DE968818C - Gleichstromdurchlaessiger Transistor-Kaskadenverstaerker - Google Patents

Gleichstromdurchlaessiger Transistor-Kaskadenverstaerker

Info

Publication number
DE968818C
DE968818C DER12914A DER0012914A DE968818C DE 968818 C DE968818 C DE 968818C DE R12914 A DER12914 A DE R12914A DE R0012914 A DER0012914 A DE R0012914A DE 968818 C DE968818 C DE 968818C
Authority
DE
Germany
Prior art keywords
transistor
transistors
electrode
emitter
cascade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
DER12914A
Other languages
English (en)
Inventor
George Clifford Sziklai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RCA Corp
Original Assignee
RCA Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RCA Corp filed Critical RCA Corp
Application granted granted Critical
Publication of DE968818C publication Critical patent/DE968818C/de
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/34Dc amplifiers in which all stages are dc-coupled
    • H03F3/343Dc amplifiers in which all stages are dc-coupled with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/30Single-ended push-pull [SEPP] amplifiers; Phase-splitters therefor
    • H03F3/3066Single-ended push-pull [SEPP] amplifiers; Phase-splitters therefor the collectors of complementary power transistors being connected to the output

Description

AUSGEGEBEN AM 8. MAI 1958
R12914 VIIIaJ21a*
Die Erfindung Hegt auf dem Gebiet der Signalübertragungsschaltungen mit Halbleiterelementen und bezieht sich auf direkt gekoppelte Schaltungen mit mehreren Stufen.
In der Elektronik wünscht man häufig sowohl die Gleichstromkomponente eines Signals als auch die Niederfrequenzkomponenten und die Komponenten höherer Frequenz des Signals zu verstärken. Bei Benutzung von Verstärkerröhren ergeben sich dabei Schwierigkeiten durch die für jede Röhre erforderlichen Gleichspannungen und ferner daraus, daß die Ausgangsspannung einer Röhre in erster Linie eine Funktion ihrer Eingangsspannung ist.
Die Erfindung bezieht sich daher auf Schaltungen, bei denen Halbleiterelemente unmittelbar in Kaskade geschaltet sind und dann einen Verstärker bilden, der sowohl die Gleichstromkomponente wie die Niederfrequenzkomponenten und die Komponenten höherer Frequenz eines Eingangssignals verstärkt. Die Ausgangsseite eines Halbleiterelementes ist dabei unmittelbar mit der Eingangsseite des nächstfolgenden verbunden, ohne daß ein Kopplungskondensator, wie in Röhrenverstärkern, notwendig wäre.
Die gegenwärtig verfügbaren Halbleiterelemente zur Verstärkung eines Signals sind als Transistoren bekannt. Transistoren. sind Dreielektroden-Halbleiterelemente mit einem Halbleiterkörper, ζ. Β. aus Germanium oder Silizium. Die drei Hauptelektroden eines Transistors sind die Emitterelektrode, die Kollektorelektrode und die Basiselektrode.
809 504/15
Gegenwärtig gibt es Transistoren von zwei verschiedenen Typen, nämlich Punktkontakt- und Flächentransistoren. Bei Punktkontakttransistoren liegt die Basiselektrode als großflächiger Kontakt ■ mit geringem Widerstand auf dem Halbleiterkörper auf, während die Emittor- und Kollektorelektrode die Form von Drähten besitzen und im gleichrichtenden Kontakt mit dem Halbleiterkörper stehen. Das Halbleitermaterial kann vom N-Typus ίο mit einem Überschuß von Elektronen oder vom P-Typus mit einem Überschuß an sogenannten Löchern sein. Flächentransistoren besitzen einen Halbleiterkörper, dessen Mitte aus der einen Art von Halbleitermaterial besteht, an welches beiderseits Halbleitermaterial der anderen1 Art angrenzt. Flächentransistoren können P-N-P- oder N-P-N-Transistoren sein. Die Basiselektrode liegt auf dem mittleren Teil und die Emittor- und Kollektorelektrode liegen auf den beiden äußeren Teilen auf. Punktkontakt-N-Transistoren entsprechen in vielen Beziehungen P-N-P-Flächentransistoren und Punktkontakt - P - Transistoren N-P-N- Flächentransistoren.
Punktkontakt-N-Transistoren und P-N-P-Flächentransistoren werden normalerweise so verwendet, daß der Strom (im Gegensatz zu den Elektronen) an der Emittorelektrode in das Halbleitermaterial hinein fließt, d. h. in positiver Richtung. Bei P-N-P-Flächentransistoren fließt der Strom an der Basis- und der Kollektorelektrode aus dem Halbleitermaterial hinaus, d. h. in negativer Richtung, Bei einem P-N-P-Transistor hat ferner ein kleiner Strom, der von der Emittorelektrode durch den Halbleiter hindurchfließt und an der Basiselektrode austritt, einen viel größeren Strom von der Emittorelektrode durch den Halbleiterkörper hindurch zur Kollektorelektrode zur Folge. Die Richtung des Stromflusses in P-Halbleitern ist die umgekehrte wie bei N-Halbleitern. Man kann daher sagen, daß N-Transistoren und P-Transistoren entgegengesetzt leitend sind oder daß sie komplementär symmetrisch sind.
Es sind bereits Transistorverstärker vorgeschlagen worden, die eine Kaskadenschaltung zweier Flächentransistoren entgegengesetzten Leitungstyps enthalten.
Gemäß der Erfindung ist eine Signal verstärkerschaltung mit wenigstens zwei in Kaskade geschalteten Flächentransistoren entgegengesetzten Leitungstyps und einer für Gleichstrom durchlässigen Verbindung zwischen der Ausgangselektrode der ersten und der Eingangselektrode der zweiten Stufe dadurch gekennzeichnet, daß die Basiselektroden jeweils die Eingangseiektroden sind, daß die Emittorelektroden jeweils sowohl im Eingangs- sowie im Ausgangskreis des Transistors liegen und daß eine an der Emittorelektrode der zweiten Stufe liegende Vorspannungsquelle über die Gleichstromverbindung auch als Vorspannung an der Ausgangselektrode in der ersten Stufe liegt.
Der erfindungsgemäße Verstärker ist damit in der Lage, sowohl die Gleichstromkomponente, ebenso wie die tieferen und höheren Wechselstromkomponenten des Eingangssignales zu verstärken. Bei 4er Schaltung ist also die Ausgangsseite eines N-Transistors unmittelbar mit der Eingangsseite eines P-Transistors verbunden und dessen Ausgangsseite wiederum mit der Eingangsseite eines N-Transistors und so weiter. Man kann entweder nur zwei entgegengesetzt leitende Transistoren oder auch jede geeignete höhere Zahl von Transistoren in der erwähnten Weise schalten.
Die aufeinanderfolgenden Stufen enthalten ab wechselnd P-N-P- und N-P-N-Flächentransistoren, die mit Eingang an der Basiselektrode und geerdeter Emittorelektrode zusammengeschaltet sind. Die Emittorelektroden der P-N-P-Transistoren sind an die positive Klemme einer Vorspannungsquelle angeschlossen und die Emittorelektroden der N-P-N-Transistoren an die negative Klemme einer Vorspannungsquelle. Somit sind alle Emitterelektroden in der Durchlaßrichtung (Vorwärtsrichtung) vorgespannt. Der Kollektorelektrode jeder Stufe ist unmittelbar an die Basiselektrode der nachfolgenden Stufe angeschlossen. Somit sind alle Kollektorelektroden in der Sperrichtung (Rückwärtsrichtung) vorgespannt.
Fig. ι ist ein Schaltbild einer vierstufigen, direkt gekoppelten Transistorschaltung zur Signalverstärkung und veranschaulicht eine Ausführungsform der Erfindung;
Fig. 2 ist ein Schaltbild eines Transistor-Impulsverstärkers als eine weitere Ausführungsform,
Fig. 3 ein Schaltbild eines Transistor-Signalverstärkers mit zwei parallelen Signalwegen, bei welchem die Signale in den beiden Wegen in Phasenopposition liegen, so daß ein Gegentaktbetrieb vorliegt;
Fig. 4 ist ein Schaltbild eines Transistorverstärkers, bei dem die Kriechströme auf der Oberfläche der Halbleiterkörper neutralisiert sind, und
Fig. 5 ein Schaltbild eines zweistufigen Tansistorverstärkers, in welcher gegenüber Fig. 4 höhere Frequenzen besser verstärkt werden.·
In der Zeichnung sind die N-Transistoren P-N-P-Flächentransistoren und die P-Transistoren N-P-N-Flächentransistoren. Die Transistoren besitzen Halbleiterkörper mit drei verschiedenen Zonen. Diese sind in der Zeichnung mit P bzw. mit N be- no zeichnet. Bei beiden Arten von Transistoren ist die Basiselektrode auf der mittleren Zone angebracht. Die Emittorelektrode, die durch einen Pfeil gekennzeichnet ist, liegt jeweils an der unteren Zone. Der Pfeil ist bei den P-N-P-Transistoren dem Halbleiterkörper zugewendet und bei den N-P-N-Transistoren vom Halbleiterkörper abgewendet. Bei allen Transistoren liegt ferner die Kollektorelektrode jeweils an der oberen Zone.
Die Fig. 1 zeigt einen Transistorverstärker mit vier in Kaskade geschalteten Transistoren. Der erste Transistor 10 enthält die Zonen 11, 12 und 13 aus P-, N- bzw. P-Material, und mit seiner Basiselektrode 17 ist eine Signalstromquelle 14 über die Leitung 16 verbunden. Über die Leitung 15 ist die Signalquelle geerdet. Die Emittorelektrode 18
liegt am positiven Pol einer Batterie 19, deren negativer Pol ebenfalls geerdet ist. Parallel zur Batterie 19 liegt ein Kondensator 20. Die Kollektarelektrode 21 auf der Zone 11 ist über die Leitung 22 mit der Basiselektrode 23 eines N-P-N-Transistors 25 verbunden. Die Emittorelektrode 26 dieses Transistors liegt am -negativen Pol einer Batterie 2γ, deren positiver Pol geerdet ist. Auch zur Batterie 27 liegt ein Kondensator 28 parallel.
Die Kollektorelektrode 29 ist über die Leitung 33 mit der Basiselektrode 34 des P-N-P-Transistors 35 verbunden. Die Emittorelektrode 36 des Transistors 35 liegt über die Leitung 37 am positiven Pol der Batterie 19. Die Kollektorelektrode 38 ist über die Leitung 43 mit der Basiselektrode 44 eines N-P-N-Transistors 45 verbunden. Dessen Emittorelektrode 46 liegt über die Leitung 47 am negativen Pol der Batterie 27, während seine Kollektorelektrode 48 über die Leitung 49 mit der einen Klemme einer Belastung 50 verbunden ist. Die andere Klemme 53 dieser Belastungsimpedanz ist über die Leitungen 51 und 37 an den positiven Pol der-Batterie 19 angeschlossen. Wahlweise kann die Klemme 53 auch über die Leitung 54 geerdet werden, was gleichbedeutend mit einem Anschluß an die positive Klemme der Batterie 27 ist. An Stelle der Batterien können natürlich auch andere geeignete Gleichspannungsquellen benutzt werden.
Die P-N-P-Transistoren 10 und 35 erfordern eine positive Vorspannung an ihren Emittorelektroden und eine negative Vorspannung an ihren Kollektorelektroden, und der Stromfluß (im Gegensatz zum Elektronenfluß) ist an den Emittorelektroden dem Halbleiterkörper zugewendet (positive Stromrichtung), während an den Kollektorelektroden und den Basiselektroden der Strom aus dem Halbleiterkörper herausfließt (negative Stromrichtung). Dabei bedeutet eine Vorspannung einer bestimmten Polarität an einer Emittor- und an einer Kollektorelektrode die Polarität der betreffenden Elektrode gegenüber der zugehörigen Basiselektrode. Bei den N-P-N-Transistoren 25 und 45 sind die Polaritäten der Vorspannung und die Richtungen des Sromflusses in den Elektroden um-. gekehrt wie bei den P-N-P-Transistoren. Die beiden Arten von Flächentransistoren können also als entgegengesetzt leitend oder als komplementär symmetrisch bezeichnet werden. Die Kaskadenschaltung nach Fig. 1 ist so getroffen, daß die Ausgangsklemme jedes Transistors (mit Ausnahme des letzten Transistors 45) mit der Eingangsklemme des folgenden entgegengesetzt leitenden Transistors verbunden ist. Anders ausgedrückt ist die Ausgangsklemme eines N-Transistors mit der Eingangsklemme eines P-Transistors und die Ausgangsklemme eines P-Tansistors mit der Eingangsklemme eines N-Transistors verbunden.
In Fig. ι ist der Tansistor 10 durch die Batterie 19 für einen Α-Betrieb vorgespannt, d. h. daß der Transistor eine solche Vorspannung besitzt, daß sowohl die positiven wie die negativen Stromhalbwellen der Signalquelle 14 entsprechende verstärkte Stromhalbwellen des Stroms der Kollektorelektrode 21 erzeugen. Der Strom der Kollektorelektrode fließt in die Kollektorelektrode 21 über die Leitung 22, die Basiselektrode 23, die P- und N-Zone des Transistors 25 und die Emittorelektrode 26 zur negativen Klemme der Batterie 27. Der weiter verstärkte Strom der Kollektorelektrode 29 des Transistors 25 fließt von der positiven Klemme der Batterie 19 über die Leitung 37, die Emittorelektrode 36, die P- und die N-Zone des Transistors 35, dessen Basiselektrode 34 und über die Leitung 33 zur Kollektorelektrode 29. Der noch weiter verstärkte Strom der Kollektorelektrode 38 des Transistors 35 fließt über die Leitung 43, die Basiselektrode 44 des Transistors 45, die P- und die N-Zone dieses Transistors, seine Emittorelektrode 46 und über die Leitung 47 zum negativen Pol der Batterie 27. Der vierfach verstärkte Strom der Kollektorelektrode 48 fließt von der positiven Klemme der Batterie 19 über die Leitungen 37 und 51, die Belastungsimpedanz 50 und die Leitung 49 zur Kollektorelektrode. Entsprechend der obenerwähnten wahlweise verwendbaren Schaltung kann der Strom auch von der positiven Klemme der Batterie 27 über Erde, die Leitung 54, die Belastungsimpedanz 50 und die Leitung 49 zur Kollektorelektrode 48 fließen.·
Man sieht somit, daß der Kollektorelektrodenstrom jedes Transistors (mit Ausnahme des letzten Transistors 45) gerade in der richtigen Richtung fließt, um unmittelbar als Basiselektrodenstrom in den nachfolgenden, entgegengesetzt leitenden Transistor eingeführt werden zu können.
Da der Transistor 10 durch die Batterie 19 für einen Α-Betrieb vorgespannt wird und alle vier Transistoren unmittelbar miteinander verbunden sind, wird sowohl der Gleichstrom des Transistors 10 als auch der Signalstrom ι in den nachfolgen- i°° den Transistoren 25, 35 und 45 verstärkt. Die Vorspannung des letzten Transistors 45 von der Spannungsquelle 19 bzw. 27 muß groß genug sein, um denjenigen Teil des Stromes der Kollektorelektrode 48, welcher vom Gleichstrom des ersten Transistors 10 herrührt, aufnehmen zu können und ferner de» Strom der Kollektorelektrode 48, der durch die Verstärkung des Eingangssignals i entsteht. Wenn an der Kollektorelektrode des Transistors 45 eine größere Vorspannung erforderlich ist, als sie durch 11Q eine Verbindung des Punktes 53 über die punktierte Leitung 54 und Erde zum positiven Pol der Batterie 27 erhalten werden kann, so kann man die Klemme 53 statt dessen über die Leitungen 51 und 2,7 an die positive Klemme der Batterie 19 an- "5 schließen.
Es sei bemerkt, daß in dem Verstärker nach Fig. ι die Ausgangsklemme jedes Transistors unmittelbar mit der Eingangsklemme des nächstfolgenden Transistors über eine Leitung ohne konzen- 1^0 trierte Widerstände verbunden ist. Es liegen also keine Kopplungskondensatoren in diesen Leitungen, welche die Übertragung niedriger Frequenzen des Signals verhindern könnten. Der Verstärker verstärkt somit die Gleichstromkomponente und la5 die Niederfrequenzkomponenten des Eingang«-
signals i ebenso wie dessen Komponenten höherer Frequenz.
Ein Verstärker nach Fig. ι wurde unter Benutzung folgender Schaltelemente aufgebaut:
Transistoren ro und 35
25 - 45
Batterien 19 - 27
Belastungsimpedanz 50
RCA Type TA-153 - TA-i 54 6-Volt-Trockenbatterien
1000 Ohm
Ein Wechselstromsignal i von einigen Mikroampere wurde auf 30 bis 40 Milliampere in der Belastung 50 verstärkt.
Die Fig. 2 zeigt einen Transistorverstärker mit zwei in Kaskade geschalteten Transistoren für einen B-Betrieb. Die eine Eingangssignalklemme
59 ist geerdet. Die andere Eingangssignalklemme
60 liegt an der Basiselektrode 61 eines N-P-N-Flächentransistors 62. Seine Emittorelektrode 63
ao ist unmittelbar an Erde angeschlossen, und ein Widerstand 64 liegt zwischen der Basiselektrode und Erde. Die Kollektorelektrode 65 ist über die Leitung 70 mit der Basiselektrode 71 eines P-N-P-Flächentransistors 72 verbunden. Die Emittorelektrode 73 des Transistors 72 liegt an der positiven Klemme einer Batterie 74, deren negative Klemme geerdet ist. Die Kollektorelektrode 75 ist über einen Lastwiderstand 76 an die negative Klemme einer Batterie 77 angeschlossen, deren po~ sitive Klemme geerdet ist; außerdem liegt diese Kollektorelektrode an der einen Ausgangsklemme 80, während die andere Ausgangsklemme 81 geerdet ist.
In der Schaltung nach Fig: 2 sind die beiden Transistoren wieder entgegengesetzt leitend. Zwischen der Basiselektrode 61 und der Emittorelektrode 63 ist keine Vorspannungsbatterie vorhanden, so daß der Transistor als B-Verstärker arbeitet, d.h. daß praktisch kein Basiselektrodenstrom oder verstärkter Kollektorelektrodenstrom beim Fehlen eines positiven Eingangssignals vorhanden ist. Die Schaltung eignet sich daher insbesondere als Impulsverstärker, ζ. B. als Zeilenimpulsverstärker in einem Fernsehempfänger.
Wenn ein positiver Impuls von der Klemme 60 der Basiselektrode 6l zugeleitet wird, fließt ein verstärkter Stromimpuls von der positiven Klemme der Baterie 74 über die Emittorelektrode 73, die P- und die N-Zone des Transistors 72, die Basiselektrode 71 und die Leitung 70 zur Kollektorelektrode 65 des Transistors 62. Dieser verstärkte Stromimpuls ruft einen noch weiterhin verstärkten Stromimpuls hervor, welcher von der Kollektorelektrode 75 durch den Lastwiderstand zum negativen Pol der Batterie 77 fließt. Dieser letztere Impuls ruft am Widerstand 76 einen Spannungsimpuls hervor, und die an den Ausgangsklemmen und 81 auftretende Impulsspannung hat eine Nullinie von dem Potential der negativen Klemme der Batterie 77 mit überlagerten Impulsen entsprechend dem Spannungsabfall am Widerstand 76. Die Gleichstromkomponente läßt sich dadurch entfernen, daß das Signal an der Klemme 80 über einen Kopplungskondensator einem Verbraucher zugeführt wird.
Ein Verstärker nach Fig. 2 ist unter Benutzung der folgenden Schaltelemente gebaut worden:
Transistor 62 RCA Type TA-154
72 - - TA-153
Batterien 74 und 77 22,5 Volt
Eingangswiderstand 64 . . 10,00 Ohm
Lastwiderstand 76 1000 -
Ein Impuls von 6 Volt und 15 750 Hz an den Eingangsklemmen 59, 60 ergab einen Ausgangsimpuls an den Klemmen 80, 81 von 40 Volt.
Fig. 3 zeigt zwei entgegengesetzt leitende Transistoren 90 und 95 (wie in Fig. 2) und zwei weitere ihrerseits entgegengesetzt leitende Transistoren 105 und no in B-Gegentaktschaltung. Die beiden Transistorpaare sind auch in bezug aufeinander entgegengesetzt leitend in dem Sinne, daß der erste Transistor 90 des oberen Zweiges 83 ein N-P-N-Flächentransistor und der erste Transistor 105 des unteren Zweiges 84 ein P-N-P-Flächentransistor ist. Innerhalb des oberen und des unteren Zweiges sind jeweils entgegengesetzt leitende Transistoren in Kaskade geschaltet.
Ein Eingangssignal an den Eingangsklemmen 85, 86 tritt am Widerstand 87 auf und wird über die Leitung 88 der Basiselektrode 89 des N-P-N-Transistors 90 zugeführt. Dessen Emittorelektrode 91 ist geerdet. Seine Kollektorelektrode 92 liegt über dieLeitung93 ander Basiselektrode94 des entgegengesetzt leitenden P-N-P-Flächentransistors 95. 9S Dessen Emittorelektrode 96 liegt am positiven Pol einer Batterie 97, deren negativer Pol geerdet ist. Seine Kollektorelektrode 98 ist über die Leitung 99 an die eine Klemme einer Ausgangsimpedanz 100 angeschlossen, beispielsweise an die Sprechspule eines Lautsprechers.
Insoweit ist die Schaltung nach Fig. 3 mit den Transistoren 90 und 95 im wesentlichen dieselbe wie in Fig. 2.
Das Eingangssignal am Widerstand 87 wird in "J5 Fdg. 3 ferner über die Leitung 103 der Basiselektrode 104 des P-N-P-Flächentransistors 105 zugeleitet. Nun sind die Transistoren 105 und 90 aber entgegengesetzt leitende Transistoren. Die Emittorelektrode 106 des Transistors 105 ist geerdet und seine Kollektorelektrode 107 über die Leitung 108 mit der Basiselektrode 109 des entgegengesetzt leitenden N-P-N-Transistorsiio verbunden. Dessen Emittorelektrode 111 liegt am negativen Pol einer Batterie 112, deren positiver Pol geerdet ist. Die Kollektorelektrode 113 ist über die Leitung 114 mit der gemeinsamen Ausgangsimpedanz 100 verbunden.
Die Transistoren 90 und 95 sind entgegengesetzt leitende und als B-Verstärker 83 in Kaskade geschaltete Transistoren. Die Transistoren 105 und 110 sind ebenfalls entgegengesetzt leitend und stellen einen B-Verstärker 84 in Kaskadenschaltung dar. Die beiden Kaskadenverstärker unterscheiden sich dadurch voneinander, daß der "5 erste Transistor 90 des Verstärkers 83 entgegen-
gesetzt leitend ist wie der erste Transistor 105 de.s Verstärkers 84. Dadurch wird es möglich, die beiden Kaskadenverstärker im Gegentakt mit einer gemeinsamen Eingangsimpedanz 87 und einer gemeinsamen Ausgangsimpedanz 100 zu betreiben. Beim Betrieb der Schaltung nach Fig. 3 werden die positiven Anteile des Signals an der Eingangsklemme 85, welche an der Basiselektrode 104 des Transistors 105 liegen, in den Transistoren 105 und 110 nicht verstärkt, weil die Polarität des Signals so Hegt, daß der Strom in der Basiselektrode 104 des P-N-P-Transistors 105 vermindert wird und beim Fehlen eines Vorspannungsstroms in der Basiselektrode 104 der Strom bereits praktisch Null ist. Andererseits werden die positiven Teile des von der Eingangsklemme 85 der Basiselektrode 89 des Transistors 90 zugeführten Signals in den Transistoren 90 und 95 verstärkt, weil dort bei der Polarität des Signals der Strom in der Basiselek-
ao trode 89 des N-P-N-Transistors 90 zunimmt. Die positiven Teile des Eingangssignals erfahren somit in den Transistoren 90 und 95 eine Verstärkung in der an Hand der Fig. 2 beschriebenen Weise. Es fließt also über die Leitung 99 ein verstärkter
a5 Strom durch die Ausgangsimpedanz 100.
Die negativen Teile des Eingangssignal an der Basiselektrode 89 können wegen ihrer Polarität in den Transistoren 90 und 95 nicht verstärkt werden. Jedoch haben diese negativen Signalteile an der Basiselektrode 104 des P-N-P-Transistors 105 die richtige Polarität und rufen einen verstärkten Strom über die Ausgangsimpedanz 100 und1 die Leitung 114 zur Kollektorelektrode 113 hervor. Der Kaskadenverstärkerzweig 83 verstärkt also den positiven Anteil des Eingangssignals und der Verstärkerzweig 84 seinen negativen Anteil. Beim Fortfall eines Eingangssignal« und bei idealen Transistoren fließt kein Strom durch dieAusgangsimpedanz 100. Diese Betriebsart wird als B-Gegentaktbetrieb bezeichnet. Man erkennt, daß die Transistoren in Fig. 3 durch geeignete Vorspannungen zwischen den Emitterelektroden 91 bzw. 106 und Erde auch im Α-Betrieb oder im A-B-Betrieb arbeiten können.
Ein Verstärker nach Fig. 3 wurde folgendermaßen gebaut:
Transistoren 90 und 110
98 und 105
Batterien 97 und 112 ...
Eingangswidteirstand 87..
Ausgangsimpedanz 100..
RCATypTA-153
- - TA-154
7,5 Volt
ι ο 000 Ohm
16 Ohm
Ein Tonfrequenzsignal von 1,6 Milliwatt ergab ein Ausgangs signal von 0,5 Watt in der Lautsprecher spule 100.
Die Fig. 4 zeigt zwei entgegengesetzt leitende Transistoren in .Kaskadenschaltung als Verstärker, bei welchem Mittel zur Kompensation des Kriecbstromes zwischen der Basiselektrode und der Kollektorelektrode vorgesehen sind. Die Eingangsklemmen 116 und 117 liegen am einem Eingangswiderstandii8, der einseitig geerdet ist. Die
Klemme 116 ist mit der Basiselektrode 119 eines P-N-P-Flächentransis.tors 120 verbunden. Seine Emitterelektrode 121 liegt am positiven Pol der Batterie 122, deren negativer Pol geerdet ist. Die Kollektorelektrode 123 ist über die Leitung 124 mit der Basiselektrode 125 eines entgegengesetzt leitenden N-P-N-Transistors 126 verbunden. Dessen Emitterelektrode 127 liegt über einen Widerstand 128 am negativen Pol einer Batterie 129, deren positiver Pol geerdet ist. Seine Kollektorelektrode 130 ist über die Leitung 131 und die Ausgangsimpedanz 132 geerdet. Die Kollektorelektrode 123 ist außerdem über einen Rückkopplungswiderstand 133 mit der negativen Klemme der Batterie 129 verbunden. Zum Widerstand 128 kann noch ein Kondensator 134 parallel gelegt werden.
Man sieht, daß in der Schaltung nach Fig. 4 zwei Wege für den verstärkten Strom der Kollektorelektrode 123 bestehen. Der eine verläuft über die Basiselektrode 125 des Transistors 126, seine Emitterelektrode 127 und deren Vorwiderstand 128 zur negativen Klemme der Batterie 129.
Der andere Stromweg verläuft über den Rückkopplungswiderstand 133 zur negativen Klemme der Batterie 129. Der Widerstand 133 wird so gewählt, daß der größte Teil des verstärkten Signalstroms vom Kollektor 123 über den Transistor 126 fließt und nur ein kleiner Teil über den Widerstand 133, welcher die Verstärkung vermindert.
Bei dem gegenwärtigen 'Stand der Fabrikation von Flächentransistoren zeigt ein hoher Prozentsatz der Transistoren einen Kriechstrom zwischen der Basiselektrode und der Kollektorelektrode. Die Größe dieses Krieohstroms variiert von Transistor zu Transistor. In die Schaltung nach Fig. 4 können verschiedene Transistoren eingesetzt werden, und die Schaltung bewirkt eine Kompensation des jeweiligen Kriechstroms.
Die Wirkungsweise der Rückkopplungsschaltung nach Fig. 4 ist folgende: Die Batterie 129 hält die Kollektorelektrode 130 auf positiver Spannung gegenüber der Emitterelektrode 127 und der Basiselektrode 125. Wenn ein Obernächenkriechstrom von der Kollektorelektrode 130 zur Basiselektrode 125 fließt, wird diese gegenüber der Emitterelektrode]^ stärker positiv als es ohne diesen Kriechstrom der Fall wäre. Dies bedeutet eine Zunahme des Stromes von der Basiselektrode 125 durch die P- und die N-Zone des Transistors 126, die Emitterelektrode 127 und deren Vorwiderstand 128 zur negativen Klemme der Batterie 129. Dieser Strom ruft am Widerstand 128 eine negative Span- "5 nung hervor, welche· über den Rückkopplungswiderßtand 133 der Basiselektrode 125 zugeführt wird. Das negative, der Basiselektrode 125 zugeführ.te Potential neutralisiert den größeren Teil des an dieser Basiselektrode durch den Ober- iao flächenkriechstrom von der Kollektorelektrode 130 her erzeugten Potentials. Die Rückkopplungsschaltung zur Neutralisierung des Oberflächenkriechstroms ist auch in den nachfolgenden Stufen eines Transistorverstärkers mit mehr als den zwei in Fig. 4 dargestellten Transistoren anwendbar.
Ein Nebenschlußkondensator 134 kann zur Verbesserung der Verstärkung der hohen Frequenzen zum Emittorelektrodenvorwiderstand 128 parallel geschaltet werden.
Eine Schaltung nach Fig. 4 wurde unter Benutzung der folgenden Schaltelemente gebaut:
Transistor 120 RCA Type TA-153
126 - - TA-154
Baterien 122 und 129 ..... 22,5 Volt
Eingangswiderstand 118 .. ϊο 000 Ohm Ausgangswidersitand 132 .. 1000 Rückkoppliungswider-
stand 133 5 000
Vorwiderstand 128 1000
Kondensator 134 0,5 Mikrofarad
Ein Hörfrequenzsignal von 2 bis 3 Volt an den Eingangsklemmen 116, 117 ergab ein Ausgangssignal am Widerstand 132 von 40 Volt.
Fig. 5 zeigt zwei entgegengesetzt leitende Transistoren in Kaskadenschaltung als Verstärker, der hohe Frequenzen noch besser überträgt als die Schaltung nach Fig. 4. Die Eingangsklemmen 136 und 137 sind mit der Basiselektrode 138 eines P-N-P-Flächentransistors 140 bzw. mit Erde verbunden. Ein Eingangswiderstand 139 liegt zwischen der Basiselektrode 138 und Erde. Die Emittorelektrode 141 liegt an der positiven Klemme einer Batterie 142, deren negativer Pol geerdet ist. Die Kollektorelektrode 143 ist über die Leitung 144 mit der Basiselektrode 145 eines entgegengesetzt leitenden N-P-N-Flächentransistors 150 verbunden und ferner über einen Rückkopplungswiderstand 146 und eine Rückkopplungsspule 147 mit der negativen Klemme einer Batterie 148. Die Emittorelektrode 151 ist über einen Vorwiderstandii53 an den negativen Pol der Batterie 148 angeschlossen. Ein Nebenschlußkondensator 154 liegt zum Widerstand 153 parallel. Die Kollektorelektrode 155 liegt über die Leitung 156 und eine Ausgangsimpedanz 160 an Erde.
In Fig. 5 findet wie in Fig. 4 eine Kompensation des Oberflächenkriechstromes zwischen der KoI-lektorelektrode 155 und der Basiselektrode 145 statt. In Fig. 5 dient der Widerstand 146 und die dazu in Reihe liegende Spule 147 zu demselben Zweck wie der Widerstand 133 in Fig. 4. Der Vorwiderstand 152 entspricht dem Widerstand 128 in Fig. 4. Außerdem dient der Blindwiderstand der Spule 147 zur Verbesserung der Verstärkung bei hohen Frequenzen. Die Spule 147 liegt in einem der beiden obengenannten, für den Signalstrom von der Kollektorelektrode 143 aus verlaufenden parallelen Stromzweigen und stellt für die höheren Frequenzen des Signals einen höheren Widerstand dar als für die tieferen Signalfrequenzen. Daher fließt der größere Teil des Stromes der höheren Frequenzen in die Basiselektrode 145, und es geht nur ein kleiner Teil dieses Stroms über den Parallelzweig mit dem Widerstand 146 und der Spule 147 verloren. Daher wird die Verstärkung bei höheren Frequenzen verbessert.
Eine Schaltung nach Fig. 5 wurde unter Benutzung folgender Schaltelemente gebaut:
Transistor 143 RCA Type TA-153
150 - - TA-154
Batterie 142 1,5 Volt
148 3.O -
Widerstand139 10 000 Ohm
160 6800
146 iöo
152 1000
Kondensator 154 .... 0,5 Mikrofarad
Spule 147 o„i4 Mikrohenry
Die Verstärkung bei 1 MHz unter Benutzung
der Spule 147 betrug etwa das Zwanzigfadhe der Verstärkung ohne diese Spule.
An Stelle der vier Transistoren in Fig. 1 und 2 sind in Fig. 2 bis 5 nur je zwei Transistoren in Kaskadenschaltung dargestellt, jedoch können auch diese letzteren Schaltungen mit mehr als zwei Transistoren und auch mit einer ungeraden Zahl von Transistoren ausgeführt werden.

Claims (7)

  1. PATENTANSPRÜCHE:
    i. Signalverstärkerschaltung mit wenigstens zwei in Kaskade geschalteten Flächentransistoren entgegengesetzten Leitungstyps und einer für Gleichstrom durchlässigen Verbindung zwischen der Ausgangselektrode der ersten und der Eingangselektrode der zweiten Stufe, dadurch gekennzeichnet, daß die Basiselektroden jeweils die Eingangselektroden sind, daß die Emittorelektroden jeweils sowohl im Eingangs- sowie im Ausgangskreis des Transistors liegen und daß eine an der Emittorelektrode der zweiten Stufe liegende Vorspannungsquelle über die Gleichstromverbindung auch als Vorspannung an der Ausgangselektrode der ersten Stufe liegt.
  2. 2. Schaltung nach Anspruch 1, dadurch gekennzeichnet, daß der erste Transistor in der Kaskadenschaltung jeweils ein N-P-N-Transistor und der zweite ein P-N-P-Transistor ist.
  3. 3. Schaltung nach Anspruch 1, dadurch gekennzeichnet, daß der erste Transistor der Kaskade jeweils ein P-N-P-Transistor und der zweite ein N-P-N-Transistor ist. no
  4. 4. Schaltung nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß zwei oder mehr P-N-P-Transistoren und zwei oder mehr N-P-N-Transistoren abwechselnd in Kaskade geschaltet sind, daß eine Gleichstromquelle mit ihrem positiven Pol mit den Emittorelektroden der P-N-P-Transistoren und mit ihrem negativen Pol mit den Emittorelektroden der N-P-N-Transistoren verbunden ist und daß ein Signaleingangskreis mit der Basiselektrode des ersten Transistors verbunden ist und eine Ausgangsimpedanz zwischen der Kollektorelektrode des letzten Transistors und der Gleichstromquelle liegt (Fig. 1).
  5. 5. Schaltung nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß zwei- je aus zwei Transistoren bestehende Kaskadenschaltungen in Gegentaktanordnung geschaltet sind und daß die Transistoren'beider Kaskaden j eweils voneinander verschiedenen Leitungstyp besitzen (Fig.3).
  6. 6. Schaltung nach Anspruch 1, dadurch gekennzeichnet, daß ein Widerstand (133) zwischen der Basiselektrode der zweiten Stufe und einem Punkt zwischen ihrer Emitterelektrode und deren Vorspannungsquelle eingeschaltet ist, um den Kriechstrom zwischen der Basiselektrode und der Ausgangselektrode der zweiten Stufe zu verkleinern (Fig. 4).
  7. 7. Schaltung nach Anspruch 6, dadurch gekennzeichnet, daß mit dem Widerstand (146) eine Induktivität (147) mit (hohem Widerstand für hochfrequente Signalströme in Reihe geschaltet ist (Fig. 5).
    Entgegengehaltene ältere Rechte:
    Deutsche Patentschriften Nr. 918 033, 929 796.
    Hierzu ι Blatt Zeichnungen
    © 609 57Ϊ/566 8.56 (809 504/15 4.58)
DER12914A 1952-11-15 1953-11-08 Gleichstromdurchlaessiger Transistor-Kaskadenverstaerker Expired DE968818C (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US320713A US2966632A (en) 1952-11-15 1952-11-15 Multistage semi-conductor signal translating circuits

Publications (1)

Publication Number Publication Date
DE968818C true DE968818C (de) 1958-05-08

Family

ID=23247589

Family Applications (1)

Application Number Title Priority Date Filing Date
DER12914A Expired DE968818C (de) 1952-11-15 1953-11-08 Gleichstromdurchlaessiger Transistor-Kaskadenverstaerker

Country Status (7)

Country Link
US (1) US2966632A (de)
BE (1) BE524278A (de)
CH (1) CH320148A (de)
DE (1) DE968818C (de)
FR (1) FR1089681A (de)
GB (1) GB736760A (de)
NL (1) NL89693C (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1092515B (de) * 1956-04-13 1960-11-10 Siemens Ag Kaskadenverstaerkerschaltung mit Transistoren
US2950357A (en) * 1956-05-01 1960-08-23 Robert E Mitchell Electronic sound transmitting device
US2932800A (en) * 1956-05-07 1960-04-12 Baldwin Piano Co High power audio amplifier employing transistors
US2963592A (en) * 1956-05-11 1960-12-06 Bell Telephone Labor Inc Transistor switching circuit
US2990516A (en) * 1956-05-29 1961-06-27 John C Simons Jr Pulse-width modulated amplifier and method
US3067337A (en) * 1957-06-03 1962-12-04 Cincinnati Milling Machine Co Servo amplifier using push-pull, complementary, cascaded, transistors with means to superimpose a higher a. c. frequency on information signal
US2975303A (en) * 1958-05-22 1961-03-14 Ibm Differentiator and mixer circuit
US3054908A (en) * 1958-06-03 1962-09-18 Galopin Anthony Selective bipolarity switching network for memory arrays
US3043511A (en) * 1959-04-01 1962-07-10 Sperry Rand Corp Logical combining circuit
US3099802A (en) * 1959-12-07 1963-07-30 Westinghouse Electric Corp D.c. coupled amplifier using complementary transistors

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE918033C (de) * 1951-09-13 1954-09-16 Western Electric Co Transistorverstaerker mit einem Transistorpaar
DE929796C (de) * 1952-11-05 1955-07-04 Philips Nv Transistorkaskadenverstaerker

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB665867A (en) * 1949-04-01 1952-01-30 Standard Telephones Cables Ltd Improvements in or relating to crystal triodes and semi-conductor materials therefor
NL145843B (nl) * 1948-04-23 Merck & Co Inc Werkwijze voor het bereiden van derivaten van 3-hydroxy alfa-(1-aminoethyl)benzylalcohol; werkwijze ter bereiding van farmaceutische preparaten, alsmede de door toepassing van die werkwijze verkregen voorwerpen.
BE491203A (de) * 1948-11-06
US2660624A (en) * 1949-02-24 1953-11-24 Rca Corp High input impedance semiconductor amplifier
US2533001A (en) * 1949-04-30 1950-12-05 Rca Corp Flip-flop counter circuit
NL148404B (nl) * 1949-08-30 Escher Wyss Gmbh Koeltoren met drukbeluchting.
US2647958A (en) * 1949-10-25 1953-08-04 Bell Telephone Labor Inc Voltage and current bias of transistors
US2666817A (en) * 1950-11-09 1954-01-19 Bell Telephone Labor Inc Transistor amplifier and power supply therefor
NL169837B (nl) * 1951-09-18 Philips Nv Lastoorts voor het booglassen.

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE918033C (de) * 1951-09-13 1954-09-16 Western Electric Co Transistorverstaerker mit einem Transistorpaar
DE929796C (de) * 1952-11-05 1955-07-04 Philips Nv Transistorkaskadenverstaerker

Also Published As

Publication number Publication date
CH320148A (de) 1957-03-15
US2966632A (en) 1960-12-27
BE524278A (de)
GB736760A (en) 1955-09-14
NL89693C (de)
FR1089681A (fr) 1955-03-21

Similar Documents

Publication Publication Date Title
DE918033C (de) Transistorverstaerker mit einem Transistorpaar
DE927932C (de) Schaltung fuer einen sehr kleinen Transistor-Verstaerker
DE1293230B (de) Verstaerkerschaltung mit Feldeffekt-Bauelementen
DE1107282B (de) Mehrstufiger galvanisch gekoppelter Transistorverstaerker
DE2548906A1 (de) Transistorverstaerker
DE1042028B (de) Gegentaktverstaerker mit zwei Transistoren entgegengesetzten Leitfaehigkeitstyps
DE968818C (de) Gleichstromdurchlaessiger Transistor-Kaskadenverstaerker
DE2129108C3 (de)
DE2840704C3 (de) Verstärkerschaltung mit Feldeffekt- und Bipolartransistoren
DE2129108B2 (de) Verstaerker mit einer mindestens einen bipolaren transistor enthaltenden eingangsstufe
DE69725277T2 (de) Rauscharmer Verstärker
DE1909721B2 (de) Schaltungsanordnung zur gleichspannungsteilung
DE2462423B2 (de) Operationsverstärker
DE2946207A1 (de) Signal-umschaltverstaerker
DE951216C (de) Kaskadenverstaerker mit wenigstens zwei Transistorstufen
DE3618939A1 (de) Schaltungsanordnung zum einstellen eines referenzpegels in einem periodischen signal
DE1140978B (de) Tonfrequenzbverstaerker mit zwei im Gegentakt geschalteten Transistoren
DE1774831A1 (de) Schaltung zur alternativen Verwendung als Absolutverstaerker oder Multiplizierer
DE2949779A1 (de) Verstaerkersystem mit automatischer verstaerkungsregelung, beispielsweise fuer einen am-rundfunkempfaenger
DE1067476B (de) Lineare Transistorverstaerker in Emitterschaltung
DE2554770C2 (de) Transistor-Gegentaktverstärker
DE2928367C2 (de) Mehrkanal-Signalverarbeitungsschaltung in integrierter Bauweise
DER0012914MA (de)
DE1762989A1 (de) Halbleiter-UEbertragungseinrichtung
DE1766355A1 (de) Schaltungsanordnung mit Transistoren