DE2517543C2 - Verfahren zum Herstellen von gehärteten Agglomeraten aus Hüttenstäuben - Google Patents

Verfahren zum Herstellen von gehärteten Agglomeraten aus Hüttenstäuben

Info

Publication number
DE2517543C2
DE2517543C2 DE19752517543 DE2517543A DE2517543C2 DE 2517543 C2 DE2517543 C2 DE 2517543C2 DE 19752517543 DE19752517543 DE 19752517543 DE 2517543 A DE2517543 A DE 2517543A DE 2517543 C2 DE2517543 C2 DE 2517543C2
Authority
DE
Germany
Prior art keywords
agglomerates
dust
mixture
pellets
hardened
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
DE19752517543
Other languages
English (en)
Other versions
DE2517543A1 (de
Inventor
Mahmet Adnan Horghton Mich. Goksel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Michigan Technological University
Original Assignee
Michigan Technological University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Michigan Technological University filed Critical Michigan Technological University
Priority to DE19752517543 priority Critical patent/DE2517543C2/de
Publication of DE2517543A1 publication Critical patent/DE2517543A1/de
Application granted granted Critical
Publication of DE2517543C2 publication Critical patent/DE2517543C2/de
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/242Binding; Briquetting ; Granulating with binders
    • C22B1/243Binding; Briquetting ; Granulating with binders inorganic
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/2406Binding; Briquetting ; Granulating pelletizing

Description

w 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Agglomerate unmittelbar nach der
hydrothermischen Härtung und vor einer merklichen Abkühlung zur Entfernung eines Teils der darin enthaltenen Feuchtigkeit getrocknet werden.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das Altern in einem sich anfänglich auf Atmosphärendruck befindenden geschlossenen Behälter, in Anwesenheit von gesättigtem oder Im wesentlichen gesättigtem Dampf und bei einer Temperatur von etwa 80 bis etwa 90° C über eine Zeitdauer von etwa 2 bis 48 Stunden ausgeführt wird.
4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das Altern in einem geschlossenen Behälter bei einem Druck von etwa 10,5 bis etwa 28,1 atü in Anwesenheit von gesättigtem oder im wesentlichen gesättigtem Dampf und bei einer Temperatur von etwa 186 bis 232° C über eine Zeltdauer von etwa 15 Minu-
4« ten bis etwa 3 Stunden ausgeführt wird.
5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das Verfestigungsmittel aus einer Natriumhydroxid, Natriumkarbonat und Natriumbikarbonat umfassenden Gruppe ausgewählt wird.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß das hydrothermische Härten bei einer Temperatur von 208 bis 225° C und ein Druck von 17,6 bis 24,6 atü ausgeführt wird.
Im Hüttenbetrieb fallen bei der Erzeugung von Roheisen und Stahl große Mengen eisenhaltiger Stäube an, die so als »Hüttenstäube« bezeichnet werden. Wegen Ihres hohen Eiseninhaltes ist die Fachwelt bestrebt, diese Hüttenstäube in den Produktionsprozeß zurückzuführen.
Hüttenstäube unterscheiden sich jedoch von feinzerteilten Feinerzen, wie Feinerzkonzentraten und dgl. mineralischen Rohstoffen grundlegend dadurch, daß sie als Folge einer ihnen erteilten Erwärmung, wie Im Abgas eines Hochofens oder Stahlwerkofens Stoffe enthalten, die in natürlich vorkommenden Erzen bzw. in Erzkonzentraten nicht enthalten sind. Insbesondere weisen Hüttenstäube Anteile an glasartigem gebranntem Kalk auf, welche sich gegenüber Wasser bei Umgebungstemperaturen deutlich anders verhalten als üblicher Kalk (CaO).
Es ist aus der DE-OS 21 51 394 bekannt, Elsen-Felnerze zu Agglomeraten zu verarbeiten, wozu die Elsen-Felnerze mit Bindemitteln wie Kalziumoxid, Kalziumhydroxld sowie mit einem siliciumdioxidhaltlgen Material vermischt und diese Mischung sodann zu Pellets verarbeitet wird, worauf die Pellets hydrothermal bei erhöhten w) Temperaturen und Drücken mit Hilfe von Dampf gehärtet werden.
Wegen des vorstehend erörterten Gehaltes an glasartigem totgebranntem Kalk In Hüttenstäuben ist es jedoch nicht möglich, das bekannte Verfahren von Feinerzen und Feinerzkonzentraten auf Hüttenstäube anzuwenden.
Der In Hüttenstäuben enthaltene gebrannte Kalk sowie weitere in diesen Stäuben vorhandene hydratisierbare Stoffe würden sich bei der hydrothermalen Härtung mit Wasser bzw. mit Wasserdampf lebhaft mit Wasser (.< umsetzen, was zur Wasseraufnahme und zum hydratlonsbedingten Zerfall des Kalkes und sich vergleichbar verhaltender Stoffe führen würde. Bei Übertragung des bekannten Verfahrens auf Hüttenstäube würden somit als Verfahrensergebnisse nicht eine hohe Druckfestigkeit aufweisende Pellets, sondern lediglich zerrieselnde Massen mit unzureichender Festigkeit erhalten werden.
Der Erfindung liegt somit die Aufgabe zugrunde, ein Verfahren zu schaffen, welches das Herstellen von gehärteten Aggiomeraten aus ein hydratisierbares Material, wie totgebranntem Kalk, hydratisierbare Schlackenstoffe sowie Mischungen derselben enthaltenden Hüttenstäuben gestattet.
Diese Aufgabe wird durch die im Anspruch 1 angegebene Erfindung gelöst.
Der mit Hilfe der Erfindung erzielbare technische Fortschritt ergibt sich insbesondere daraus, daß trotz des Vorhandenseins glasartigen, gebrannten Kalks in Hüttenstäuben Agglomerate aus den Hüttenstäuben hergestellt werden, die eine befriedigende Druckfestigkeit aufweisen. Beim Verfahren nach der Erfindung wird dem Problem der Wasseraufnahme durch hydratisierbare Stoffe dadurch begegnet, daß die solche Stoffe enthaltenden Hüttenstäube einer Alterungsbehandlung und einem Trocknungsvorgang auf einen Feuchtigkeitsgehalt von maximal 5% vor der hydrothermlschen Härtung unterworfen werden.
Bevorzugte Ausführungsformen der Erfindung sind in den Unteransprüchen angegeben.
Die Erfindung wird nachfolgend anhand von Ausführungsbeispielen näher beschrieben.
Unter der Bezeichnung »Hüttenstäube« sind im Rahmen der Erfindung fein zerteilte eisenreiche Feststoffteilchen mit einem Elsengehalt von vorzugsweise etwa 30 bis 80% zu verstehen, welche als Nebenprodukte bei der Roheisen- und Stahlerzeugung anfallen und auch Staub einschließen, der aus dem (braunen und roten) Rauch basischer Sauerstofföfen, SM-Öfen, Schachtöfen und Elektroöfen stammt. Ferner gehören zu diesen Hüttenstäuben stauhförmiger Walzzunder, aus dem Sandstrahlen herrührende Staube sowie von pelletisiertem Eisenerz herrührende Feinteilchen und Mischungen dieser Stoffe.
Der aus basischen Sauerstofföfen oder Tiegeln herrührende Staub besteht aus extrem fein zerteilten Teilchen, die zum größten Teil üblicherweise eine kuglige Gestalt besitzen und zu etwa 80% eine Teilchengröße von weniger als 0,5 μιη, zu etwa 20% eine Teilchengröße von 0,1 bis 0,3 μπι und hin und wieder eine Teilchengröße im Bereich von 0,05 μιη besitzen. Die aus dem basischen Sauerstoffofen herrührenden Stäube enthalten typischerweise etwas Schlacke, totgebrannten Kalk sowie Graphit und, je nach Art des verwandten Schrotteinsatzes, gegebenenfalls auch etwas Zink, Blei und andere metallische Elemente
Funkenkammer-Feinstäube entstehen In der gleichen Stufe des Produktionsganges wie die Stäube des basischen Sauerstoffofens. Die chemische Zusammensetzung dieser Feinstäube gleicht derjenigen der Saueratoffofenstäube. Die erstgenannten sind jedoch im allgemeinen größer und bestehen In erster Linie aus unregelmäßig geformten Eisenoxiden, welche mit Schlacke verschmolzen sind. Der aus dem SM-Ofen stammende Staub ist in chemischer und physikalischer Hinsicht dem Staub der basischen Sauerstofföfen ähnlich, enthält jedoch weniger Schlacke und weniger totgebrannten Kalk.
Hochofen- oder Gichtgasstaub wird aus dem Gichtgas gewonnen. Die großen Teilchen werden zunächst In einem Staubsammler entfernt, worauf die Feinteilchen üblicherweise im Wege der Naßreinigung gewonnen und nachfolgend als Vakuumfilterkuchen aus dem Schlamm entfernt werden. Hochofenstaub mit einer Teilchengröße von mehr als etwa 3,35 mm besteht im wesentlichen aus Kalkstein, Koks und Eisen-Feinteilchen. Die chemische Zusammensetzung des feineren Flugstaubes und des Filterkuchens kann schwanken, da die Klassiereinrichtungen in vielen Hottenwerken als ein Ort betrachtet werden, an welchem alle Arten feiner Festkörperabfälle abgelagert werden können.
Walzzunder besteht im wesentlichen aus metallischem Elsen, einigen Elsenoxiden sowie Verunreinigungen durch feuerfeste Werkstoffe. Die größeren Teilchen werden ausgesiebt und können direkt zum Hochofen zurückgeführt werden. Die feineren Teilchen, die bei diesem Verfahren verwendet werden, bedürfen einer Agglomerierung, bevor sie wieder in das Verfahren eingeführt werden können.
Schleif- oder Sandstrahlstäube werden erzeugt, wenn die Oberfläche von Stahlblöcken od. dgl. zur Entfernung der äußeren oxydierten Schicht vor einer Oberflächenbehandlung, wie einem Farbauftrag oder einer Galvanisierung geschliffen wird. Verschiedene Schlelfmaterlallen, wie Sand, Aluminiumoxid, synthetische Schleifmittel und Gußeisenfeinteilchen sind In diesem Staub miteinander vermischt. Die chemische Zusammensetzung und Korngrößenanalyse typischer Hüttenstäube sind in den folgenden Tafeln I und II zusammengestellt.
Tafel I
(chemische Zusammensetzung typischer Hüttenstäube)
Bestandteil Gew.-% SM-Ofen-
s taub
Gicht
staub
Filter-
kuchen
staub
WaIz-
zunder-
feinteil-
chen
Funken-
kammer-
feinteil-
chen
Pellet-
Fein
teilchen
Schleif
staub
Staub aus
dem basi
schen Sauer-
stoflbfen
65,42 34,50 44,70 73,85 57,90 60,85 69,00
Fe 61,47 0,52 7,81 3,58 0,07 4,50 0,81 1,59
i CaO 5,15 0,13 2,55 1,03 0,02 1,86 0,76 0,50
! MgO 1,30 0,42 6,36 4,65 0,48 5,70 7,61 1,54
1 SiO2 2,04 0,05 1,81 1,17 0,21 1,21 1,96 0,40
in Al2O3 0,09 0,35 - - - - - -
ϊ Zn 1,06 0,70 - - - - - -
I Pb 0,17 0,05 0,22 0,38 0,01 0,03 0,01 0,03
S 0.10
50 55 60 65
5 Gew.-% SM-Ofen- 25 Gicht 17 543 WaIz- Funken- Pellet- I Schleif
Fortsetzung Staub aus steiib staub zunder- kammer- Fein- staub
Bestandteil dem basi feinteil- feinteil- ieilchen
p schen Sauer Filter- chen chen
Na stoffofen 0,34 _ kuchen- - - - -
K 0,12 0,02 - s taub -
C 0,18 0,34 - - - - -
5 Abbrand 0,37 0,22 23,11 - 0,16 2,39 - 1,58
Wasser 0,23 - 28,00 - 7,09 2,64 0,08 4,29
- 9,00 - 3,30 9,50 2,80 11,80
_ 12,18
16,40
30,00
Tafel II
(Teilchengrößenanalyse typischer Hüttenstäube)
Siebgröße Siebrückstand (Gew.-%) Gicht Filter- WaIz- Funken- Pellet Schleif-
bas. Sauer- SM-Ofen- staub kuchen zunder- kamrner- fein s taub
stoffofen- staub staub Feinteil- feinteil- teilchen
staub chen chen
> 6,6 mm -
4,76 mm -
3,35 mm
2,33 mm
2,0 mm
1,41 mm -
841 μΐη
705 μπι
500 μΐη
407 μΐη
210 μπι
149 μπι
105 μπι
74 μΐη
53 μπι
44 μm -
37 μπι 36,70
32 μπι
Siebdurchgang 63,30
0,70
1,11
1,14
1,25
1,19
1,73
2,50
6,75
9,14
13,39
12,64
17,73
12,76
8,25
3,85
2,17
4,34
1,20
2,92
4,17
5,12
4,12
3,14
79,37
11,60
84,40
7,16 8,71 10,79 7,14 6,79 6,51 6,30 7,26 5,04 5,43 3,85 3,88 2,78 2,33 1,71 1.10
13,25
4,50
0,35
3,26
20,87
33,71
18,84
7,19
3,36
1,13
0,62
0,59 0,68
0,86 3,65
0,16
0,26
0,57
1,97
4,03
11,75
15,90
19,20
12,35
14,76
8,75
5,11
6,54
Alle angegebenen Prozentangaben beziehen sich - sofern nicht anders bezeichnet - auf Gewichtsprozent.
Gemäß der Erfindung wird eine Ausgangsmischung zunächst dadurch hergestellt, daß eine oder mehrere Staubarten mit einem fein zerteilten Bindemittel und einem fein zerteilten sillclumhaltlgen Material vermischt werden. Die Bestandteile der Ausgangsmischung können im trockenen Zustand vermischt oder zusammen mit Wasser einander zugesetzt werden, um so eine homogene Dispersion zu bilden.
Geeignete Bindemittel sind die Oxide, Hydroxide und Karbonate des Kalziums und Magnesiums sowie deren Mischungen, wobei Kalk und gelöschter Kalk bevorzugt sind. Bezogen auf das Gesamtgewicht der trockenen Feststoffe beträgt die Menge des Bindemittels etwa 2 bis etwa 2U96. Konzentrationen des Bindesmittels von weniger als etwa 2% führen Im allgemeinen zu einem geharteten oder verfestigten Agglomerat mit unzureichender Festigkeit für die Handhabe oder den Transport. Die obere Grenze der Bindemittelkonzenlrallon in der Ausgangsmischung ist in erster Linie durch die Menge an Silikat und anderen Schlacken bildenden Verunreinigungen vorgegeben, welche Im verwendeten Hüttenstaub enthalten sind. Mengen von mehr als etwa 20% führen nicht zu einem nennenswerten Zuwachs der Festigkeit der Agglomerate, sondern verringern die Konzentration des in denselben enthaltenen Eisens. Vorzugswelse liegt die Konzentration des In der Ausgangsmischung
verwendeten Bindemittels Im Bereich von etwa 5 bis etwa 10%, bezogen auf das Gesamtgewicht der trockenen Feststoffe.
Das Im erfindungsgemäßen Verfahren verwendete slllzlumhaltige Material kann ein beliebiges natürliches oder künstliches sillzlumhaltiges Material mit einem Gehalt an Siliciumdioxid sein, welches dazu imstande ist, sich mit dem Bindemittel unter Bildung von Silikatbindungen zwischen dem Bindemittel und dem siliziumhaltigen Material unter den Bedingungen der hydrothermlschen Härtung umzusetzen. Als repräsentative Beispiele geeigneter slllzlumhaltiger Materialien selen feingemahlener Quarz, Slliciumdloxid-Sand, Bentonit, Diatomeenerde, Fullererde, Natrium-, Kalzium-, Magnesium- und Aluminiumsilikate, pyrogenes Siliciumdioxid, verschiedene hydratlslerte Slliciumdioxlde und Mischungen derselben genannt. Von den vorgenannten sind feingemahlener Quarz und Slllclumdloxid-Sand bevorzugt. Die Menge des in der Ausgangsmischung verwendeten siliziumhaltlgen Materials liegt im Bereich von etwa 0,5 bis 5% und beträgt vorzugsweise etwa 396, bezogen auf das Gesamtgewicht der trockenen Feststoffe.
Zusätzlich zu dem Hüttenstaub, dem Bindemittel und dem siliziumhaltlgen Material können andere zur Verfestigung dienend^ Zusätze in der Ausgangsmischung enthalten sein, um die Festigkeit der erzielten gehärteten Agglomerate noch weiter zu erhöhen. So können beispielsweise Oxide, Hydroxide, Karbonate, Bikarbonate, Sulfate, Bisulfale und Borate von Alkalimetallen (beispielsweise des Kaliums und Natriums) sowie Mischungen derselben in Mengen von bis zu etwa 3% hinzugefügt werden. Von den genannten Zusätzen sind Natriumhydroxid, Natriumkarbonat und Natriumbikarbonat bevorzugt. Obgleich Konzentrationen an diesen Stoffen von mehr als etwa 3% zu einer weiteren Verfestigung führen, können derartige höhere Konzentrationen gegebenenfalls Probleme bei d<;r Stahlerzeugung verursachen, sofern die Agglomerate als Rückgut in den Stahlherstellungsprozeß eingeführt werden. Niedrige Konzentrationen von etwa 0,05% führen zu einer meßbaren Festigkeitssteigerung der Agglomerate. Ein Gehalt von etwa 0,15 bis etwa 1% an diesen Verfestigungsmitteln wird jedoch Im allgemeinen bevorzugt.
Die Verfestigungsmittel werden der Ausgangsmischung vorzugsweise In Form einer wäßrigen Lösung zugesetzt, die in Ihrer Stärke und Konzentration im Bereich von etwa 10 bis etwa 75% liegt und vorzugsweise eine etwa 50%ige Lösung darstellt. Das Verfestigungsmittel kann auch im trockenen Zustand in Form fein zerteilter Teilchen zugesetzt werden. Wegen ihrer hygroskopischen Eigenschaften, ihrer Giftigkeit und korrodierenden Eigenschaften wird jedoch eine Anwendung in Form einer wäßrigen Lösung bevorzugt, was den weiteren Vorteil einer erleichterten Handhabe und einer gleichmäßigen Dispersion in der Ausgangsmischung beinhaltet. Die jeweilige Konzentration der wäßrigen Lösung des Verfestigungsmittels kann schwanken und sich nach Faktoren, wie dem Wassergehalt der Ausgangsmischung, dem optimalen angestrebten Wassergehalt für die jeweilige Arbeitsweise zur Herstellung der Grünagglomerate usw. richten.
Es hat sich herausgestellt, daß organische Basen und ihre Salze, wie quaternäre Ammoniumhydroxide, -chloride und -amine, unter den Bedingungen der hydrothermischen Härtung in einer mit den Alkalimetalloxiden, -hydroxiden, -karbonaten und -bikarbonaten vergleichbaren Welse reagieren, um Agglomerate mit verbesserter Bindungsintensität zu erzeugen. Als repräsentative Beispiele derartiger Verbindungen seien Tetramethylammonlumhydroxld, Tetraäthylammoniumhydroxid, Tetraethanolammoniumhydroxid, Trlmethylhydroxäthylammonlumhydroxid, Phenyltrimethylammoniumhydroxid, Benzyltrimethylammonlumhydroxid, Dläthanolamine. Triäthanolamin, Diäthylentriamin und Triäthylammoniumchlorid genannt.
Gegebenenfalls kann der Ausgangsmischung ein festes Reduktionsmittel, wie ein fein zerteiltes kohlenstoffhakiges Material, zugesetzt werden. Der Zusatz eines festen Reduktionsmittels 1st insbesondere dann vorteilhaft, wenn die gehärteten Agglomerate metallisiert werden sollen oder wenn der verwendete Hüttenstaub, wie der Staub des basischen Sauerstoffofens, beträchtliche Mengen an Zink und/oder Blei enthält, da solche Metalle aus den Agglomeraten entfernt werden müssen, bevor sie als Einsatz für einen Stahlofen Verwendung finden können. Da die hydrothermische Härtung bei dem Verfahren nach der Erfindung bei relativ niedrigen Temperatüren vorgenommen wird, verbleibt das feste Reduktionsmittel im wesentlichen unverändert innerhalb der gehärteten Agglomerate. Demzufolge steht es zur Umwandlung des Eisenoxides in metallisches Eisen und zur Reduktion jeglicher Zink- und/oder Bleioxide zur Verfügung, die gegebenenfalls In dem Agglomerat vorliegen. Die gehärteten Agglomerate können dann metallisiert werden, d. h., das Eisenoxid wird In metallisches Eisen umgewandelt, und das Zink und/oder Blei kann entfernt werden, d. h. ihre Oxide werden reduziert. Dieses erfolgt durch einfaches Erhitzen auf eine höhere Temperatur im Bereich von etwa 1038 bis etwa 1316° C, ohne daß zusätzliche Reduktionsmittel erforderlich sind.
Das verwendete feste Reduktionsmittel ist ein kohlenstoffhaltiges Material, wie Koks, Koksgrus, Anthrazitkohle, bituminöse Kohle und Braunkohle. Das feste Reduktionsmittel sollte freien Kohlenstoff enthalten und gemeinsam mit dem ilm verwendeten Hüttenstaub vorliegenden freien Kohlenstoff genügend Kohlenstoff liefern, um alles Eisenoxid in metallisches Eisen umzuwandeln und um Zink- und/oder Bleioxide während der nachfolgenden Erhitzung zu reduzieren. Die Temperatur der hydrothermischen Härtung wird im wesentlichen unterhalb der Verbrennungstemperatur des kohlenstoffhaltigen Materials gehalten, so daß im wesentlichen der gesamte freie Kohlenstoff des Agglomerate für die Reduktion verfügbar bleibt. Demzufolge ist es nicht schwierig, die Menge des festen Reduktionsmittels zu bestimmen, welche zum Erzielen der angestrebten Reduktion erforderlich ist. Das heißt, es Ist nicht schwierig, die Menge zu bestimmen, die dem verfügbaren Kohlenstoff entspricht, welcher stöchiometrisch erforderlich ist, um die Elsen-, Zink- und Bleioxide zu reduzieren, die in den Bestandteilen der Ausgangsmischung vorliegen.
Vorzugsweise liegt die Menge des verwendeten festen Reduktionsmittels leicht oberhalb der stöchiometrisch erforderlichen Menge, wobei jedoch dieser Überschuß so klein als möglich zu halten ist, um unnötige Verringerungen der Drjckfestigkeit der Agglomerate zu verhindern und um eine Verminderung des sich ergebenden Elsengehaltes im Agglomerat zu verhindern. Im allgemeinen sollte die Menge des für die Ausgangsmischung verwendeten Reduktionsmittels genügend Kohlenstoff enthalten, um den gesamten äquivalenten gebundenen
Kohlenstoff der Ausgangsmischung In einen Bereich von etwa 5 bis etwa 2S96 zu bringen, wobei ein Gehaltsbereich von etwa 10 bis etwa 15% bevorzugt 1st und die genannten Gehaltsbereiche auf das Gesamtgewicht der trockenen Feststoffe bezogen sind.
Die Menge des der Ausgangsmischung zugesetzten Wassers sowie die mittlere Größenverteilung des Hüttenstaubes, des Bindemittels des slllziumhaltlgen Materials und der anderen In der Ausgangsmischung enthaltenen festen Zusätze schwanken In Abhängigkeit von den physikalischen und chemischen Eigenschaften des jeweils verwendeten Hüttenstaubes und von der jeweils angewandten Agglomerationstechnik. Wird beispielsweise zur Bildung sphärischer Pellets ein Pelletlslerungsverfahren mit einer Trommel oder Scheibe verwendet, so sollte die gesamte Menge an Wasser In der feuchten Ausgangsmischung Im allgemeinen Im Bereich von etwa 4 bis etwa
i" 1496, vorzugsweise jedoch Im Bereich von etwa 6 bis etwa 996 liegen. Wird demgegenüber eine Brlkettierungspresse verwendet, so sollte die gesamte Menge an Wasser In der feuchten Ausgangsmischung im allgemeinen etwa 2 bis etwa 796 und vorzugsweise etwa 3 bis etwa 596 betragen.
Die Teilchengröße der verschiedenen In der Ausgangsmischung vorliegenden Feststoffe kann im allgemeinen im Bereich von etwa 2,0 mm bis 37 μΐη liegen, wobei vorzugsweise alle Teilchen eine Teilchengröße von weni-
i-s ger als etwa 841 μίτι besitzen. Durch Teilchengrößen von mehr als etwa 2,0 mm wird die Schwierigkeit, eine homogene Mischung der Bestandteile zu erzielen, vergrößert und werden in gewissen Fäiien unzureichende Oberflächenbereiche geschaffen, um die angestrebte hohe Bindungsfestigkeit In den hergestellten gehärteten Agglomeraten zu erzielen. Demzufolge wird die Teilchengröße der Materialien der Ausgangsmischung im Bereich von 2,0 mm oder weniger gehalten, und vorzugsweise liegt die Teilchengröße bei wenigstens der Häifie
2(1 des Materials bei einer Teilchengröße von weniger als 74 μπι.
Es ist gefunden worden, daß die Agglomerate während des hydrothermischen Härtens anschwellen und reißen, was eine beträchtliche Schwächung der gehärteten Agglomerate bedeutet, sofern die feuchte Mischung nicht unter bestimmten Bedingungen vor der Agglomerierung gealtert worden 1st. Wenngleich dieses Phänomen bis jetzt noch nicht gänzlich geklärt ist, so wird doch angenommen, daß das Anschwellen und Reißen oder Platzen durch eine Volumenausdehnung hervorgerufen wird, die Ihrerseits durch die Hydratisierung des totgebrannten Kalks und/oder der hydratislerbaren Schlackenmaterialien hervorgerufen wird, die normalerweise In beträchtlichen Mengen In vielen Hüttenstäuben vorliegen. Wird, jedoch in erfindungsgemäßer Welse ein Altern herbeigeführt, so wird allem Anschein nach wenigstens eine beträchtliche Menge des totgebrannten Kalks und/oder der hydratisierbaren Schlacke vor dem hydrothermischen Härten hydratlslert, wodurch das Anschwel-
"> len und Reißen auf ein Minimum verringert wird.
Das Altern kann vorteilhafterweise dadurch herbeigeführt werden, daß die feuchte Ausgangsmischung Innerhalb eines geschlossenen Behälters und in Anwesenheit einer feuchten wasserdampfhaltlgen Atmosphäre bis zu 48 Stunden lang bei einer erhöhten Temperatur erhitzt wird. Vorzugsweise wird dieser sich günstig auswirkende Alterungsvorgang dadurch hervorgerufen, daß die feuchte Ausgangsmischung In einen sich anfänglich auf Atmosphärendruck befindenden geschlossenen Behälter eingebracht wird, worauf ein Erhitzen der Mischung auf eine Temperatur von etwa 85 bis 99 und vorzugsweise 8ObIs 900C erfolgt, auf welcher Temperatur die Mischung gehalten wird. Dieser Vorgang wird in Anwesenheit von gesättigtem oder im wesentlichen gesättigtem Dampf etwa 2 bis 48 Stunden ausgeführt, wobei Erhitzungsdauern von etwa 12 bis 24 Stunden bevorzugt sind.
Es können auch niedrigere Erhitzungstemperaturen und kürzere Erhitzungsdauern angewandt werden. Es 1st jedoch gefunden worden, daß die gehärteten Agglomerate dann eine niedrigere Festigkeit besitzen. Falls erwünscht, kann der Alterungsvorgang dadurch beschleunigt werden, daß ein unter Druck gesetzter Behälter benutzt und höhere Temperaturen und Drücke angewandt werden. Wenn eine solche Arbeitsweise verwendet wird, wird ein Druck im Bereich von etwa 10,5 bis etwa 28 atü, vorzugsweise von etwa 14 atü, eine Temperatur von etwa 186 bis etwa 232° C und eine Erhitzungsdauer von etwa 15 Minuten bis etwa 3 Stunden, vorzugsweise von etwa 30 bis etwa 60 Minuten, verwendet. Wegen der höheren Betriebskosten ist die Anwendung dieser höheren Drücke und Temperaturen im allgemeinen jedoch weniger bevorzugt. Es kann davon ausgegangen werden, daß die zum Erzielen des angestrebten Alterns erforderliche Temperatur und Zelt zur Hydratisierung des totgebrannten Kalks und/oder der Schlacke stark von den Konzentrationen dieser Materialien und der Teilchengröße des in der Ausgangsmischung verwendeten Hüttenstaubes abhängt, wobei längere Zelten im allge-
5" meinen bei höheren Konzentrationen dieser Materialien und größeren Teilchengrößen des Hüttenstaubes benötigt werden.
Nach dem Altern wird die Mischung zu Grünagglomeraten mit für den beabsichtigten Gebrauchszweck geeigneter Größe und Gestalt verarbeitet, wozu eine herkömmliche Agglomerationstechnik, wie ein Ausformen, Brikettieren, Pelletisieren, Extrudieren und dgl., benutzt wird. Die Grünagglomerate werden vorzugsweise zu relativ kompakten Konfigurationen, wie Zylindern, Kugeln, Eiformen, Kissen usw. verarbeitet und sind Im wesentlichen frei von allen dünnen Abschnitten oder scharfwinkligen Bereichen, die ein Ausgangspunkt für Brüche oder Risse während der Handhabe der Grünerzeugnisse darstellen könnten. Die Konfiguration der (si Agglomerate wird auch dahingehend überwacht, daß die Agglomerate nicht zu stark verdichtet werden, wenn J£
sie zusammengebracht werden, wodurch der Durchtritt eines erhitzten flüssigkeltsbeladenen Fluids zwischen ff
6" ihnen während der nachfolgenden hydrothermishen Härtung verhindert wird. Wenn die Grünagglomerate als sphärische Pellets vorliegen, so haben dieselben im allgemeinen einen Durchmesser von etwa 5 bis 35 mm. vorzugsweise jedoch von etwa 10 bis etwa 25 mm. Wird ein Brikettierverfahren angewandt, so sind die Agglomerate vorzugsweise in Kissen- oder Eiform, wobei der größere Durchmesser im Bereich von bis zu 50 mm liegt. Es sei jedoch unterstrichen, daß Im Rahmen der Erfindung auch größere Agglomerate ausgebildet werden
<>5 können.
Es ist gefunden worden, daß der Feuchtigkeitsgehalt der Grünagglomerate vor der hydrothermischen Härtung auf etwa 596 oder weniger eingestellt werden muß, um ein gehärtetes Agglomerat zu erzielen, welches eine annehmbare Druckfestigkeit besitzt. Die Einstellung der Feuchtigkeit kann mit herkömmlichen Trocknungsein- ii;<
richtungen, wie einem Ofen, und mit geeigneten Trockungsteinperaturen von bis zu etwa 4000C durchgeführt werden. Selbstverständlich hängt der Zeltbedarf zur Verringerung des Feuchtigkeitsgehaltes auf etwa 5% oder weniger ab von der angewandten Trocknungstemperatur, dem Feuchtigkeitsgehalt der Grünagglomerate, dem Feuchtigkeitsniveau, auf welches der Feuchtigkeitsgehalt verringert werden soll, der Größe und Gestall der Grünagglomerate usw. Die Trocknungsgeschwindigkeit muß unterhalb eines Niveaus gehalten werden, bei > welchem ein Platzen der Grünagglomerate auftritt. Falls erwünscht, können die Grünagglomerate bis zur Knochentrockenheit getrocknet werden und dann mit hinreichend Wasser besprüht werden, um den Feuchtigkeitsgehalt auf das gewünschte Maß anzuheben.
Nachdem der Feuchtigkeitsgehalt der Grünagglomerate auf etwa 5% oder weniger eingestellt worden ist, werden die Agglomerate In eine Reaktionskammer oder ein Druckgefäß, wie einen Autoklaven, eingebracht, wo ι ο sie in Anwesenheit von Feuchtigkeit auf eine erhöhte Temperatur erhitzt werden, um eine Härtung herbeizuführen und um die einzelnen Teilchen derselben zu einer einheitlichen hochfesten Masse zu verbinden. Die Festigkeit der durch diese hydrothermlsche Härtung erzeugten gehärteten oder verfestigen Agglomerate hängt in einem gewissen Ausmaß von der Temperatur, der Zeitdauer und dem Feuchtigkeitsgehalt der benutzten Atmosphäre ab.
Die Einwirkung von Wärme auf die grünen oder unverfestigten Agglomerate kann mit Hilfe einer Vielzahl von Methoden herbeigeführt werden. Die Verwendung von Dampf Ist bevorzugt, da Dampf gleichzeitig die für die hydrothermische Reaktion erforderliche Wärme und Feuchtigkeit liefert. Es können entweder gesättigter Dampf oder im wesentlichen gesättigter Dampf verwendet werden. Die Verwendung von überhitztem Dampf bei hohen Temperaturen führt zu einem Trockenzustand, aus welchem schwächere Agglomerate resultieren. Es ist demzufolge bevorzugt, Dampf mit Temperaturen und Drücken zu verwenden, die auf oder dicht bei denjenigen Werten eines gesättigten Dampfes liegen. Temperaturen im Bereich von etwa 100 bis etwa 2440C, vorzugsweise jedoch von 208 bis etwa 225° C, können In zufriedenstellender Weise verwendet werden, um die Härtung der Grünagglomerate in einer vertretbaren Zeitdauer herbeizuführen.
Obgleich die hydrothermlsche Reaktion bei Atmosphärendruck ausgeführt werden kann, 1st die Anwendung eines über dem Atmosphärendruck liegenden Druckes bevorzugt, wobei durchaus Drücke angewandt werden kennen, die bis an die Grenze der Belastbarkelt herkömmlicher Druckgefäße reichen. Mit Hilfe solch hoher Drücke kann die Härtungszeit verkürzt und die Festigkeit der hergestellten gehärteten Agglomerate gesteigert werden. Im allgemeinen schreiben wirtschaftliche Erwägungen eine obere Grenze des angewandten Druckes von etwa 35 atü vor. Vorzugsweise liegt der Druck im Bereich von etwa 10,5 bis etwa 24,6 atü. -1"
Es kann davon ausgegangen werden, daß die Verweilzelt der Agglomerate in der Reaktionskammer von mehreren Verfahrensvariablen, wie dem Druck, der Temperatur und der Atmosphäre der Kammer, der Zusammensetzung der Agglomerate usw. abhängt. In jedem Fall muß diese Zelt ausreichend lang sein, um eine Härtung und ein Einbinden der individuellen Teilchen der Agglomerate zu einem gehärteten hochfesten Zustand zu gewährleisten. Werden höhere Temperaturen und Drücke angewandt, so Hegt die Zeit für die -'5 hydrothermische Härtung im allgemeinen im Bereich von etwa 5 Minuten bis etwa 8 Stunden, vorzugsweise jedoch im Bereich von etwa 30 bis 60 Minuten.
Die gehärteten Agglomerate werden aus der Reaktionskammer entnommen und sind nach Abkühlung verwendungsbereit. Wenn die Agglomerate aus der Reaktionskammer entnommen werden, so enthalten die heißen gehärteten Agglomerate üblicherweise etwa 0,5 bis 1,5% freie Feuchtigkeit. Obgleich die Agglomerate nach der Abkühlung über überlegene Festigkeitseigenschaften verfügen, ist gefunden worden, daß die Druckfestigkeit der gehärteten Agglomerate noch beträchtlich durch ein rasches Trocknen derselben gesteigert werden kann, welches unmittelbar nach der Entnahme aus der Reaktionskammer und vor dem Auftreten einer beträchtlichen Abkühlung vorgenommen wird, um wenigstens einen Anteil der In den Agglomeraten verbliebenen Feuchtigkeit zu entfernen. Dieses Trocknen kann auf jede geeignete Welse, wie in einem Ofen oder durch Blasen warmer Luft über die Agglomerate, erzielt werden. Im allgemeinen wird eine Temperatur von etwa 100 bis etwa 35O°C, vorzugsweise jedoch von etwa 150 bis etwa 25O0C, für diesen Trocknungsvorgang angewandt.
Es sind Anstrengungen unternommen worden, um die spezifische Natur des durch das erfindungsgemäße Verfahren hervorgerufenen Bindungsmechanismus zu bestimmen. Es 1st erkannt worden, daß die Wärme, der Druck und die Feuchtigkeitsbedingungen der hydrothermischen Härtung die Ausbildung von Gelen in den Kontaktpunkten der Ägglomeratteilchen hervorrufen und daß diese Gele beim Trocknen der Agglomerate unter Ausbildung von Bindungen zwischen den Teilchen erhärten. Es Ist gleichfalls erkannt worden, daß das silizlumhaltlge Material, insbesondere Siliciumdioxid, und das Bindemittel, Insbesondere Kalk, wichtige Bestandteile für die Ausbildung dieser Gele sind und daß die Verfestigungsmittel dazu neigen, die Gelbildung zu beschleunigen. Ganz allgemein hat sich herausgestellt, daß die Verwendung von Alkalimetallverbindungen zu stärkeren Bindungen führt als die Verwendung von Oxiden, Hydroxiden und Karbonaten der Erdalkallelemente. Demzufolge scheint es sich so zu verhalten, daß in Anwesenheit der Alkallmetallverbindungen gebildete Gele eine unterschiedliche chemische Zusammensetzung und/oder physikalische Anordnung gegenüber jenen besitzen, die In Anwesenheit dieser Erdalkaliverbindungen gebildet worden sind. «>
Im folgenden wird die Erfindung anhand von Beispielen näher erläutert.
Beispiel 1
Zum besseren Verständnis der Natur der herbeigeführten Bindung wurde eine Untersuchung mit dem Ziel durchgeführt, die Matrlxcharakterlstlka der mit Hilfe des erfindungsgemäßen Verfahrens hergestellten Agglomerate zu identifizieren. Unter dem Begriff »Matrix« sind dabei die nicht aus Elsenoxid bestehenden Bestandteile der Aeelomerate. d. h. das metallische Elsen, der Kalk, das Siliciumdioxid, die Schlacke und der Koks zu
verstehen, welche die Agglomerate bindungsmäßig zusammenhalten. Die untersuchten Agglomerate waren hydrothermal bei einer Temperatur von etwa 200° C und einem Druck von etwa 14 atü gehärtet worden. Als Bindemittel diente Kalziumhydroxid, und Diatomeenerde bildete das slllzlumhaltige Material. Die Matrix der Agglomerate wurde unter dem Elektronenmikroskop untersucht. Es stellte sich heraus, daß
die Matrix aller Agglomerate aus mehr als einer Phase bestand. Aus dieser Beobachtung wurde geschlossen, dall eine Matrixphase als Überbleibsel des Hüttenstaubes angesehen werden könne, der für die Ausgangsmischung verwendet wurde, wobei diese Phase auch andere Zusätze einschließen kann, die slcii nicht chemisch umgesetzt haben. Die verbleibenden Phasen waren allem Anschein nach während des hydrothermlschen Härtens gebildet worden. Bei dieser Analyse wurden Kalzium, Silizium, Eisen und Magnesium als Hauptbestandteile der Matrix der Agglomerate festgestellt. Wenngleich nicht exakt Identifiziert, kann davon ausgegangen werden, daß Sauerstoff und Wasser den Rest der Matrix bilden.
Im folgenden wird eine Analyse von Pellets wiedergegeben, die mit Hilfe des erfindungsgemäßen Verfahrens hergestellt wurden.
Die Ausgangsmischungen bestanden aus Staub vom basischen Sauerstoffofen sowie Walzzunder In einem Gewichtsverhältnis von 1:2, 5% Ca(OH)2, 3% SlO2 und Wasser. Aus dieser Mischung hergestellte Pellets wurden hydrothermisch in Anwesenheit von Dampf bei einer Temperatur von etwa 216° C und einem Druck von 14 atü etwa 30 Minuten lang gehärtet. Mit Hilfe einer elektronenmikroskopischen Untersuchung wurde ermittelt, daß Kalzium, Silizium, Elsen und Magnesium die hauptsächlichen Kationen der Pelletmatrix bildeten. Wenngleich eine gesonderte Untersuchung dafür nicht vorgenommen wurde, kann mit guten Gründen ange-
2(1 nommen werden, daß diese Elemente als Verbindungen von Oxiden und Hydraten vorlagen. Es wurde beobachtet, daß die Konzentration der verschiedenen Elemente nicht gleichmäßig war, was darauf hindeutet, daß viele Phasen unterschiedlicher Zusammensetzung vorlagen. Im Mittel enthielt die Matrix jedoch 8,6% CaO, 7,4% SiO2 und 3,3% MgO, wobei das CaO/SiO2-Verhältnls etwa 1 :2 betrug. Aus den bei dieser Untersuchung ermittelten Daten ging nicht hervor, daß nennenswerte Mengen einfacher Hydrate des Kalziums, Silizium, Elsen und
2S Magnesiums gebildet worden waren.
Da die Verweildauer der Agglomerate in der Reaktion relativ kurz 1st, kann mit Sicherheit davon ausgegangen werden, daß kein chemischer Gleichgewichtszustand erreicht wird. Aus Untersuchungen des Verhaltens der beteiligten Verbindungen kann mit guten Gründen geschlossen werden, daß sich der Großteil der Matrix In einem nur bescheidenen Kristallzustand befindet. Dieses wurde mit Hilfe von Röntgenstrahlbeugungsdiagram-
·'"' men ermittelt, welche keine den kristallinen Zustand kennzeichnenden Peaks erbrachte.
Beispiel 2
Zur Ermittlung der Druck- oder Kompressionsheftigkeit der aas verschiedenen Hüttenstäubcn gemäß Tafeln I und Il hergestellten Agglomerate wurde eine Versuchsreihe durchgeführt. Einige der größeren Stäube, wie WaIzzunderstaub, Feinteilchen aus der Funkenkammer, Pellet-Feintellchen, Schleifstaub und Gichtstaub wurden vor ihrem Zusatz zu der Ausgangsmischung derart geschliffen oder vermählen, daß sie durch ein Sieb mit einer Maschenweite von 149 μπι hindurchgingen. Die feineren Stäube, wie Staub vom basischen Sauerstoffofen und aus dem Filterkuchen, wurden ohne weitere Vorbehandlung zugesetzt. Die Bestandteile der Ausgangsmlschun-
4l) gen unterschiedlicher Mischungsansätze wurden In einer Mischpfanne zusammengemischt. Zusätzlich zu einer oder mehreren Hüttenstaubsorten enthielt die Ausgangsmischung entweder 5% Ca(OH)2 oder 3,75% CaO und 1 bis 3% eines Verfestigungsmittels. Nach dem anfänglichen Mischvorgang wurden 5 bis 15% Wasser, bezogen auf das Gesamtgewicht der Mischung, zugesetzt, worauf das Vermischen um weitere 10 Minuten fortgesetzt wurde. Die Mischungsansätze der feuchten Ausgangsmischungen wurden dann dadurch gealtert, daß dieselben
*5 In Anwesenheit von Feuchtigkeit und bei einer Temperatur von etwa 80 bis 90° C für Zeiträume bis zu 24 Stunden in geschlossene Behälter eingebracht wurden. Aus den gealterten oder ausgelagerten Ausgangsmischungen wurden sodann Pellets mit Hilfe eines Flugzeugreifens (40,6 cm 0 und 15,2 cm Tiefe) hergestellt, welcher sich mit 50 bis 60 Umdrehungen pro Minute drehte. Kleine Mengen der feuchten Ausgangsmischung wurden zunächst in den Reifen eingeführt, und nachdem sich schmale Säume ausgebildet hatten, wurden zusätzliche
5·' Mengen der Ausgangsmischung hinzugegeben, wodurch sphärische Pellets mit einem Durchmesser von etwa 15 mm gebildet wurden. Die Druckbeständigkeit oder Kompressionsfestigkeit von 15 willkürlich aus jedem Mischüiigsansatz ausgewählten Grünpellets wurde unmittelbar nach der Zusarnrnenbaüung mit "life eines Catillon-Prüfgerätes bestimmt. Weitere 15 Pellets wurden willkürlich aus jedem Mischungsansatz entnommen, an welchen die Schlagfestigkeit dadurch bestimmt wurde, daß sie einzeln aus einer Höhe von 38,1 cm auf eine
SS 12,7 mm dicke Stahlplatte fallengelassen wurden. Die Stoßzahl wurde als Mittelwert der Fallvorgänge bis zum Bruch bestimmt. Die Ergebnisse dieser Untersuchungen sind in den folgenden Tafeln III und IV zusammengestellt.
Die übrigen Grünpellets wurden bei einer Temperatur von etwa 110° C getrocknet. 30 getrocknete Grünpellets wurden willkürlich aus jedem Mlschungsansaiz ausgewählt, und die Druckbeständigkeit oder Kompressionsfestigkeit wurde an 15 dieser Pellets, und die Schlagfestigkeit an den anderen 15 Pellets wurde in der zuvor beschriebenen Weise bestimmt. Die Ergebnisse dieser Versuche sind in den Tafeln III und IV zusammengestellt.
Pellets aus jedem Mischungsansatz wurden in 5 1 Cenco-Menzel-Hochdruckautoklaven eingebracht, welche
1,51 kochendes Wasser enthielten. Die Autoklaven wurden auf eine Temperatur von 216° C erhitzt und auf dieser Temperatur gehalten, wobei ein Druck von 21,09 atü herrschte. Nach einer vorbestimmten Verweilzeil
'■? von 5 sowie 15 oder 30 Minuten wurde der Dampf abgelassen und wurden die Pellets aus dem Autoklaven entnommen. Die gehärteten Pellets wurden sodann 15 bis 60 Minuten lang bei einer Temperatur von etwa 1100C In einem Ofen getrocknet, um wenigstens einen Teil der verbleibenden Feuchtigkeit zu entfernen. Die Druckbeständlgkkeit oder Kompressionsfestigkeit von 15 willkürlich ausgewählten gehärteten Pellets eines jeden
Mischungsansatzes wurde mit Hilfe eines Dillion-Prüfgerätes bestimmt, und die erhaltenen Ergebnisse sind in den folgenden Tafeln III und !V zusammengestellt.
Gehärtete Peilets von e.nigen der Mischungsansätze wurden in einem elektrischen Ofen in Anwesenheit einer oxydierenden Atmosphäre bei einer Temperatur von etwa 982° C erhitzt. Linder-Reduktions- und Taumeltests wurden mit diesen und anderen Pellets aus den Gleichmischungsansäuen mit Hilfe herkömmlicher Verfahrensweisen durchgeführt. Die Ergebnisse dieser Versuche sind in der folgenden Tafel V zusammengestellt.
Tafel III
Physikalische Eigenschaften von aus unterschiedlichen Hurtenstaubchen hergestellten Pellets
Hüttenstaub Grünpellets Stoßzahl getrocknete Pellets gehärtet« IS min bei
Druck Druck Stoßzahl ϊ Pellets 104,3
festigkeit festigkeit Druckfestigkeit (kg) 111,6
(kg) (kg) unterschiedlichen 41,3 30 min
>25 Häitungsdauern 16,3 132,0
Sauerstoffofenstaub 9,84 24,8 74,39 >25 S min 91,2 115,7
Walzzunder 6,35 >25 15,42 1,9 123,8 115,2 47,2
Gichtstaub 6,17 >25 14,06 2,6 109,7 17,2
Hochofenschlammstaub 4,99 >25 11,34 3,4 31,7 89,8
SM-Ofenstaub 9,07 >25 49,9 6,7 13,6 148,3 117,9
Feinteilchen aus der 6,62 11,6 2,1 9!,2
Funkenkammer des 120,2 140,6
bas. Sauerstoffofens 9,6 180,5
Feinteilchen aus der 5,08 6,35 1,0
Pelletisierung 7,1 137,4 165,1
Schleifstaub 4,67 9,21 1,1
143,3
Tafel IV
Physikalische Eigenschaften von aus unterschiedlichen Hüttenstaubmischungen hergestellten Pellets
Hüttenstaub
Grünpellets Druck- Stoßzahl
festigkeit
(kg)
getrocknete Pellets
Druck- Stoßzahl
festigkeit
(kg)
Staub des basischen 9,53
Sauerstoffofens 33% Walzzunder 67%
Staub des basischen 5,76
Sauerstoffofens 33,3% Walzzunder 33,3%
Gichtstaub 33,3%
Staub des basischen 5,17
Sauerstoffofens 30% Walzzunder 40%
Gichtstaub 30%
Staub des basischen 6,58
Sauerstoffofens 35% Gichtstaub 20%
Schlammstaub 45%
Gichtstaub 10% 4,58
Schleifstaub 20%
Schlammstaub 70% Pellet-Feinteilchen 50% 5,26 Schlammstaub 50% Pellet-Feinteilchen 67% 4,94 Schlammstaub 33% Pellet-Feinteilchen 75% 4,62 Schlammstaub 25%
>25 40,4 5,5 223,6 229,9 230,4
14,1 2,0 106,1 108,4 113,4
12,7 2,1 73,0 92,5 190,9
>25 14,5 2,6 50,3 65,7 68,9
>25 8,4 3,2 18,6 22,7 19,9
gehärtete Pellets
Druckfestigkeit (kg) bei verschiedenen Häitungsdauern
S min IS min 30 min 40
>25 10,9 2,4 32,2 42,6 45,4
>25 9,9 2,0 41,7 62,6 74,4 65
>20 6,8 1,9 34,0 69,4 90,7
9
Tafel V
Physikalische Eigenschaften von aus verschiedenen Hüttenstäuben hergestellten Pellets
Parameter in der Ausgangsmischung enthaltener Hüttenstaub *) Staub des Pellet-Feinteü- 1,46 Staub des basischen
100% Staub des basischen Sauer chen 75% 2,11 Sauerstoffofens 30%
basischen Sauer stoffofens 33% Schlammstaub 25% 4,01 Walzzunder 40%
stoffofens Walzzunder 67% 47,45 Hochofenstaub 30%
Druckfestigkeit (kg) 230,4 90,7 190,9
gehärtet im Autoklav 132 244 184,2 181,9
nachfolgend erhitzt auf 982° C 205
Linder-Reduktions-Test 34,41 21,42
Oxidationsgrad (1000° C)% - - 65,59 78,58
Reduktion % - - 50,47 70,20
Metallisation % -
Abriebsindex % 97,50 64,76 96,08
> 6,6 mm 94,50 1,80 27,88 3,92
< 1,41 mm 4,10
Trommelindex % 97,60 - 95,24
> 6,6 mm 78,80 2,00 - 3,94
< 841 μΐη 14,40 2,08 1,69
Raumgewicht (g/cm3) 1,89 2,66 2,39
scheinbare Dichte (g/cm3) 2,40 4,43 4,08
wahre Dichte (g/cm3) 4,24 38,50 38,69
Porosität % 43,35
*) Alle auf die Hüttenstäube bezogenen Prozentsäue beziehen sich auf das Gesamtgewicht an Staub in der Ausgangsmischung.
Aus diesen Versuchsergebnissen ist ersichtlich, daß mit Hilfe des erfindungsgemäßen Verfahrens feste Agglomerate aus unterschiedlichen Hüttenstäuben sowie Mischungen derselben sogar bei relativ niedrigen Temperaturen und kurzen Verweilzelten hergestellt werden können. Agglomerate, die aus Gichtstaub und Schlammstaub enthaltenden Ausgangsmischungen hergestellt wurden, besaßen eine geringere strukturelle Festigkeit als solche Agglomerate, die aus anderen Hüttenstäuben hergestellt wurden. Wie aus Tafel IV ersichtlich, können diese Stäube in verschiedenen Anteilen mit anderen Stäuben vermischt werden, um so gehärtete Agglomerate mit wesentlich höheren strukturellen Festigkeitseigenschaften zu erzeugen. Es ist auch ersichtlich, daß sich die Druckbeständigkeit oder Druckfestigkeit durch Verlängern der Verwellzeit in der Reaktionskammer steigern läßt.
Um für verschiedene praktische Verwendungszwecke geeignet zu sein, müssen die aus Hüttenstäuben hergestellten Agglomerate strukturell ausreichend widerstandsfähig sein, um den unvermeidlichen Manipulationen, der Lagerung oder dem Transport gewachsen zu sein. Sollen die Hüttenstäube derart wieder In den Produktionskreislauf zurückgeführt werden, so schreiben die Betriebsbedingungen in einem gewissen Ausmaß einige Festigkeitserfordernisse für die Agglomerate vor. So wird beispielsweise eine Druckfestigkeit von etwa 45,4 bis 68,0 kg als im allgemeinen ausreichend für solche Agglomerate angesehen, die in einen Hochofen eingesetzt werden sollen, sofern keine großen Transportwege und/oder keine besonders rauhe Behandlung derselben erfolgt. Höhere Druckbeständigkeiten oder Kompressionsfestigkelten werden jedoch in der Regel gefordert, um sicherzustellen, daß die Agglomerate während der Handhabe und des Transportes vor dem Einsatz und während des Einsetzens in rlnen Stahlwerksofen unbeschädigt bleiben.
Aus den In den Tafeln III bis V zusammengestellten Versuchsergebnissen ist ersichtlich, daß gehärtete Pellets mit einer Druckbeständigkeit oder Kompressionsfestigkeit von weit mehr als 45,4 bis 68,0 kg mit Hilfe des erfindungsgemäßen Verfahrens erzeugt werden können. Wie aus den in Tafel V zusammengestellten Ergebnissen ersichtlich, kann die Druckbeständigkeit der aus Hüttenstäuben hergestellten verfestigten Agglomerate noch weiter durch eine nachfolgende Erhitzung auf eine höhere Temperatur gesteigert werden. Es Ist auch ersichtlich, daß die erfindungsgemäß hergestellten Agglomerate Im allgemeinen eine gute Reduzlerbarkelt sowie eine gute Verschleißfestigkeit besitzen.
Beim erfindungsgemäßen Verfahren sind während des Härtungsvorganges weder eine Oxydation noch eine Reduktion vorgesehen, wohingegen eine Oxydation bei den meisten herkömmlichen Hochtemperatur-Agglomerierungsverfahren vorgesehen ist oder auftritt. Demzufolge können feste Reduktionsmittel, wie Feinkohle oder Koks, welche die Reduktion fördern und einen wirtschaftlicheren Hochofenbetrieb gestatten. In den Agglomeraten vorgesehen werden. Falls erwünscht, kann der Kohlenstoff Im Gichtstaub und Im Hochofenschlammstaub wirtschaftlich und mit hohem Wirkungsgrad verwendet werden, wenn er zur Herstellung von festen Pellets mit anderen Stäuben vermischt wird.
Der als Bindemittel Im erfindungsgemäßen Verfahren verwendbare Kalk unterstützt gleichfalls die Vermei-
dung der Bildung einer Fayalit-Schlacke, die für mancherlei Schwierigkeiten beim Hochofenbetrieb verantwortlich gemacht wird.
Ein weiterer Gesichtspunkt bei der Erfindung ist darin zu sehen, daß das Härten der Agglomerate bei niedrigen Temperaturen herbeigeführt wird und daß demzufolge nur sehr wenig Wärmeenergie erforderlich ist. Dieser Energiebedarf kann noch weiter dadurch verringert werden, daß Wärme aus den gehärteten Pellets gewonnen wird, indem anstelle von Ca(OH)2 gebrannter Kalk als Bindemittel verwendet wird. Gegebenenfalls können die Grünpellets mit Hilfe warmer Luft oder einer offenen Flamme wirtschaftlicher erhitzt werden als durch ein Trocknen und Erhitzen durch Dampf in der Reaktionskammer.
Beispiel 3
Zur Ermittlung der Druckbeständigkeit oder Druckfestigkeit von Pellets, welche aus Ausgangsmischungen mit unterschiedlichen Bindemittelgehalten [Ca(OH)2], einem Gehalt an einem siliziumhaltigen Material (Siliciumdioxid mit einer Teilchengröße von weniger als 44 μπι) und einem Gehalt an einem Verfestigungsmitte! (Na2COj) bestanden, wurden Versuche ausgeführt. Für diese Versuche wurde eine Mischung von Hüttenstäuben verwendet, welche zu 30% aus dem Staub eines basischen Sauerstoffofens, zu 30% aus Gichtstaub mit einer Teilchengröße von weniger als 74 μπι und zu 40% aus Walzzunderstaub mit einer Teilchengröße von weniger als 74 μπι bestand. Die Mischung aus Hüttenstäuben war in einem Autoklaven vorbehandelt worden, um den darin enthaltenen totgebrannten Kalk und/oder die darin enthaltene Schlacke zu hydratisieren. Nachdem die Bestandteile der Ausgangsmischung miteinander vermischt worden waren, wurde Wasser (10% bezogen auf das Gesamtgewicht der Trockenmischung) einem jedem Mischungsansatz zugesetzt und das Vermischen für weitere 10 min fortgesetzt.
Die resultierenden Mischungen wurden zu Pellets verarbeitet und auf gleiche Weise getrocknet, wie bei Beispiel 2 beschrieben. Die getrockneten Pellets der unterschiedlichen Mischungsansätze wurden sodann in einen Autoklaven eingesetzt und in demselben auf etwa 2000C bei einem Druck von etwa 21,1 atü während unterschiedlich langer Zeitdauern erhitzt. Nach dem Abkühlen wurde die Druckbeständigkeit oder Kompressionsfestigkeit der Pellets bestimmt. Die Ergebnisse dieser Versuche sind in der folgenden Tafel Vl zusammengestellt.
Tafel VI
Druckfestigkeit von Pellets mit unterschiedlichen Bindemittelgehalten und einem siliziumhaltigen Anteil
Pellet-Zusammensetzung
Druckfestigkeit (kg) bei unterschiedlichen Härtungsdauern
Bestandteil
0,5 h
lh
3h
5h
Hüttenstaubgemisch
Ca(OH)2
NaCO3
HUttenstaubgemisch
Ca(OH)2
Na2CO3
HUttenstaubgemisch
Ca(OH)2
Na2CO3
HUttenstaubgemisch
Ca(OH)2
Na2CO3
92,40 6,60 0,95 0,05
90,40 6,60 2,85 0,15
89,00
10,00
0,95
0,95
87,00
10,00
2,85
0,15
153,31
156,94
165,11
181,44
196,86
200,94
205,02
246,30
143,34
161,03
154,22
158,76
215,00
234,06
234,97
274,88
Aus diesen Versuchsergebnissen Ist ersichtlich, daß die Druckbeständigkeit oder Kompressionsfestigkeit durch Anwendung steigender Gehalte an siliziumhaltigen Materialien sowie von Verfestigungszusätzen innerhalb der erfindungsgemäßen Grenzen gesteigert werden kann.
Beispiel 4
Eine Versuchsreihe wurde mit Pellets ausgeführt, welche aus verschiedenen Hüttenstaubmlschungen hergell
stellt waren, um den Einfluß des Feuchtigkeitsgehalts in den Grünpellets vor der Härtung auf die Druckbeständigkeit oder KompresslonsfesUgkelt der fertiggestellten gehärteten Pellets zu untersuchen- Die Zusammensetzung der verwendeten Ausgangsmischungen ist in der folgenden Tafel VII zusammengestellt.
Tafel VU
Mischung Nr. Pellet-Zusammensetzung
Bestandteil %
Walzzunder (< 210 μπι) 51,56
Grober Staub aus dem basischen Sauerstoffofen 4,14
(< 841 μπτ)
Feiner Staub aus dem basischen Sauerstoffofen 34,30
CaO 7,00
SiCh-Feinteilchen 2,85
Na2CO, 0,15
Walzzunder (< 210 μπι) 41,26
Grober Staub aus dem basischen Sauerstoffofen 3,31
(< 841 μπι)
Feiner Staub aus dem basischen Sauerstoffofen 27,43
Gichtstaub (< 2,0 mm) 12,00
Hochofenschlamm-Staub (< 2,0 miü) 6,00
CaO 7,00
SiO2-Feinteilchen 2,85
Na2CO3 0,15
Feiner Staub aus dem basischen Sauerstoffofen 49,40
(< 841 μηι)
Grober Staub aus dem basischen Sauerstoffofen 5,60
Flämmstaub (< 841 μπι) 35,00
CaO 7,00
SiO2-Feinteilchen 2,85
Na2CO3 0,15
Walzzunder (< 149 μπι) 41,22
Filterkuchen 48,7«
CaO 7,00
SiO2 2,85
Na2CO, 0,15
so Den einzelnen Mischungsansätzen für die Ausgangsmischung wurden unterschiedliche Wassermengen zugesetzt. Die angefeuchteten Mischungen wurden zu sphärischen Grünpellets mit einem Durchmesser von 15 mm verarbeitet, worauf die Grünpellets hydrothermisch In einem Autoklaven In einen gehärteten Zustand gebracht wurden, was In einer Weise geschah, die in der Im Beispiel 2 beschriebenen vergleichbar ist. Nach der Abkühlung wurde die Diuckbeständlpkelt oder Kompressionsfestigkeit der gehärteten Pellets gemes-
55 sen. Die Versuchsergebnisse sind In der folgenden Tafel VIII zusammengestellt.
Tafel VIII
Mischung Nr. Pelletdurchmesser
(mm)
Feuchtigkeitsgehalt
der Grünpellets
(Gew.-%)
Druckfestigkeit
(kg)
1 15 7,7 28,1
15 5,0 147,1
15 2,8 150,3
15 0,0 150,3
12
Fortsetzung
Mischung Nr.
Pelletdurchmesser
(mm)
Feuchtigkeitsgehalt der Grünpellets (Gew.-%)
Druckfestigkeit (kg)
15 8,2 30,4
15 3,0 128,5
15 0,0 133,9
15 6,0 geplatzt
15 3,0 34,0
15 0,0 164,3
25,4 10,9 32,2
25,4 3,0 164,3
25,4 0,0 140,3
Aus diesen Ergebnissen ist ersichtlich, daß aus Grünagglomeraten mit einem Feuchtigkeitsgehalt von mehr als 5% hergestellte gehärtete Agglomerate eine niedrigere Druckbeständigkeit oder Druckfestigkeit besitzen, wohingegen solche gehärteten Agglomerate, die aus Grünagglomeraten mit einem Feuchtigkeitsgehalt von 5% oder weniger hergestellt worden sind, eine sehr hohe Druckbeständigkeit oder Druckfestigkeit besitzen.
Beispiel 5
Aus einer im trockenen Zustand hergestellten Mischung mit der folgenden Zusammensetzung wurden agglomerierte Pellets hergestellt.
Bestandteil
Gichtstaub
Hochofenschlamm
Walzzunder
Kalk
SiO2
Na2CO,
13
21,6
51,9
10,5
2,85
0,15
100,00
Die Mischung wurde angefeuchtet, indem Wasser in einer etwa 15%, bezogen auf das Gesamtgewicht der angefeuchteten Mischung, ausmachenden Menge zugesetzt wurde. Die angefeuchtete Mischung wurde in zwei gesonderte Mischungsansätze aufgeteilt.
Der erste Mischungsansatz wurde in einem befeuchteten geschlossenen Behälter bei einer Temperatur von etwa 80 bis 90'C und Atmosphärendruck über einen Zeitraum von etwa 24 Stunden ausgelagert. Die Mischungstemperatur erreichte innerhalb von 40 Minuten etwa 98° C. Dieser Temperaturanstieg war allem Anschein nach eine Folge der exothermen Reaktion zwischendem Kalk und dem Wasser. Nach der 24stündigen Alterungs- oder Auslagerungsperiode wurden sphärische Keiiets mit einem Durchmesser von 25,4 rr.rn mit Hilfe einer herkömmlichen Zusammenballungsvorrichtung aus diesem Mischungsansatz hergestellt. Die einen Feuchtigkeitsgehalt von etwa 5% aufweisenden Grünpellets wurden sodann in einen Autoklaven eingebracht, in welchem sie eine Stunde lang bei einem Druck von 21,1 atü hydrothermisch gehärtet wurden. Nach Ofentrocknung und Abkühlung an Luft wurde die Druckfestigkeit an 15 willkürlich ausgewählten Pellets bestimmt, wobei sich eine mittlere Diruckfestigkeit von 208,65 kg ergab.
Der zweite Mischungsansatz wurde in einem abgedeckten Gefäß bei Raumbedingungen ausgelagert. Allem Anschein nach infolge der zuvor erwähnten exothermen Reaktion erreichte die Temperatur dieses zweiten Mischungsansatzes etwa die gleiche Maximaltemperatur in etwa der gleichen Zeit wie der zuerst erwähnte Mischungsansatz. Unmittelbar nach dem Erreichen dieser Maximaltemperatur wurde der zweite Mischungsansatz aus dem Gefäß entnommen, worauf der Mischungsansatz während einer Zeitdauer von etwa 3 Stunden auf Raumtemperatur abkühlte. Nach einer gesamten Standzeit von etwa 24 Stunden wurden sphärische Pellets mit einem Durchmesser von 25,4 mm aus dem zweiten Mischungsansatz hergestellt und in einem Autoklaven in im wesentlichen derselben Welse wie bei dem ersten Mischungsansatz gehärtet. Alle aus dem zweiten Mischungsansatz hergestellten Pellets waren jedoch aufgequollen und gerissen.
Aus diesen Ergebnissen geht hervor, daß es zur Herstellung von gehärteten Agglomeraten mit guten Eigenschaften aus Hüttensitäuben erforderlich ist, die Grünagglomerate in feuchter Umgebung und bei einer erhöhten Temperatur zu altern oder auszulagern, bevor die hydrothermische Härtung vorgenommen wird.
Beispiel 6
Aus einer im trockenen Zustand angesetzten Mischung mit der folgenden Zusammensetzung wurden agglomerierte Pellets hergestellt.
Bestandteil
Walzzunder < 74 μπι 90
κι CaO 7
SiO2 2,85
Na2CO, 0,15
100,00
Die Mischung wurde durch Einmischen In eine Menge von Wasser, die etwa 10% des Trockengewichtes der Mischung entsprach, angefeuchtet. Nachdem die Mischung über Nach; gealtert worden war, wurden sphärische Pellets mit einem Durchmesser von 15 mm aus der feuchten Mischung In einer Welse hergestellt, die der in Beispiel 2 beschriebenen glich. Die Grünpellets wurden getrocknet, um wenigstens einen Teil der darin enthalte-
nen Feuchtigkeit zu entfernen und wurden dann In einem Autoklaven eine Stunde lang bei einem Druck von 21,1 atü hydrothermisch gehärtet. Die gehärteten Pellets wurden In zwei Gruppen unterteilt. Die erste Pellelgruppe wurde an Luft abgekühlt, worauf die Kompressionsfestigkeit von 15 willkürlich ausgewählten Pellets bestimmt wurde. Die mittlere Kompressionsfestigkeit betrug 111,13 kg. Die zweite Pelletgruppe wurde unmittelbar nach der Autoklavbehandlung In einem Ofen bei 100° C getrocknet und dann auf Raumtemperatur abge-
kühlt, worauf die Kompressionsfestigkeit von 15 willkürlich ausgewählten Pellets bestimmt wurde. Dabei wurde eine mittlere Kompressionsfestigkeit von 152,41 kg gemessen.
Aus diesen Ergebnissen ist ersichtlich, daß sich die Druckbeständigkeit oder Kompressionsfestigkeit der gehärteten Agglomerate merklich (In diesem Fall um etwa 37%) dadurch steigern läßt, daß unmittelbar nach der hydrothermischen Härtung eine Trocknung vorgenommen wird.
V) Aus der vorstehenden Beschreibung Ist ersichtlich, daß sich mit Hilfe des erfindungsgemäßen Verfahrens gehärtete Agglomerate aus Hüttenstäuben herstellen lassen, die über ausgezeichnete Festigkeitseigenschaften verfügen. Da das Verfahren nach der Erfindung in keiner Welse die Verwendung von merklichen Materialmengen erfordert, die Verunreinigungen darstellen oder bei den meisten Stahlherstellungsverfahren eine Schlackenbildung zur Folge haben, können die auf erfindungsgemäße Weise hergestellten gehärteten Agglomerate als
Bestandteil des Ofeneinsatzes als Rückgut in unterschiedliche Stahlherstellungsöfen eingesetzt werden. Außerdem gestattet die relativ niedrige Temperatur der hydrothermischen Härtung die Erzeugung von hochfesten Agglomeraten mit spürbar verringerten Kosten und gestattet das erfindungsgemäße Verfahren den Einbau eines festen Reduktionsmittels in die Agglomerate mit der Wirkung, daß die gehärteten Agglomerate leicht metallisiert werden können und daß Zink und Blei von Ihnen durch einfaches Erwärmen auf eine erhöhte Temperatur
·"> entfernt werden kann.
;;:

Claims (1)

Patentansprüche:
1. Verfahren zum Herstellen von gehärteten Agglomeraten aus ein hydratislerbares Material, wie totgebrannten Kalk, hydratisierbare Schlackenstoffe und Mischungen derselben, enthaltendem Hüttensiaub, dadurch geken !zeichnet, daß
a) eine feuchte Mischung, enthaltend den Hüttenstaub, etwa 2 bis 20% eines aus einer Kalziumoxid, Kalziumhydroxid und Mischungen derselben enthaltenden Gruppe ausgewählten Bindemittels, etwa 0,5 bis etwa 5% eines siliciumdioxidhaltlgen Materials, 0 bis etwa 3% eines Verfestigungsmittels, welches aus
i'i einer Oxide, Hydroxide, Karbonate, Bikarbonate, Sulfate, Bisulfate und Borate des Natriums und
Kaliums sowie deren Mischungen umfassenden Gruppe ausgewählt ist, sowie etwa 2 bis 14». Wasser, hergestellt wird, wobei die prozentualen Anteile des Bindemittels, des slliciumdioxidhaltigen Materials und des Verfestigungsmittels auf das Gesamtgewicht der in der Mischung vorliegenden trockenen Feststoffe und der gewichtsmäßige Anteil des Wassers auf das Gesamtgewicht der Mischung bezogen sind,
i> und wobei die Feststoffe in der Mischung mit einer Teilchengröße von weniger als 2,0 mm vorliegen,
daß
b) die feuchte Mischung in einem geschlossenen Behälter in Anwesenheit von gesättigtem oder im wesentlichen gesättigtem Dampf bei einer Temperatur von etwa 80 bis etwa 232° C über eine zur Hydratisierung der in derselben enthaltenen hydratisierbaren Stoffe ausreichende Zeltdauer gealtert wird, daß
-" c) die gealterte Mischung zu einzelnen Agglomeraten verarbeitet wird, daß
d) die Agglomerate zur Einstellung ihres Feuchtigkeitsgehaltes auf etwa 5% oder weniger, bezogen auf das Gesamtgewicht der Mischung, getrocknet werden, wobei eine noch nicht zum Platzen dieser Agglomerate fahrende Trocknungsgeschwindigkeit eingehalten wird, daß
e) diese Agglomerate hydrothermlsch gehärtet werden, indem dieselben mit gesättigtem oder Im weseni- -5 liehen gesättigtem Dampf bei einer Temperatur von etwa 100 bis 244° C und einem Druck von bis zu
35,1 atü über eine zur Ausbildung gehärteter und einheitlich gebundener Agglomerate ausreichende Zeildauer kontaktiert werden und daß
0 die gehärteten Agglomerate abgekühlt werden.
DE19752517543 1975-04-21 1975-04-21 Verfahren zum Herstellen von gehärteten Agglomeraten aus Hüttenstäuben Expired DE2517543C2 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19752517543 DE2517543C2 (de) 1975-04-21 1975-04-21 Verfahren zum Herstellen von gehärteten Agglomeraten aus Hüttenstäuben

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19752517543 DE2517543C2 (de) 1975-04-21 1975-04-21 Verfahren zum Herstellen von gehärteten Agglomeraten aus Hüttenstäuben

Publications (2)

Publication Number Publication Date
DE2517543A1 DE2517543A1 (de) 1976-11-04
DE2517543C2 true DE2517543C2 (de) 1985-12-12

Family

ID=5944541

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19752517543 Expired DE2517543C2 (de) 1975-04-21 1975-04-21 Verfahren zum Herstellen von gehärteten Agglomeraten aus Hüttenstäuben

Country Status (1)

Country Link
DE (1) DE2517543C2 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4239530A (en) * 1979-01-10 1980-12-16 Board Of Control Of Michigan Technological University Process for producing metallized iron pellets
CA1158442A (en) * 1980-07-21 1983-12-13 Mehmet A. Goksel Self-reducing iron oxide agglomerates
BE1005466A5 (fr) * 1991-10-30 1993-08-03 Lhoist Rech & Dev Sa Produit agglomere de poussieres et son procede de fabrication.
DE102012005454B4 (de) 2012-03-20 2020-06-18 Outotec Oyj Verfahren und Vorrichtung zur Herstellung von gehärteten Granalien aus eisenhaltigen Partikeln
DE102012011240A1 (de) 2012-06-06 2013-12-12 Outotec Oyj Verfahren zur Herstellung von gehärteten Granalien aus eisenhaltigen Partikeln
DE102015118767A1 (de) * 2015-11-03 2017-05-04 Claas Selbstfahrende Erntemaschinen Gmbh Umfelddetektionseinrichtung für landwirtschaftliche Arbeitsmaschine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3235371A (en) * 1962-09-10 1966-02-15 Control Of Michigan College Of Agglomerated mineral products and method of making same
DE1914018C3 (de) * 1968-03-25 1979-01-18 Per Gudmar Bromma Kihlstedt (Schweden) Verfahren zur Herstellung von kaltgebundenen Pellets aus metallhaltigem Erzkonzentrat
CA955751A (en) * 1970-10-19 1974-10-08 Ab Cold-Bound Pellets Method for producing cold bound agglomerates from particulate iron ore concentrate
SE350769C (sv) * 1970-10-19 1977-09-15 Cold Bound Pellets Ab Forfarande for framstellning av kallbundna agglomerat av partikelformigt mineralkoncentrat

Also Published As

Publication number Publication date
DE2517543A1 (de) 1976-11-04

Similar Documents

Publication Publication Date Title
DE3008823C2 (de) Verfahren zum Agglomerieren von kohlenstoffhaltigem Feinmaterial
DE69909702T2 (de) Verfahren zum Erhärten Stahlwerksslacke sowie damit hergestelltes Material
DE69810579T3 (de) Verfahren zur Herstellung von Eisenoxidpellets mit niedrigem Bentonitgehalt
DE2528137C3 (de) Verfahren zur Gewinnung von Nickelkonzentrat aus nickelhaltigen Erzen
DE3000621C2 (de) Verfahren zum Herstellen von gehärteten Pellets aus einem feinzerteilte Eisenoxide enthaltenden Material
DE1667627C3 (de) Verfahren zur Herstellung von aktiven Ton oder !einteiliger Kieselsäure
DE2163917C3 (de) Verfahren zur Herstellung von Rohlingen für die Erzeugung von Aluminiumoxidkeramiken
DE2454875C3 (de) Verfahren zur Herstellung von Calciumsilikat-Formkörpern
DE2517543C2 (de) Verfahren zum Herstellen von gehärteten Agglomeraten aus Hüttenstäuben
DE1963128A1 (de) Verfahren zum Reinigen und Agglomerieren von Pyritabbraenden
DE60036398T2 (de) Synthetische silikatpelletzusammensetzung, verfahren zu dessen herstellung und dessen anwendung
DE3445503A1 (de) Verfahren zur herstellung von briketts
DE102004027193A1 (de) Agglomeratstein zum Einsatz in Schacht-, Corex- oder Hochöfen, Verfahren zur Herstellung von Agglomeratsteinen und Verwendung von Eisenerz-Fein- und -Feinststäuben
DE19743742C2 (de) Verfahren zum Herstellen von Branntkalk
DE2151394C3 (de) Verfahren zur Herstellung kaltgebundener Agglomerate aus partikelförmigem, mineralischem Konzentrat
DE4229901C2 (de) Herstellung von granuliertem Strontiumcarbonat mit strontiumhaltigem Bindemittel
DE2151911A1 (de) Verfahren zur Herstellung von kaltgebundenen Agglomeraten aus partikelfoermigem Eisenerzkonzentrat
DE1284346B (de) Verfahren zum Herstellen feuerfester Materialien auf der Grundlage von Chromerz und feinverteiltem Magnesiumoxyd
DE2040385C3 (de) Verfahren zur Herstellung von Glasroh stoff Gemengen in Platzchenform
DE2940108C2 (de) Verfahren zum Herstellen von Schaumglasformkörpern aus natürlich vorkommenden, wasserhaltigen Verwitterungsprodukten
DE2344324A1 (de) Verfahren zur behandlung schwefelhaltiger schlacke und nach diesem verfahren hergestelltes erzeugnis
DD200896A1 (de) Verfahren zur gewinnung des alkaliinhaltes von industrierueckstaenden
AT250910B (de) Verfahren zur Herstellung von gereinigtem Magnesiumhydroxyd
DE1433349C (de) Verwendung von Natriumchlorid bzw. Kaliumchlorid als Zusatz bei einem Verfahren zur Herstellung von metallischem Eisen
DE1646842C3 (de) Verfahren zur Herstellung von Pseudowollastonitklnkern

Legal Events

Date Code Title Description
OD Request for examination
D2 Grant after examination
8364 No opposition during term of opposition
8339 Ceased/non-payment of the annual fee