DE69220312D1 - Herstellungsverfahren für oxidischen supraleitenden film - Google Patents

Herstellungsverfahren für oxidischen supraleitenden film

Info

Publication number
DE69220312D1
DE69220312D1 DE69220312T DE69220312T DE69220312D1 DE 69220312 D1 DE69220312 D1 DE 69220312D1 DE 69220312 T DE69220312 T DE 69220312T DE 69220312 T DE69220312 T DE 69220312T DE 69220312 D1 DE69220312 D1 DE 69220312D1
Authority
DE
Germany
Prior art keywords
supral
oxidic
manufacturing
conducting film
conducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
DE69220312T
Other languages
English (en)
Other versions
DE69220312T2 (de
Inventor
Takashi Hase
Ryusuke Kita
Masato Sasaki
Tadataka Morishita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Kk Osaka Jp International Superconductiv
Original Assignee
International Superconductivity Technology Center
Kobe Steel Ltd
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Superconductivity Technology Center, Kobe Steel Ltd, Sharp Corp filed Critical International Superconductivity Technology Center
Publication of DE69220312D1 publication Critical patent/DE69220312D1/de
Application granted granted Critical
Publication of DE69220312T2 publication Critical patent/DE69220312T2/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/087Oxides of copper or solid solutions thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • C01G3/006Compounds containing, besides copper, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5846Reactive treatment
    • C23C14/5853Oxidation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0296Processes for depositing or forming copper oxide superconductor layers
    • H10N60/0381Processes for depositing or forming copper oxide superconductor layers by evaporation, e.g. MBE
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0296Processes for depositing or forming copper oxide superconductor layers
    • H10N60/0548Processes for depositing or forming copper oxide superconductor layers by deposition and subsequent treatment, e.g. oxidation of pre-deposited material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/76Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by a space-group or by other symmetry indications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/922Static electricity metal bleed-off metallic stock
    • Y10S428/9265Special properties
    • Y10S428/93Electric superconducting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/70High TC, above 30 k, superconducting device, article, or structured stock
    • Y10S505/701Coated or thin film device, i.e. active or passive
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/725Process of making or treating high tc, above 30 k, superconducting shaped material, article, or device
    • Y10S505/729Growing single crystal, e.g. epitaxy, bulk
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/725Process of making or treating high tc, above 30 k, superconducting shaped material, article, or device
    • Y10S505/73Vacuum treating or coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/725Process of making or treating high tc, above 30 k, superconducting shaped material, article, or device
    • Y10S505/73Vacuum treating or coating
    • Y10S505/732Evaporative coating with superconducting material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/725Process of making or treating high tc, above 30 k, superconducting shaped material, article, or device
    • Y10S505/736From free metal precursors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/725Process of making or treating high tc, above 30 k, superconducting shaped material, article, or device
    • Y10S505/742Annealing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)
DE69220312T 1991-03-27 1992-03-27 Herstellungsverfahren für oxidischen supraleitenden film Expired - Lifetime DE69220312T2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP3089547A JP2923372B2 (ja) 1991-03-27 1991-03-27 酸化物超電導体膜の製造方法
PCT/JP1992/000376 WO1992017406A1 (en) 1991-03-27 1992-03-27 Production method for oxide superconductor film

Publications (2)

Publication Number Publication Date
DE69220312D1 true DE69220312D1 (de) 1997-07-17
DE69220312T2 DE69220312T2 (de) 1997-10-30

Family

ID=13973850

Family Applications (1)

Application Number Title Priority Date Filing Date
DE69220312T Expired - Lifetime DE69220312T2 (de) 1991-03-27 1992-03-27 Herstellungsverfahren für oxidischen supraleitenden film

Country Status (5)

Country Link
US (1) US5350738A (de)
EP (1) EP0533945B1 (de)
JP (1) JP2923372B2 (de)
DE (1) DE69220312T2 (de)
WO (1) WO1992017406A1 (de)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2374557A (en) * 2001-04-19 2002-10-23 Imperial College Producing superconductors by epitaxial growth
AU2002365423A1 (en) * 2001-07-31 2003-09-02 American Superconductor Corporation Methods and reactors for forming superconductor layers
US6730575B2 (en) 2001-08-30 2004-05-04 Micron Technology, Inc. Methods of forming perovskite-type material and capacitor dielectric having perovskite-type crystalline structure
US7132711B2 (en) * 2001-08-30 2006-11-07 Micron Technology, Inc. Programmable array logic or memory with p-channel devices and asymmetrical tunnel barriers
US7042043B2 (en) 2001-08-30 2006-05-09 Micron Technology, Inc. Programmable array logic or memory devices with asymmetrical tunnel barriers
US7087954B2 (en) 2001-08-30 2006-08-08 Micron Technology, Inc. In service programmable logic arrays with low tunnel barrier interpoly insulators
US7068544B2 (en) 2001-08-30 2006-06-27 Micron Technology, Inc. Flash memory with low tunnel barrier interpoly insulators
US7135734B2 (en) * 2001-08-30 2006-11-14 Micron Technology, Inc. Graded composition metal oxide tunnel barrier interpoly insulators
US6963103B2 (en) * 2001-08-30 2005-11-08 Micron Technology, Inc. SRAM cells with repressed floating gate memory, low tunnel barrier interpoly insulators
US6778441B2 (en) * 2001-08-30 2004-08-17 Micron Technology, Inc. Integrated circuit memory device and method
US6754108B2 (en) * 2001-08-30 2004-06-22 Micron Technology, Inc. DRAM cells with repressed floating gate memory, low tunnel barrier interpoly insulators
US7476925B2 (en) 2001-08-30 2009-01-13 Micron Technology, Inc. Atomic layer deposition of metal oxide and/or low asymmetrical tunnel barrier interploy insulators
US7075829B2 (en) * 2001-08-30 2006-07-11 Micron Technology, Inc. Programmable memory address and decode circuits with low tunnel barrier interpoly insulators
US6784480B2 (en) * 2002-02-12 2004-08-31 Micron Technology, Inc. Asymmetric band-gap engineered nonvolatile memory device
US7221586B2 (en) 2002-07-08 2007-05-22 Micron Technology, Inc. Memory utilizing oxide nanolaminates
US20050065035A1 (en) * 2003-06-10 2005-03-24 Rupich Martin W. Superconductor methods and reactors
US7927948B2 (en) 2005-07-20 2011-04-19 Micron Technology, Inc. Devices with nanocrystals and methods of formation

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2938597A1 (de) * 1979-09-24 1981-04-09 Bayer Ag, 5090 Leverkusen Antimikrobielle mittel
JPH0365502A (ja) * 1989-07-31 1991-03-20 Sumitomo Electric Ind Ltd 超電導薄膜の作製方法
JPS63274620A (ja) * 1987-04-30 1988-11-11 Sumitomo Electric Ind Ltd 超電導材料の作製方法
IT1228263B (it) * 1987-07-10 1991-06-05 Getters Spa Metodo perfezionato per la produzione di superconduttori sotto forma di pellicole depositate per evaporazione
JPS6467825A (en) * 1987-09-08 1989-03-14 Furukawa Electric Co Ltd Formation of oxide superconductor thin film
US5132280A (en) * 1987-09-25 1992-07-21 At&T Bell Laboratories Method of producing a superconductive oxide layer on a substrate
JPH01161628A (ja) * 1987-12-17 1989-06-26 Mitsubishi Electric Corp 酸化物超電導薄膜作成法
JPH07112927B2 (ja) * 1988-02-08 1995-12-06 日本電信電話株式会社 酸化物超伝導薄膜の製造方法

Also Published As

Publication number Publication date
US5350738A (en) 1994-09-27
EP0533945B1 (de) 1997-06-11
EP0533945A1 (de) 1993-03-31
JPH0597588A (ja) 1993-04-20
JP2923372B2 (ja) 1999-07-26
EP0533945A4 (de) 1995-01-11
DE69220312T2 (de) 1997-10-30
WO1992017406A1 (en) 1992-10-15

Similar Documents

Publication Publication Date Title
DE69032936T2 (de) Herstellungsverfahren für Dünnfilm-Magnetköpfe
DE69227848D1 (de) Herstellungsverfahren für retroreflektierende folie
DE69125061D1 (de) Herstellungsverfahren für Dünnfilmkopfgleiter
DE69129440T2 (de) Planungssystem für Herstellung
DE69130777T2 (de) Herstellungsverfahren für Mikrolinsen
DE69220312D1 (de) Herstellungsverfahren für oxidischen supraleitenden film
DE69621236T2 (de) Herstellungsverfahren für laminiertes band
DE69132319D1 (de) Fernsteuerungsverfahren für fotografische Geräte
DE69131762D1 (de) Herstellungsverfahren für Halbleitereinrichtungen
DE69210374D1 (de) Herstellungsverfahren für eine Magnetrolle
DE69212251D1 (de) Herstellungsverfahren für vielfarbenanzeigegerät
DE69117905D1 (de) Herstellungsverfahren für Alkoxyphthalocyanine
DE69327145D1 (de) Herstellungsverfahren für ein CMOS-Bauteil
DE69131241T2 (de) Herstellungsverfahren für Halbleiteranordnungen
DE69433163D1 (de) Filmherstellungsverfahren
DE69110959D1 (de) Zusammengesetzter Film für die elektrostatische Aufzeichnung.
DE69315286D1 (de) Herstellungsverfahren für eine Kassette mit lichtempfindlichem Film
DE69633754D1 (de) Herstellungsverfahren für einen dünnen Halbleiterfilm
DE69421492D1 (de) Verarbeitungsverfahren für einen dünnen Film
DE69305001D1 (de) Herstellungstechnik für Schläuche
DE69329928D1 (de) Herstellungsverfahren für integrierten Schaltkreis
EP0519692A3 (en) Thin film transistor and method for manufacturing the same
DE69200537D1 (de) Herstellungsverfahren für Trennvorrichtungen.
DE69224214T2 (de) Herstellungsverfahren für Dünnschicht-Supraleiter
DE69429240D1 (de) Herstellungsverfahren für magnetisches oxyd material

Legal Events

Date Code Title Description
8364 No opposition during term of opposition
8327 Change in the person/name/address of the patent owner

Owner name: SHARP K.K., OSAKA, JP INTERNATIONAL SUPERCONDUCTIV