NO163004B - PROCEDURE FOR MANUFACTURING SILICON FROM QUARTERLY MATERIAL. - Google Patents

PROCEDURE FOR MANUFACTURING SILICON FROM QUARTERLY MATERIAL. Download PDF

Info

Publication number
NO163004B
NO163004B NO844668A NO844668A NO163004B NO 163004 B NO163004 B NO 163004B NO 844668 A NO844668 A NO 844668A NO 844668 A NO844668 A NO 844668A NO 163004 B NO163004 B NO 163004B
Authority
NO
Norway
Prior art keywords
briquettes
quartz
carbon
sic
reducing agent
Prior art date
Application number
NO844668A
Other languages
Norwegian (no)
Other versions
NO844668L (en
Inventor
Gert-Wilhelm Lask
Original Assignee
Int Minerals & Chem Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Int Minerals & Chem Corp filed Critical Int Minerals & Chem Corp
Publication of NO844668L publication Critical patent/NO844668L/en
Publication of NO163004B publication Critical patent/NO163004B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/023Preparation by reduction of silica or free silica-containing material
    • C01B33/025Preparation by reduction of silica or free silica-containing material with carbon or a solid carbonaceous material, i.e. carbo-thermal process

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Silicon Compounds (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

Foreliggende oppfinnelse angår en fremgangsmåte for fremstilling av silisium fra kvarts som råstoff i en elektrisk smelteovn av lavsjakttype, hvorunder smelteovnen tilføres nevnte kvartsråstoff i partikkelform samt dessuten også reduksjonsmiddelbriketter bestående av kvarts og karbon og som oppviser et overskudd av karbon på mer enn 50 vekt% med hensyn på reaksjonen SiC>2 + 3C = Sic + 2CO, idet kvartsandelen av reduksjonsmiddelbrikettene først omsettes til SiC i en øvre del av smelteovnen ved en temperatur under 1600°C og derpå nevnte kvartsråstoff i flytende tilstand reduseres i en nedre del av smelteovnen ved en temperatur over 1600°C og fortrinnsvis mellom 1800 og 2000°C. The present invention relates to a method for the production of silicon from quartz as raw material in an electric melting furnace of the low shaft type, during which the melting furnace is supplied with said quartz raw material in particle form as well as also reducing agent briquettes consisting of quartz and carbon and which show an excess of carbon of more than 50% by weight with consideration of the reaction SiC>2 + 3C = Sic + 2CO, as the quartz portion of the reducing agent briquettes is first converted to SiC in an upper part of the melting furnace at a temperature below 1600°C and then said quartz raw material in a liquid state is reduced in a lower part of the melting furnace at a temperature above 1600°C and preferably between 1800 and 2000°C.

Reduksjonsmiddelbrikettene fremstilles fortrinnsvis ved en varmbriketteringsprosess. Betegnelsen "kvartsråstoff" anvendt i forbindelse med foreliggende oppfinnelse omfatter alle Si02-bærere som anvendes ved fremstilling av silisium, særlig kvartsitt og kvartssand. For fremstilling av reduksjonsmiddelbrikettene anvendes vanligvis kvartssand. Uttrykket "varmbrikettering" betyr slik det anvendes i forbindelse med foreliggende oppfinnelse en brikettering uten bindemiddel, og hvor utgangsmaterialet oppvarmes til en temperatur mellom 430 og 540°C samt formes under trykk til briketter (se BRD patent nr. 1.915.905). Innenfor oppfinnelsens ramme kan det imidlertid også anvendes reduksjonsmiddelbriketter som er blitt fremstilt på annen måte. The reducing agent briquettes are preferably produced by a hot briquetting process. The term "quartz raw material" used in connection with the present invention includes all SiO2 carriers used in the production of silicon, especially quartzite and quartz sand. For the production of the reducing agent briquettes, quartz sand is usually used. The term "hot briquetting" as used in connection with the present invention means briquetting without binder, and where the starting material is heated to a temperature between 430 and 540°C and formed under pressure into briquettes (see BRD patent no. 1,915,905). However, within the framework of the invention, reducing agent briquettes which have been produced in another way can also be used.

Ved en kjent fremgangsmåte av samme art (DE-PS 3.032.720) benyttes reduksjonsmiddelbriketter som høyst oppviser bare et lite overskudd av karbon med hensyn på reaksjonen Si02 + 3C = SiC + 2C0. Man etterstreber faktisk en mest mulig fullstendig omsetning av reaktantene under nevnte reaksjon i reduksjonsmiddelbrikettene, og da til SiC og CO, for deretter å oppnå reduksjon av det foreliggende flytende kvartsråstoff i den nedre del av lavsjaktovnen ved nevnte høye temperatur og med SiC som reduktant. Det nevnte overskudd av karbon foreligger da bare på grunn av at karbonet ved reduksjonen av silisiumdioksyd i reduksjonsmiddelbrikettene også reagerer med oksygen og går i denne forbindelse tapt for reduksjon av silisium dioksyd. Innenfor rammen av de kjente prosesser består reduksjonsmiddelbrikettene etter reaksjonen av sili-siumdioksyder imidlertid i praksis av silisiumkarbid og ikke lengder av karbon. De kjente fremgangsmåter har vist seg hensiktsmessig, men behøver en forbedring med hensyn til silisiumutbyttet og således også med hensyn til energibehov. In a known method of the same kind (DE-PS 3,032,720) reducing agent briquettes are used which at most show only a small excess of carbon with regard to the reaction Si02 + 3C = SiC + 2C0. One actually strives for the most complete conversion of the reactants during said reaction in the reducing agent briquettes, and then to SiC and CO, in order to then achieve reduction of the present liquid quartz raw material in the lower part of the low shaft furnace at said high temperature and with SiC as reductant. The aforementioned excess of carbon then exists only because the carbon during the reduction of silicon dioxide in the reducing agent briquettes also reacts with oxygen and is in this connection lost to the reduction of silicon dioxide. Within the framework of the known processes, however, the reducing agent briquettes after the reaction of silicon dioxides in practice consist of silicon carbide and not lengths of carbon. The known methods have proven to be appropriate, but need an improvement with regard to the silicon yield and thus also with regard to energy requirements.

Det er derfor et formål for oppfinnelsen å forbedre den inn-ledningsvis angitte fremgangsmåte på sådan måte at det ved nedsatt energiforbruk oppnås høyt silisiumutbytte. It is therefore an object of the invention to improve the method indicated at the outset in such a way that a high silicon yield is achieved with reduced energy consumption.

Innenfor rammen av denne fremgangsmåte oppnås dette i henhold til oppfinnelsen ved at overskuddet av karbon i reduksjonsmiddelbrikettene med hensyn på réaksjonen SiC>2 + 3C = SiC + 2C0, gjøres mindre enn 90 vekt%, således at brikettene i den øvre del av smelteovnen ved en temperatur under 1600°C antar en koksaktig struktur, som i tillegg til det dannede SiC oppviser aktivert karbon. Within the framework of this method, this is achieved according to the invention by making the excess of carbon in the reducing agent briquettes with regard to the reaction SiC>2 + 3C = SiC + 2C0 less than 90% by weight, so that the briquettes in the upper part of the melting furnace at a temperature below 1600°C assumes a coke-like structure, which in addition to the formed SiC exhibits activated carbon.

En optimalisering oppnås ved å utføre fremgangsmåten i sin helhet på sådan måte at minst 50 vekt% av det tilførte kvartsråstoff reduseres med aktivert karbon i den nedre del av den elektriske lavsjaktovn. Som helhet innstilles beskik-ningen slik at materialbalansen er korrekt. I denne forbindelse er det ikke nødvendig å utelukkende anvende reduk-sjonsbriketter av den angitte sammensetning. Innenfor visse grenser kan det således anvendes en klassisk beskikning, som f. eks kan bestå av tre deler kvarts, 0,4 delertrekull, 0,4 deler torv, 0,3 deler petroleumkoks, og 0,5 deler askefattig kull, så lenge det er sikret at aktivert karbon er tilgjengelig i tilstrekkelig mengde fra reduksjonsmiddelbrikettene. An optimization is achieved by carrying out the method in its entirety in such a way that at least 50% by weight of the supplied quartz raw material is reduced with activated carbon in the lower part of the electric low shaft furnace. As a whole, the arrangement is set so that the material balance is correct. In this connection, it is not necessary to exclusively use reduction briquettes of the specified composition. Within certain limits, a classic coating can thus be used, which can, for example, consist of three parts quartz, 0.4 parts wood charcoal, 0.4 parts peat, 0.3 parts petroleum coke, and 0.5 parts low-ash coal, as long as is ensured that activated carbon is available in sufficient quantity from the reducing agent briquettes.

Som allerede nevnt er måte og midler for fremstilling av reduksjonsmiddelbrikettene hovedsakelig uten betydning for oppfinnelsens fremgangsmåte. Det må imidlertid sikres at brikettene er tilsvarende stabile til å kunne innføres på angitt måte som beskikning sammen med kvartsråstoffet i en elektrisk lavsjaktovn, samt å reagere der på beskrevet måte. I henhold til en foretrukket utførelse av anvendes reduksjonsmiddelbriketter som er fremstilt ved varmbrikettering i form av eggbriketter eller putebriketter med en størrelse mellom 15 og 60 cm-*. I sammenheng med dette anbefales videre at det benyttes briketter hvis karboninnhold i den grad som er nødvendig for varmebriketteringen består av kakedannende kull og forøvrig av inerte karbonbærere, slik som petroleumkoks, antrasitt, grafitt, samt brunkull- og stenkullkoks. Det vil forstås at fremgangsmåten i henhold til oppfinnelsen kan utvides til fremstilling av ferrosilisium og silisium-metall, idet man i tillegg til kvartsråstoff tilfører tilsvarende egnede substanser, for eksempel jernspon eller jerngranulat, i vedkommende elektriske lavsjaktovn. As already mentioned, the method and means for producing the reducing agent briquettes are mainly of no importance for the method of the invention. However, it must be ensured that the briquettes are sufficiently stable to be able to be introduced in the specified manner as a coating together with the quartz raw material in an electric low shaft furnace, as well as to react there in the manner described. According to a preferred embodiment, reducing agent briquettes are used which have been produced by hot briquetting in the form of egg briquettes or pillow briquettes with a size between 15 and 60 cm-*. In connection with this, it is further recommended that briquettes are used whose carbon content, to the extent necessary for heat briquetting, consists of cake-forming coal and otherwise of inert carbon carriers, such as petroleum coke, anthracite, graphite, as well as lignite and hard coal coke. It will be understood that the method according to the invention can be extended to the production of ferrosilicon and silicon metal, as in addition to quartz raw material, correspondingly suitable substances, for example iron shavings or iron granules, are added in the relevant electric low shaft furnace.

Oppfinnelsen utgår fra den erkjennelse av det ved reduksjon av silisiumdioksyd med karbon i reduksjonsmiddelbrikettene ved siden av silisiumkarbid også dannes aktivt karbon, som faktisk er tilgjengelig som nydannet karbon i den nedre del av den elektriske lavsjaktovn ved siden av silisiumkarbid for reduksjon av det foreliggende silisiumdioksyd, hvilket som resultat gir forbedret utbytte og nedsatt energiforbruk. Dette vil i det følgende bli nærmere forklart ved hjelp av utførelseseksempler. The invention is based on the recognition that when silicon dioxide is reduced with carbon in the reducing agent briquettes next to silicon carbide, activated carbon is also formed, which is actually available as newly formed carbon in the lower part of the electric low shaft furnace next to silicon carbide for the reduction of the present silicon dioxide, which results in improved yield and reduced energy consumption. In the following, this will be explained in more detail using design examples.

Eksempel 1. Example 1.

For dannelse av omkring 600 tonn silisium ble 1200 tonn briketter fremstilt, som med en tilnærmet like stor mengde stykkvarts ble tilsatt elektroovnen. For the formation of around 600 tonnes of silicon, 1,200 tonnes of briquettes were produced, which were added to the electric furnace with an approximately equal amount of quartz.

I det første fremgangsmåtetrinn ble briketter med en sammensetning av: In the first method step, briquettes with a composition of:

30 % kakedannende kull, 30% cake-forming coal,

32 % petroleumskoks, og 32% petroleum coke, and

38 % kvartssand (99,8 % Si02), fremstilt 38% quartz sand (99.8% SiO2), prepared

i samsvar méd varmbriketteringsprosessen, hvilket vil si at det ble anvendt kull ved temperaturer omkring 500°C som in accordance with the hot briquetting process, which means that coal was used at temperatures around 500°C as

bindemiddel. De ferdige nedkjølte briketter ble undersøkt og viste seg å inneholde: binder. The finished cooled briquettes were examined and found to contain:

En fasthetsundersøkelse viste at punkttrykkfastheter fra 150 til 200 kg var oppnådd, hvilket tilskrives innleiring av inerte substanser, slik som petroleumskoks og sand, i det smeltede atter størknede kull. En måling av den indre overflate av brikettene ga som resultat 0,5 til 1,0 m<2>/g. Dette betyr at det her foreligger reaksjonskinetisk interessante overflater, hvor heterogene omsetninger mellom gasser som SiO på den ene side, og karbon på den annen side kan finne sted med høy omsetningstakt. A strength investigation showed that compressive strengths of 150 to 200 kg had been achieved, which is attributed to the embedding of inert substances, such as petroleum coke and sand, in the melted and solidified coal. A measurement of the inner surface of the briquettes resulted in 0.5 to 1.0 m<2>/g. This means that there are reaction kinetically interesting surfaces here, where heterogeneous reactions between gases such as SiO on the one hand, and carbon on the other hand can take place with a high rate of reaction.

I et annet fremgangsmåtetrinn ble brikettene tilført en elektrisk lavsjaktovn. Før innføringen i ovnen ble materialet siktet for bestanddeler som kunne skrive seg fra avrivning og utbrytning under transport. Dette finmaterial utgjorde en andel under 4 %. Dette er imidlertid et meget godt resultat, idet trekull, torv og kullstykker avrives i meget sterkere grad. Verdier på mer enn 10 % er kjent i denne forbindelse. In another process step, the briquettes were fed to an electric low-pitched furnace. Before being introduced into the oven, the material was screened for components that could result from tearing and breaking out during transport. This fine material accounted for less than 4%. However, this is a very good result, as charcoal, peat and pieces of coal are torn off to a much greater extent. Values of more than 10% are known in this regard.

I den elektriske smelteovn befant seg ved kontinuerlig ifyl-ling en blanding av stykkkvarts og briketter, som på grunnlag av likeartet oppførsel ved sammenrysting ble oppvarmet under statistisk god fordeling og bragt til innbyrdes reaksjon. In the electric melting furnace, there was a mixture of lump quartz and briquettes, which, on the basis of similar behavior during shaking, was heated under statistically good distribution and brought to mutual reaction by continuous filling.

Ved betraktning av den alminnelige reaksjon ved nevnte fremstilling av silisium, nemlig When considering the general reaction in the aforementioned production of silicon, viz

Si02 + 2C = Si + 2C0, SiO2 + 2C = Si + 2C0,

så kan man ut i fra analyse av brikettene se at det foreligger et overskudd av karbon i disse, og først den ytter-ligere reaksjon med kvartsstykkene sikrer den fullstendige omsetning.Da imidlertid silisiumkarbid opptrer før dannelsen av silisium i henhold til ligningen then one can see from analysis of the briquettes that there is an excess of carbon in them, and only the further reaction with the quartz pieces ensures complete conversion. However, since silicon carbide appears before the formation of silicon according to the equation

Si02 + 3C = SiC + 2CO, SiO2 + 3C = SiC + 2CO,

forblir det et spørsmål om tilstrekkelig karbon foreligger i brikettene for dette formål. Beregninger viser at omtrent it remains a question of whether sufficient carbon is present in the briquettes for this purpose. Calculations show that approx

dobbelt så mye karbon foreligger i forhold til det som er nødvendig for reaksjonen. Dette utgjør et molforhold på 1:5 til 1:6. Dette er tilsiktet med det formål å opprett-holde de koksstrukturer som skriver seg fra varmbriketterin-gen, selv om tap opptrer ved reaksjonen til silisiumkarbid. twice as much carbon is present in relation to what is necessary for the reaction. This amounts to a molar ratio of 1:5 to 1:6. This is intended for the purpose of maintaining the coke structures that emerge from the hot briquetting, even if losses occur during the reaction to silicon carbide.

En forståelse for dette forhold ble oppnådd ved anvendelse av termoelementer for å finne frem til den temperatursone hvor karbidreaksjonen opptrer. Fra det varme material.som hadde en temperatur mellom 1500 og 1600°C ble det tatt ut prøver, og disse viste klart at brikettene fremdeles hadde sin opp-rinnelige form, skjønt omsetningen mellom karbon og silisium allerede var blitt innledet eller til og med var fullført. An understanding of this relationship was achieved by using thermocouples to find the temperature zone where the carbide reaction occurs. Samples were taken from the hot material, which had a temperature between 1500 and 1600°C, and these clearly showed that the briquettes still had their original form, although the reaction between carbon and silicon had already started or even had finished.

De fleste briketter oppviste en hvit overflate. Dette betyr at reaksjoner hadde funnet sted på disse steder. Viktigere var. imidlertid målingen av de indre flater av nedkjølte briketter. Denne måling viste en betraktelig utvidet indre overflate på mellom 20 og 230 m<2>/g. Most briquettes had a white surface. This means that reactions had taken place in these places. More important was. however, the measurement of the internal surfaces of cooled briquettes. This measurement showed a considerably expanded inner surface of between 20 and 230 m<2>/g.

Dette førte til en betraktelig nedsettelse av SiC^-utfel-lingen i gassrensingen. I nær sammenheng med dette står energiforbruket og silisiumutbyttet. Det ble målt ved smelteovnen at forbruket .av elektrisk effekt var nedsatt med omkring 14 %, mens silisiumutbyttet var øket med mer enn 20 %. En uventet, men viktig økonomisk fordel var det forhold at elektrodeforbruket var nedsatt til det halve. Dette forbruk sank fra 128 kg/tonn Si til 59 kg/tonn Si. Elektrodebeve-gelsene avtok til et minimum. This led to a considerable reduction in the SiC^ precipitation in the gas purification. Energy consumption and silicon yield are closely related to this. It was measured at the melting furnace that the consumption of electrical power was reduced by around 14%, while the silicon yield was increased by more than 20%. An unexpected but important financial advantage was the fact that electrode consumption was reduced by half. This consumption fell from 128 kg/tonne Si to 59 kg/tonne Si. The electrode movements decreased to a minimum.

Eksempel 2.Example 2.

Ved en fremstilling av ferrosilisium ligger forholdene gunstigere an. Her er tapene ved dannelse av SiO lavere. In the production of ferrosilicon, the conditions are more favorable. Here the losses due to the formation of SiO are lower.

Hvis man går frem på den ovenfor beskrevne måte, således at tilførselen av stykkvarts og briketter opprettholdes med et innbyrdes forhold på 50:50, mens skrapjern tilsettes i sådan grad at en 7 5-legering oppstår, kan fordelene ved brikettene enda klarere erkjennes, idet det elektriske effektforbruk i dette tilfelle avtok med 8 %, mens silisiumutbyttet øket med 12 %. If one proceeds in the manner described above, so that the supply of lump quartz and briquettes is maintained with a mutual ratio of 50:50, while scrap iron is added to such an extent that a 7 5 alloy is created, the advantages of the briquettes can be recognized even more clearly, as the electrical power consumption in this case decreased by 8%, while the silicon yield increased by 12%.

Claims (1)

Fremgangsmåte for fremstilling av silisium fra kvarts som råstoff i en elektrisk smelteovn av lavsjakttype, hvorunder smelteovnen tilføres nevnte kvartsråstoff i partikkelform samt også reduksjonsmiddelbriketter bestående av kvarts og karbon og som oppviser et overskudd av karbon på mer enn 50 vekt% med hensyn på reaksjonen Si02 + 3C = SiC + 2CO,Process for the production of silicon from quartz as raw material in a low-shaft type electric melting furnace, during which the melting furnace is supplied with said quartz raw material in particulate form as well as reducing agent briquettes consisting of quartz and carbon and showing an excess of carbon of more than 50% by weight with regard to the reaction Si02 + 3C = SiC + 2CO, idet kvartsandelen av reduksjonsmiddelbrikettene først omsettes til SiC i en øvre del av smelteovnen ved en temperatur under 1600°C, og derpå nevnte kvartsråstoff i flytende tilstand reduseres i en nedre del av smelteovnen ved en temperatur over 1600°C og fortrinnsvis mellom 1800 og 2000°C,karakterisert ved at overskuddet av karbon i reduksjonsmiddelbrikettene med hensyn på reaksjonen Si02 + 3C = SiC + 2CO, gjøres mindre enn 90 vekt%, således at brikettene i den øvre del av smelteovnen ved en temperatur under 1600°C antar en koksaktig struktur, som i tillegg til det dannede SiC oppviser aktivert karbon.in that the quartz portion of the reducing agent briquettes is first converted to SiC in an upper part of the melting furnace at a temperature below 1600°C, and then said quartz raw material in a liquid state is reduced in a lower part of the melting furnace at a temperature above 1600°C and preferably between 1800 and 2000° C, characterized in that the excess of carbon in the reducing agent briquettes with regard to the reaction Si02 + 3C = SiC + 2CO is made less than 90% by weight, so that the briquettes in the upper part of the melting furnace at a temperature below 1600°C assume a coke-like structure, which in addition to the formed SiC exhibits activated carbon.
NO844668A 1983-11-26 1984-11-23 PROCEDURE FOR MANUFACTURING SILICON FROM QUARTERLY MATERIAL. NO163004B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3342890 1983-11-26
DE19843411731 DE3411731A1 (en) 1983-11-26 1984-03-30 METHOD FOR PRODUCING SILICON FROM RAW MATERIAL QUARTZ IN AN ELECTRONIC LOWER FURNACE AND METHOD FOR REDUCING OXIDIC RAW MATERIALS

Publications (2)

Publication Number Publication Date
NO844668L NO844668L (en) 1985-05-28
NO163004B true NO163004B (en) 1989-12-11

Family

ID=25815937

Family Applications (1)

Application Number Title Priority Date Filing Date
NO844668A NO163004B (en) 1983-11-26 1984-11-23 PROCEDURE FOR MANUFACTURING SILICON FROM QUARTERLY MATERIAL.

Country Status (27)

Country Link
AT (1) AT396460B (en)
AU (1) AU568166B2 (en)
BE (1) BE901114A (en)
BR (1) BR8405974A (en)
CA (1) CA1217032A (en)
CH (1) CH663610A5 (en)
DD (1) DD229102A5 (en)
DE (1) DE3411731A1 (en)
DK (1) DK168003B1 (en)
ES (1) ES537973A0 (en)
FI (1) FI76056C (en)
FR (1) FR2555565B1 (en)
GB (1) GB2150128B (en)
IE (1) IE57642B1 (en)
IN (1) IN162374B (en)
IT (1) IT1177279B (en)
LU (1) LU85649A1 (en)
MX (1) MX162694A (en)
MY (1) MY100749A (en)
NL (1) NL8403572A (en)
NO (1) NO163004B (en)
PH (1) PH22408A (en)
PL (1) PL148125B1 (en)
PT (1) PT79544B (en)
SE (1) SE461647B (en)
YU (1) YU43676B (en)
ZW (1) ZW19184A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3356169A (en) * 1966-04-01 1967-12-05 Emery Co A H Batch weigher with respective dials for successive loads and total weight
DE3541125A1 (en) * 1985-05-21 1986-11-27 International Minerals & Chemical Corp., Northbrook, Ill. METHOD FOR THE PRODUCTION OF SILICON OR FERROSILICIUM IN AN ELECTRONIC SHELL OVEN AND FOR THE METHOD SUITABLE RAW MATERIALS
US4981668A (en) * 1986-04-29 1991-01-01 Dow Corning Corporation Silicon carbide as a raw material for silicon production
DE3724541A1 (en) * 1987-07-24 1989-02-02 Applied Ind Materials METHOD AND SYSTEM FOR THE PRODUCTION OF RAW MATERIAL BRIQUETTES FOR THE PRODUCTION OF SILICON OR SILICON CARBIDE OR FERROSILICIUM
SE461037B (en) * 1987-10-09 1989-12-18 Skf Plasma Tech COATED BY COAL AND SILICON Dioxide CONTINUOUSLY MAKING LIQUID SILICONE IN A REACTOR
US4897852A (en) * 1988-08-31 1990-01-30 Dow Corning Corporation Silicon smelting process
US4997474A (en) * 1988-08-31 1991-03-05 Dow Corning Corporation Silicon smelting process
US4898712A (en) * 1989-03-20 1990-02-06 Dow Corning Corporation Two-stage ferrosilicon smelting process
DE3923446C1 (en) * 1989-07-15 1990-07-26 Applied Industrial Materials Corp. Aimcor, Deerfield, Ill., Us
EP2331462A2 (en) * 2008-09-30 2011-06-15 Evonik Degussa GmbH Production of solar-grade silicon from silicon dioxide
WO2012163534A1 (en) * 2011-06-03 2012-12-06 Evonik Solar Norge As Starting materials for production of solar grade silicon feedstock
EP2530050A1 (en) * 2011-06-03 2012-12-05 Evonik Solar Norge AS Starting materials for production of solar grade silicon feedstock

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1530655A (en) * 1967-05-19 1968-06-28 Pechiney Prod Chimiques Sa Manufacture of silicon and its alloys by carbothermal energy
DE1915905C3 (en) * 1969-03-28 1974-07-11 Eschweiler Bergwerks-Verein, 5122 Kohlscheid Process for the production of hot briquettes
BE759122A (en) * 1969-11-19 1971-05-18 Union Carbide Corp PROCESS AND CHARGE FOR THE PRODUCTION OF SILICON IN AN ELECTRIC ARC OVEN BY CARBOTHERMAL REDUCTION OF SILICA
GB2008559A (en) * 1977-09-09 1979-06-06 Goldblatt N Z Production of silicon
DE3009808C2 (en) * 1980-03-14 1982-02-18 Coc-Luxembourg S.A., Luxembourg Process for the production of raw material blanks containing silicon and carbon and the use of the raw material blanks
DE3032720C2 (en) * 1980-08-30 1982-12-16 International Minerals & Chemical Luxembourg S.A., 2010 Luxembourg Process for the production of silicon from quartz and carbon in an electric furnace

Also Published As

Publication number Publication date
YU198784A (en) 1987-12-31
YU43676B (en) 1989-10-31
NL8403572A (en) 1985-06-17
IT1177279B (en) 1987-08-26
AU568166B2 (en) 1987-12-17
NO844668L (en) 1985-05-28
ES8600702A1 (en) 1985-11-01
FI844617L (en) 1985-05-27
SE461647B (en) 1990-03-12
DE3411731C2 (en) 1987-07-09
ES537973A0 (en) 1985-11-01
IT8423680A0 (en) 1984-11-21
IE843012L (en) 1985-05-26
BE901114A (en) 1985-03-15
ATA373684A (en) 1993-01-15
PH22408A (en) 1988-08-26
BR8405974A (en) 1985-08-06
CA1217032A (en) 1987-01-27
PT79544B (en) 1986-09-15
GB2150128B (en) 1987-07-29
ZW19184A1 (en) 1985-05-08
DK557384A (en) 1985-05-27
MX162694A (en) 1991-06-17
FI76056B (en) 1988-05-31
IT8423680A1 (en) 1986-05-21
DD229102A5 (en) 1985-10-30
IE57642B1 (en) 1993-02-10
PL148125B1 (en) 1989-09-30
PT79544A (en) 1984-12-01
AU3586984A (en) 1985-05-30
IN162374B (en) 1988-05-14
SE8405904D0 (en) 1984-11-23
DK557384D0 (en) 1984-11-23
FI76056C (en) 1988-09-09
FR2555565B1 (en) 1986-12-26
FR2555565A1 (en) 1985-05-31
MY100749A (en) 1991-02-14
PL250592A1 (en) 1985-07-30
DK168003B1 (en) 1994-01-17
DE3411731A1 (en) 1985-11-07
CH663610A5 (en) 1987-12-31
GB2150128A (en) 1985-06-26
SE8405904L (en) 1985-05-27
AT396460B (en) 1993-09-27
GB8428898D0 (en) 1984-12-27
FI844617A0 (en) 1984-11-23
LU85649A1 (en) 1985-06-04

Similar Documents

Publication Publication Date Title
US3215522A (en) Silicon metal production
NO163004B (en) PROCEDURE FOR MANUFACTURING SILICON FROM QUARTERLY MATERIAL.
CA1159630A (en) Process for the preparation of silicon from quartz and carbon in an electric furnace
CS225844B2 (en) The production of semi-products used for the production of the silicon and/or of the silicon xarbide
US4820341A (en) Process for producing silicon or ferrosilicon in a low-shaft electric furnace
US2755178A (en) Electric smelting process for production of silicon-aluminum alloys
NO172635B (en) PROCEDURE FOR PRODUCING SI BY REDUCING SIO2
RU2673821C1 (en) Charge for production of silicon carbide
JPH0472765B2 (en)
JPH026815B2 (en)
US2808370A (en) Metallurgical coke
JPS6179744A (en) Continuous production of silicon base composite alloyed iron
JPS6144804B2 (en)
NO122660B (en)
JPS5851036B2 (en) Suiso Oyobi Itsusankatansogan Yuugasuno Seihou
NO313511B1 (en) Carbonaceous agglomerates
JPH04332790A (en) Production of briquetted coal
CA1156425A (en) Production of calcium carbide
CA2075466C (en) Method of producing silicon and an electric-arc low-shaft furnace and briquette for carrying out the process
RU2796955C2 (en) Briquetted mixture for smelting technical silicon
Vorob’ev Carborundum-bearing reducing agents in high-silicon alloy production
RU2352524C1 (en) Method of technological silicon receiving
US4171281A (en) Graphitization and reducing charge
SU1333229A3 (en) Method of producing silicon
Subramanian et al. Problems and prospects of carbonaceous reducing agents in ferro alloys production