DE69631098D1 - Halbleiterstrukturen - Google Patents

Halbleiterstrukturen

Info

Publication number
DE69631098D1
DE69631098D1 DE69631098T DE69631098T DE69631098D1 DE 69631098 D1 DE69631098 D1 DE 69631098D1 DE 69631098 T DE69631098 T DE 69631098T DE 69631098 T DE69631098 T DE 69631098T DE 69631098 D1 DE69631098 D1 DE 69631098D1
Authority
DE
Germany
Prior art keywords
semiconductor structures
semiconductor
structures
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
DE69631098T
Other languages
English (en)
Inventor
Jeremy Allam
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Europe Ltd
Original Assignee
Hitachi Europe Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Europe Ltd filed Critical Hitachi Europe Ltd
Application granted granted Critical
Publication of DE69631098D1 publication Critical patent/DE69631098D1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/864Transit-time diodes, e.g. IMPATT, TRAPATT diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/15Structures with periodic or quasi periodic potential variation, e.g. multiple quantum wells, superlattices
    • H01L29/151Compositional structures
    • H01L29/152Compositional structures with quantum effects only in vertical direction, i.e. layered structures with quantum effects solely resulting from vertical potential variation
    • H01L29/155Comprising only semiconductor materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • H01L29/737Hetero-junction transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/868PIN diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
DE69631098T 1995-08-03 1996-07-30 Halbleiterstrukturen Expired - Lifetime DE69631098D1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP95305436 1995-08-03

Publications (1)

Publication Number Publication Date
DE69631098D1 true DE69631098D1 (de) 2004-01-29

Family

ID=8221280

Family Applications (1)

Application Number Title Priority Date Filing Date
DE69631098T Expired - Lifetime DE69631098D1 (de) 1995-08-03 1996-07-30 Halbleiterstrukturen

Country Status (3)

Country Link
US (2) US6326650B1 (de)
JP (1) JPH09121061A (de)
DE (1) DE69631098D1 (de)

Families Citing this family (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3159198B2 (ja) * 1999-02-19 2001-04-23 住友電気工業株式会社 電界効果トランジスタ
US6993222B2 (en) * 1999-03-05 2006-01-31 Rj Mears, Llc Optical filter device with aperiodically arranged grating elements
GB2385713B (en) 1999-03-05 2003-10-15 Nanovis Llc Aperiodic electronic bandgap structure
US6563145B1 (en) * 1999-04-19 2003-05-13 Chang Charles E Methods and apparatus for a composite collector double heterojunction bipolar transistor
FR2795871B1 (fr) * 1999-07-01 2001-09-14 Picogiga Sa Transistor iii-v a heterojonction, notamment transistor a effet de champ hemt ou transistor bipolaire a heterojonction
CA2307745A1 (en) * 1999-07-15 2001-01-15 Sumitomo Electric Industries, Ltd. Photodiode
AU2002216611A1 (en) * 2000-09-29 2002-04-08 Board Of Regents, The University Of Texas System A theory of the charge multiplication process in avalanche photodiodes
US6455377B1 (en) * 2001-01-19 2002-09-24 Chartered Semiconductor Manufacturing Ltd. Method to form very high mobility vertical channel transistor by selective deposition of SiGe or multi-quantum wells (MQWs)
WO2003009396A2 (en) * 2001-07-20 2003-01-30 Microlink Devices, Inc. Algaas or ingap low turn-on voltage gaas-based heterojunction bipolar transistor
US6934031B2 (en) * 2001-09-27 2005-08-23 Rudolph Technologies, Inc. Methods and apparatus for determining optical constants of semiconductors and dielectrics with interband states
AU2003212899A1 (en) * 2002-02-01 2003-09-02 Picometrix, Inc. Enhanced photodetector
EP1470575B1 (de) * 2002-02-01 2018-07-25 MACOM Technology Solutions Holdings, Inc. Lawinen-fotodiode mit mesa-struktur
KR20040094418A (ko) * 2002-02-01 2004-11-09 피코메트릭스 인코포레이티드 전하제어된 애벌란시 광다이오드 및 그 제조방법
KR100463416B1 (ko) * 2002-09-05 2004-12-23 한국전자통신연구원 아발란치 포토트랜지스터
US6703639B1 (en) 2002-12-17 2004-03-09 The United States Of America As Represented By The Secretary Of The Navy Nanofabrication for InAs/AlSb heterostructures
US6897472B2 (en) * 2003-06-26 2005-05-24 Rj Mears, Llc Semiconductor device including MOSFET having band-engineered superlattice
US7531828B2 (en) * 2003-06-26 2009-05-12 Mears Technologies, Inc. Semiconductor device including a strained superlattice between at least one pair of spaced apart stress regions
US7153763B2 (en) 2003-06-26 2006-12-26 Rj Mears, Llc Method for making a semiconductor device including band-engineered superlattice using intermediate annealing
US7586165B2 (en) * 2003-06-26 2009-09-08 Mears Technologies, Inc. Microelectromechanical systems (MEMS) device including a superlattice
US7598515B2 (en) * 2003-06-26 2009-10-06 Mears Technologies, Inc. Semiconductor device including a strained superlattice and overlying stress layer and related methods
US20070015344A1 (en) * 2003-06-26 2007-01-18 Rj Mears, Llc Method for Making a Semiconductor Device Including a Strained Superlattice Between at Least One Pair of Spaced Apart Stress Regions
US20060289049A1 (en) * 2003-06-26 2006-12-28 Rj Mears, Llc Semiconductor Device Having a Semiconductor-on-Insulator (SOI) Configuration and Including a Superlattice on a Thin Semiconductor Layer
CA2530065C (en) * 2003-06-26 2011-12-20 Rj Mears, Llc Semiconductor device including mosfet having band-engineered superlattice
US20050279991A1 (en) * 2003-06-26 2005-12-22 Rj Mears, Llc Semiconductor device including a superlattice having at least one group of substantially undoped layers
US7531850B2 (en) * 2003-06-26 2009-05-12 Mears Technologies, Inc. Semiconductor device including a memory cell with a negative differential resistance (NDR) device
US7045377B2 (en) * 2003-06-26 2006-05-16 Rj Mears, Llc Method for making a semiconductor device including a superlattice and adjacent semiconductor layer with doped regions defining a semiconductor junction
US20060243964A1 (en) * 2003-06-26 2006-11-02 Rj Mears, Llc Method for making a semiconductor device having a semiconductor-on-insulator configuration and a superlattice
US20070020833A1 (en) * 2003-06-26 2007-01-25 Rj Mears, Llc Method for Making a Semiconductor Device Including a Channel with a Non-Semiconductor Layer Monolayer
US7446002B2 (en) * 2003-06-26 2008-11-04 Mears Technologies, Inc. Method for making a semiconductor device comprising a superlattice dielectric interface layer
US7514328B2 (en) * 2003-06-26 2009-04-07 Mears Technologies, Inc. Method for making a semiconductor device including shallow trench isolation (STI) regions with a superlattice therebetween
US7531829B2 (en) * 2003-06-26 2009-05-12 Mears Technologies, Inc. Semiconductor device including regions of band-engineered semiconductor superlattice to reduce device-on resistance
US6878576B1 (en) * 2003-06-26 2005-04-12 Rj Mears, Llc Method for making semiconductor device including band-engineered superlattice
US20060267130A1 (en) * 2003-06-26 2006-11-30 Rj Mears, Llc Semiconductor Device Including Shallow Trench Isolation (STI) Regions with a Superlattice Therebetween
US7491587B2 (en) * 2003-06-26 2009-02-17 Mears Technologies, Inc. Method for making a semiconductor device having a semiconductor-on-insulator (SOI) configuration and including a superlattice on a thin semiconductor layer
US7045813B2 (en) * 2003-06-26 2006-05-16 Rj Mears, Llc Semiconductor device including a superlattice with regions defining a semiconductor junction
US7535041B2 (en) * 2003-06-26 2009-05-19 Mears Technologies, Inc. Method for making a semiconductor device including regions of band-engineered semiconductor superlattice to reduce device-on resistance
US7586116B2 (en) * 2003-06-26 2009-09-08 Mears Technologies, Inc. Semiconductor device having a semiconductor-on-insulator configuration and a superlattice
US7659539B2 (en) 2003-06-26 2010-02-09 Mears Technologies, Inc. Semiconductor device including a floating gate memory cell with a superlattice channel
US20040266116A1 (en) * 2003-06-26 2004-12-30 Rj Mears, Llc Methods of fabricating semiconductor structures having improved conductivity effective mass
US7229902B2 (en) * 2003-06-26 2007-06-12 Rj Mears, Llc Method for making a semiconductor device including a superlattice with regions defining a semiconductor junction
US20060011905A1 (en) * 2003-06-26 2006-01-19 Rj Mears, Llc Semiconductor device comprising a superlattice dielectric interface layer
US20050282330A1 (en) * 2003-06-26 2005-12-22 Rj Mears, Llc Method for making a semiconductor device including a superlattice having at least one group of substantially undoped layers
US20060231857A1 (en) * 2003-06-26 2006-10-19 Rj Mears, Llc Method for making a semiconductor device including a memory cell with a negative differential resistance (ndr) device
US7202494B2 (en) * 2003-06-26 2007-04-10 Rj Mears, Llc FINFET including a superlattice
US20070010040A1 (en) * 2003-06-26 2007-01-11 Rj Mears, Llc Method for Making a Semiconductor Device Including a Strained Superlattice Layer Above a Stress Layer
US7227174B2 (en) * 2003-06-26 2007-06-05 Rj Mears, Llc Semiconductor device including a superlattice and adjacent semiconductor layer with doped regions defining a semiconductor junction
US7612366B2 (en) * 2003-06-26 2009-11-03 Mears Technologies, Inc. Semiconductor device including a strained superlattice layer above a stress layer
US20070063186A1 (en) * 2003-06-26 2007-03-22 Rj Mears, Llc Method for making a semiconductor device including a front side strained superlattice layer and a back side stress layer
US20060220118A1 (en) * 2003-06-26 2006-10-05 Rj Mears, Llc Semiconductor device including a dopant blocking superlattice
US20060292765A1 (en) * 2003-06-26 2006-12-28 Rj Mears, Llc Method for Making a FINFET Including a Superlattice
US20070020860A1 (en) * 2003-06-26 2007-01-25 Rj Mears, Llc Method for Making Semiconductor Device Including a Strained Superlattice and Overlying Stress Layer and Related Methods
US20060273299A1 (en) * 2003-06-26 2006-12-07 Rj Mears, Llc Method for making a semiconductor device including a dopant blocking superlattice
US20070063185A1 (en) * 2003-06-26 2007-03-22 Rj Mears, Llc Semiconductor device including a front side strained superlattice layer and a back side stress layer
JP2005259755A (ja) * 2004-03-09 2005-09-22 Matsushita Electric Ind Co Ltd ヘテロ接合バイポーラトランジスタおよびその製造方法
US7180103B2 (en) * 2004-09-24 2007-02-20 Agere Systems Inc. III-V power field effect transistors
US20060175631A1 (en) * 2005-02-04 2006-08-10 Raytheon Company Monolithic integrated circuit having enhanced breakdown voltage
US7902046B2 (en) * 2005-09-19 2011-03-08 The Board Of Trustees Of The Leland Stanford Junior University Thin buffer layers for SiGe growth on mismatched substrates
WO2007075942A2 (en) * 2005-12-22 2007-07-05 Mears Technologies, Inc. Electronic device including a selectively polable superlattice and associated methods
US7517702B2 (en) * 2005-12-22 2009-04-14 Mears Technologies, Inc. Method for making an electronic device including a poled superlattice having a net electrical dipole moment
US7700447B2 (en) * 2006-02-21 2010-04-20 Mears Technologies, Inc. Method for making a semiconductor device comprising a lattice matching layer
KR20070117238A (ko) * 2006-06-08 2007-12-12 삼성전기주식회사 반도체 발광 트랜지스터
KR100850950B1 (ko) * 2006-07-26 2008-08-08 엘지전자 주식회사 질화물계 발광 소자
US7781827B2 (en) 2007-01-24 2010-08-24 Mears Technologies, Inc. Semiconductor device with a vertical MOSFET including a superlattice and related methods
US7928425B2 (en) * 2007-01-25 2011-04-19 Mears Technologies, Inc. Semiconductor device including a metal-to-semiconductor superlattice interface layer and related methods
US7863066B2 (en) * 2007-02-16 2011-01-04 Mears Technologies, Inc. Method for making a multiple-wavelength opto-electronic device including a superlattice
US7880161B2 (en) * 2007-02-16 2011-02-01 Mears Technologies, Inc. Multiple-wavelength opto-electronic device including a superlattice
US7812339B2 (en) * 2007-04-23 2010-10-12 Mears Technologies, Inc. Method for making a semiconductor device including shallow trench isolation (STI) regions with maskless superlattice deposition following STI formation and related structures
JP5498662B2 (ja) * 2008-03-26 2014-05-21 国立大学法人 東京大学 半導体装置および半導体装置の製造方法
WO2010023273A1 (de) * 2008-08-28 2010-03-04 Forschungsverbund Berlin E.V. Schottky-drain transistor
TW201115735A (en) * 2009-10-21 2011-05-01 Univ Nat Chiao Tung Ohmic contact of III-V semiconductor device and manufacturing method
IL220675B (en) * 2012-06-28 2019-10-31 Elta Systems Ltd phototransistor
US9583590B2 (en) 2013-09-27 2017-02-28 Samsung Electronics Co., Ltd. Integrated circuit devices including FinFETs and methods of forming the same
WO2015077580A1 (en) 2013-11-22 2015-05-28 Mears Technologies, Inc. Semiconductor devices including superlattice depletion layer stack and related methods
KR101855023B1 (ko) 2013-11-22 2018-05-04 아토메라 인코포레이티드 정지층을 통한 초격자 펀치를 포함하는 수직 반도체 디바이스 및 관련된 방법
US9716147B2 (en) 2014-06-09 2017-07-25 Atomera Incorporated Semiconductor devices with enhanced deterministic doping and related methods
US9722046B2 (en) 2014-11-25 2017-08-01 Atomera Incorporated Semiconductor device including a superlattice and replacement metal gate structure and related methods
US9590084B2 (en) * 2014-11-26 2017-03-07 Taiwan Semiconductor Manufacturing Company, Ltd. Graded heterojunction nanowire device
US9741811B2 (en) 2014-12-15 2017-08-22 Samsung Electronics Co., Ltd. Integrated circuit devices including source/drain extension regions and methods of forming the same
US9673221B2 (en) * 2015-03-03 2017-06-06 International Business Machines Corporation Semiconductor device with low band-to-band tunneling
JP2016213362A (ja) * 2015-05-12 2016-12-15 日本電信電話株式会社 アバランシェフォトダイオード
US9899479B2 (en) 2015-05-15 2018-02-20 Atomera Incorporated Semiconductor devices with superlattice layers providing halo implant peak confinement and related methods
WO2016196600A1 (en) 2015-06-02 2016-12-08 Atomera Incorporated Method for making enhanced semiconductor structures in single wafer processing chamber with desired uniformity control
US9748430B2 (en) 2015-06-18 2017-08-29 Board Of Regents, The University Of Texas System Staircase avalanche photodiode with a staircase multiplication region composed of an AIInAsSb alloy
US9558939B1 (en) 2016-01-15 2017-01-31 Atomera Incorporated Methods for making a semiconductor device including atomic layer structures using N2O as an oxygen source
FR3053837B1 (fr) * 2016-07-08 2018-08-24 Commissariat A L'energie Atomique Et Aux Energies Alternatives Structure du type photodiode a avalanche et procede de fabrication d'une telle structure
JP7059771B2 (ja) * 2018-04-19 2022-04-26 日本電信電話株式会社 受光素子
WO2020170703A1 (ja) * 2019-02-20 2020-08-27 パナソニックIpマネジメント株式会社 撮像装置およびその駆動方法
CN112382690A (zh) * 2020-09-30 2021-02-19 昆明物理研究所 一种红外探测器材料的势垒层及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4383269A (en) 1980-09-19 1983-05-10 Bell Telephone Laboratories, Incorporated Graded bandgap photodetector
JPS6049681A (ja) 1983-08-29 1985-03-18 Fujitsu Ltd 半導体受光装置
JPH0666340B2 (ja) 1986-07-22 1994-08-24 三洋電機株式会社 電界効果トランジスタ
US5856685A (en) * 1995-02-22 1999-01-05 Nec Corporation Heterojunction field effect transistor
JP2914210B2 (ja) * 1995-03-07 1999-06-28 日本電気株式会社 多重量子井戸構造光半導体装置及びその製造方法

Also Published As

Publication number Publication date
US6436784B1 (en) 2002-08-20
JPH09121061A (ja) 1997-05-06
US6326650B1 (en) 2001-12-04

Similar Documents

Publication Publication Date Title
DE69631098D1 (de) Halbleiterstrukturen
DE69625265D1 (de) Halbleiterstrukturen
NO962381L (no) Spiss-beskytter-innretning
DE69533127D1 (de) Kühlkörper
DE69610457T2 (de) Halbleitervorrichtung
KR970004020A (ko) 반도체장치
KR970005998A (ko) 반도체 장치
DE69608850D1 (de) Halbleiterlaser
DE69841511D1 (de) Halbleiter
DE69606812T2 (de) Halbleiterlaser
DE69631940D1 (de) Halbleitervorrichtung
DE59607521D1 (de) Halbleiter-Bauelement-Konfiguration
DE69841156D1 (de) Halbleiter
DE69635334D1 (de) Halbleiteranordnung
DE59601117D1 (de) Leistungshalbleiter-baustein
KR970025773U (ko) 반도체 장치
DE59602190D1 (de) Hohlleiteroszillator
KR970046959U (ko) 웨이퍼 구조
KR970046665U (ko) 반도체 장치
KR970025870U (ko) 반도체 장치
KR970003241U (ko) 반도체 장치
KR970003240U (ko) 반도체 장치
KR950028703U (ko) 반도체 장치
KR970003228U (ko) 반도체 장치
KR970004180A (ko) 반도체 레이저

Legal Events

Date Code Title Description
8332 No legal effect for de