that they can be introduced into an electric shaft furnace together with the quartz feedstock and react in the manner described in the electric shaft furnace. In a preferred embodiment of the invention, reducing agent briquettes produced by hot briquetting in the form of egg briquettes or pillow briquettes and having a size of 15-60 cm 2 are used. In this connection, it is advantageous to use reducing agent briquettes whose carbon content consists of a quantity of baking coal needed for hot briquetting as well as inert carbonaceous materials such as petroleum coke, anthracite, graphite, brown and coal coke. It should be noted that the process of the present invention can also be carried out for the production of ferro-silicon and silicon metal, in addition to the quartz raw material supplying suitable materials, e.g. iron shavings or iron granules.

Den foreliggende opfindelse er baseret på erkendelsen af, at der ved reduktionen af siliciumdioxid med carbon i reduktionsmiddelbriketterne foruden siliciumcarbid og- DK 168003 B1 4 så dannes aktivt carbon, der som nydannet carbon foruden siliciumcarbidet står til rådighed ved reduktionen af siliciumdioxidet i elektroskaktovnens nedre del. Dette fører til et forøget udbytte og en reduceret energian-5 vendelse.The present invention is based on the recognition that in the reduction of carbon dioxide in the reducing agent briquettes besides silicon carbide, active carbon is formed which, as newly formed carbon in addition to the silicon carbide, is available in the reduction of the silica in the electric shaft furnace. This leads to increased yield and reduced energy use.

I det følgende belyses opfindelsen nærmere ved en række udførelseseksempler.In the following, the invention is further illustrated by a number of exemplary embodiments.

EKSEMPEL 1EXAMPLE 1

Til fremstilling af ca. 600 t silicium blev der fremstil-10 let 1200 t briketter, der blev tilført elektroovnen sam men med en næsten lige så stor mængde stykformet kvarts.For the manufacture of approx. 600 tonnes of silicon produced 1200 tonnes of briquettes, which were supplied to the electric furnace together with an almost equal amount of unitary quartz.

I et første trin blev der fremstillet briketter ud fra en blanding af 30 % bagende kul 32 % petroleumskoks 38 % kvartssand (99,8 Yo Si02) under anvendelse af varmbriketteringsfremgangsmåden, dvs.In a first step, briquettes were prepared from a mixture of 30% baking coal 32% petroleum coke 38% quartz sand (99.8 Yo SiO 2) using the hot briquetting process, ie.

15 under anvendelse af kul som bindemiddel ved temperaturer på ca. 500 °C. De færdige afkølede briketter blev undersøgt. De indeholdt (42 - 0,4) Si02 og (52 - 0,7) Cfix·15 using coal as a binder at temperatures of approx. 500 ° C. The finished cooled briquettes were examined. They contained (42 - 0.4) SiO 2 and (52 - 0.7) Cfix ·

En styrkeundersøgelse viste, at der var opnået punkttrykstyrker på 150-200 kg, hvilket kan forklares ved 20 inkorporering af de indifferente stoffer, f.eks. petro leumskoks og sand i de smeltede og atter afkølede kul.A strength study showed that point compressive strengths of 150-200 kg were obtained, which can be explained by the incorporation of the inert substances, e.g. petro clay coke and sand in the melted and re-cooled coals.

En måling af briketternes indre overflade viste 0,5-1,0 m /g. Dette betyder, at der ikke foreligger nogle i reaktionskinetisk henseende interessante overflader, på hvilke DK 168003 B1 5 der kan foregå heterogene reaktioner med høj omsætningshastighed mellem gasser, såsom SiO og carbon.A measurement of the internal surface of the briquettes showed 0.5-1.0 m / g. This means that there are no surfaces of reaction kinetically interesting surfaces on which heterogeneous reactions with high conversion rates between gases such as SiO and carbon can occur.

I et andet trin blev briketterne tilført en elektroskakt-ovn. Før indføringen i ovnen blev det ved slid og ned-5 knusning under transport dannede materiale frasiet. Andelen af dette fine materiale var mindre end 4 %, hvilket var et særdeles godt resultat. For trækul, tørvekul og kul konstateres langt større nedbrydning, således er værdier på mere end 10 % kendt.In a second step, the briquettes were fed to an electric shaft furnace. Prior to insertion into the furnace, material formed during wear and crushing was shredded. The proportion of this fine material was less than 4%, which was a very good result. For coal, peat and coal, much higher decomposition is found, thus values of more than 10% are known.

10 I elektroovnen, som kontinuerligt blev tilført nyt føde-materiale, forelå en blanding af stykformet kvarts og briketter, der på grund af ensartet opførsel under omrystning blev ophedet og bragt til omsætning i statistisk god fordeling.10 In the electric furnace, which was continuously supplied with new food material, there was a mixture of unitary quartz and briquettes which, due to uniform behavior during shaking, were heated and put into circulation in statistically good distribution.

15 Betragter man totalreaktionen ved fremstilling af silicium15 Consider the total reaction in the production of silicon

Si02 + 2C = Si + 2C0 ser man ud fra analysen af briketterne, at carbon forefindes i en overdosis, og at fuld omsætning først tilvejebringes med den påfølgende reaktion med kvartsstyk-20 kerne. Da der imidlertid før Si-dannelsen dannes sili-ciumcarbid efter ligningenSiO2 + 2C = Si + 2CO it is seen from the analysis of the briquettes that carbon is present in an overdose and that full reaction is first provided with the subsequent reaction with quartz nuclei. However, prior to Si formation, silicon carbide is formed after the equation

Si02 + 3C = SiC + 2C0 er det et spørgsmål, om der foreligger tilstrækkeligt med carbon i briketten. Beregninger viser, at der er ca. dobbelt så meget carbon i briketten som det, der 25 kræves til denne reaktion. Dette svarer til et molfor-hold på 1:5 - 1:6. Dette var blevet tilstræbt for at opretholde den ved varmbriketteringen tilvejebragte koks- DK 168003 B1 6 struktur, også efter tab ved reaktion til siliciumcarbid.SiO2 + 3C = SiC + 2C0 it is a question of whether there is sufficient carbon in the briquette. Calculations show that there are approx. twice as much carbon in the briquette as that required for this reaction. This corresponds to a molar ratio of 1: 5 - 1: 6. This had been sought to maintain the coke structure provided by the hot briquetting, even after loss by reaction to silicon carbide.

Et bevis for denne opfattelse blev tilvejebragt, idet man ved hjælp af termoelementer fandt frem til den temperaturzone, hvori carbidreaktionen fandt sted. Der blev ud-5 taget prøver fra det varme materi ale, som havde en temperatur på mellem 1500 - 1600 °C. Disse prøver viste tydeligt, at briketterne endnu udviste deres oprindelige form, skønt omsætningen mellem carbon og silicium allerede var begyndt eller endog var løbet helt til 10 ende.Proof of this view was provided, finding by means of thermocouples the temperature zone in which the carbide reaction took place. Samples were taken from the hot material, which had a temperature of between 1500 and 1600 ° C. These tests clearly showed that the briquettes were still in their original form, although the conversion between carbon and silicon had already begun or even run to 10 ends.

De fleste briketter udviste en hvid overflade, hvilket betyder, at reaktioner har fundet sted. Mere betydningsfuldt var imidlertid en måling af de afkølede briketters indre overflade. Målingen udviste en stærkt udvidet indre 15 overflade på 20-230 m^/g.Most briquettes showed a white surface, which means reactions have taken place. More significant, however, was a measurement of the internal surface of the cooled briquettes. The measurement showed a greatly expanded inner surface of 20-230 m 2 / g.

Dette førte til en stærk formindskelse af Si02~materiale udskilt ved gasrensningen. Snævert koblet hermed er energiforbrug og siliciumudbytte. På ovnen kunne man konstatere, at strømforbruget gik ned med ca. 14 %, og 20 at Si-udbyttet steg mere end 20 %. En ikke ventet, men økonomisk vigtig fordel var halveringen af elektrode-forbruget. Dette sank fra 128 kg/t Si til 59 kg/t Si. Elektrodebevægelserne gik ned til et minimum.This led to a sharp reduction of SiO 2 material secreted by the gas purification. Closely linked to this are energy consumption and silicon yield. On the stove you could see that the power consumption went down by approx. 14%, and 20 that the Si yield increased more than 20%. An unexpected but economically important advantage was the halving of electrode consumption. This decreased from 128 kg / h Si to 59 kg / h Si. The electrode movements went down to a minimum.

EKSEMPEL 2 25 Ved fremstillingen af ferrosilicium konstateredes endnu gunstigere forhold. Her er tabene ved dannelse af SiO mindre.EXAMPLE 2 25 In the preparation of ferrosilicon, even more favorable conditions were found. Here, the losses of SiO formation are less.

Hvis man går frem som beskrevet ovenfor, således at forholdet mellem tilført mængde stykkvarts og briketter er 30 50:50, og tilsætter jernskrot i en mængde svarende til DK 168003 B1 7 dannelse af 75 %'s legering, erkendes fordelene ved anvendelse af briketterne også tydeligt: Strømforbruget formindskes med 8 %, og siliciumudbyttet stiger med 12 ?0.Proceeding as described above such that the ratio of added quartz to briquettes is 30 50:50, and adding iron scrap in an amount corresponding to the formation of 75% alloy, the advantages of using the briquettes are also recognized. evident: Power consumption is reduced by 8% and silicon yield increases by 12? 0.

Claims (4)

1. Fremgangsmåde til fremstilling af silicium ud fra kvartsråmateriale i en elektroskaktovn, i hvilken der indføres kornformigt kvartsråmateriale og reduktions- 5 middelbriketter bestående af kvarts og carbon med et overskud af carbon i henseende til reaktionen SiC^ + 3C = SiC + 2C0, ved hvilken kvartsen i reduktionsmiddelbriketterne først omsættes til SiC i elektroskaktovnens øvre del ved en temperatur mindre end 1600 °C, hvor-10 efter det flydende kvartsråmateriale reduceres i elektroskaktovnens nedre del ved en temperatur større end 1600 °C, fortrinsvis ved 1800-2000 °C, kendetegnet ved, at der anvendes reduktionsmiddelbriketter, som udviser et overskud af carbon på mere 15 end 50 vægtpct. i henseende til reaktionen S1O2 + 3C = SiC + 2C0, hvorved der i elektroskaktovnens øvre del ved en temperatur mindre end 1600 °C foruden SiC dannes aktiveret carbon i reduktionsmiddelbriketterne, hvorved disse antager en koksagtig struktur, samt at kvartsråmateri-20 alet reduceres dels med dette aktiverede carbon dels med SiC i elektroskaktovnens nedre del.A process for producing silicon from quartz feedstock in an electric shaft furnace, in which granular quartz feedstock and quartz and carbon reduction briquettes are introduced with excess carbon with respect to the SiC 2 + 3 C = SiC + 2 CO the quartz in the reducing agent briquettes is first reacted to SiC in the upper part of the electric shaft furnace at a temperature less than 1600 ° C, after which the liquid quartz raw material is reduced in the lower part of the electric shaft furnace at a temperature greater than 1600 ° C, preferably at 1800-2000 ° C. by using reducing agent briquettes which exhibit an excess carbon of more than 15% by weight. with respect to the reaction S1O2 + 3C = SiC + 2CO, whereby in the upper part of the electric shaft furnace at activated temperature less than 1600 ° C, activated carbon is formed in the reducing agent briquettes, thereby assuming a coke-like structure and reducing the quartz material partly by this activated carbon partly with SiC in the lower part of the electric shaft furnace. 2. Fremgangsmåde ifølge krav 1, kendetegnet ved, at der arbejdes med reduktionsmiddelbriketter, der udviser et overskud af carbon på mindre end 90 vægtpct., 25 fortrinsvis ca. 80 vægtpct. 1 Fremgangsmåde ifølge ethvert af kravene 1 eller 2, kendetegnet ved, at mindst 50 vægtpct. af det anvendte kvartsråmateriale reduceres med det aktiverede carbon i reduktionsmiddelbriketterne i elektroskaktovnens 30 nedre del. DK 168003 B1Process according to claim 1, characterized in that working with reducing agent briquettes exhibiting an excess of carbon of less than 90% by weight, preferably approx. 80% by weight A method according to any one of claims 1 or 2, characterized in that at least 50 wt. of the quartz feedstock used is reduced with the activated carbon in the reducing agent briquettes in the lower portion of the electric shaft furnace 30. DK 168003 B1 4. Fremgangsmåde ifølge ethvert af kravene 1-3, kendetegnet ved, at der arbejdes med reduktionsmiddelbriketter, der er fremstillet ved varm-brikettering i form af ægbriketter eller pudebriketter.Method according to any one of claims 1-3, characterized in that working with reducing agent briquettes made by hot briquetting in the form of egg briquettes or pillow briquettes is used. 5. Fremgangsmåde ifølge krav 4, kendetegnet ved, at der arbejdes med reduktionsmiddelbriketter, hvis carbonindhold består af en til varmbrikettering nødvendig mængde bagende kul, samt af inerte carbonholdige materialer, såsom petroleumskoks, antracit, grafit, 10 brun- og stenkulskoks.Process according to claim 4, characterized in that reducing agent briquettes are used, the carbon content of which consists of a quantity of baking coal needed for hot briquetting, as well as inert carbonaceous materials such as petroleum coke, anthracite, graphite, brown and coal coke.
DK557384A 1983-11-26 1984-11-23 METHOD OF MAKING SILICONE DK168003B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE3342890 1983-11-26
DE3342890 1983-11-26
DE3411731 1984-03-30
DE19843411731 DE3411731A1 (en) 1983-11-26 1984-03-30 METHOD FOR PRODUCING SILICON FROM RAW MATERIAL QUARTZ IN AN ELECTRONIC LOWER FURNACE AND METHOD FOR REDUCING OXIDIC RAW MATERIALS

Publications (3)

Publication Number Publication Date
DK557384D0 DK557384D0 (en) 1984-11-23
DK557384A DK557384A (en) 1985-05-27
DK168003B1 true DK168003B1 (en) 1994-01-17

Family

ID=25815937

Family Applications (1)

Application Number Title Priority Date Filing Date
DK557384A DK168003B1 (en) 1983-11-26 1984-11-23 METHOD OF MAKING SILICONE

Country Status (27)

Country Link
AT (1) AT396460B (en)
AU (1) AU568166B2 (en)
BE (1) BE901114A (en)
BR (1) BR8405974A (en)
CA (1) CA1217032A (en)
CH (1) CH663610A5 (en)
DD (1) DD229102A5 (en)
DE (1) DE3411731A1 (en)
DK (1) DK168003B1 (en)
ES (1) ES8600702A1 (en)
FI (1) FI76056C (en)
FR (1) FR2555565B1 (en)
GB (1) GB2150128B (en)
IE (1) IE57642B1 (en)
IN (1) IN162374B (en)
IT (1) IT1177279B (en)
LU (1) LU85649A1 (en)
MX (1) MX162694A (en)
MY (1) MY100749A (en)
NL (1) NL8403572A (en)
NO (1) NO163004B (en)
PH (1) PH22408A (en)
PL (1) PL148125B1 (en)
PT (1) PT79544B (en)
SE (1) SE461647B (en)
YU (1) YU43676B (en)
ZW (1) ZW19184A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3356169A (en) * 1966-04-01 1967-12-05 Emery Co A H Batch weigher with respective dials for successive loads and total weight
DE3541125A1 (en) * 1985-05-21 1986-11-27 International Minerals & Chemical Corp., Northbrook, Ill. METHOD FOR THE PRODUCTION OF SILICON OR FERROSILICIUM IN AN ELECTRONIC SHELL OVEN AND FOR THE METHOD SUITABLE RAW MATERIALS
US4981668A (en) * 1986-04-29 1991-01-01 Dow Corning Corporation Silicon carbide as a raw material for silicon production
DE3724541A1 (en) * 1987-07-24 1989-02-02 Applied Ind Materials METHOD AND SYSTEM FOR THE PRODUCTION OF RAW MATERIAL BRIQUETTES FOR THE PRODUCTION OF SILICON OR SILICON CARBIDE OR FERROSILICIUM
SE461037B (en) * 1987-10-09 1989-12-18 Skf Plasma Tech COATED BY COAL AND SILICON Dioxide CONTINUOUSLY MAKING LIQUID SILICONE IN A REACTOR
US4997474A (en) * 1988-08-31 1991-03-05 Dow Corning Corporation Silicon smelting process
US4897852A (en) * 1988-08-31 1990-01-30 Dow Corning Corporation Silicon smelting process
US4898712A (en) * 1989-03-20 1990-02-06 Dow Corning Corporation Two-stage ferrosilicon smelting process
DE3923446C1 (en) * 1989-07-15 1990-07-26 Applied Industrial Materials Corp. Aimcor, Deerfield, Ill., Us
EA201100571A1 (en) * 2008-09-30 2011-10-31 Эвоник Дегусса Гмбх RECEIVING SILICON FOR SOLAR BATTERIES FROM SILICON DIOXIDE
EP2530050A1 (en) * 2011-06-03 2012-12-05 Evonik Solar Norge AS Starting materials for production of solar grade silicon feedstock
WO2012163534A1 (en) * 2011-06-03 2012-12-06 Evonik Solar Norge As Starting materials for production of solar grade silicon feedstock

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1530655A (en) * 1967-05-19 1968-06-28 Pechiney Prod Chimiques Sa Manufacture of silicon and its alloys by carbothermal energy
DE1915905C3 (en) * 1969-03-28 1974-07-11 Eschweiler Bergwerks-Verein, 5122 Kohlscheid Process for the production of hot briquettes
BE759122A (en) * 1969-11-19 1971-05-18 Union Carbide Corp PROCESS AND CHARGE FOR THE PRODUCTION OF SILICON IN AN ELECTRIC ARC OVEN BY CARBOTHERMAL REDUCTION OF SILICA
GB2008559A (en) * 1977-09-09 1979-06-06 Goldblatt N Z Production of silicon
DE3009808C2 (en) * 1980-03-14 1982-02-18 Coc-Luxembourg S.A., Luxembourg Process for the production of raw material blanks containing silicon and carbon and the use of the raw material blanks
DE3032720C2 (en) * 1980-08-30 1982-12-16 International Minerals & Chemical Luxembourg S.A., 2010 Luxembourg Process for the production of silicon from quartz and carbon in an electric furnace

Also Published As

Publication number Publication date
IN162374B (en) 1988-05-14
IT1177279B (en) 1987-08-26
ES537973A0 (en) 1985-11-01
AU568166B2 (en) 1987-12-17
BR8405974A (en) 1985-08-06
SE8405904L (en) 1985-05-27
ZW19184A1 (en) 1985-05-08
PL148125B1 (en) 1989-09-30
DD229102A5 (en) 1985-10-30
NO163004B (en) 1989-12-11
DK557384D0 (en) 1984-11-23
DK557384A (en) 1985-05-27
SE8405904D0 (en) 1984-11-23
FI844617A0 (en) 1984-11-23
PH22408A (en) 1988-08-26
CH663610A5 (en) 1987-12-31
BE901114A (en) 1985-03-15
YU198784A (en) 1987-12-31
IE843012L (en) 1985-05-26
FI76056B (en) 1988-05-31
MX162694A (en) 1991-06-17
AU3586984A (en) 1985-05-30
ES8600702A1 (en) 1985-11-01
FR2555565A1 (en) 1985-05-31
ATA373684A (en) 1993-01-15
AT396460B (en) 1993-09-27
FR2555565B1 (en) 1986-12-26
DE3411731A1 (en) 1985-11-07
SE461647B (en) 1990-03-12
IT8423680A0 (en) 1984-11-21
GB2150128A (en) 1985-06-26
CA1217032A (en) 1987-01-27
NO844668L (en) 1985-05-28
NL8403572A (en) 1985-06-17
PT79544A (en) 1984-12-01
YU43676B (en) 1989-10-31
DE3411731C2 (en) 1987-07-09
FI844617L (en) 1985-05-27
IE57642B1 (en) 1993-02-10
GB8428898D0 (en) 1984-12-27
FI76056C (en) 1988-09-09
LU85649A1 (en) 1985-06-04
GB2150128B (en) 1987-07-29
MY100749A (en) 1991-02-14
PL250592A1 (en) 1985-07-30
PT79544B (en) 1986-09-15
IT8423680A1 (en) 1986-05-21

Similar Documents

Publication Publication Date Title
DK168003B1 (en) METHOD OF MAKING SILICONE
CS225844B2 (en) The production of semi-products used for the production of the silicon and/or of the silicon xarbide
DK151218B (en) PROCEDURE FOR THE MANUFACTURE OF SILICONE IN A ELECTRON OVEN FROM QUARTZ AND CARBON
GB2175577A (en) Process for production of silicon or ferrosilicon in an electric low shaft furnace, and raw-material mouldings suitable for the process
SU1091849A3 (en) Method for preparing silicon- and carbon-containing molded raw material
CA1304586C (en) Process and apparatus for the production of green briquettes for the formation of silicon, silicon carbide or ferrosilicon
US6524354B2 (en) Process for the production of low ash fuel
US2808370A (en) Metallurgical coke
JPS6144804B2 (en)
ZA905466B (en) Process for the production of raw material briquettes and raw material briquettes produced by this process
RU2771203C1 (en) Method for preparation of charge for the production of silicon carbide
CA2589727A1 (en) Method for producing lump semicoke
JP3920775B2 (en) Method for producing low ash content fuel
CA2075466C (en) Method of producing silicon and an electric-arc low-shaft furnace and briquette for carrying out the process
US4171281A (en) Graphitization and reducing charge
RU2796955C2 (en) Briquetted mixture for smelting technical silicon
SU737387A1 (en) Charge for producing refractory articles
SU637378A1 (en) Method of obtaining porous aggregate
SU939574A1 (en) Method for preparing briquets
SU1479413A1 (en) Method of producing carbon articles
SU988793A1 (en) Batch for making refractories
SU527403A1 (en) Refractory padded mass for lining thermal units
JPS58183789A (en) Production of coke for high-quality electrodes
AU2001260589A1 (en) Process for the production of low ash fuel
JPH01249614A (en) Caked composition consisting of chaff and chaff ash and its production

Legal Events

Date Code Title Description
B1 Patent granted (law 1993)
PBP Patent lapsed