DE3942766A1 - Verfahren zum beschichten elektrisch leitfaehiger substrate, waessriger lack, epoxid-aminaddukt und verwendung des epoxid-aminadduktes als reibharz zur herstellung von pigmentpasten - Google Patents

Verfahren zum beschichten elektrisch leitfaehiger substrate, waessriger lack, epoxid-aminaddukt und verwendung des epoxid-aminadduktes als reibharz zur herstellung von pigmentpasten

Info

Publication number
DE3942766A1
DE3942766A1 DE3942766A DE3942766A DE3942766A1 DE 3942766 A1 DE3942766 A1 DE 3942766A1 DE 3942766 A DE3942766 A DE 3942766A DE 3942766 A DE3942766 A DE 3942766A DE 3942766 A1 DE3942766 A1 DE 3942766A1
Authority
DE
Germany
Prior art keywords
epoxide
epoxy
amine adduct
mixture
groups
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE3942766A
Other languages
English (en)
Inventor
Guenther Dr Ott
Ulrich Dr Heimann
Udo Dr Reiter
David J Dr Santure
Thomas Dr Bruecken
Walter Dr Jouck
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF Farben und Fasern AG
Original Assignee
BASF Lacke und Farben AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF Lacke und Farben AG filed Critical BASF Lacke und Farben AG
Priority to DE3942766A priority Critical patent/DE3942766A1/de
Priority to ZA909589A priority patent/ZA909589B/xx
Priority to AT91901281T priority patent/ATE114167T1/de
Priority to KR1019920701504A priority patent/KR960006084B1/ko
Priority to BR909007952A priority patent/BR9007952A/pt
Priority to ES91901281T priority patent/ES2067213T3/es
Priority to DK91901281.5T priority patent/DK0505445T3/da
Priority to AU70379/91A priority patent/AU638539B2/en
Priority to PCT/EP1990/002211 priority patent/WO1991009917A2/de
Priority to CA002070680A priority patent/CA2070680C/en
Priority to US07/862,577 priority patent/US5324404A/en
Priority to DE59007724T priority patent/DE59007724D1/de
Priority to JP3501674A priority patent/JPH07761B2/ja
Priority to EP91901281A priority patent/EP0505445B1/de
Publication of DE3942766A1 publication Critical patent/DE3942766A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/44Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications
    • C09D5/4488Cathodic paints
    • C09D5/4492Cathodic paints containing special additives, e.g. grinding agents

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Paints Or Removers (AREA)
  • Epoxy Resins (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Liquid Crystal (AREA)
  • Conductive Materials (AREA)

Description

Die Erfindung betrifft ein Verfahren zum Beschichten elektrisch leitfähiger Substrate, bei dem
  • (1) das elektrisch leitfähige Substrat in einen wäßrigen Elektrotauchlack getaucht wird
  • (2) das Substrat als Kathode geschaltet wird
  • (3) durch Gleichstrom ein Film auf dem Substrat abgeschieden wird
  • (4) das beschichtete Substrat aus dem Elektrotauchlack entfernt wird und
  • (5) der abgeschiedene Lackfilm eingebrannt wird.
Die Erfindung betrifft auch einen wäßrigen Lack, ein Epoxid- Aminaddukt und die Verwendung des Epoxid-Aminadduktes als Reibharz zur Herstellung von wäßrigen Pigmentpasten.
Das oben beschriebene kathodische Elektrotauchlackierverfahren ist bekannt (vgl. z. B. DE-OS 35 18 732, DE-OS 35 18 770, EP-A 4 090, EP-A 12 463 und EP-A 2 62 069) und wird insbesondere zur Grundierung von Automobilkarosserien eingesetzt. Die dabei erhaltenen Lackschichten werden üblicherweise mit mindestens einer Füllerschicht und mindestens einer Decklackschicht überlackiert.
Die der vorliegenden Erfindung zugrundeliegende Aufgabenstellung besteht in der Bereitstellung eines neuen kathodischen Elektrotauchlackierverfahrens. Die der Erfindung zugrundeliegende Aufgabenstellung besteht insbesondere in der Bereitstellung neuer wäßriger Lacke für das oben beschriebene Elektrotauchlackierverfahren.
Diese Aufgabe wird überraschenderweise durch ein kathodisches Elektrotauchlackierverfahren gelöst, das dadurch gekennzeichnet ist, daß der wäßrige Elektrotauchlack unter Verwendung einer Pigmentpaste hergestellt wird, die als Reibharz ein zumindest teilweise protoniertes Epoxid- Aminaddukt enthält, das erhältlich ist, indem
  • (A) ein Glycidylether eines Polyphenols, der im statistischen Mittel mindestens eine Epoxidgruppe im Molekül enthält, oder ein Gemisch aus solchen Glycidylethern
  • (B) ein Polyglycidylether eines Polyols, der im statistischen Mittel mehr als 1,0 Epoxidgruppen im Molekül enthält, oder ein Gemisch aus solchen Polyglycidylethern und
  • (C) eine Verbindung, die eine primäre Aminogruppe im Molekül enthält oder ein Gemisch aus solchen Verbindungen
in einem solchen stöchiometrischen Verhältnis miteinander umgesetzt werden, daß ein Epoxid-Aminaddukt erhalten wird, in dem im statistischen Mittel mindestens 2,0 primäre Aminogruppen der Komponente (C) unter Bildung von tertiären Aminogruppen kettenverlängernd eingebaut sind und das so erhaltene Epoxid-Aminaddukt zumindest teilweise protoniert wird. Die nach dem erfindungsgemäßen Verfahren hergestellten Lackschichten zeichnen sich insbesondere dadurch aus, daß sie überraschenderweise ein hohes Maß an Steinschlagfestigkeit (sowohl als einschichtige Lackierung als auch im mehrschichtigen Lackaufbau), ein hohes Maß an Flexibilität und guten Korrosionsschutz zeigen. Die erfindungsgemäß eingesetzten Elektrotauchlacke zeichnen sich durch hohe Spannungsfestigkeit, guten Umgriff und niedrige Gehalte an organischen Lösemitteln aus. Insbesondere die hohe Steinschlagfestigkeit der erhaltenen Lackierungen ist im Hinblick auf die Tatsache, daß eine hohe Flexibilität der Elektrotauchlackschicht noch keine Gewähr für eine hohe Steinschlagfestigkeit - insbesondere bei mehrschichtigen Lackierungen - darstellt, nicht vorhersehbar gewesen.
In der EP-A 2 53 404 werden Elektrotauchlacke beschrieben, die ein kationisches Umsetzungsprodukt aus einem Diglycidylether eines Diphenols, einem Diglycidylether eines Polyols, einem Diphenol und einer nucleophilen Verbindung enthalten.
Zwischen der chemischen Struktur der in der EP-A 2 53 404 beschriebenen Umsetzungsprodukte und der chemischen Struktur der erfindungsgemäßen Reibharze bestehen große Unterschiede.
Die erfindungsgemäß eingesetzten Elektrotauchlacke enthalten mindestens ein kathodisch abscheidbares Kunstharz, ggf. mindestens ein Vernetzungsmittel und Pigmente sowie ggf. Füllstoffe und sonstige allgemein gut bekannte Zusätze, wie Entschäumungsmittel, Verlaufshilfsmittel usw.
Die Pigmente und Füllstoffe werden in Form von Pigmentpasten in die Elektrotauchlacke eingearbeitet. Die Pigmentpasten werden - wie dem Fachmann bekannt - durch Vermahlen der Pigmente in Gegenwart eines geeigneten Reibharzes hergestellt.
Es ist nun erfindungswesentlich, daß die Elektrotauchlacke unter Verwendung einer Pigmentpaste hergestellt werden, die als Reibharz ein zumindest teilweise protoniertes Epoxid- Aminaddukt enthält, das erhältlich ist, indem
  • (A) ein Glycidylether eines Polyphenols, der im statistischen Mittel mindestens eine Epoxidgrupppe im Molekül enthält, oder ein Gemisch aus solchen Glycidylethern
  • (B) ein Polyglycidylether eines Polyols, der im statistischen Mittel mehr als 1,0 Epoxidgruppen im Molekül enthält, oder ein Gemisch aus solchen Polyglycidylethern und
  • (C) eine Verbindung, die eine primäre Aminogruppe im Molekül enthält, oder ein Gemisch aus solchen Verbindungen
in einem solchen stöchiometrischen Verhältnis miteinander umgesetzt werden, daß ein Epoxid-Aminaddukt erhalten wird, in dem im statistischen Mittel mindestens 2,0 primäre Aminogruppen der Komponente (C) unter Bildung von tertiären Aminogruppen kettenverlängernd eingebaut sind und das so erhaltene Epoxid-Aminaddukt zumindest teilweise protoniert wird.
Die erfindungsgemäß eingesetzten Reibharze werden hergestellt, indem die Komponenten (A), (B) und (C) in einem solchen stöchiometrischen Verhältnis miteinander umgesetzt werden, daß ein Epoxid-Aminaddukt erhalten wird, in dem im statistischen Mittel mindestens 2,0 primäre Aminogruppen der Komponente (C) unter Bildung von tertiären Aminogruppen kettenverlängernd eingebaut sind und das so erhaltene Epoxid- Aminaddukt zumindest teilweise protoniert wird. Das aus (A), (B) und (C) erhaltene Epoxid-Aminaddukt sollte vorzugsweise epoxidgruppenfrei sein. Für den Fall, daß es noch Epoxidgruppen enthält, ist es zweckmäßig, die verbliebenen Epoxidgruppen mit Verbindungen wie z. B. Monophenolen und Aminen, insbesondere sekundären Aminen umzusetzen (Beispiele für Verbindungen, die zur Umsetzung mit noch verbliebenen Epoxidgruppen geeignet sind, sind in der EP-A- 2 53 404 auf der Seite 8 von Zeile 28 bis Zeile 37 und Seite 9 Zeile 16 bis Seite 10 Zeile 15 aufgezählt). Zweckmäßigerweise werden die Komponenten (A) und (B) in einem Äquivalentverhältnis von 1,0 : 0,5 bis 1,0 : 8,0 eingesetzt und die Komponente (C) wird in einer solchen Menge eingesetzt, daß auf ein Äquivalent Epoxidgruppen aus (A) und (B) 0,3 bis 0,7 Mol der Komponente (C) kommen. Bevorzugte Reibharze werden erhalten, wenn die Komponenten (A) und (B) in einem Äquivalentverhältnis von 1,0 : 1,0 bis 1,0 : 2,0 eingesetzt werden und wenn die Komponente (C) in einer solchen Menge eingesetzt wird, daß auf ein Äquivalent Epoxidgruppen aus (A) und (B) 0,4 bis 0,6 Mol der Komponente (C) kommen. Das zahlenmittlere Molekulargewicht der erfindungsgemäßen Reibharze sollte zwischen 1000 und 100 000, vorzugsweise zwischen 3000 und 15 000 liegen. Die Komponente (C) kann nacheinander mit (A) und (B) oder - was bevorzugt ist - mit einem Gemisch aus (A) und (B) umgesetzt werden. Die Umsetzung der Komponenten (A), (B) und (C) kann schon bei Raumtemperatur ablaufen. Zur Erreichung wirtschaftlicher Umsatzzeiten ist es zweckmäßig, die Reaktionstemperatur zu erhöhen, z. B. auf 60 bis 130°C. Die Umsetzung der Komponenten (A), (B) und (C) wird vorzugsweise in einem organischen Lösemittel wie z. B. Ethylenglycolmonobutylether oder Propylenglycolmonobutylether durchgeführt. Anschließend wird mit einer Säure, wie z. B. Essigsäure oder Milchsäure neutralisiert und in eine wäßrige Dispersion oder Lösung überführt. Die so erhaltene Dispersion bzw. Lösung kann dann nach allgemein gut bekannten Methoden zur Herstellung von wäßrigen Pigmentpasten eingesetzt werden. Es ist auch möglich, das aus (A), (B) und (C) erhaltene, in einem organischen Lösemittel gelöste Reaktionsprodukt mit Pigmenten und ggf. Füllstoffen zu vermischen und unter Zusatz von Säure und ggf. Wasser zu einer Pigmentpaste weiterzuverarbeiten.
Mit den erfindungsgemäßen Reibharzen können Pigmentpasten hergestellt werden, die sich durch eine ausgezeichnete Lagerstabilität auszeichnen.
Es können selbstverständlich auch Mischungen der erfindungsgemäßen Reibharze eingesetzt werden.
Die Pigmentpasten können im Prinzip alle für Elektrotauchlacke geeigneten Pigmente enthalten. Im allgemeinen ist Titandioxid das einzige oder das hauptsächliche weiße Pigment. Andere weiße Pigmente oder Streckmittel, wie Antimonoxid, Zinkoxid, basisches Bleicarbonat, basisches Bleisulfat, Bariumcarbonat, Porzellan, Ton, Kalciumcarbonat, Aluminiumsilikat, Siliciumdioxid, Magnesiumcarbonat und Magnesiumsilikat können aber auch verwendet werden. Als farbige Pigmente können beispielsweise Cadmiumgelb, Cadmiumrot, Ruß, Phthalocyaninblau, Chromgelb, Toluidylrot und hydratisiertes Eisenoxid benutzt werden.
Die Pigmentpaste kann neben den Pigmenten auch noch Weichmacher, Füllstoffe, Netzmittel usw. enthalten.
Als Komponente (A) kann im Prinzip jeder Glycidylether eines Polyphenols, der im statistischen Mittel mindestens eine Epoxidgruppe im Molekül enthält, oder ein Gemisch aus solchen Glycidylethern eingesetzt werden. Als Komponente (A) können beispielsweise Glycidylether der auf Seite 4 der EP-A 2 53 404 zu findenden allgemeinen Strukturformeln (I) und (II) eingesetzt werden. Als Komponente (A) werden vorzugsweise ggf. mit der Komponente (b) (vgl. unten) modifizierte Bisphenol-A-diglycidylether mit einem Epoxidäquivalentgewicht von 180 bis 3000, vorzugsweise 180 bis 1000 eingesetzt. Als Komponente (A) werden besonders bevorzugt Gemische von Glycidylethern eingesetzt, die erhältlich sind, indem in Gegenwart eines Katalysators, der die Reaktion zwischen phenolischen Hydroxylgruppen und Epoxidgruppen katalysiert, aus
  • (a) einem Diglycidylether eines Polyphenols, vorzugsweise einem Diglycidylether von Bisphenol-A mit einem zahlenmittleren Molekulargewicht von 260 bis 450, vorzugsweise von 370 bis 380 oder einem Gemisch aus solchen Diglycidylethern
  • (b) einem ggf. substituiertem Monophenol, vorzugsweise einem Alkylphenol mit 1 bis 18, vorzugsweise 4 bis 12 Kohlenstoffatomen im Alkylrest, oder eine Mischung aus solchen Monophenolen und
  • (c) einem Diphenol, vorzugsweise Bisphenol A und/oder einem Katalysator, der die Reaktion zwischen aliphatischen Hydroxylgruppen und Epoxidgruppen katalysiert
Glycidylether hergestellt werden, die ein zahlenmittleres Molekulargewicht von 980 bis 4000, vorzugsweise 980 bis 2000 aufweisen und die im statistischen Mittel pro Molekül 1,0 bis 3,0, vorzugsweise 1,2 bis 1,6 Epoxidgruppen und 0,25 bis 1,3, vorzugsweise 0,4 bis 0,9 von der Komponente (b) stammende Phenylethergruppen enthalten.
Die Herstellung der besonders bevorzugt eingesetzten (A) Komponente erfolgt vorzugsweise in organischen Lösemitteln wie z. B. Xylol, Ethylenglycolmonobutylether oder Propylenglycolmonobutylether. Die Reaktionstemperaturen liegen zweckmäßigerweise bei 100-180°C. Katalysatoren, die die Reaktion zwischen phenolischen Hydroxylgruppen und Epoxidgruppen katalysieren, sind dem Fachmann bekannt. Als Beispiele werden genannt: Triphenylphoshin und die auf Seite 9 in den Zeilen 6 bis 9 der EP-A 2 53 404 genannten Katalysatoren.
Die Komponente (c) soll dafür sorgen, daß aus der Komponente (a) höhermolekulare Glycidylether aufgebaut werden. Dieser Aufbau kann durch Kettenverlängerung mit einem Diphenol, vorzugsweise mit Bisphenol A erreicht werden. Der Aufbau kann aber auch durch Reaktion von in der Komponente (a) bzw. im Umsetzungsprodukt aus (a) und (b) enthaltenen aliphatischen Hydroxylgruppen mit Epoxidgruppen erfolgen. Um diese Reaktion gezielt zum Aufbau der gewünschten Glycidylether ausnutzen zu können, müssen Katalysatoren (z. B. tertiäre Amine) eingesetzt werden, die die Reaktion zwischen aliphatischen Hydroxylgruppen und Epoxidgruppen katalysieren. Durch den Einsatz von Diphenol und einem Katalysator gemäß (c) ist es möglich, beide Aufbaureaktionen - die Kettenverlängerung über das Diphenol und die Additionsreaktion zwischen aliphatischen Hydroxylgruppen und Epoxidgruppen - zu nutzen. Die Umsetzung mit der Komponente (b) soll die bevorzugten Glycidylether modifizieren und zur Bildung von aliphatischen Hydroxylgruppen führen, die benötigt werden, wenn Aufbaureaktionen über Additionsreaktionen von aliphatischen Hydroxylgruppen an Epoxidgruppen ablaufen sollen.
Durch die Angabe des zahlenmittleren Molekulargewichtes der herzustellenden besonders bevorzugten Komponente (A) und die Angaben über die in der Komponente (A) enthaltenen Epoxid- und von der Komponente (b) stammenden Phenylethergruppen ist es dem Fachmann problemlos möglich, die einzusetzenden Mengen an (a), (b) und (c) zu errechnen. Wenn über die Reaktion von aliphatischen Hydroxylgruppen und Epoxidgruppen ablaufende Aufbaureaktionen eingesetzt werden, muß die Aufbaureaktion nach Erreichen des vom Fachmann aus dem anzustrebenden zahlenmittleren Molekulargewicht und dem anzustrebenden Epoxidgruppengehalt errechenbaren Epoxidäquivalentgewichts abgebrochen werden. Dies geschieht zweckmäßigerweise durch Temperaturerniedrigung und Verdünnen der Reaktionsmischung.
Als Komponente (B) kann im Prinzip jeder Polyglycidylether eines Polyols, der im statistischen Mittel mehr als 1,0 Epoxidgruppen im Molekül enthält, oder ein Gemisch aus solchen Polyglycidylethern eingesetzt werden. Als Komponente (B) können beispielsweise die Polyglycidylether eingesetzt werden, die in der EP-A 2 53 404 ab Zeile 42 der Seite 4 bis Zeile 13 der Seite 8 beschrieben sind.
Als Komponente (B) werden vorzugsweise Polyglycidylether von Polyetherpolyolen, besonders bevorzugt Diglycidylether von Polyetherdiolen mit zahlenmittleren Molekulargewichten von 300 bis 3000, vorzugsweise 400 bis 1200 eingesetzt. Als Beispiele für besonders bevorzugte Polyglycidylether werden Diglycidylether von Poly(ethylenglycol), Poly(propylenglycol), Poly(ethylenglycolpropylenglycol) und Poly(1,4 butandiol) genannt, wobei die zahlenmittleren Molekulargewichte der Diglycidylether zwischen 300 bis 3000, vorzugsweise zwischen 400 bis 1200 liegen.
Als Komponente (C) wird eine Verbindung eingesetzt, die eine primäre Aminogruppe im Molekül enthält oder ein Gemisch aus solchen Verbindungen. Die Komponente (C) darf nur eine primäre Aminogruppe im Molekül enthalten. Die Komponente (C) kann neben der primären Aminogruppe noch weitere funktionelle Gruppen wie z. B. tertiäre Aminogruppen und Hydroxylgruppen enthalten. Die Komponente (C) wird unter Bildung von tertiären Aminogruppen in die erfindungsgemäßen Epoxid-Aminaddukte eingebaut. Eine primäre Aminogruppe reagiert dabei mit zwei Epoxidgruppen und verknüpft somit kettenverlängernd zwei Moleküle der Komponenten (A) und/oder (B). Ein Teil der Komponente (C) kann auch mit endständigen Epoxidgruppen unter Bildung von sekundären Aminogruppen reagieren.
Als Komponente (C) kann im Prinzip jede Verbindung eingesetzt werden, die eine und nur eine primäre Aminogruppe im Molekül enthält. Als Beispiele werden Verbindungen der allgemeinen Formel H2N-CR1R2-R3-0(CHR4-CHR5-0)nR6 genannt. In dieser Formel stehen R₁ und R₂ für Wasserstoff, Alkyl- oder -CH-OH-Gruppen, R₃ steht für einen linearen oder verzweigten Alkylenrest, insbesondere für einen Alkylenrest mit 1 bis 3 Kohlenstoffatomen, R₄ und R₅ stehen für Wasserstoff oder Alkylreste mit 1 bis 4 Kohlenstoffatomen, R₆ steht für Wasserstoff, einen Alkyl-, Cycloalkyl- oder Phenylrest, vorzugsweise für einen Alkylrest mit 1 bis 6 Kohlenstoffatomen und n=0-5. Als Beispiele für einsetzbare Verbindungen diesen Typs werden genannt: Ethanolamin, Propanolamin, Butanolamin, 2-Amino-2-methylpropanol-1 (H₂N-C(CH₃)₂-CH₂OH), 2 Amino-2-ethylpropanol-1 und ethoxyliertes und/oder propoxyliertes Ethanolamin oder Propanolamin, wie z. B. 2,2′ Aminoethoxyethanol (H₂N-CH₂-CH₂-O-CH₂-CH₂-OH) und Diethylenglykolmono(3- aminopropyl)ether (H₂N-(CH₂)₃-O-CH₂-CH₂-O-CH₂-CH₂-OH).
Als Komponente (C) können auch Verbindungen eingesetzt werden, die eine primäre und eine tertiäre Aminogruppe im Molekül enthalten. Als Beispiele werden genannt: N,N Dimethylaminopropylamin, N,N Diethylaminoethylamin und dergleichen. Als Komponente (C) können auch primäre Alkylamine wie z. B. Hexylamin eingesetzt werden. Auch ggf. substituiertes Anilin kann als Komponente (C) eingesetzt werden. Als Komponente (C) werden vorzugsweise Hexylamin und N,N Dimethylaminopropylamin sowie 2-2′ Aminoethoxyethanol eingesetzt.
Die erfindungsgemäß eingesetzten Elektrotauchlacke enthalten neben der mit dem erfindungsgemäßen Reibharz hergestellten Pigmentpaste noch mindestens ein kathodisch abscheidbares Kunstharz sowie ggf. mindestens ein Vernetzungsmittel.
Die erfindungsgemäß eingesetzten Elektrotauchlacke können prinzipiell alle für die Herstellung von Elektrotauchlacken geeigneten kathodisch abscheidbaren fremd- oder selbstvernetzenden Kunstharze enthalten. Die erfindungsgemäß eingesetzten Elektrotauchlacke können auch Mischungen unterschiedlicher kathodisch abscheidbarer Kunstharze enthalten.
Bevorzugt sind jedoch die Elektrotauchlacke, die kationische, aminmodifizierte Epoxidharze als kathodisch abscheidbare Kunstharze enthalten. Es sind sowohl selbst- als auch fremdvernetzende kationische aminmodifizierte Epoxidharze bekannt. Bevorzugt werden fremdvernetzende kationische, aminmodifizierte Epoxidharze eingesetzt. Die Herstellung kationischer aminmodifizierter Epoxidharze ist bekannt und wird beispielsweise in folgenden Patentdokumenten beschrieben: DE-OS 35 18 732, DE-OS 35 18 770, EP-A 4 090 und EP-A 12 463. Unter kationischen, aminmodifizierten Epoxidharzen werden kationische Reaktionsprodukte aus
(i) ggf. modifizierten Polyepoxiden und
(ii) Aminen
verstanden.
Unter Polyepoxiden werden Verbindungen verstanden, die zwei oder mehr Epoxidgruppen im Molekül enthalten.
Besonders bevorzugte (i)-Komponenten sind Verbindungen, die herstellbar sind durch Umsetzung von
(j) einer Diepoxidverbindung oder eines Gemisches von Diepoxidverbindungen mit einem Epoxidäquivalentgewicht unter 2000 mit
(jj) einer unter den gegebenen Reaktionsbedingungen gegenüber Epoxidgruppen monofunktionell reagierenden, eine Phenol- oder Thiolgruppe enthaltenden Verbindung oder eines Gemisches solcher Verbindungen,
wobei die Komponenten (j) und (jj) in einem Molverhältnis von 10 : 1 bis 1 : 1, bevorzugt 4 : 1 bis 1,5 : 1, eingesetzt werden und die Umsetzung in Anwesenheit eines Katalysators, der die Reaktion zwischen aliphatischen Hydroxylgruppen und Epoxidgruppen katalysiert bis zu einem Epoxidäquivalentgewicht von 600 bis 2000, vorzugsweise 800 bis 1400 durchgeführt wird (vgl. DE-OS 35 18 770).
Weitere besonders bevorzugte (i)-Komponenten sind Verbindungen, die herstellbar sind durch eine bei 100 bis 195°C, ggf. in Anwesenheit eines Katalysators durchgeführten, durch einen monofunktionell reagierenden Starter, der entweder eine alkoholische OH-Gruppe, eine phenolische OH-Gruppe oder eine SH-Gruppe trägt, initiierten Polyaddition einer Diepoxidverbindung und/oder eines Gemisches von Diepoxidverbindungen, ggf. zusammen mit mindestens einer Monoepoxidverbindung, zu einem Epoxidharz, in dem Diepoxidverbindung und Starter in einem Molverhältnis von größer 2 : 1 bis 10 : 1 eingebaut sind (vgl. DE-OS 35 18 732).
Polyepoxide, die zur Herstellung der besonders bevorzugten (i)-Komponenten und auch selbst als (i)-Komponenten einsetzbar sind, sind aus Polyphenolen und Epihalohydrinen hergestellte Polyglycidylether von Polyphenolen. Als Polyphenole können z. B. ganz besonders bevorzugt Bisphenol A und Bisphenol F eingesetzt werden. Außerdem sind auch 4,4′-Dihydroxybenzophenon, Bis-(4-hydroxyphenyl)-1,1-ethan, Bis-(4-hydroxyphenyl)- 1,1-isobutan, Bis-(4-hydroxy-tertiärbutylphenyl)- 2,2-propan, Bis-(2-hydroxynaphthyl)-methan, 1,5-Dihydroxynaphthalin und phenolische Novolakharze geeignet.
Weitere geeignete Polyepoxide sind Polyglycidylether von mehrwertigen Alkoholen, wie z. B. Ethylenglykol, Diethylenglykol, Triethylenglykol, 1,2-Propylenglykol- 1-4-Propylenglykol, 1,5-Pentandiol, 1,2,6-Hexantriol, Glycerin und Bis-(4-hydroxycyclohexyl)2,2propan.
Es können auch Polyglycidylester von Polycarbonsäuren, wie z. B. Oxalsäure, Bernsteinsäure, Glutarsäure, Terephthalsäure, 2,6-Naphthalindicarbonsäure, dimerisierte Linolsäure eingesetzt werden. Typische Beispiele sind Glycidyladipat und Glycidylphthalat.
Ferner sind Hydantoinepoxide, epoxidiertes Polybutadien und Polyepoxidverbindungen geeignet, die man durch Epoxidierung einer olefinisch ungesättigten aliphatischen Verbindung erhält.
Unter modifizierten Polyepoxiden werden Polyepoxide verstanden, in denen ein Teil der reaktionsfähigen Gruppen mit einer modifizierenden Verbindung umgesetzt worden ist.
Als Beispiele für modifizierende Verbindungen werden genannt:
  • a) Carboxylgruppenhaltige Verbindungen, wie gesättigte oder ungesättigte Monocarbonsäuren (z. B. Benzoesäure, Leinölfettsäure, 2-Ethylhexansäure, Versaticsäure), aliphatische, cycloaliphatische und/oder aromatische Dicarbonsäuren verschiedener Kettenlänge (z. B. Adipinsäure, Sebacinsäure, Isophthalsäure oder dimere Fettsäuren), Hydroxialkylcarbonsäuren (z. B. Milchsäure, Dimethylolpropionsäure) sowie carboxylgruppenhaltige Polyester oder
  • b) aminogruppenhaltige Verbindungen, wie Diethylamin oder Ethylhexylamin oder Diamine mit sekundären Aminogruppen, z. B. N,N′-Dialkylalykendiamine, wie Dimethylethylendiamin, N,N′-Dialkyl-polyoxialkylenamine, wie N,N′- dimethylpolyoxipropylendiamin, cyanalkylierte Alkylendiamine, wie Bis-N,N′-Cyanethyl-ethylendiamin, cyanalkylierte Polyoxialkylenamine, wie Bis-N,N′-Cyanethylpolyoxipropylendiamin, Polyaminoamide, wie z. B. Versamide, insbesondere endständige Aminogruppen enthaltende Umsetzungsprodukte aus Diaminen (z. B. Hexamethylendiamin), Polycarbonsäuren, insbesondere Dimerfettsäuren und Monocarbonsäuren, insbesondere Fettsäuren, oder das Umsetzungsprodukt von einem Mol Diaminohexan mit zwei Molen Monoglycidylether oder Monoglycidylester, speziell Glycidylester α-verzweigter Fettsäuren, wie der Versaticsäure, oder
  • c) hydroxylgruppenhaltige Verbindungen, wie Neopentylglykol, Bis-ethoxiliertes Neopentylglykol, Hydroxipivalinsäureneopentylglykolester, Dimethylhydantoin-N-N′-diethanol, Hexandiol-1,6, Hexandiol-2,5, 1,4-Bis- (hydroximethyl)cyclohexan, 1,1-Isopropyliden-bis-(p- phenoxi)-2-propanol, Trimethylolpropan, Pentaerythrit oder Aminoalkohole, wie Triethanolamin, Methyldiethanolamin oder hydroxylgruppenhaltige Alkylketimine, wie Aminomethylpropandiol-1,3-methyl-isobutylketimin oder Tris-(hydroximethyl)-aminomethan-cyclohexanonketimin sowie auch Polyglykolether, Polyesterpolyole, Polyetherpolyole, Polycaprolactonpolyole, Polycaprolactampolyole verschiedener Funktionalität und Molekulargewichte oder
  • d) gesättigte oder ungesättigte Fettsäuremethylester, die in Gegenwart von Natriummethylat mit Hydroxylgruppen der Epoxidharze umgeestert werden.
Als Komponente (ii) können primäre und/oder sekundäre Amine eingesetzt werden.
Bevorzugt sollte das Amin eine in Wasser lösliche Verbindung sein. Beispiele solcher Amine sind Mono- und Dialkylamine, wie Methylamin, Ethylamin, Propylamin, Butylamin, Dimethylamin, Diethylamin, Dipropylamin, Methylbutylamin u. dgl. Geeignet sind ebenfalls Alkanolamine, wie z. B. Methylethanolamin, Diethanolamin u. dgl. Ferner sind Dialkylaminoalkylamine, wie z. B. Dimethylaminoethylamin, Diethylaminopropylamin, Dimethylaminopropylamin u. dgl. geeignet. In den meisten Fällen werden niedermolekulare Amine verwendet, doch ist es auch möglich, höhermolekulare Monoamine anzuwenden.
Die Amine können auch noch andere Gruppen enthalten, doch sollen diese die Umsetzung des Amins mit der Epoxidgruppe nicht stören und auch nicht zu einer Gelierung der Reaktionsmischung führen.
Bevorzugt werden sekundäre Amine als (ii)-Komponenten eingesetzt.
Die für die Wasserverdünnbarkeit und elektrische Abscheidung erforderlichen Ladungen können durch Protonisierung mit wasserlöslichen Säuren (z. B. Borsäure, Ameisensäure, Milchsäure, bevorzugt Essigsäure) erzeugt werden.
Eine weitere Möglichkeit zur Einführung kationischer Gruppen in die Komponente (i) besteht in der Umsetzung von Epoxidgruppen der Komponente (i) mit Aminsalzen.
Die kationischen aminmodifizierten Epoxidharze können sowohl als fremdvernetzende Kunstharze als auch als selbstvernetzende Kunstharze eingesetzt werden. Selbstvernetzende kationische aminmodifizierte Epoxidharze können beispielsweise durch chemische Modifikation der kationischen aminmodifizierten Epoxidharze erhalten werden. Ein selbstvernetzendes System kann z. B. dadurch erhalten werden, daß das kationische aminmodifizierte Epoxidharz mit einem teilblockierten Polyisocyanat, das im Durchschnitt eine freie Isocyanatgruppe pro Molekül besitzt und dessen blockierte Isocyanatgruppen erst bei erhöhten Temperaturen entblockt werden, umgesetzt wird.
Bevorzugte Elektrotauchlacke werden erhalten, wenn als kathodisch abscheidbare Kunstharze fremdvernetzende kationische aminmodifizierte Epoxidharze in Kombination mit einem geeigneten Vernetzungsmittel eingesetzt werden.
Beispiele für geeignete Vernetzungsmittel sind Phenoplaste, polyfunktionelle Mannichbasen, Melaminharze, Benzoguanaminharze, blockierte Polyisocyanate und Verbindungen, die mindestens zwei Gruppierungen der allgemeinen Formel R₁-O-CO- enthalten.
Der Rest R¹ bedeutet:
R¹=R²O-CO-CH₂-, R³-CHOH-CH₂, R⁴-CHOR⁵-CHOH-CH₂-
R²=Alkyl
R³=H, Alkyl, R⁶-O-CH₂ oder R⁶-CO-O-CH₂-
R⁴=H oder Alkyl
R⁵=H, Alkyl oder Aryl
R⁶=Alkyl, Cycloalkyl oder Aryl
Bevorzugte Elektrotauchlacke werden erhalten, wenn als Vernetzungsmittel blockierte Polyisocyanate eingesetzt werden.
Als blockierte Polyisocyanate können beliebige Polyisocyanate benutzt werden, bei denen die Isocyanatgruppen mit einer Verbindung umgesetzt worden sind, so daß das gebildete blockierte Polyisocyanat gegenüber Hydroxyl- und Aminogruppen bei Raumtemperatur beständig ist, bei erhöhten Temperaturen, in der Regel im Bereich von etwa 90°C bis etwa 300°C, aber reagiert. Bei der Herstellung der blockierten Polyisocyanate können beliebige für die Vernetzung geeignete organische Polyisocyanate verwendet werden. Bevorzugt sind die Isocyanate, die etwa 3 bis 36, insbesondere etwa 8 bis 15 Kohlenstoffatome enthalten. Beispiele geeigneter Diisocyanate sind Hexamethylendiisocyanat, 2,4-Toluylendiisocyanat, 2,6-Toluylendiisocyanat und 1-Isocyanatomethyl-5-isocyanato-1,3,3-trimethylcyclohexan. Es können auch Polyisocyanate von höherer Isocyanatfunktionalität verwendet werden. Beispiele dafür sind trimerisiertes Hexamethylendiisocyanat und trimerisiertes Isophorondiisocyanat. Ferner kann man auch Mischungen von Polyisocyanaten benutzen. Die bei der Erfindung als Vernetzungsmittel in Betracht kommenden organischen Polyisocyanate können auch Präpolymere sein, die sich beispielsweise von einem Polyol einschließlich eines Polyetherpolyols oder eines Polyesterpolyols ableiten.
Für die Blockierung der Polyisocyanate können beliebige geeignete aliphatische, cycloaliphatische oder aromatische Alkylmonoalkohole verwendet werden. Beispiele dafür sind aliphatische Alkohole, wie Methyl-, Ethyl-, Chlorethyl-, Propyl-, Butyl-, Amyl-, Hexyl-, Heptyl, Octyl-, Nonyl-, 3,3,5-Trimethylhexyl-, Decyl- und Laurylalkohol; cycloaliphatische Alkohole, wie Cyclopentanol und Cyclohexanol; aromatische Alkylalkohole, wie Phenylcarbinol und Methylphenylcarbinol.
Andere geeignete Blockierungsmittel sind Hydroxylamine, wie Ethanolamin, Oxime, wie Methylethylketonoxim, Acetonoxim und Cyclohexanonoxim und Amine, wie Dibutylamin und Diisopropylamin. Die genannten Polyisocyanate und Blockierungsmittel können bei geeigneten Mengenverhältnissen auch zur Herstellung der oben erwähnten teilblockierten Polyisocyanate verwendet werden.
Das Vernetzungsmittel wird in der Regel in einer Menge von 5 bis 60 Gew.-%, bevorzugt 20 bis 40 Gew.-%, bezogen auf das kationische aminmodifizierte Epoxidharz, eingesetzt. Die Pigmentpaste wird in einer solchen Menge zur wäßrigen Dispersion des kathodisch abscheidbaren Kunstharzes gegeben, daß der fertige Elektrotauchlack die für die Abscheidung erforderlichen Eigenschaften aufweist. Das Gewichtsverhältnis zwischen Reibharz und kathodisch abscheidbarem Kunstharz liegt zwischen 0,05 und 0,5, vorzugsweise zwischen 0,1 und 0,2.
Die erfindungsgemäß eingesetzten Elektrotauchlacke können neben dem kathodisch abscheidbaren Kunstharz, dem Reibharz und den Pigmenten noch weitere übliche Zusatzstoffe enthalten, wie z. B. Zusatzlösemittel, Antioxidantien, oberflächenaktive Mittel usw.
Der Festkörper der erfindungsgemäß eingesetzten Elektrotauchlacke beträgt vorzugsweise 7 bis 35 Gew.-Teile, besonders bevorzugt 12 bis 25 Gew.-Teile. Der pH-Wert der Elektrotauchlacke liegt zwischen 4 und 8, vorzugsweise zwischen 5 und 7,5.
Der Elektrotauchlack wird mit einer elektrisch leitenden Anode und mit dem als Kathode geschalteten elektrisch leitfähigen Substrat in Berührung gebracht. Beim Durchgang von elektrischem Strom zwischen Anode und Kathode wird ein fest haftender Lackfilm auf der Kathode abgeschieden.
Die angelegte Spannung kann in einem großen Bereich schwanken und kann z. B. zwischen zwei und tausend Volt liegen. Typischerweise wird aber mit Spannungen zwischen 50 und 500 Volt gearbeitet. Die Stromdichte liegt in der Regel zwischen etwa 10 und 100 Ampere/m². Im Verlauf der Abscheidung neigt die Stromdichte zum Abfallen.
Nach der Abscheidung wird der beschichtete Gegenstand abgespült und ist zum Einbrennen bereit.
Die abgeschiedenen Lackfilme werden im allgemeinen bei Temperaturen von 130 bis 200°C über eine Zeitdauer von 10 bis 60 Minuten, vorzugsweise bei 150 bis 180°C über eine Zeitdauer von 15 bis 30 Minuten, eingebrannt.
Das erfindungsgemäße Verfahren kann zum Beschichten von beliebigen elektrisch leitenden Substraten, insbesondere aber zum Beschichten von Metallen, wie Stahl, Aluminium, Kupfer und dergleichen eingesetzt werden.
Die erfindungsgemäßen wäßrigen Lacke können auch durch Spritzen, Streichen, Rakeln usw. sowohl auf elektrisch leitende als auch auf elektrisch nichtleitende Substrate aufgebracht werden.
Die Erfindung wird in den folgenden Beispielen näher erläutert. Alle Angaben über Teile und Prozentsätze sind Gewichtsangaben, falls nicht ausdrücklich etwas anderes festgestellt wird.
1. Reibharze 1.1 Reibharz A 1
In einem mit Rührwerk, Innenthermometer, Stickstoffeinlaß und Wasserabscheider mit Rückflußkühler ausgestatteten Reaktor werden 752 g eines Epoxidharzes, im folgenden als Epoxidharz (EEW 188) bezeichnet, auf Basis Bisphenol A mit einem Epoxidäquivalentgewicht (EEW) von 188 (4 Äquivalente, 228 g Bisphenol A (1 mol), 262, Dodecylphenol (1 mol) und 64 g Butylglykol vorgelegt. Man heizt auf 110°C auf, fügt 50 g Xylol zu und destilliert dieses unter schwachem Vakuum zusammen mit möglichen Wasserspuren wieder ab. Sodann gibt man 1,6 g Triphenylphosphin zu und heizt auf 130°C auf. Nach exothermer Wärmetönung auf 150°C läßt man bei 130°C noch 1 h nachreagieren.
Das EEW der Reaktionsmischung liegt dann bei 1240. Man kühlt und gibt währenddessen 300 g Butylglykol und 666 g eines Polypropylenglykoldiglycidylethers mit EEW 333 (DER 732, Dow Chemical) zu. Bei 90°C werden 105 g 2,2′- Aminoethoxyethanol (H₂N-CH₂-CH₂-O-CH₂-CH₂-OH) und 10 min später 51 g N,N-Dimethylaminopropylamin (0,5 mol) zugefügt. Die Reaktionsmischung wird nach kurzzeitiger Exothermie noch für 2 h bei 90°C gehalten, bis die Viskosität konstant bleibt, und anschließend wird mit 250 g Butylglykol verdünnt. Das Harz hat einen Festkörper von 69,7% (gemessen 1 h bei 130°C) und eine Viskosität von 2,2 dPas (gemessen an einer 40-%igen mit Propylenglykolmonomethylether, im folgenden als Solvenon PM bezeichnet (Hersteller BASF), verdünnten Harzlösung am Platte-Kegel-Viskosimeter bei 23°C).
1.2 Reibharz A 2
In einem vorstehend beschriebenen Reaktor werden 915,1 g Epoxidharz auf Basis Bisphenol A (EEW 188), 277,5 g Bisphenol A und 212,5 g Dodecylphenol zusammen mit 73,9 g Xylol auf 130°C erwärmt. Man gibt nun 2,8 g N,N-Dimethylbenzylamin zu und hält nach kurzzeitiger Exothermie bei 130°C, bis das EEW auf 1150 gestiegen ist. Dann verdünnt man unter Kühlung mit 395,5 g Butylglykol und fügt, sobald die Temperatur 100°C unterschritten hat, 213,2 g 2-2′-Aminoethoxyethanol in einer Portion zu. Es tritt eine exotherme Reaktion ein, und die Temperatur sinkt nach ca. 20 min wieder auf 100°C ab. Dann läßt man innerhalb von 20 min 1041,7 g Grilonit F 713 (Polytetrahydrofurandiglycidylether mit EEW 428, Ems-Chemie) zulaufen und läßt bei 100°C so lange nachreagieren, bis die Viskosität konstant bleibt und kein Epoxid mehr nachweisbar ist (ca. 2 h). Anschließend wird mit 670,6 g Butylglykol verdünnt.
Die klare, farblose Harzlösung hat einen Festgehalt von 70,0% (1 h bei 130°C) und eine Viskosität von 3,35 dPas (40%ig in Solvenon PM; Platte-Kegel-Viskosimeter bei 23°C). Der Basengehalt liegt bei 0,74 meq/g Festharz.
1.3 Reibharz A 3
Man verfährt analog zu dem unter 1.1 beschriebenen Reibharz A1, das EEW der ersten Reaktionsstufe liegt hier jedoch bei 860:
30,29 Teile Epoxidharz (EEW 188)
 9,18 Teile Bisphenol A
 7,04 Teile Dodecylphenol
 2,37 Teile Butylglykol
 0,07 Teile Triphenylphosphin
 9,91 Teile Butylglykol
17,88 Teile DER 732 (Polypropylenglykoldiglycidylether, Dow Chemicals)
 4,23 Teile 2-2′-Aminoethoxyethanol
 1,37 Teile N,N-Dimethylaminopropylamin
17,66 Teile Butylglykol
Harzkennzahlen
Festkörper:
69,8% (1 h 130°C)
Viskosität: @ MEQ-Base 0,88 meq/g Festharz
1.4 Reibharz A 4
Analog 1.1 werden 627,5 g Epoxidharz (EEW 188) und 190,2 g Bisphenol A in Gegenwart von 43,1 g Butylglykol und 1,2 g Triphenylphosphin bei 130°C zu einem Vorprodukt mit EEW 490 umgesetzt. Sodann gibt man unter Kühlung 401,7 g Butylglykol und 1428,5 g Grilonit F 713 zu. Bei 60°C werden 62,7 g N-Methylethanolamin zugegeben, worauf die Temperatur auf 64°C steigt. 10 min später werden unter weiterer Kühlung 168,5 g n-Hexylamin und nach weiteren 10 min 42,5 g N,N-Dimethylaminopropylamin zugegeben. Man läßt die Mischung exotherm reagieren und hebt die Temperatur durch schwaches Heizen auf 110°C an.
Man hält noch 2 Stunden bei dieser Temperatur, bis die Viskosität konstant bleibt. Sodann kühlt man und verdünnt mit 635,3 g Butylglykol.
Festkörper:
70,3% (1 h 130°C)
Viskosität: 2,6 dPas (40%ig in Solvenon PM, Platte-Kegel-Gerät bei 23°C)
MEQ-Base: 1,24 meq/g Festharz
1.5 Reibharz A 5
Das Beispiel beschreibt die Herstellung einer lösemittelarmen, wäßrigen Reibharzlösung. Der Gehalt an organischem Lösemittel (Butylglykol) liegt hier bei 5,7% bzw. 17,6% auf Festharz. Man reagiert zunächst analog 1.1 564 g Epoxidharz (EEW 188), 171 g Bisphenol A und 196 g Dodecylphenol in Gegenwart von 88 g Butylglykol und 3,4 g Triphenylphosphin bei 130°C bis zu einem EEW von 1210. Sodann kühlt man auf 90°C und gibt währenddessen 749 g DER 732 (EEW 333, Dow Chemicals) zu. Unter weiterem Kühlen werden nun 105 g 2-2′-Aminoethoxyethanol zugesetzt, wodurch die Temperatur kurzzeitig auf 98°C steigt. 20 min später, wenn die Temperatur wieder auf 90°C gesunken ist, gibt man 51 g N,N-Dimethylaminopropylamin zu und läßt bei dieser Temperatur weiterreagieren, bis kein Viskositätsanstieg mehr erkennbar ist (ca. 2 h; Viskosität 2,6 dPas, 40%ig in Solvenon PM). Dann wird mit einer Mischung aus 24 g Eisessig und 3550 g entionisiertem Wasser verdünnt und ausgetragen. Die wäßrige Lösung des kationisierten Harzes hat einen Festgehalt von 32,2% (1 h, 130°C).
1.6 Reibharz A 6 (Vergleichsbeispiel)
27,81 Teile Bisphenol A-diglycidylether mit einem EEW von 188, 1,44 Teile Xylol und 5,81 Teile Bisphenol A werden in Gegenwart von 0,002 Teilen Triphenylphosphin bei 150-160°C bis zu einem EEW von 345 umgesetzt. Der Ansatz wird dann mit 21,61 Teilen Butylglykol verdünnt und auf 49°C gekühlt. Dann wird eine Mischung aus 7,77 Teilen 9-Amino-3,6-dioxanonan-1-ol (Hersteller Union Carbide) und 4,07 Teilen N,N-Dimethylaminopropylamin innerhalb 6 min zugegeben, worauf die Temperatur auf 110°C steigt. Man hält die Mischung 1 h lang zwischen 110 und 115°C bevor 6,45 Teile Butylglykol zugegeben werden und der Ansatz auf 77°C gekühlt wird. Anschließend werden 14,9 Teile Nonylphenolglycidylether zugegeben. Die Temperatur steigt daraufhin auf 90°C an und wird dort 1 Std. gehalten, bevor mit 10,03 Teilen Butylglykol verdünnt und gekühlt wird. Der Feststoffgehalt der dünnflüssigen Harzlösung liegt bei 60%.
2. Herstellung der Pigmentpasten
Zur Herstellung der Pigmentpasten werden gemäß nachfolgender Mengentabelle zunächst entionisiertes Wasser, Essigsäure (90-%ig), ggf. Entschäumer und das Reibharz vorgemischt. Dann fügt man Ruß, basisches Bleisilikat, Extender, Titandioxid (Typ R 900) und den Vernetzungskatalysator zu und mischt 30 min lang unter einem schnellaufenden Dissolverrührwerk. Anschließend wird die Mischung in einer Laborkleinmühle während 1 bis 1,5 h bis zu einer Hegmann-Feinheit von kleiner 12 dispergiert und mit weiterem Wasser ggf. auf die gewünschte Verarbeitungsviskosität eingestellt. Die Mengenangaben verstehen sich als Gewichtsanteile. Man erhält in den beschriebenen Fällen entmischungsstabile wäßrige Pigmentpasten, wobei die Beispiele B 1-B 5 graue Pasten, B 6 eine Vergleichspaste und B 7 eine Schwarzpaste beschreiben. B 5 beschreibt darüber hinaus eine Paste mit sehr niedrigem Gehalt an organischem Lösemittel (ca. 5%, auf Pastenfestkörper bezogen).
Tabelle 1: Pigmentpasten B 1 bis B 7
3. Kathodisch abscheidbare Kunstharze 3.1 Harz 1
Entsprechend dem in der deutschen Patentanmeldung DE-P 39 18 511.7 beschriebenen Beispiel II.2 werden 1,351 g Epoxidharz auf Basis Bisphenol A (EEW 490; Fa. Shell) und 81 g Xylol unter Stickstoff bei 110°C unter Rühren aufgeschmolzen. Nach Zugabe von 181 g Dodecylphenol werden unter Vakuum bei 111°C Restwasserspuren azeotrop ausgekreist. Dann heizt man auf 130°C auf und gibt währenddessen 2,4 g N,N-Dimethylbenzylamin zu. Man hält die Mischung ca. 4 h auf dieser Temperatur, bis das EEW auf 1,109 gestiegen ist. Dann gibt man 190 g Xylol und 101 g Diethanolamin zu und kühlt gleichzeitig die leicht exotherm reagierende Mischung auf 90°C ab. Nachdem das Diethanolamin 1 Std. reagiert hat, werden 1,085 g des nachfolgend beschriebenen urethanhaltigen Ketiminaddukts und 12 g entionisiertes Wasser zugegeben. Anschließend läßt man die Mischung 2 Std. bei 90°C reagieren, kühlt auf 70°C ab und trägt ohne weitere Verdünnung aus.
Das Harz hat einen Festgehalt von 83,1% (1 Std. bei 130°C gemessen) und einen Basengehalt von 0,67 meq/g Festharz.
Urethanhaltiges Ketiminaddukt
1,403 g Polyetherdiol Pluriol PE 3100 (Fa. BASF; Polyetherdiol auf Basis von Ethylenoxid und Propylenoxid mit mittlerem Molekulargewicht von ca. 1,100) werden in 230 g Methylisobutylketon gelöst, durch Azeotropdestillation entwässert und mit 668 g Desmodur W (Desmodur W=Dicyclohexylmethandiisocyanat), (Isocyanatäquivalentgewicht 131, Fa. Bayer) bis zu einem Isocyanatäquivalentgewicht von 852 (bezogen auf Festanteile) umgesetzt. Anschließend wird mit 633 g einer Ketiminlösung, die durch Umsetzung von 1100 g 2,2′-Aminoethoxyethanol und 1886 g Methylisobutylketon unter Wasserabspaltung zugänglich ist (Aminäquivalentgewicht 265), reagiert, bis keine Isocyanatgruppen mehr nachweisbar sind (IR-Spektrum). Dann wird mit 128 g Butylglykol und 104 g Methylisobutylketon verdünnt. Die Lösung hat einen theoretischen Festgehalt von 80%, der Basengehalt liegt bei 0,82 meq/g Festharz. Die Viskosität (60%ige Verdünnung mit Solvenon PM, Platte Kegel-Viskosimeter) liegt bei 7,2 dPas.
3.2 Harz
In einem Reaktionsgefäß werden 1818 g Epikote 1001 (EEW 490, Fa. Shell), 243 g Dodecylphenol und 108 g Xylol vorgelegt und unter Inertgasatmosphäre bei 110°C geschmolzen. Anschließend werden unter leichtem Vakuum Wasserspuren durch Auskreisen entfernt. Dann gibt man 3,3 g N,N-Dimethylbenzylamin zu, erwärmt die Reaktionsmischung auf 130°C, und hält diese Temperatur für ca. 3 Std., bis das EEW auf 1110 angestiegen ist. Sodann kühlt man und gibt in rascher Abfolge 135 g Butylglykol, 136 g Diethanolamin und 239 g Xylol zu. Dabei steigt die Temperatur kurzzeitig an. Danach läßt man das Reaktionsgemisch auf 90°C abkühlen und hält noch 30 min bei dieser Temperatur. Danach gibt man zur weiteren Verdünnung 135 g Propylenglykolmonophenylether und 340 g Isobutanol zu und kühlt auf 65°C. Die Mischung wird nun mit 43 g N,N-Dimethylaminopropylamin versetzt und bei 80°C 3 h lang ausreagiert.
Die Harzlösung hat einen Festkörper von 70%, einen Basengehalt von 0,96 meq/g und eine Viskosität von 4,2 dPas (40%ig in Solvenon PM, Platte-Kegel-Viskosimeter bei 23°C).
4. Vernetzungsmittel 4.1 Vernetzer 1
In einem Reaktor, der mit einem Rührer, Rückflußkühler, Innenthermometer und Inertgaseinleitung ausgestattet ist, werden 1,133 g Toluylendiisocyanat (Mischung aus etwa 80% 2,4- und 20% 2,6-Isomeren) und 356 g Methylisobutylketon unter Stickstoffatmosphäre vorgelegt. Man gibt 0,7 g Dibutylzinndilaurat zu und trägt innerhalb von 4 Stunden 290 g Trimethylolpropan in Form kleiner Portionen in gleichen Zeitabständen ein. Die Kühlung wird so einreguliert, daß die Temperatur der Reaktionsmischung nicht über 45°C steigt. 30 min nach Zugabe der letzten Portion Trimethylolpropan wird ein NCO-Äquivalentgemisch von 217 gemessen (bezogen auf Festanteile). Unter weiterer Kühlung läßt man nun innerhalb 1 Std. 722 g n-Propylglykol zutropfen. Am Ende der Zugabe ist die Temperatur auf 86°C angestiegen. Man erwärmt nun auf 100°C und läßt eine weitere Stunde nachreagieren. Bei der anschließenden Kontrolle sind keine NCO-Gruppen mehr nachweisbar. Man kühlt nun ab und verdünnt mit 500 g Methylisobutylketon. Die Lösung dieses Polyurethanvernetzers hat einen Feststoffgehalt von 69,8% (1 Std. bei 130°C gemessen).
4.2 Vernetzer 2
In einem Reaktor, wie er im vorstehenden Beispiel beschrieben ist, werden unter Stickstoffatmosphäre 1,146 g trimerisiertes Hexamethylendiisocyanat mit einem NCO-Äquivalentgewicht von 191 ("Basonat PLR 8638", Fa. BASF) und 339 g Methylisobutylketon unter Rühren auf 50°C erwärmt. Während 4 Std. werden nun 774 g Di-n-butylamin zugetropft. Die Temperatur wird dabei durch Kühlung unter 55°C gehalten. Die Vernetzerlösung wird anschließend gekühlt und mit weiteren 141 g Methylisobutylketon verdünnt. Der Festgehalt liegt bei 80,2% (1 h bei 130°C gemessen).
5. Kathodisch abscheidbare wäßrige Bindemitteldispersionen
Die Herstellung der wäßrigen Bindemitteldispersionen erfolgt aus den in der nachfolgenden Tabelle (Tab. 2) aufgeführten Komponenten in den dort aufgeführten Gewichtsanteilen. Es wird folgendermaßen verfahren:
Harz, Vernetzer und Zusatzstoffe werden bei Raumtemperatur gemischt und mit der vorgesehenen Menge Eisessig versetzt. Anschließend wird die erste Wassermenge (H₂O I) portionsweise eingerührt.
Man gibt sodann ggf. Lösemittel und weitere Lackhilfsmittel zu, homogenisiert kurze Zeit und verdünnt mit der zweiten Wassermenge (H₂O II) in kleinen Portionen auf den Endfeststoffgehalt.
Die Dispersionen werden in einer anschließenden Vakuumdestillation von flüchtigen Lösemitteln befreit, wodurch die Dispersion auf einen theoretischen Festkörper von 35% aufkonzentriert wird (Dispersion 1), oder wobei das destillativ entfernte Lösemittel mengenmäßig durch Wasser ersetzt wird (Dispersion 2). Danach wird die Dispersion filtriert.
Tabelle 2: Wäßrige Bindemitteldispersionen (Gewichtsanteile in g)
Die Dispersionen haben einen Festgehalt von 34,9% (Dispersion 1) und von 35,2% (Dispersion 2, jeweils 1 h bei 130°C bestimmt).
6. Zubereitung der Elektrotauchbäder und Abscheidung von Lackfilmen
Zur Prüfung als kathodisch abscheidbare Elektrotauchlacke werden die wäßrigen Bindemitteldispersionen aus Tab. 2 in den unten jeweils angegebenen Gewichtsteilen mit entionisiertem Wasser und 10%iger Essigsäure verdünnt.
In die so verdünnte Bindemitteldispersion wird dann unter Rühren die jeweilige Pigmentpaste aus Tab. 1 eingetragen.
Man läßt die Elektrotauchbäder 5 Tage bei Raumtemperatur unter Rühren altern. Die Abscheidung der Lackfilme erfolgt während 2 min bei der angegebenen Spannung auf kathodisch geschalteten zinkphosphatierten Stahlprüftafeln sowie auf kathodisch geschalteten nicht vorbehandelten Stahltafeln. Die Badtemperatur wird hierbei auf 27°C gehalten. Die abgeschiedenen Naßfilme werden mit entionisiertem Wasser nachgespült und während 20 min bei 165°C eingebrannt.
6.1 Elektrotauchbad 1
459 Teile entionisiertes Wasser
  1 Teil Essigsäure (10%ig)
430 Teile Dispersion 1 und
110 Teile Pigmentpaste B 1
werden, wie oben beschrieben, in einen Elektrotauchlack überführt. Der Feststoffgehalt des Bades liegt bei 20%.
Nach Abscheidung bei 300 Volt und Einbrennen erhält man einen glatten, glänzenden Film, mit sehr guter Beständigkeit gegenüber Lösemitteln und einer Schichtdicke von 28 μm.
6.2 Elektrotauchbad 2
Analog zum Elektrotauchbad 1 wird in der bereits beschriebenen Weise ein Elektrotauchlackbad hergestellt. Die Mengen der Komponenten sind identisch, jedoch wird nun die Dispersion 2 und als Pigmentpaste B 4 eingesetzt. Der Feststoffgehalt liegt bei 20%.
Nach Abscheidung bei 260 Volt und Einbrennen erhält man einen glatten Film mit sehr guter Lösemittelbeständigkeit und einer Schichtdicke von 25 μm.
Verlauf
: 1-2
Erichsen-Tiefung : 7
Gitterschnitt : 0
6.3 Elektrotauchbäder 3, 4 und 5
In vorstehend beschriebener Weise werden aus Dispersion 2 und den Pigmentpasten B 2, B 3 und der Vergleichspaste B 6 drei Elektrotauchlackbäder zubereitet. Die Mengenangaben sind für alle drei Bäder identisch:
2295 Teile entionisiertes Wasser
   5 Teile Essigsäure (10-%ig)
2150 Teile Dispersion 2
 550 Teile Pigmentpaste
Der Festgehalt der Bäder liegt bei 20%. Die Abscheidung und Prüfung der Bäder erfolgt auf zinkphosphatierten Stahltafeln. Zur Salzsprühnebelbelastungsprüfung nach ASTM über 360 h wurden nicht vorbehandelte Stahlbleche verwendet. Die Spannungen wurden so gewählt, daß in allen Fällen annähernd gleiche Schichtdicken zu erzielen sind. Die Prüfergebnisse sind in Tab. 3 aufgelistet.
Tab. 3: Elektrotauchlackbäder 3-5, Abscheidung und Prüfung
6.4 Elektrotauchbad 6 (Vergleich)
Es wird ein weiteres Elektrotauchlackbad (Bad 6) als Vergleich zubereitet.
Das Bad enthält eine kathodisch abscheidbare wäßrige Bindemitteldispersion, Dispersion 3, der gemäß der Deutschen Patentanmeldung DE 38 01 786 ein Polyoxypropylendiamin zugemischt worden ist. Die Herstellung erfolgt nach der unter Punkt 5 beschriebenen Methode aus den Komponenten:
Die resultierende wäßrige Dispersion wird in einer Vakuumdestillation von niedrigsiedenden Lösemitteln befreit und anschließend mit entionisiertem Wasser auf einen Festkörper von 35% verdünnt.
Aus 2295 Teilen entionisiertem Wasser, 5 Teilen Essigsäure (10%ig), 2150 Teilen Dispersion 3 und 550 Teilen Pigmentpaste B 6 wird in der vorstehend beschriebenen Weise ein Elektrotauchlackbad (Bad 6) zubereitet.
Abscheidung und Prüfung
Schichtdicke:|25 μm
Spannung: 260 V
Verlauf: 1-2
Erichsen-Tiefung: 7
Reverse Impact (inch pound) 80
6.5 Steinschlagprüfung der Elektrotauchlackbäder 3-6
Zur Steinschlagprüfung werden die elektrotauchlackierten, zinkphosphatierten Stahltafeln mit einem typischen Automobillacksystem überlackiert, wobei jede aufgetragene Lackschicht separat eingebrannt wird.
Zusammensetzung des Mehrschichtlackaufbaus:
25 μm Elektrotauchlack
35 μm Füller (Polyesterbasis, FC 80-0100 BASF L+F)
35 μm Decklack (2K-High Solids-Lack, FD 73-0782 BASF L+F)
Die angegebenen Schichtdicken verstehen sich als Trockenfilmschichtdicken.
Die so überlackierten Stahltafeln werden einem Einzelsteinschlagtest mit einem "Hahnpick"-Testgerät nach Prüfmethode DIN 55995 (Mercedes Benz DBL 7292) unterzogen. Die Ergebnisse sind in Tab. 4 dargestellt. Die dort angegebenen Temperaturen sind Werte, bei denen der Test durchgeführt wurde.
Tabelle 4: Einzelsteinschlagergebnisse von überlackierten Elektrotauchlackfilmen
Für die Beurteilung der Steinschlagresistenz ist es maßgeblich, daß die Abschlagwerte und gleichzeitig die Durchschlagnoten sowohl bei +23°C wie bei -20°C minimal sind.
6.5 Elektrotauchlackbad 7
Das Beispiel beschreibt einen schwarzpigmentierten Elektrotauchlack. Die Zubereitung erfolgt in der unter Punkt 6 beschriebenen Weise aus den Komponenten
406 Teile entionisiertes Wasser
  1 Teil Essigsäure (10%ig)
496 Teile Dispersion 2
 97 Teile Pigmentpaste B 7.
Abscheidung und Prüfung der Filme
6.6 Elektrotauchlackbäder 8 und 9
Die Beispiele beschreiben Elektrotauchlackbäder mit extrem niedrigem Gehalt an organischen Lösemitteln. Die Zubereitung der Bäder erfolgt in der vorstehend beschriebenen Weise.
Bad 8 steht als Beispiel für einen erfindungsgemäßen Lack. Bad 9 stellt ein Vergleichsbeispiel dar und entspricht in seiner Zusammensetzung dem in der Patentanmeldung DE 39 18 511 beschriebenen Elektrotauchbad 2.
Eine nach 5tägiger Alterung gezogene Lackprobe des Bades 9 weist als einziges Lösemittel Butylglykol in einer Menge von 0,5 Gewichts-% auf (gaschromatographisch bestimmt). Eine analoge Bestimmung für das Bad 8 ergibt 0,15% Gewichts-% Butylglykol als einziges Lösemittel. Dies entspricht einem errechneten VOC-Wert von ca. 0,2 (Volatile organic compounds, inclusive Eisessig).
Abscheidung und Prüfung der Filme

Claims (15)

1. Verfahren zum Beschichten elektrisch leitfähiger Substrate, bei dem
  • (1) das elektrisch leitfähige Substrat in einen wäßrigen Elektrotauchlack getaucht wird
  • (2) das Substrat als Kathode geschaltet wird
  • (3) durch Gleichstrom ein Film auf dem Substrat abgeschieden wird
  • (4) das beschichtete Substrat aus dem Elektrotauchlack entfernt wird und
  • (5) der abgeschiedene Lackfilm eingebrannt wird,
dadurch gekennzeichnet, daß der wäßrige Elektrotauchlack unter Verwendung einer Pigmentpaste hergestellt wird, die als Reibharz ein zumindest teilweise protoniertes Epoxid-Aminaddukt enthält, das erhältlich ist, indem
  • (A) ein Glycidylether eines Polyphenols, der im statistischen Mittel mindestens eine Epoxidgruppe im Molekül enthält, oder ein Gemisch aus solchen Glycidylethern
  • (B) ein Polyglycidylether eines Polyols, der im statistischen Mittel mehr als 1,0 Epoxidgruppen im Molekül enthält, oder ein Gemisch aus solchen Polyglycidylethern und
  • (C) eine Verbindung, die eine primäre Aminogruppe im Molekül enthält, oder ein Gemisch aus solchen Verbindungen
in einem solchen stöchiometrischen Verhältnis miteinander umgesetzt werden, daß ein Epoxid-Aminaddukt erhalten wird, in dem im statistischen Mittel mindestens 2,0 primäre Aminogruppen der Komponente (C) unter Bildung von tertiären Aminogruppen kettenverlängernd eingebaut sind und das so erhaltene Epoxid-Aminaddukt zumindest teilweise protoniert wird.
2. Wäßriger Lack, dadurch gekennzeichnet, daß er ein zumindest teilweise protoniertes Epoxid-Aminaddukt enthält, das erhältlich ist, indem
  • (A) ein Glycidylether eines Polyphenols, der im statistischen Mittel mindestens eine Epoxidgruppe im Molekül enthält, oder ein Gemisch aus solchen Glycidylethern
  • (B) ein Polyglycidylether eines Polyols, der im statistischen Mittel mehr als 1,0 Epoxidgruppen im Molekül enthält, oder ein Gemisch aus solchen Polyglycidylethern und
  • (C) eine Verbindung, die eine primäre Aminogruppe im Molekül enthält, oder ein Gemisch aus solchen Verbindungen
in einem solchen stöchiometrischen Verhältnis miteinander umgesetzt werden, daß ein Epoxid-Aminaddukt erhalten wird, in dem im statistischen Mittel mindestens 2,0 primäre Aminogruppen der Komponente (C) unter Bildung von tertiären Aminogruppen kettenverlängernd eingebaut sind und das so erhaltene Epoxid-Aminaddukt zumindest teilweise protoniert wird.
3. Epoxid-Aminaddukt, dadurch gekennzeichnet, daß es erhältlich ist, indem
  • (A) ein Glycidylether eines Polyphenols, der im statistischen Mittel mindestens eine Epoxidgruppe im Molekül enthält, oder ein Gemisch aus solchen Glycidylethern
  • (B) ein Polyglycidylether eines Polyols, der im statistischen Mittel mehr als 1,0 Epoxidgruppen im Molekül enthält, oder ein Gemisch aus solchen Polyglycidylethern und
  • (C) eine Verbindung, die eine primäre Aminogruppe im Molekül enthält, oder ein Gemisch aus solchen Verbindungen
in einem solchen stöchiometrischen Verhältnis zueinander umgesetzt werden, daß ein Epoxid-Aminaddukt erhalten wird, in dem im statistischen Mittel mindestens 2,0 primäre Aminogruppen der Komponente (C) unter Bildung von tertiären Aminogruppen kettenverlängernd eingebaut sind und das so erhaltene Epoxid-Aminaddukt zumindest teilweise protoniert wird.
4. Verfahren, Lack oder Epoxid-Aminaddukt nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß (A), (B) und (C) in einem solchen stöchiometrischen Verhältnis miteinander umgesetzt werden, daß das erhaltene Epoxid- Aminaddukt epoxidgruppenfrei ist.
5. Verfahren, Lack oder Epoxid-Aminaddukte nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß als Komponente (A) Gemische von Glycidylethern eingesetzt werden, die erhältlich sind, indem in Gegenwart eines Katalysators, der die Reaktion zwischen phenolischen Hydroxylgruppen und Epoxidgruppen katalysiert, aus
  • (a) einem Diglycidylether eines Polyphenols, vorzugsweise einem Diglycidylether von Bisphenol A, mit einem zahlenmittleren Molekulargewicht von 260 bis 450, vorzugsweise 370 bis 380, oder einem Gemisch aus solchen Diglycidylethern
  • (b) einem gegebenenfalls substituiertem Monophenol, vorzugsweise einem Alkylphenol mit 1 bis 18, vorzugsweise 4 bis 12 Kohlenstoffatomen im Alkylrest, oder einer Mischung aus solchen Monophenolen und
  • (c) einem Diphenol, vorzugsweise Bisphenol A und/oder einem Katalysator, der die Reaktion zwischen sekundären Hydroxylgruppen und Epoxidgruppen katalysiert
Glycidylether hergestellt werden, die ein zahlenmittleres Molekulargewicht von 980 bis 4000, vorzugsweise 980 bis 2000 aufweisen und die im statistischen Mittel pro Molekül 1,0 bis 3,0, vorzugsweise 1,2 bis 1,6 Epoxidgruppen und 0,25 bis 1,3, vorzugsweise 0,4 bis 0,9 von der Komponente (b) stammende Phenylethergruppen enthält.
6. Verfahren, Lack oder Epoxid-Aminaddukt nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß als Komponente (B) Polyglycidylether von Polyetherpolyolen, vorzugsweise Polyetherdiolen, mit einem zahlenmittleren Molekulargewicht von 300 bis 3000, vorzugsweise 400 bis 1200, eingesetzt werden.
7. Verfahren, Lack oder Epoxid-Aminaddukt nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Komponenten (A) und (B) in einem Äquivalentverhältnis von 1,0 : 0,5 bis 1,0 : 8,0, vorzugsweise 1,0 : 1,0 bis 1,0 : 2,0 eingesetzt werden.
8. Verfahren, Lack oder Epoxid-Aminaddukt nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß auf ein Äquivalent Epoxidgruppen aus (A) und (B) 0,3 bis 0,7, vorzugsweise 0,4 bis 0,6 Mol der Komponente (C) eingesetzt werden.
9. Verfahren, Lack oder Epoxid-Aminaddukt nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß als Komponente (C) 2,2′ Aminoethoxyethanol, N,N-Dimethylaminopropylamin, Hexylamin oder gegebenenfalls substituiertes Anilin eingesetzt wird.
10. Verwendung des Epoxid-Aminadduktes nach Anspruch 3 als Reibharz zur Herstellung von wäßrigen Pigmentpasten.
DE3942766A 1989-12-23 1989-12-23 Verfahren zum beschichten elektrisch leitfaehiger substrate, waessriger lack, epoxid-aminaddukt und verwendung des epoxid-aminadduktes als reibharz zur herstellung von pigmentpasten Withdrawn DE3942766A1 (de)

Priority Applications (14)

Application Number Priority Date Filing Date Title
DE3942766A DE3942766A1 (de) 1989-12-23 1989-12-23 Verfahren zum beschichten elektrisch leitfaehiger substrate, waessriger lack, epoxid-aminaddukt und verwendung des epoxid-aminadduktes als reibharz zur herstellung von pigmentpasten
ZA909589A ZA909589B (en) 1989-12-23 1990-11-29 Process for the coating of electrically conducting substrates,aqueous paint,expoxide-amine adduct and use of the epoxide-amine adduct as grinding resin in the production of pigment pastes
AT91901281T ATE114167T1 (de) 1989-12-23 1990-12-17 Verfahren zum beschichten elektrisch leitfähiger substrate, wässriger lack, epoxid-aminaddukt und verwendung des epoxid-aminadduktes als reibharz zur herstellung von pigmentpasten.
KR1019920701504A KR960006084B1 (ko) 1989-12-23 1990-12-17 전기전도기판의 코팅방법, 수성 페인트, 에폭시드-아민 첨가물 및 안료페이스트의 제조시 연마수지로서의 에폭시드-아민 첨가물의 용도
BR909007952A BR9007952A (pt) 1989-12-23 1990-12-17 Processo para o revestimento de substratos eletricamente condutores
ES91901281T ES2067213T3 (es) 1989-12-23 1990-12-17 Procedimiento para recubrir substratos conductores electricos, laca acuosa, aducto de epoxido-amina y su utilizacion como resina de friccion para la preparacion de pigmentos.
DK91901281.5T DK0505445T3 (da) 1989-12-23 1990-12-17 Fremgangsmåde til overtrækning af elektrisk ledende substrater, vandig lak, epoxid-aminadditionsprodukt og anvendelse af epoxid-aminadditionsproduktet som udrivningsharpiks til fremstilling af pigmentpastaer
AU70379/91A AU638539B2 (en) 1989-12-23 1990-12-17 Process for coating electrically conductive substrates, aqueous enamel, epoxide amine adduct and use of the epoxide amine adduct as a friction resin for preparing pigment pastes
PCT/EP1990/002211 WO1991009917A2 (de) 1989-12-23 1990-12-17 VERFAHREN ZUM BESCHICHTEN ELEKTRISCH LEITFÄHIGER SUBSTRATE, WÄßRIGER LACK, EPOXID-AMINADDUKT UND VERWENDUNG DES EPOXID-AMINADDUKTES ALS REIBHARZ ZUR HERSTELLUNG VON PIGMENTPASTEN
CA002070680A CA2070680C (en) 1989-12-23 1990-12-17 Process for coating electrically conductive substrates, aqueous enamel, epoxide amine adduct and use of the epoxide amine adduct as a friction resin for preparing pigment pastes
US07/862,577 US5324404A (en) 1989-12-23 1990-12-17 Process for the coating of electrically conducting substrates, aqueous paint, epoxide-amine adduct and use of the epoxide-amine adduct as grinding resin in the production of pigment pastes
DE59007724T DE59007724D1 (de) 1989-12-23 1990-12-17 Verfahren zum beschichten elektrisch leitfähiger substrate, wässriger lack, epoxid-aminaddukt und verwendung des epoxid-aminadduktes als reibharz zur herstellung von pigmentpasten.
JP3501674A JPH07761B2 (ja) 1989-12-23 1990-12-17 導電性の支持体を被覆する方法,水性塗料およびエポキシドアミンアダクトの製造方法
EP91901281A EP0505445B1 (de) 1989-12-23 1990-12-17 Verfahren zum beschichten elektrisch leitfähiger substrate, wässriger lack, epoxid-aminaddukt und verwendung des epoxid-aminadduktes als reibharz zur herstellung von pigmentpasten

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE3942766A DE3942766A1 (de) 1989-12-23 1989-12-23 Verfahren zum beschichten elektrisch leitfaehiger substrate, waessriger lack, epoxid-aminaddukt und verwendung des epoxid-aminadduktes als reibharz zur herstellung von pigmentpasten

Publications (1)

Publication Number Publication Date
DE3942766A1 true DE3942766A1 (de) 1991-06-27

Family

ID=6396301

Family Applications (2)

Application Number Title Priority Date Filing Date
DE3942766A Withdrawn DE3942766A1 (de) 1989-12-23 1989-12-23 Verfahren zum beschichten elektrisch leitfaehiger substrate, waessriger lack, epoxid-aminaddukt und verwendung des epoxid-aminadduktes als reibharz zur herstellung von pigmentpasten
DE59007724T Expired - Lifetime DE59007724D1 (de) 1989-12-23 1990-12-17 Verfahren zum beschichten elektrisch leitfähiger substrate, wässriger lack, epoxid-aminaddukt und verwendung des epoxid-aminadduktes als reibharz zur herstellung von pigmentpasten.

Family Applications After (1)

Application Number Title Priority Date Filing Date
DE59007724T Expired - Lifetime DE59007724D1 (de) 1989-12-23 1990-12-17 Verfahren zum beschichten elektrisch leitfähiger substrate, wässriger lack, epoxid-aminaddukt und verwendung des epoxid-aminadduktes als reibharz zur herstellung von pigmentpasten.

Country Status (13)

Country Link
US (1) US5324404A (de)
EP (1) EP0505445B1 (de)
JP (1) JPH07761B2 (de)
KR (1) KR960006084B1 (de)
AT (1) ATE114167T1 (de)
AU (1) AU638539B2 (de)
BR (1) BR9007952A (de)
CA (1) CA2070680C (de)
DE (2) DE3942766A1 (de)
DK (1) DK0505445T3 (de)
ES (1) ES2067213T3 (de)
WO (1) WO1991009917A2 (de)
ZA (1) ZA909589B (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19623962C2 (de) * 1996-06-15 2002-11-07 Doerken Ewald Ag Elektrotauchlack für metallische Schüttgüter
WO2015090469A1 (de) * 2013-12-20 2015-06-25 Basf Coatings Gmbh Verfahren zur herstellung einer pigmentpaste, wässriger elektrotauchlack, verwendung desselben, verfahren zur kataphoretischen elektrotauchlackierung und beschichteter gegenstand

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW289024B (de) * 1993-11-02 1996-10-21 Hoechst Ag
DE69614971T2 (de) 1995-11-16 2002-04-11 Basf Corp., Mount Olive Kathodische Elektrotauchzusammensetzungen, selbstvernetzende Polymere enthaltend
DE19618379A1 (de) 1996-05-08 1997-11-13 Basf Lacke & Farben Mit Copolymeren des Vinylacetats modifizierte in Wasser dispergierbare Epoxidharze
DE19633769A1 (de) * 1996-08-22 1998-02-26 Basf Lacke & Farben Dispersion zur Herstellung eines elektrophoretisch abscheidbaren Tauchlackes
US5783165A (en) * 1997-01-08 1998-07-21 Ferro Corporation Method of making barium titanate
DE19930060A1 (de) 1999-06-30 2001-01-11 Basf Coatings Ag Elektrotauchlackbad mit wasserlöslichem Polyvinylalkohol(co)polymeren
DE10008946C1 (de) 2000-02-25 2001-10-18 Basf Coatings Ag Verfahren zur Herstellung farb- und/oder effektgebender Mehrschichtlackierungen auf Automobilkarosserien
DE10043405C1 (de) 2000-09-04 2002-06-27 Basf Coatings Ag Verfahren zur Herstellung farb- und/oder effektgebender Lackierungen
DE10130972C1 (de) 2001-06-27 2002-11-07 Basf Coatings Ag Verfahren zur Herstellung von Beschichtungen aus thermisch und mit aktinischer Strahlung härtbaren Beschichtungsstoffen und mit dem Verfahren herstellbare Lackierungen
US7504438B1 (en) * 2001-12-20 2009-03-17 Nalco Company Demulsifiers, their preparation and use in oil bearing formations
EP1485437B1 (de) * 2002-03-08 2006-05-31 Valspar Sourcing, Inc. Polymerisation eines reaktivverdünners in gegenwart eines epoxy-amin-materials und dadurch hergestellte beschichtungszusammensetzung
DE102004027650A1 (de) 2004-06-05 2006-01-05 Basf Coatings Ag Verfahren zum Beschichten elektrisch leitfähiger Substrate
DE102005012056A1 (de) 2005-03-16 2006-09-28 Basf Coatings Ag Mehrschichtlackierungen, Verfahren zu ihrer Herstellung und deren Verwendung im Automobilbau
DE102007038824A1 (de) 2007-08-16 2009-02-19 Basf Coatings Ag Einsatz von Bismutsubnitrat in Elektrotauchlacken
DE102008007852A1 (de) 2008-02-01 2009-08-06 Basf Coatings Ag Zinnkatalysatoren mit erhöhter Stabilität zur Verwendung in Elektrotauchlacken
DE102008012085A1 (de) 2008-02-29 2009-09-10 Basf Coatings Ag Kathodischer Elektrotauchlack enthaltend metallorganische Verbindung
DE102008016220A1 (de) * 2008-03-27 2009-10-01 Basf Coatings Ag Elektrotauchlacke enthaltend Polymethylenharnstoff
DE102008022464A1 (de) * 2008-05-07 2009-11-12 Basf Coatings Ag Kathodischer Elektrotauchlack enthaltend Vinylpyrrolidon-Copolymer
DE102008023444A1 (de) 2008-05-14 2009-11-19 Basf Coatings Ag Elektrotauchlackzusammensetzung
DE102008061329A1 (de) 2008-12-11 2010-06-17 Basf Coatings Ag Verwendung von 1,3-substituierten Imidazoliumsalzen zur katalytischen Deblockierung blockierter Isocyanate
CN102272243A (zh) 2008-12-29 2011-12-07 巴斯夫涂料有限公司 电涂组合物和代替磷酸盐预处理的方法
US20100163423A1 (en) 2008-12-29 2010-07-01 Basf Corporation Electrocoat composition and process replacing phosphate pretreatment
US9206284B2 (en) 2008-12-29 2015-12-08 Basf Coatings Gmbh Coating compositions with branched phosphorous-containing resin
US8153733B2 (en) * 2008-12-29 2012-04-10 Basf Coatings Gmbh Electrocoat compositions with amine ligand
WO2012115691A1 (en) 2011-02-22 2012-08-30 Basf Coatings Gmbh Electrocoat coating with low gloss
JP6363615B2 (ja) 2012-12-03 2018-07-25 ビーエーエスエフ コーティングス ゲゼルシャフト ミット ベシュレンクテル ハフツングBASF Coatings GmbH エフェクト及び/または色彩付与多層塗膜塗装系ならびにそれを製造する方法、ならびにそれを使用する方法
EP3004257B1 (de) 2013-05-28 2018-10-24 BASF Coatings GmbH Verfahren zur tauchlack-beschichtung elektrisch leitfähiger substrate unter nachbehandlung der tauchlack-beschichtung mit einer wässrigen sol-gel- zusammensetzung vor deren aushärtung
CN105492545B (zh) 2013-08-12 2018-04-20 巴斯夫涂料有限公司 包含溶胶‑凝胶组合物的用于导电基材的浸涂组合物
US9920205B2 (en) 2013-11-18 2018-03-20 Basf Coatings Gmbh Aqueous dip-coating composition for electroconductive substrates, comprising dissolved bismuth
ES2743155T3 (es) 2013-11-18 2020-02-18 Basf Coatings Gmbh Composición acuosa de revestimiento para el revestimiento por laca de electro-inmersión de sustratos eléctricamente conductores que contienen bismuto, tanto presente en forma disuelta, como también en forma no disuelta
HUE036970T2 (hu) 2013-11-18 2018-08-28 Henkel Ag & Co Kgaa Kétlépéses eljárás elektromos vezetõ szubsztrátum elektrolitikus mártólakkal történõ bevonására egy Bi(III)-tartalmú készítménnyel
EP3071652B1 (de) 2013-11-19 2017-12-13 BASF Coatings GmbH Wässrige beschichtungszusammensetzung zur tauchlack-beschichtung elektrisch leitfähiger substrate enthaltend aluminiumoxid
WO2015074680A1 (de) 2013-11-19 2015-05-28 Basf Coatings Gmbh Wässrige beschichtungszusammensetzung zur tauchlack-beschichtung elektrisch leitfähiger substrate enthaltend magnesiumoxid
MX2016007453A (es) 2013-12-10 2016-12-09 Basf Coatings Gmbh Composicion acuosa para recubrimiento por inmersion para sustratos que son conductores electricos, que comprende bismuto y un compuesto que contiene fosforo, bloqueado con aminas.
US20150337074A1 (en) * 2014-05-23 2015-11-26 Axalta Coating Systems Ip Co., Llc Coating compositions for coil coating, methods for making such coating compositions and coil coating methods
CA2960743A1 (en) 2014-09-26 2016-03-31 Basf Coatings Gmbh Aqueous binder dispersions intended for cathodic electrocoat materials and comprising a crosslinker based on 2,2-dimethyl-1,3-dioxolane-4-methanol-blocked polyisocyanates
JP6448442B2 (ja) * 2015-03-31 2019-01-09 日鉄ケミカル&マテリアル株式会社 水性硬化性組成物、該水性硬化性組成物を含む塗料及び接着剤
EP3694933B1 (de) 2017-10-09 2021-12-08 BASF Coatings GmbH Elektrotauchlacke enthaltend wenigstens eine triazin-verbindung
WO2020212074A1 (de) 2019-04-15 2020-10-22 Basf Coatings Gmbh Wässrige beschichtungszusammensetzung zur tauchlack-beschichtung elektrisch leitfähiger substrate enthaltend bismut sowie lithium
CN111978513A (zh) * 2019-06-14 2020-11-24 上海雄润树脂有限公司 一种高压电开关浇注用环氧树脂及其制备方法
WO2021123106A1 (en) 2019-12-19 2021-06-24 Basf Coatings Gmbh Lamp black pigment containing electrodeposition coating material compositions
MX2022009046A (es) 2020-01-24 2022-08-11 Basf Coatings Gmbh Materiales acuosos de electrorrecubrimiento que comprenden un reticulante que contiene silano.
EP3854831A1 (de) 2020-01-24 2021-07-28 BASF Coatings GmbH Verbindung enthaltend vollständig blockierte isocyanat- und silangruppen und deren verwendung als vernetzer in elektrotauchlackierungsmaterialien
JP2023553667A (ja) 2020-12-15 2023-12-25 ビーエーエスエフ コーティングス ゲゼルシャフト ミット ベシュレンクテル ハフツング アルコキシル化ポリエチレンイミンを含む電着塗料組成物
WO2023237284A1 (en) 2022-06-09 2023-12-14 Basf Coatings Gmbh Electrodeposition coating material compositions comprising alkoxylated polyethyleneimines
WO2024056309A1 (en) 2022-09-15 2024-03-21 Basf Coatings Gmbh Electrodeposition coating material compositions comprising composite particles containing metal-containing catalyst
WO2024056308A1 (en) 2022-09-15 2024-03-21 Basf Coatings Gmbh Electrodeposition coating material compositions comprising pigment slurry and composite particles containing metal-containing catalyst
WO2024105042A1 (en) 2022-11-15 2024-05-23 Chemetall Gmbh Post-rinse pretreatment with aqueous compositions containing alkaline earth metal ions

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3936405A (en) * 1972-08-16 1976-02-03 Ppg Industries, Inc. Novel pigment grinding vehicles
DE3409188A1 (de) * 1984-03-14 1985-09-19 Basf Farben + Fasern Ag, 2000 Hamburg Mit alkoholen modifizierte polyepoxide, ihre herstellung und verwendung in haertbaren mischungen
AT381115B (de) * 1985-02-26 1986-08-25 Vianova Kunstharz Ag Verfahren zur herstellung kathodisch abscheidbarer lackbindemittel
DE3518732A1 (de) * 1985-05-24 1986-11-27 BASF Lacke + Farben AG, 4400 Münster Wasserverduennbare bindemittel fuer kationische elektrotauchlacke und verfahren zu ihrer herstellung
DE3610183A1 (de) * 1986-03-26 1987-10-01 Basf Lacke & Farben Waessrige elektrotauchlackbaeder fuer die kathodische elektrotauchlackierung und verfahren zu ihrer herstellung
CA1277059C (en) * 1986-07-18 1990-11-27 Richard A. Hickner Controlled film build epoxy coatings applied by cathodic electrodeposition
US4867854A (en) * 1986-09-24 1989-09-19 The Dow Chemical Company Controlled film build epoxy coatings applied by cathodic electrodeposition
US4857567A (en) * 1987-07-24 1989-08-15 Basf Corporation, Inmont Division Flexible aryl alkyl epoxy resins, their amine resin derivatives and their use in electrodeposition coatings
DE3918511A1 (de) * 1989-06-07 1990-12-13 Basf Lacke & Farben Verfahren zur beschichtung elektrisch leitfaehiger substrate, waessriger lack, verfahren zur herstellung eines kationischen, aminmodifizierten epoxidharzes und nach diesem verfahren hergestelltes kationisches, aminmodifiziertes epoxidharz

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19623962C2 (de) * 1996-06-15 2002-11-07 Doerken Ewald Ag Elektrotauchlack für metallische Schüttgüter
DE19623962C5 (de) * 1996-06-15 2005-12-01 Ewald Dörken Ag Verwendung von Einkomponenten-Elektrotauchlacken zur Beschichtung von metallischen, elektrisch leitfähigen Schüttgütern in einer kontinuierlichen Durchlauf-Beschichtungsvorrichtung
WO2015090469A1 (de) * 2013-12-20 2015-06-25 Basf Coatings Gmbh Verfahren zur herstellung einer pigmentpaste, wässriger elektrotauchlack, verwendung desselben, verfahren zur kataphoretischen elektrotauchlackierung und beschichteter gegenstand
CN105874014A (zh) * 2013-12-20 2016-08-17 巴斯夫涂料有限公司 制备颜料糊的方法、水性电泳涂料、其用途、阳离子电泳涂覆方法和经涂覆的制品
CN105874014B (zh) * 2013-12-20 2018-05-25 巴斯夫涂料有限公司 制备颜料糊的方法、水性电泳涂料、其用途、阳离子电泳涂覆方法和经涂覆的制品
US10174212B2 (en) 2013-12-20 2019-01-08 Basf Coatings Gmbh Method for producing a pigment paste, aqueous electrocoat material, use thereof, method for cataphoretic electrocoating, and coated article

Also Published As

Publication number Publication date
EP0505445A1 (de) 1992-09-30
DE59007724D1 (de) 1994-12-22
AU7037991A (en) 1991-07-24
ZA909589B (en) 1991-09-25
ES2067213T3 (es) 1995-03-16
WO1991009917A3 (de) 1991-09-05
ATE114167T1 (de) 1994-12-15
KR960006084B1 (ko) 1996-05-08
WO1991009917A2 (de) 1991-07-11
JPH04506374A (ja) 1992-11-05
EP0505445B1 (de) 1994-11-17
CA2070680C (en) 1997-03-25
AU638539B2 (en) 1993-07-01
CA2070680A1 (en) 1991-06-24
JPH07761B2 (ja) 1995-01-11
US5324404A (en) 1994-06-28
KR927003744A (ko) 1992-12-18
BR9007952A (pt) 1992-10-20
DK0505445T3 (da) 1995-04-18

Similar Documents

Publication Publication Date Title
EP0505445B1 (de) Verfahren zum beschichten elektrisch leitfähiger substrate, wässriger lack, epoxid-aminaddukt und verwendung des epoxid-aminadduktes als reibharz zur herstellung von pigmentpasten
EP0089488A2 (de) Wasserdispergierbare Bindemittel für kationische Elektrotauchlacke und Verfahren zu ihrer Herstellung
DE3918511A1 (de) Verfahren zur beschichtung elektrisch leitfaehiger substrate, waessriger lack, verfahren zur herstellung eines kationischen, aminmodifizierten epoxidharzes und nach diesem verfahren hergestelltes kationisches, aminmodifiziertes epoxidharz
EP0301293B2 (de) Kathodisch abscheidbare Kunstharze enthaltende wässrige Elektrotauchlackbäder und Verfahren zur Beschichtung elektrisch leitfähiger Substrate
EP0720636B1 (de) Elektrotauchlacke und verfahren zum lackieren elektrisch leitfähiger substrate
EP0324950B1 (de) Verfahren zur Beschichtung elektrisch leitfähiger Substrate, nach diesem Verfahren beschichtete Substrate und wässrige Elektrotauchlackbäder
EP0484451B1 (de) Verfahren zum beschichten elektrisch leitfähiger substrate, wässriger lack, verfahren zur herstellung eines urethangruppenhaltigen adduktes und urethangruppenhaltiges addukt
EP0231200B1 (de) Latente primäre aminogruppen enthaltende, wasserverdünnbare bindemittel für kationische elektrotauchlacke und verfahren zu ihrer herstellung
EP0536166B1 (de) Verfahren zum beschichten elektrisch leitfähiger substrate, wässrige lacke und blockierte nco-gruppen enthaltende vernetzungsmittel
EP0925334B1 (de) Wässrige elektrotauchlacke, ihre verwendung in verfahren zur beschichtung elektrisch leitfähiger substrate sowie die verwendung von silberionen und/oder von elementarem silber in wässrigen elektrotauchlacken
EP0324951B1 (de) Verfahren zur Beschichtung elektrisch leitfähiger Substrate, nach diesem Verfahren beschichtete Substrate und wässrige Elektrotauchlackbäder
EP0532569B1 (de) Verfahren zum beschichten elektrisch leitfähiger substrate, wässrige lacke und blockierte nco-gruppen enthaltende vernetzungsmittel
EP0501970B1 (de) Verfahren zum beschichten elektrisch leitfähiger substrate und kathodisch abscheidbarer wässriger elektrotauchlack
EP0705308B1 (de) Elektrotauchlacke und verfahren zum lackieren elektrisch leitfähiger substrate
DE2759428C2 (de) Überzugsmittel
DE60315465T2 (de) Kathodische elektrotauchlackierungszusammensetzung die ein morpholindion enthält
DE2759659C3 (de) Verfahren zum Herstellen von Überzpgen
EP0352457B1 (de) Wasserdispergierbare Bindemittel für kationische Elektrotauchlacke, Verfahren zu ihrer Herstellung sowie Verfahren zur Beschichtung elektrisch leitfähiger Substrate
EP0536638A2 (de) Kathodisch abscheidbarer Elektrotauchlack
DE2265195B2 (de) Wässrige Überzugszusammensetzung eines elektrisch ablagerbaren Kunstharzes und deren Verwendung zur elektrischen Ablagerung
DE4139126A1 (de) Verfahren zur verhinderung oder reduzierung der nach dem einbrennen auftretenden verfaerbung bei lackfilmen
DE4325094A1 (de) Elektrotauchlacke und Verfahren zum Lackieren elektrisch leitfähiger Substrate
DE3152220A1 (de) Verfahren zum elektrophoretischen beschichten eines elektrisch leitenden als kathode geschalteten substrates
DE19804291A1 (de) Kathodisch abscheidbare, Schwefel enthaltende Elektrotauchlacke
DE4137420A1 (de) Verfahren zur verhinderung oder reduzierung der nach dem einbrennen auftretenden verfaerbung bei lackfilmen

Legal Events

Date Code Title Description
8139 Disposal/non-payment of the annual fee