DE4010694A1 - Faserverstaerkter werkstoff, verfahren zu seiner herstellung und seine verwendung - Google Patents

Faserverstaerkter werkstoff, verfahren zu seiner herstellung und seine verwendung

Info

Publication number
DE4010694A1
DE4010694A1 DE4010694A DE4010694A DE4010694A1 DE 4010694 A1 DE4010694 A1 DE 4010694A1 DE 4010694 A DE4010694 A DE 4010694A DE 4010694 A DE4010694 A DE 4010694A DE 4010694 A1 DE4010694 A1 DE 4010694A1
Authority
DE
Germany
Prior art keywords
fiber
fiber reinforced
thermosetting resin
reinforced material
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE4010694A
Other languages
English (en)
Inventor
Georg M Dipl Ing Lorenz
Elke Dipl Ing Gebauer
Ulrich Dipl Ing Schuster
Manfred Dipl Ing Tschacher
Burkhard Schoenrogge
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoechst AG
Reitex Hydraulik GmbH
Original Assignee
Hoechst AG
Reitex Hydraulik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoechst AG, Reitex Hydraulik GmbH filed Critical Hoechst AG
Priority to DE4010694A priority Critical patent/DE4010694A1/de
Priority to EP95108596A priority patent/EP0697430A3/de
Priority to EP91104871A priority patent/EP0450488B1/de
Priority to AT91104871T priority patent/ATE143034T1/de
Priority to ES91104871T priority patent/ES2094164T3/es
Priority to DK91104871.8T priority patent/DK0450488T3/da
Priority to DE59108186T priority patent/DE59108186D1/de
Priority to IE106891A priority patent/IE911068A1/en
Priority to PT97226A priority patent/PT97226B/pt
Priority to CS1991904A priority patent/CZ286573B6/cs
Priority to HU911060A priority patent/HU209772B/hu
Priority to SK904-91A priority patent/SK281639B6/sk
Priority to JP03070885A priority patent/JP3121852B2/ja
Publication of DE4010694A1 publication Critical patent/DE4010694A1/de
Priority to GR960403463T priority patent/GR3022036T3/el
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/247Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using fibres of at least two types
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • B29C70/22Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in at least two directions forming a two dimensional structure
    • B29C70/222Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in at least two directions forming a two dimensional structure the structure being shaped to form a three dimensional configuration
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/046Reinforcing macromolecular compounds with loose or coherent fibrous material with synthetic macromolecular fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • C08L61/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/20Sliding surface consisting mainly of plastics
    • F16C33/201Composition of the plastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/12Use of polyvinylhalogenides or derivatives thereof as moulding material containing fluorine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2101/00Use of unspecified macromolecular compounds as moulding material
    • B29K2101/10Thermosetting resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2233/00Use of polymers of unsaturated acids or derivatives thereof, as reinforcement
    • B29K2233/18Polymers of nitriles
    • B29K2233/20PAN, i.e. polyacrylonitrile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2267/00Use of polyesters or derivatives thereof as reinforcement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2277/00Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, as reinforcement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2009/00Layered products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/04Bearings
    • B29L2031/045Bushes therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/26Sealing devices, e.g. packaging for pistons or pipe joints
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2361/00Characterised by the use of condensation polymers of aldehydes or ketones; Derivatives of such polymers
    • C08J2361/04Condensation polymers of aldehydes or ketones with phenols only
    • C08J2361/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/14Homopolymers or copolymers of acetals or ketals obtained by polymerisation of unsaturated acetals or ketals or by after-treatment of polymers of unsaturated alcohols
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2208/00Plastics; Synthetic resins, e.g. rubbers
    • F16C2208/80Thermosetting resins
    • F16C2208/82Composites, i.e. fibre reinforced thermosetting resins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2208/00Plastics; Synthetic resins, e.g. rubbers
    • F16C2208/80Thermosetting resins
    • F16C2208/90Phenolic resin
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2220/00Shaping
    • F16C2220/28Shaping by winding impregnated fibres
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/38Ball cages
    • F16C33/44Selection of substances

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Composite Materials (AREA)
  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Nonwoven Fabrics (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Description

Die vorliegende Erfindung betrifft einen faserverstärkten Werkstoff aus einem flächenförmigen Textilmaterial, das zumindest teilweise aus Synthesefasern besteht und einem ein Fluorpolymer enthaltenden Duroplastharz, sowie ein Prepreg zur Herstellung dieses Werkstoffs und flächenförmige oder dreidimensionale Konstruktionselemente aus diesem Werkstoff.
Es ist bereits bekannt, Konstruktionselemente wie z. B. Führungs- und Dichtungsmanschetten und -ringe, die vorzugsweise in Hydrauliksystemen eingesetzt werden, aus mit Cellulosefasergeweben verstärkten Duroplastharzen (Hartgewebeband) herzustellen. Diese bekannten Konstruktionselemente weisen jedoch in der Praxis eine unzureichende Flexibilität auf; sie neigen häufig zum Delaminieren und verursachen bei verschiedenen Anwendungen zu hohe Reibungsverluste. Auch die Hitzestandfestigkeit dieser Konstruktionskomponenten läßt in der Praxis des öfteren zu wünschen übrig.
Große Probleme ergeben sich bei Führungsringen gerade in Hydrauliksystemen aufgrund des Zusammenwirkens hoher statischer und dynamischer Drücke, zeitweise hoher Kantenbelastungen und hohen Arbeitstemperaturen bei gleichzeitig ständiger abrasiver Beanspruchung durch die Gleitbewegungen der Hydraulikelemente in Gegenwart der quellend und lösend wirkenden Hydraulikflüssigkeit.
Führungselemente aus Thermoplasten, die an sich gute Gleiteigenschaften und eine gute Flexibilität haben und Querkräfte, wie sich z. B. bei hohen Kantenbelastungen auftreten können, besser aushalten als sprödere Materialien, versagen unter den oben geschilderten Arbeitsbedingungen in Hydrauliksystemen bereits nach kurzer Zeit. Sie zeigen bei tiefen Temperaturen, wie sie z. B. im Winterbetrieb von Hydrauliksystemen auftreten können, Versprödung, so daß sie auch durch Kantenbelastungen leicht zerstört werden, bei ansteigenden Temperaturen zeigen sie plastische Verformung.
Es ist auch bereits bekannt, Verbundwerkstoffe aus Metallpulvern und Polytetrafluorethylen zur Herstellung von Gleit- und Führungsringen einzusetzen, um die guten Gleiteigenschaften von Polytetrafluorethylen auszunutzen.
Diese Materialien zeigen jedoch unter den hohen Drucken moderner Hydrauliksysteme einen viel zu hohen Kaltfluß, so daß sie bereits bei Normaltemperatur, erst recht aber unter den üblichen Betriebstemperaturen dieser Systeme nicht brauchbar sind.
Aus der Britischen Patentschrift 9 74 629 ist ein Verfahren zur Herstellung von Lagern bekannt, bei dem ein Werkstoff eingesetzt wird, der aus einem durch Gewebestreifen verstärkten, hitzehärtenden Harz besteht. Zur Herabsetzung der Reibungsverluste beim Einsatz dieser bekannten Lagerelemente wird im Verlauf des Formgebungsprozesses Polytetrafluorethylenpulver in die Oberfläche des Werkstoffs eingepreßt.
Aus der Britischen Patentschrift 10 31 406 ist eine Zusammensetzung bekannt zur Herstellung von Schutzüberzügen mit geringem Reibungskoeffizient auf Substraten wie z. B. Holz oder Stahl. Diese Zusammensetzung besteht im wesentlichen aus einem härtbaren Harz, beispielsweise einem hitzehärtendem Phenolformaldehydharz, in dem niedermolekulare Fluorpolymere in fein zerteilter Form enthalten sind.
Ein ähnliches Mittel zur Herstellung von Schutzüberzügen mit niedrigem Reibungskoeffizient und ein Verfahren zu dessen Anwendung findet sich in der Deutschen Patentschrift 12 50 035.
Die vorliegende Erfindung betrifft nun einen faserverstärkten Werkstoff, aus dem Konstruktionselemente mit einem relativ niedrigen Reibungskoeffizienten und hoher Druck- und Abriebfestigkeit, erheblich verbesserter Flexibilität, Dehnbarkeit, Scher- und Delaminierungsfestigkeit und hoher Temperaturstabilität hergestellt werden können, die gleichzeitig inert sind gegenüber lösend und/oder quellend wirkenden Flüssigkeiten, wie z. B. Hydraulik- oder Schmierflüssigkeit, und die sich daher beispielsweise insbesondere zum Einsatz als Führungselemente in hochbeanspruchten Hydrauliksystemen oder zum Bau von Lagern, insbesondere von Gleitlagern eignen.
Der erfindungsgemäße faserverstärkte Werkstoff besteht aus einem flächenförmigen Textilmaterial und einem Duroplastharz und ist dadurch gekennzeichnet, daß er einen Faseranteil von 30 bis 70 Gew.-%, vorzugsweise von 40 bis 60 Gew.-%, insbesondere von 45 bis 55 Gew.-% hat, und daß das darin enthaltene Fasermaterial zu mindestens 30%, vorzugsweise zu mindestens 50%, insbesondere zu mindestens 80% aus Synthesefasern besteht. Als Duroplastharze kommen im Prinzip alle bekannten vernetzbaren, d. h. härtbaren Harzsysteme in Frage, insbesondere z. B. Phenolharze, aber auch Melaminharze, Epoxidharze und Alkydharze. Vorzugsweise wird ein Duroplastharz eingesetzt, das bis zu 25 Gew.-%, vorzugsweise 5 bis 20 Gew.-%, insbesondere 5 bis 10 Gew.-% eines Fluorpolymeren enthält. Besonders bevorzugt ist ein erfindungsgemäßer faserverstärkter Werkstoff, dessen Fasermaterial zu 100% aus Synthesefasern besteht.
Als flächenförmige Textilmaterialien, die in dem erfindungsgemäßen faserverstärkten Werkstoff enthalten sein können, kommen in Betracht Gewebe, Gewirke/Gestricke oder Vliese. Das Fasermaterial der flächenförmigen Textilmaterialien kann in glatter oder gekräuselter (texturierter) Form und in Form von Stapelfasern, Stapelfasergarnen oder Multifilamentgarnen vorliegen. Handelt es sich bei dem in dem erfindungsgemäßen Werkstoff enthaltenen flächenförmigen Textilmaterial um ein Vliesmaterial, so besteht das Fasermaterial in der Regel aus gekräuselten Stapelfasern. Die Stapellänge dieser Fasern liegt in der Regel zwischen 20 und 200 mm. Mit Rücksicht auf besondere Festigkeitsanforderungen ist es besonders vorteilhaft, mit Stapelfasern von ca. 60 bis 150 mm Länge zu arbeiten. Besonders vorteilhaft für den erfindungsgemäßen Einsatzzweck sind Vliesmaterialien aus Stapelfasern mit einer mittleren Stapellänge von 40 bis 120 mm. Die in den erfindungsgemäßen Werkstoffen eingesetzten Vliese können zweckmäßigerweise noch durch eine Wärmebehandlung, z. B. durch Kalandrieren, insbesondere mit Prägekalandern oder durch eine Binderverfestigung, beispielsweise durch einen hitzehärtenden Binder oder durch Binderfilamente mit relativ hohem Schmelzpunkt oder auch durch mechanische Mittel wie z. B. durch Nadeln vorverfestigt werden.
Gewebe und Gewirke/Gestricke können aus glatten oder vorzugsweise aus texturierten Multifilamentgarnen oder vorzugsweise aus sekundär gesponnenen Stapelfasergarnen bestehen. Unter texturiertem Garn soll jedes in an sich bekannter Weise strukturierte Garn verstanden werden, insbesondere auch Effektgarne wie z. B. Schlingengarne, die aufgrund von Fäserchen und Schlingen, die von der Fadenoberfläche abstehen oder durch bei der Herstellung eingebrachten Dickstellen oder "Bauchbinden" einen die Haftung mit dem Matrixharz verbessernden Effekt aufweisen. Die Flächengewichte der in dem erfindungsgemäßen Werkstoff enthaltenen flächenförmigen Textilmaterialien liegen zweckmäßigerweise im Bereich von 100 bis 280, vorzugsweise 120 bis 250, insbesondere im Bereich von 120 bis 150 g/qm.
Besonders bevorzugt sind solche erfindungsgemäßen Werkstoffe, deren textiles Flächengebilde aus einem Stapelfasergarn besteht, das aus 100% synthetischen Fasern besteht. Die Stapelfasergarne ihrerseits können vorliegen als Einfachgarne, als Zwirne und sie können sonstige bekannte Spinn- oder Zwirneffekte aufweisen.
Das in den erfindungsgemäßen Werkstoffen enthaltene Fasermaterial ist zumindest zu 30% synthetisch. Als Naturfasern, die in den erfindungsgemäßen Werkstoffen enthalten sein können, kommen insbesondere Cellulosefasern wie z. B. Baumwolle- oder Jutefasern in Betracht. Als Synthesefasern, aus denen die in den erfindungsgemäßen Werkstoffen enthaltenen flächenförmigen Textilmaterialien überwiegend, oder vorzugsweise ausschließlich, aufgebaut sind, kommen im Prinzip alle bekannten hochfesten, hochmoduligen, ausreichend temperaturbeständigen Synthesefasern wie z. B. teil- oder vollaromatische Polyamidfasern, teil- oder vollaromatische Polyesterfasern, hochfeste Polyacrylnitrilfasern in oxidierter oder nicht­ oxidierter Form oder auch Kohlenstoffasern in Betracht. In bezug auf das Preis/Leistungs-Verhältnis und im Hinblick auf die Haftung zwischen Fasermaterial und dem Duroplastharz ist der Einsatz von Phenolharzen als Duroplast und die Verwendung von textilen Flächengebilden aus Polyesterfasern, insbesondere aus Polyethylenterephthalat, von Flächengebilden aus Mischfasergarnen aus Polyester/ Cellulose, insbesondere und bevorzugt aber von textilen Flächengebilden aus Polyacrylnitrilfasern besonders vorteilhaft. Besonders bevorzugt ist der Einsatz der hochfesten Typen dieser Synthesefasern. Wie oben bereits ausgeführt, können die Synthesefasern in gekräuselter oder nicht-gekräuselter Form und als Endlos- oder Stapelfaser vorliegen, je nach Art des textilen Flächengebildes. Die Titer der Synthesefasern liegen zweckmäßigerweise bei 1 bis 9 dtex, wobei für Polyacrylnitrilfasertypen 1,7 bis 6,7 dtex bevorzugt sind, insbesondere 2 bis 3 dtex.
Für andere hochtemperaturbeständige Fasern sind in etwa gleiche Titerbereiche einzusetzen, welche für den Einzelfall durch entsprechende Vorversuche ermittelt werden können. Die Festigkeit der zweckmäßigerweise eingesetzten hochfesten Fasertypen liegt bei Polyethylenterephthalat im Bereich von 65 bis 75 cN/tex, bei hochfesten Polyacrylnitriltypen bei über 55 cN/tex, für Einzelfasertiter zwischen 2 und 3 dtex und bei über 43 cN/tex für Einzelfasertiter im Bereich oberhalb 5 dtex. Die Höchstzugkraftdehnung der zweckmäßigerweise eingesetzen Synthesefasern liegt für Polyethylenterephthalat im Bereich von 14 bis 17%, für die besonders bevorzugten Polyacrylnitrilfasertypen im Bereich von 13 bis 16%, bei Einzelfasertitern zwischen 2 und 3 dtex und bei etwa 14 bis 17% bei Einzelfasertitern über 5 dtex.
Besonders bevorzugte erfindungsgemäße Werkstoffe enthalten flächenförmige Textilmaterialien, insbesondere Gewebe oder Vliese aus hochverstreckten, nicht oxidierten Polyacrylnitrilfasern, die beispielsweise unter der Bezeichnung ®Dolanit in den Typen 12 und 15 im Handel sind. Hierbei handelt es sich um gekräuselte Langfasertypen (Schnittlänge ca. 60-100 mm), die durch eine gute Haftung innerhalb des Garnverbundes charakterisiert sind und sich daher gut zu Garnen/Geweben und Vliesen verarbeiten lassen. Derartige hochfeste Fasern zeichnen sich gegenüber textilen Polyacrylnitrilfasern durch eine nahezu doppelt so hohe Faser-Festigkeit, sowie durch ihre gute Chemikalien- und Temperaturbeständigkeit aus. Eine besonders bevorzugte Ausführungsform des erfindungsgemäßen Werkstoffs enthält beispielsweise ein Gewirke/Gestrick oder insbesondere ein Gewebe aus einem gekräuselten, gezwirnten Stapelfasergarn aus der hochfesten Polyacrylnitrilfasertype ®Dolanit 15 oder aber ein Vlies aus gekräuselten Stapelfasern aus der hochfesten Polyacrylnitrilfasertype ®Dolanit 12.
Wie bereits oben ausgeführt, werden als Duroplastharze vorzugsweise Phenolharze eingesetzt.
Als Phenolharz sind in den erfindungsgemäßen faserverstärkten Werkstoffen bekannte Kondensationsprodukte von Phenol und Phenolderivaten mit Formaldehyd enthalten. Als Phenolderivate kommen insbesondere in Betracht substituierte Phenole, insbesondere alkylsubstituierte Phenole wie z. B. Kresole, Xylenole und andere Alkylphenole wie z. B. p-tert.-Butylphenol, Octylphenol und Nonylphenol aber auch Arylphenole, wie z. B. Phenylphenol, Naphtole, und 2-wertige Phenole wie z. B. Resorcin und Bisphenol A. Als Phenolharze im Sinne dieser Erfindung sind sowohl die Kondensationsprodukte der genannten Einzelverbindungen als auch Kondensationsprodukte von Mischungen der obengenannten Phenole und Phenolderivate mit Formaldehyd zu verstehen. Sollen Einzelverbindungen zur Herstellung der Phenolharze eingesetzt werden, so ist zu beachten, daß diese eine mindestens dreifache Funktionalität gegenüber Formaldehyd haben müssen. Die genannten Phenolharze können auch in an sich bekannter Weise zur Optimierung besonderer Eigenschaften durch Zusätze ungesättigter natürlicher oder synthetischer Verbindungen wie z. B. Holzöl, Kolophonium oder Styrol modifiziert sein. Besonders bevorzugt sind Kondensationsprodukte von Formaldehyd mit Phenol selbst und Mischungen von Phenol mit geringeren Anteilen der genannten Phenolderivate, insbesondere der genannten alkylsubstituierten Phenole.
Die in den erfindungsgemäßen Werkstoffen enthaltene Phenolharze weisen ein Molverhältnis von Phenol zu Formaldehyd von 1 : 1 bis 1 : 3, vorzugsweise von 1 : 1,2 bis 1 : 2,2 auf. Geeignete Phenolharze sind beispielsweise unter der Typenbezeichnung Phenodur VPR 45 im Handel.
Vorzugsweise enthält das in den erfindungsgemäßen Werkstoffen enthaltene Duroplastharz, insbesondere das Phenolharz, wie oben bereits angegeben, bis zu 25% eines Fluorpolymeren in fein verteilter Form. Geeignete Fluorpolymere sind insbesondere Polytetrafluorethylen- Typen mit nicht zu hohem Molekulargewicht von ca. 20 000 bis 500 000. Vorzugsweise liegt das Molekulargewicht im Bereich von 50 000 bis 200 000. Für die vorliegende Erfindung eignen sich insbesondere solche Fluorpolymere, deren spezifische Oberfläche zwischen 5-15 m3/g, bei einer Dichte von ca. 2,1-2,3 g/cm3, liegt. Geeignete Polymerisate zeigen einen Erweichungspunkt von ca. 200 bis 250°C und Schmelzpunkte von ca. 325-330°C und eine Schmelzviskosität, gemessen bei 380°C, von ca. 102 bis 105 Pa×s (berechnet nach Hagen-Poisseuille). Von besonderer Bedeutung ist die mittlere Teilchengröße des Fluorpolymeren, die zweckmäßigerweise im Bereich von 0,5 bis 10 µm, vorzugsweise im Bereich von 2 bis 7 µm gewählt wird. Die Teilchengröße wird zweckmäßigerweise z. B. in einem Particle Size Analyzer der Fa. Hitachi in einer Netzmittellösung gemessen. Die Partikel des Fluorpolymeren, vorzugsweise des Polytetrafluorethylens sollen möglichst porenfrei sein, damit das Material nicht zum Aufschwimmen in der Phenolharzmasse tendiert.
Geeignete Fluorpolymertypen sind z. B. unter der Bezeichnung ®Hostaflon Mikropulver der Typen TF 9205 und insbesondere TF 9202 im Handel.
Das in dem erfindungsgemäßen faserverstärkten Werkstoff enthaltene Phenolharz enthält vorzugsweise zusätzlich zu dem Fluorpolymeren noch ein oder mehrere Substanzen, die als Weichmacher oder Haftungsverbesserer dienen, d. h. die den Elastizitätsbereich des Harzes erweitern und seine Bindung mit den inkorporierten Fasermaterialien verbessern. Derartige Mittel sind in dem Phenolharz zweckmäßigerweise in einer Menge von 1 bis 15 Gew.-%, vorzugsweise 3 bis 10 Gew.-%, insbesondere 4 bis 7 Gew.-% enthalten. Als besonders geeignete Weichmacher und Haftungsverbesserer haben sich Mischkondensationsprodukte aus der Klasse der Polyamide sowie Derivate des Polyvinylalkohols wie Polyvinylacetat, vorzugsweise aber Polyvinylbutyral erwiesen. Aus Verträglichkeitsgründen sind niedrig acetalisierte Typen besonders bevorzugt. Bevorzugte Phenylbutyraltypen sind in niederen aliphatischen Alkoholen löslich, weisen einen Acetalisierungsgrad von 60 bis 75%, vorzugsweise von 68 bis 72% auf und eine 6%ige methanolische Lösung des bevorzugten Polyvinylbutyrals hat bei 20°C eine Viskosität von 2 bis 20, vorzugsweise 4 bis 6 mPa×s.
Das in den erfindungsgemäßen Werkstoffen enthaltene Phenolharz kann über die angegebenen Zusätze hinaus noch weitere in Phenolharzen übliche Zusätze wie beispielsweise Entschäumer, Netzmittel, Verlaufmittel oder auch weitere Plastifizierungsmittel sowie latente Härter enthalten. Diese Zusätze können, sofern sie gewünscht werden, in einem Anteil von bis zu 2 Gew.-%, vorzugsweise im Bereich von 0,1 bis 1 Gew.-% im Harz enthalten sein.
Je nach der gewünschten Stärke der Konstruktionselemente, die aus den erfindungsgemäßen faserverstärkten Werkstoffen hergestellt werden sollen, weist der Werkstoff eine entsprechende Anzahl Lagen des flächenförmigen Textilmaterials auf.
Das in den erfindungsgemäßen faserverstärkten Werkstoffen enthaltene Phenolharz liegt im ausgehärteten, d. h. vernetzten Zustand vor. Gegenstand der vorliegenden Anmeldung sind jedoch auch Prepregs, die zur Herstellung des erfindungsgemäßen faserverstärkten Werkstoffs dienen. Diese Prepregs unterscheiden sich von den oben beschriebenen erfindungsgemäßen Werkstoffen dadurch, daß das Phenolharz in ihnen im ungehärteten Zustand vorliegt und dadurch die Verformbarkeit des Prepregs unter Wärme und Druck gewährleistet ist und dadurch, daß sie in der Regel nur eine Schicht des flächenförmigen Textilmaterials aufweisen. Der Kondensationsgrad des Phenolharzes wird durch einen Trocknungsprozeß so weit erhöht, daß das Prepreg klebfrei und somit gut aufrollbar ist und das Fließ- und Härtungsverhalten des Harzes auf die Herstellungsbedingungen des Werkstoffs abgestimmt ist. Der erfindungsgemäße faserverstärkte Werkstoff kann in verschiedenen geometrischen Formen, insbesondere in Form von flächenförmigen oder dreidimensional geformten, z. B. rohrförmigen Halbfertigerzeugnissen oder auch in Form flächenförmiger oder dreidimensionaler fertiger Konstruktionselemente vorliegen.
Besonders bevorzugt sind insbesondere solche Ausführungsformen des erfindungsgemäßen Werkstoffs, der eine Kombination mehrerer der obengenannten bevorzugten Merkmale aufweist.
Die Herstellung der erfindungsgemäßen flächenförmigen oder dreidimensionalen faserverstärkten Werkstoffe erfolgt in an sich bekannter Weise dadurch, daß eine Bahn des oben beschriebenen flächenförmigen Textilmaterials in einer geeigneten Weise, beispielsweise durch Tränken, Pflatschen, Bürsten oder Rakeln mit einer Lösung eines oben beschriebenen Duroplastharzes, welches, bezogen auf den Feststoff der Imprägnierflotte, bis zu 25 Gew.-%, vorzugsweise 5 bis 20 Gew.-%, insbesondere 5 bis 10 Gew.-% eines fein verteilten, oben beschriebenen Fluorpolymeren, 1 bis 15 Gew.-%, vorzugsweise 3 bis 10 Gew.-%, insbesondere 4 bis 7 Gew.-% eines oder mehrerer Weichmacher und Haftverbesserer und gegebenenfalls bis zu 2 Gew.-%, vorzugsweise 0,1 bis 1 Gew.-% weiterer in Duroplasten üblichen Modifizierungsmittel enthält, so daß das imprägnierte Material einen Faseranteil, gerechnet fest auf fest, zu 40 bis 60 Gew.-%, vorzugsweise zu 45 bis 55 Gew.-% aus Fasermaterial besteht. Das so erhaltene Imprägnat wird, nach einem Trocknungsprozeß bis zur Klebfreiheit, bei dem der überwiegende Teil des Lösungsmittels und gegebenenfalls Wasser entzogen wird und bei dem das Harz, zur Einstellung des Fließ- und Härtungsverhaltens, einer Weiterkondensation unterworfen wird, zu mehreren Lagen gestapelt und durch Anwendung von Druck und Wärme in die gewünschte flächenförmige oder dreidimensionale Form gebracht. Zur Herstellung flächenförmiger Werkstoffe wird das trockene Prepreg in passende Abschnitte geschnitten, die übereinandergestapelt unter Druck einer Wärmebehandlung unterworfen werden, wobei die Lagen durch das Fließen des Harzes miteinander verschmelzen. Dreidimensionale Gebilde aus den erfindungsgemäßen Werkstoffen wie z. B. rohrförmige Gebilde können dadurch erhalten werden, daß das trockene, gegebenenfalls durch Erwärmen plastifizierte Prepreg auf einen Wickeldorn in der gewünschten Anzahl von Windungen aufgewickelt wird und der erhaltene Wickel auf dem Dorn einer Wärmebehandlung ohne zusätzlichen Preßdruck oder unter Druck unterworfen wird.
Aus den so hergestellten flächenförmigen oder dreidimensionalen Halbfertigwaren aus dem erfindungsgemäßen faserverstärkten Werkstoff können anschließend durch mechanische Bearbeitungsverfahren die gewünschten Konstruktionselemente, wie beispielsweise Führungs- und Dichtungsmanschetten, Dichtungen oder auch Gleitlagerbuchsen, Lagerschalen und -käfige hergestellt werden. Die aus den erfindungsgemäßen Werkstoffen hergestellten flächenförmigen oder dreidimensionalen Halbfertigerzeugnissen und die aus diesen hergestellten Konstruktionselemente sind ebenfalls Gegenstand der vorliegenden Patentanmeldung.
Die aus den erfindungsgemäßen faserverstärkten Werkstoffen hergestellten Endprodukte zeichnen sich durch eine besonders hohe Flexibilität und hohes Rückstellvermögen, durch geringe Neigung zum Delaminieren und durch hohe Beständigkeit gegenüber hohen Temperaturen und lösend und/ oder quellend wirkenden Flüssigkeiten aus. Ferner weisen die erfindungsgemäßen Konstruktionselemente eine sehr hohe mechanische Festigkeit bei sehr günstigem Verschleißverhalten und hoher Verschleißfestigkeit, ausgezeichnete Gleiteigenschaften, niedrigen Reibungskoeffizient und sehr vorteilhafte Selbstschmierungseigenschaften auf.
Hervorzuheben ist ferner ihre sehr gute Bearbeitbarkeit, wodurch mit spanabhebenden Formgebungsverfahren außerordentlich glatte Oberflächen erhalten werden, die in der Regel keiner glättenden Nachbehandlung bedürfen und die außerordentlich homogen und geschlossen sind.
In der praktischen Anwendung ergeben sich aus diesen Materialeigenschaften leichte Montage und Demontage, verringerte Reibungs- und Losreißkräfte, verbesserte Aufnahme von Radialbelastungen, verringerter Abrieb, keine Kontaktkorrosion, verbesserte Notlaufeigenschaften, Dimensions- und Formstabilität, kein Ausweichen unter hohen Belastungen durch Kriechen oder Kaltfluß, hohe Alterungsbeständigkeit auch bei hohen Temperaturen und in Gegenwart aggressiver Medien und geringe Feuchtigkeitsaufnahme.
Die erfindungsgemäßen Konstruktionselemente sind damit bisher bekannten Produkten qualitativ erheblich überlegen.
Das folgende Ausführungsbeispiel veranschaulicht die Herstellung eines erfindungsgemäßen faserverstärkten Werkstoffs in Röhrenform und die Verarbeitung dieses Produkts zu verschiedenen dreidimensionalen Konstruktionselementen.
Beispiel
Die Tränkwanne einer Imprägnieranlage wird mit einer Harzmischung aus 100 kg Phenolharz (®Phenodur VPR 45 der Firma Hoechst AG), 27,7 kg Polyvinylbutyral (®Movital 30 TA der Firma Hoechst AG), 7,4 kg pulverförmiges Poly­ tetrafluorethylen (®Hostaflon Mikropulver TF 9202 der Firma Hoechst AG), 0,2 kg eines Entschäumers und 7,9 kg organisches Lösungsmittel auf der Basis eines teilveretherten niedermolekularen Alkandiols befüllt. Das Phenolharz wurde als 65%ige methanolische Lösung Polyvinylbutyral als 15%ige Lösung in Ethanol eingesetzt.
Mit dieser Harzmasse wurde ein Gewebe aus einem gezwirnten hochfesten Polyacrylnitrilstapelfasergarn (®Dolanit 15 der Firma Hoechst AG) mit einem Flächengewicht von ca. 225 g/qm auf einer Imprägnieranlage mit einer Imprägniergeschwindigkeit von 5 m/min getränkt und anschließend bei einer Temperatur zwischen 130 und 150°C getrocknet. Das erhaltene Prepreg wies folgende Eigenschaften auf:
Harzgehalt: ca. 46%,
Harzfluß : 14-17%.
Zur Bestimmung des Harzflusses werden 4 Lagen Prepreg mit der Abmessung 10×10 cm 10 Minuten bei 150°C und einem spezifischen Preßdruck von 5-6 bar verpreßt. Der ausgepreßte Harzanteil wurde quantitativ erfaßt und gibt in Prozent des Ausgangsgewichts den sog. Harzfluß an.
flüchtige Anteile : ca. 8%.
Die flüchtigen Anteile stellen den Gewichtsverlust eines 10 Minuten bei 160°C gehärteten Prepregs in Prozent dar.
Dieses Prepreg wurde auf einen vorgewärmten Stahlkern mit zwei beheizten Gegenwalzen in 15 Lagen aufgewickelt. Die Bewicklung auf dem Kern wird in einem Trockenofen 4 bis 8 Stunden lang bei 150 bis 160°C ausgehärtet. Anschließend wird das erhaltene erfindungsgemäße Werkstoffrohr auf einer Drehbank unter Zufuhr von Kühlflüssigkeit auf die für einen Führungsring für Hydraulikzylinder erforderliche Wandstärke abgedreht und in Längen geschnitten. Jeder der so hergestellten Werkstoffringe wird anschließend etwa achsenparallel so aufgeschnitten, daß sich zwischen den entstehenden Schnittkanten ein Spalt von ca. 3 mm ergibt. Die Fig. 1 veranschaulicht den so hergestellten Führungsring (1) mit dem von den Schnittenden (2, 2′) gebildeten Spalt (3).
Dieser aus dem erfindungsgemäßen Werkstoff hergestellte Führungsring hat im Vergleich zu einem mit gleichen Werkzeugen und unter gleichen Bedingungen aus herkömmlichen Materialien (baumwollverstärktes Phenolharz) hergestellten Führungsring eine ungewöhnlich hohe Oberflächengüte, so daß sich jede weitere glättende Nachbearbeitung der Oberfläche erübrigt. Die für die Oberfläche aus herkömmlichen Verbundwerkstoffen gedrehten Rohlinge charakteristischen, von den Schneidwerkzeugen aus der Materialoberfläche herausgerissenen kleinen Faserenden fehlen hier völlig. Darüber hinaus erweist sich die Oberfläche des Ringes als überraschend homogen. Harzmatrix und Fasermaterial erscheinen weitgehend verschmolzen.
Die Oberfläche ist auch außerordentlich dicht und nimmt sehr wenig Feuchtigkeit auf, so daß die naß gedrehten Körper kaum einer Nachtrocknung bedürfen.
Der erfindungsgemäße Führungsring hat eine sehr gute Flexibilität und ein hohes Rückstellvermögen. Er läßt sich auf einen kleineren Durchmesser zusammendrücken, wobei sich die Schnittenden (2, 2′) übereinanderschieben, und federt beim Loslassen in seine ursprüngliche Form zurück. Er kann daher besonders leicht montiert werden, indem er in zusammengedrücktem Zustand in einen Hydraulikzylinder eingeschoben wird, bis er die Innennut des Zylinders erreicht und dort "einschnappt".
Auch im Dauergebrauchstest zeigt der erfindungsgemäße Ring gegenüber einem Ring aus herkömmlichem Hartgewebeband eine frappante Überlegenheit. Hierzu werden zwei gleiche Exemplare einer Testhydraulik mit hochglanzverchromten Kolbenstangen mit den zu vergleichenden Führungsringen ausgerüstet und unter Last arbeiten gelassen.
Nach etwa 50 000 Doppelhüben erschien die zunächst weiß glänzende Kolbenstange der mit dem herkömmlichen Hartgewebeband ausgerüsteten Testhydraulik dunkel getönt, die Schmierung nahm wegen der stark ansteigenden Porenfreiheit des Kolbenstangen-Materials drastisch ab, und der Versuch mußte beendet werden wegen zu starker Ölleckage. Die Kolbenstange der mit dem erfindungsgemäßen Führungsring ausgerüsteten Testhydraulik war nach dieser Doppelhub-Zahl noch immer weiß und zeigte lediglich einen feinen farblosen Schleier. Auch nach 200 000 Doppelhüben zeigt die mit dem erfindungsgemäßen Ring ausgerüstete Hydraulik noch eine einwandfreie Funktion ohne Anzeichen einer übermäßigen, schädlichen Politur der Kolbenstange.
In analoger Weise können auch ungeschlitzte Führungsringe hergestellt werden für die Montage auf Hydraulikkolben mit Einbaunut. Hier zeigt sich die hohe Dehnbarkeit des erfindungsgemäßen Werkstoffs als ein erheblicher Vorteil. Der zu montierende Ring kann vom Durchmesser des Nutgrundes leicht auf den Durchmesser der Stange gedehnt und auf die Stange bis zur Nut aufgeschoben werden, wo er einwandfrei "einschnappt", ohne kalibriert zu werden.
Als weiteres Beispiel sei hier die in Fig. 2 gezeigte Gleitlagerhülse (5) mit einer umlaufenden Schmiernut (6) und Bohrungen (7) genannt, die in Analogie zu der oben beschriebenen Herstellung der Führungsringe produziert werden kann. Diese Gleitlagerhülse hat eine sehr hohe Lebensdauer, reduziert die Maschinen-Stillstandszeiten auf ein Minimum, spart Energie und Kosten und verringert den von dem Lager produzierten Geräuschpegel.

Claims (24)

1. Faserverstärkter Werkstoff aus einem flächenförmigen Textilmaterial und einem Duroplastharz, dadurch gekennzeichnet, daß er einen Faseranteil von 30 bis 70 Gew.-% hat und daß das darin enthaltene Fasermaterial zu mindestens 30% aus Synthesefasern besteht.
2. Faserverstärkter Werkstoff gemäß Anspruch 1, dadurch gekennzeichnet, daß das Duroplastharz ein Phenolharz ist.
3. Faserverstärkter Werkstoff gemäß mindestens einem der Ansprüche 1 und 2, dadurch gekennzeichnet, daß das Duroplastharz bis zu 25 Gew.-% eines Fluorpolymeren enthält.
4. Faserverstärkter Werkstoff gemäß mindestens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das darin enthaltene flächenförmige Textilmaterial zu 100% aus Synthesefasern besteht.
5. Faserverstärkter Werkstoff gemäß mindestens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß das darin enthaltene flächenförmige Textilmaterial ein Gewebe, ein Gewirke/Gestricke oder ein Vlies ist.
6. Faserverstärkter Werkstoff gemäß mindestens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß das darin enthaltene flächenförmige Textilmaterial aus einem Stapelfasergarn besteht.
7. Faserverstärkter Werkstoff gemäß mindestens einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß das darin enthaltene flächenförmige Textilmaterial aus Polyacrylnitrilfasern, vorzugsweise hochfesten Polyacrylnitrilfasern besteht.
8. Faserverstärkter Werkstoff gemäß mindestens einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß das darin enthaltene Phenolharz ein Phenolformaldehydkondensat ist mit einem Molverhältnis von Phenol : Formaldehyd von 1 : 1 bis 1 : 2.
9. Faserverstärkter Werkstoff gemäß mindestens einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß das im Phenolharz enthaltene Fluorpolymer eine Schmelzviskosität, gemessen bei 380°C von ca. 102-105 Pa×s und eine mittlere Teilchengröße von 0,5-10 µm hat.
10. Faserverstärkter Werkstoff gemäß mindestens einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß das Phenolharz zusätzlich Substanzen enthält, die als Weichmacher und Haftungsverbesserer wirken.
11. Faserverstärkter Werkstoff gemäß Anspruch 10, dadurch gekennzeichnet, daß die als Weichmacher oder Haftungsverbesserer wirkende Substanz ein Polyvinylalkoholderivat, vorzugsweise Polyvinylbutyral ist.
12. Faserverstärkter Werkstoff gemäß mindestens einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß er mehrere Lagen des flächenförmigen Textilmaterials aufweist.
13. Faserverstärkter Werkstoff gemäß mindestens einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß das Phenolharz auskondensiert ist.
14. Prepreg aus einem flächenförmigen Textilmaterial und einem Duroplastharz, dadurch gekennzeichnet, daß es einen Faseranteil von 30 bis 70 Gew.-% hat, daß das darin enthaltene Fasermaterial zumindestens 30% aus Synthesefasern besteht und daß das Duroplastharz ein modifiziertes Phenolharz ist, das bis zu 25 Gew.-% eines Fluorpolymeren aufweist.
15. Prepreg gemäß Anspruch 14, dadurch gekennzeichnet, daß das Duroplastharz ein Phenolharz ist.
16. Prepreg gemäß mindestens einem der Ansprüche 14 und 15, dadurch gekennzeichnet, daß das Duroplastharz bis zu 25 Gew.-% eines Fluorpolymeren enthält.
17. Prepreg gemäß Anspruch 14, dadurch gekennzeichnet, daß es die Merkmale mindestens eines der Ansprüche 4 bis 12 aufweist.
18. Faserverstärkter Werkstoff und Prepreg gemäß mindestens einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, daß das Material flächenförmig oder dreidimensional verformt vorliegt.
19. Verfahren zur Herstellung eines Prepregs aus einem flächenförmigen Textilmaterial und einem Duroplastharz in an sich bekannter Weise, dadurch gekennzeichnet, daß man ein flächenförmiges Textilmaterial, welches zu mindestens 30%, vorzugsweise zu 100% aus Synthesefasern besteht, mit einem Duroplastharz tränkt auf einen Harzanteil (berechnet fest auf fest) von 30 bis 70% und das imprägnierte Material bei erhöhter Temperatur trocknet und/oder einem Formgebungsprozeß, bei dem gegebenenfalls mehrere Lagen des imprägnierten Materials übereinandergestapelt werden, unterwirft.
20. Verfahren gemäß Anspruch 19, dadurch gekennzeichnet, daß die eingesetzten Synthesefasern Polyacrylnitrilfasern sind.
21. Verfahren gemäß mindestens einem der Ansprüche 19 und 20, dadurch gekennzeichnet, daß das eingesetzte Duroplastharz ein Phenolharz ist.
22. Verfahren gemäß mindestens einem der Ansprüche 19 bis 21, dadurch gekennzeichnet, daß das eingesetzte Duroplastharz bis zu 25 Gew.-% eines Fluorpolymeren enthält.
23. Verfahren zur Herstellung eines faserverstärkten Werkstoffs der Ansprüche 1 bis 13, dadurch gekennzeichnet, daß man gemäß Anspruch 19 ein Prepreg herstellt und dieses durch Erhitzen auf eine Temperatur zwischen 100 und 150°C unter Druck auskondensiert.
24. Verwendung des Werkstoffs der Ansprüche 1 bis 13 zur Herstellung von Konstruktionselementen durch Anwendung von mechanischen Formgebungsprozessen.
DE4010694A 1990-04-03 1990-04-03 Faserverstaerkter werkstoff, verfahren zu seiner herstellung und seine verwendung Withdrawn DE4010694A1 (de)

Priority Applications (14)

Application Number Priority Date Filing Date Title
DE4010694A DE4010694A1 (de) 1990-04-03 1990-04-03 Faserverstaerkter werkstoff, verfahren zu seiner herstellung und seine verwendung
EP95108596A EP0697430A3 (de) 1990-04-03 1991-03-27 Faserverstärkter Werkstoff, Verfahren zu seiner Herstellung und seine Verwendung
EP91104871A EP0450488B1 (de) 1990-04-03 1991-03-27 Faserverstärkter Werkstoff, Verfahren zu seiner Herstellung und seine Verwendung
AT91104871T ATE143034T1 (de) 1990-04-03 1991-03-27 Faserverstärkter werkstoff, verfahren zu seiner herstellung und seine verwendung
ES91104871T ES2094164T3 (es) 1990-04-03 1991-03-27 Material tecnico reforzado con fibras, procedimiento para su fabricacion y su utilizacion.
DK91104871.8T DK0450488T3 (de) 1990-04-03 1991-03-27
DE59108186T DE59108186D1 (de) 1990-04-03 1991-03-27 Faserverstärkter Werkstoff, Verfahren zu seiner Herstellung und seine Verwendung
IE106891A IE911068A1 (en) 1990-04-03 1991-03-28 Fiber-reinforced material and production and use thereof
PT97226A PT97226B (pt) 1990-04-03 1991-04-02 Processo para a preparacao de um material reforcado com fibras
CS1991904A CZ286573B6 (cs) 1990-04-03 1991-04-02 Materiál ztužený vlákny, způsob jeho výroby a jeho použití
HU911060A HU209772B (en) 1990-04-03 1991-04-02 Fibre reinforced structural material as vell as pre-preg and process for making thereof
SK904-91A SK281639B6 (sk) 1990-04-03 1991-04-02 Materiál stužený vláknami, spôsob jeho výroby a jeho použitie
JP03070885A JP3121852B2 (ja) 1990-04-03 1991-04-03 繊維強化材料並びにその製造方法及びその用途
GR960403463T GR3022036T3 (en) 1990-04-03 1996-12-13 Fibre-reinforced material, production process and application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE4010694A DE4010694A1 (de) 1990-04-03 1990-04-03 Faserverstaerkter werkstoff, verfahren zu seiner herstellung und seine verwendung

Publications (1)

Publication Number Publication Date
DE4010694A1 true DE4010694A1 (de) 1991-10-10

Family

ID=6403648

Family Applications (2)

Application Number Title Priority Date Filing Date
DE4010694A Withdrawn DE4010694A1 (de) 1990-04-03 1990-04-03 Faserverstaerkter werkstoff, verfahren zu seiner herstellung und seine verwendung
DE59108186T Expired - Fee Related DE59108186D1 (de) 1990-04-03 1991-03-27 Faserverstärkter Werkstoff, Verfahren zu seiner Herstellung und seine Verwendung

Family Applications After (1)

Application Number Title Priority Date Filing Date
DE59108186T Expired - Fee Related DE59108186D1 (de) 1990-04-03 1991-03-27 Faserverstärkter Werkstoff, Verfahren zu seiner Herstellung und seine Verwendung

Country Status (12)

Country Link
EP (2) EP0450488B1 (de)
JP (1) JP3121852B2 (de)
AT (1) ATE143034T1 (de)
CZ (1) CZ286573B6 (de)
DE (2) DE4010694A1 (de)
DK (1) DK0450488T3 (de)
ES (1) ES2094164T3 (de)
GR (1) GR3022036T3 (de)
HU (1) HU209772B (de)
IE (1) IE911068A1 (de)
PT (1) PT97226B (de)
SK (1) SK281639B6 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE9415840U1 (de) * 1994-09-30 1994-12-08 G. Schwartz GmbH & Co. KG, 46509 Xanten Formmasse
WO1997031196A1 (fr) 1996-02-23 1997-08-28 Pinkhasovich Anatoly Veniamino Charge de renforcement, materiau polymere composite de friction, et corps de friction du frein
DE10138410A1 (de) * 2001-08-04 2003-02-27 Continental Ag Notlaufstützkörper für luftbereiftes Fahrzeugrad
AT411257B (de) * 2001-11-07 2003-11-25 Hoerbiger Kompressortech Serv Dichtelemente für kompressorventile
DE102004035212A1 (de) * 2004-07-21 2006-02-16 Ina-Schaeffler Kg Wälzlager
DE102007016734A1 (de) * 2007-04-03 2008-10-09 Bk - Kunststoffe Bernau Gmbh Selbstschmierendes Gleitelement und Verbundkörper für Gleitanwendung und Verfahren zur Herstellung

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0554775A2 (de) * 1992-02-01 1993-08-11 Hoechst Aktiengesellschaft Nachverstreckte Garne, Zwirne oder Gewebe auf der Basis von Stapelfasern, Verfahren zu deren Herstellung und daraus hergestellte Verbundwerkstoffe
US7061699B2 (en) 2002-03-28 2006-06-13 Seiko Epson Corporation Projection lens, producing method of projection lens and projector having projection lens
DE102004058518A1 (de) * 2004-12-01 2006-06-14 Gebrüder Reinfurt GmbH & Co. KG Wälzlagerkäfig
CN100570165C (zh) * 2007-04-27 2009-12-16 洛阳轴研科技股份有限公司 滚动轴承用多孔酚醛胶布层压保持架材料及制造方法
JP5249726B2 (ja) * 2008-11-17 2013-07-31 オイレス工業株式会社 摺動部材用繊維強化樹脂組成物及び積層摺動部材
JP5859183B2 (ja) 2009-09-30 2016-02-10 オイレス工業株式会社 摺動面材及び該摺動面材を備えた複層摺動部材
JP5595705B2 (ja) * 2009-09-30 2014-09-24 オイレス工業株式会社 摺動面材及び該摺動面材を備えた複層摺動部材
JP6196813B2 (ja) * 2012-06-19 2017-09-13 ニッタ株式会社 シャフト用構造体、雄型部材、及び、雌型部材
KR20150031274A (ko) 2012-06-19 2015-03-23 니타 가부시키가이샤 샤프트용 구조체, 수형 부재 및 암형 부재
JP6232182B2 (ja) * 2012-10-01 2017-11-15 ニッタ株式会社 シャフト用構造体、雄型部材、及び、雌型部材
JP6025434B2 (ja) * 2012-07-19 2016-11-16 オイレス工業株式会社 摺動部材
CN103694606A (zh) * 2013-11-29 2014-04-02 马鞍山市中澜橡塑制品有限公司 一种改性氟橡胶密封垫材料及其制备方法
DE102014107881A1 (de) * 2014-06-04 2015-12-17 Lisa Dräxlmaier GmbH Faserverstärktes Verbundelement und Verfahren zu dessen Herstellung
US11162533B2 (en) * 2018-10-22 2021-11-02 Aktiebolaget Skf Rolling bearing
CN111484691B (zh) * 2020-02-25 2021-02-19 中国科学院兰州化学物理研究所 一种芳纶纤维布增强聚四氟乙烯轴承保持架材料及其制备方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE564931A (de) * 1957-02-18
GB974629A (en) * 1961-01-30 1964-11-11 American Brake Shoe Co Method of manufacturing bearings
US3684062A (en) * 1969-02-14 1972-08-15 Kelsey Hayes Co Friction lining composition
US4022942A (en) * 1972-02-17 1977-05-10 Monsanto Company Process of preparing fibrous sheet from high-ortho phenolic resole resin varnish
DD114238A1 (de) * 1974-03-11 1975-07-20
JPS51111266A (en) * 1975-03-24 1976-10-01 Tekunishie Tekisuteiren Kaaru Method of manufacture of bearing material of small friction
JPS54148089A (en) * 1978-05-12 1979-11-19 Akebono Brake Ind Hardwearing friction material with low friction coefficient
DE3111936A1 (de) * 1981-03-26 1982-10-07 Cassella Ag, 6000 Frankfurt Verfestigte gebilde aus textilen materialien
US4680220A (en) * 1985-02-26 1987-07-14 W. L. Gore & Associates, Inc. Dielectric materials
JPS61197637A (ja) * 1985-02-27 1986-09-01 Oiles Ind Co Ltd 積層摺動部材の製造方法
JPH0745581B2 (ja) * 1986-12-26 1995-05-17 住友ベークライト株式会社 黒色熱硬化性樹脂積層板の製造方法
EP0351028A3 (de) * 1988-07-15 1991-10-23 Amoco Corporation Harzteilchengefüllte, Fasern verstärkte Verbundmaterialien

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE9415840U1 (de) * 1994-09-30 1994-12-08 G. Schwartz GmbH & Co. KG, 46509 Xanten Formmasse
WO1997031196A1 (fr) 1996-02-23 1997-08-28 Pinkhasovich Anatoly Veniamino Charge de renforcement, materiau polymere composite de friction, et corps de friction du frein
DE10138410A1 (de) * 2001-08-04 2003-02-27 Continental Ag Notlaufstützkörper für luftbereiftes Fahrzeugrad
DE10138410B4 (de) * 2001-08-04 2005-02-10 Continental Aktiengesellschaft Notlaufstützkörper für luftbereiftes Fahrzeugrad
AT411257B (de) * 2001-11-07 2003-11-25 Hoerbiger Kompressortech Serv Dichtelemente für kompressorventile
DE102004035212A1 (de) * 2004-07-21 2006-02-16 Ina-Schaeffler Kg Wälzlager
DE102007016734A1 (de) * 2007-04-03 2008-10-09 Bk - Kunststoffe Bernau Gmbh Selbstschmierendes Gleitelement und Verbundkörper für Gleitanwendung und Verfahren zur Herstellung

Also Published As

Publication number Publication date
ES2094164T3 (es) 1997-01-16
IE911068A1 (en) 1991-10-09
DE59108186D1 (de) 1996-10-24
PT97226B (pt) 1999-03-31
HU209772B (en) 1994-10-28
JPH04225037A (ja) 1992-08-14
CZ286573B6 (cs) 2000-05-17
EP0450488A2 (de) 1991-10-09
CS90491A3 (en) 1991-11-12
EP0697430A3 (de) 1996-05-22
EP0697430A2 (de) 1996-02-21
PT97226A (pt) 1992-01-31
EP0450488A3 (en) 1992-03-11
SK281639B6 (sk) 2001-06-11
HUT60664A (en) 1992-10-28
DK0450488T3 (de) 1997-02-17
EP0450488B1 (de) 1996-09-18
JP3121852B2 (ja) 2001-01-09
GR3022036T3 (en) 1997-03-31
ATE143034T1 (de) 1996-10-15
HU911060D0 (en) 1991-10-28

Similar Documents

Publication Publication Date Title
EP0450488B1 (de) Faserverstärkter Werkstoff, Verfahren zu seiner Herstellung und seine Verwendung
US6524979B1 (en) Fiber-reinforced material and production and use thereof
EP1900950B1 (de) Kunststoffgleitschicht und gleitelement mit einer solchen schicht
EP0492498B1 (de) Ski enthaltend flächenförmige Platten oder Bänder aus einem faserverstärkten Werkstoff
DE69726641T2 (de) Zweischichtiges Reibungsmaterial
EP1670872B1 (de) FLACHDICHTUNGSWERKSTOFF IN FORM EINER VERSTäRKTEN VERBUNDFOLLIE (COMPOSITE FILM)
EP1492666B1 (de) Verbundwerkstoff, verfahren zu seiner herstellung und seine verwendung
DE2507626A1 (de) Reibungsarme laminateinlage fuer lager und deren herstellungsverfahren
EP1737633A1 (de) Durch epoxidharz imprägniertes garn und seine verwendung zur herstellung eines vorformlings
CH639731A5 (de) Blattfoermiges oder plattenfoermiges material aus verfilzten fasern und trockenem harz und verfahren zu dessen herstellung sowie verwendung desselben.
US5234752A (en) Wear-resistant laminated articles
EP1933057A1 (de) Nasslaufreibbelag
DE60111176T2 (de) Selbstschmierende Lagerbuchse mit poly(p-phenylene-2,6-benzobisoxazole)
WO2009124525A1 (de) Reibbelag für eine reibungskupplung
DE2524609A1 (de) Temperaturbestaendiges gewebe
DE3225214A1 (de) Asbestfreies reibungsmaterial
DE102005036690B4 (de) Verbundmaterial für Gleitanwendungen
EP0540838B1 (de) Bindemittelsysteme auf Basis von Epoxydharz-Phenolharz-Kombinationen
DE2944864C2 (de) Verwendung von Kieselsäurefasern zur Herstellung von Reibbelägen
DE2328602A1 (de) Aus mehreren schichten aufgebautes material
DE10250264B4 (de) Dichtungsmaterial für Stopfbuchspackungen
WO2017071859A1 (de) Schleifscheiben, insbesondere trennscheiben, herstellungsverfahren dafür
EP0131083A1 (de) Bezug aus Fasermaterial für Glättwalzen
EP0898053B1 (de) Pumpenschieber aus verschleissfestem flächigem Material
DE2124161A1 (de) Lagerwerkstoff niedriger Reibung und Verfahren zu seiner Herstellung

Legal Events

Date Code Title Description
8141 Disposal/no request for examination