DE2316599A1 - Hochspannungs-halbleiteranordnung - Google Patents

Hochspannungs-halbleiteranordnung

Info

Publication number
DE2316599A1
DE2316599A1 DE19732316599 DE2316599A DE2316599A1 DE 2316599 A1 DE2316599 A1 DE 2316599A1 DE 19732316599 DE19732316599 DE 19732316599 DE 2316599 A DE2316599 A DE 2316599A DE 2316599 A1 DE2316599 A1 DE 2316599A1
Authority
DE
Germany
Prior art keywords
layer
resistance
area
passivation layer
junction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE19732316599
Other languages
English (en)
Inventor
Lowell Eugene Clark
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Motorola Solutions Inc
Original Assignee
Motorola Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Motorola Inc filed Critical Motorola Inc
Publication of DE2316599A1 publication Critical patent/DE2316599A1/de
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/405Resistive arrangements, e.g. resistive or semi-insulating field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3157Partial encapsulation or coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • H01L29/732Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/8611Planar PN junction diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/8613Mesa PN junction diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Bipolar Transistors (AREA)

Description

Die Erfindung betrifft eine Hochspannungs-Halbleiteranordnung mit einem ersten Bereich einer gegebenen Leitfähigkeit und einem angrenzenden zweiten Bereich einer entgegengesetzten Leitfähigkeit, wobei ein an der Oberfläche der Halbleiteranordnung austretender erster PN-Übergang entsteht, der durch eine auf der Oberfläche der Halbleiteranordnung angebrachten ersten Passivierungsschicht bedeckt ist und mit einer auf der Passivierungsschicht vorgesehenen Widerstandsschicht hohen Widerstands, die in elektrischer Kontaktverbindung mit dem ersten und zweiten Bereich steht.
Es sind Hochspanmmgs-Halbleiteranordnungen, z. B. Dioden oder
Fs/mt Transistoren
309842/0922
Λ MO64P/G-971/72
Transistoren bekannt, bei welchen PN-Übergänge> z. B. beim Transistor der Kollektor-Basisübergang, Spannungen standhalten müssen, die im Bereich zwischen mehreren 1OO Volt bis mehreren lOOO Volt liegen können. Für derartige Halbleiteranordnungen ist es wünschenswert; Vorkehrungen zu schaffen, mit welchen ein vorzeitiger Spannungsdurchbruch bei Spannungswerten unterhalb der theoretischen Werte'für die Durchbruchsspannung verhindert werden kann. Dieser vorzeitige Durchbruch wird durch elektrische Feldspitzen an der Oberfläche des einkristallinen Halbleitermaterials verursacht. Diese Feldspitzen ihrerseits sind die Folge von Verunreinigungen auf oder innerhalb der Oberfläche einer Passivierungsschicht, die die Halbleiteroberfläche, schützen soll. Selbst bei Passivierungsschichten, die frei von Verunreinigungen oder Störatomen sind, kann ein vorzeitiger Spannungsdurchbruch auftreten infolge von unerwünschten LadungsWanderungen und Ladungskonzentrationen auf der Oberfläche der Passivierungsschicht, die zu elektrischen Feldspitzen auf der Passivierungsschicht führen. Außerdem ergibt sich bei einer dichten räumlichen Anordnung von Schutzringen oder metallischen Grenzschichtüberzügen das Problem der Spitzenwirkung, wodurch hohe elektrische Felder an der Oberfläche von pas sivier enden Oxydschichten erzeugt werden. Die an Kanten und Spitzen auftretende Feldwirkung kann Zuverlässigkeitsprobleme einschließlich Metallfehlern auslösen und wird üblicherweise zu unterdrücken versucht, indem anschließend organische Oxydschichten zur Passivierung vorgesehen werden, die jedoch häufig schädliche Einflüsse auf die Durchbruchsspannung an der Grenzschicht hat. Auch können unerwünschte Konzentrationen der Oberflächenladung auf der Oberfläche der ersten Passivierungsschicht unabhängig von ihrer lokalen Anordnung Kurz-
- 2 - \ ' r - Schlüsse
30 9842/0922
3 MO64P/G-971/72
Schlüsse verursachen oder sich bis zur Raumladungsschicht bzw. Raumladungszone des zugehörigen PN-Überganges erstrecken, wodurch der gewünschte Effekt der Schutzringe entweder verschlechtert oder gar vollkommen beseitigt wird. Oberflächenladungskonzentrationen einer bestimmten Polarität können sogar eine Inversion des darunterliegenden Halbleitermaterials auslösen und möglicherweise die Bildung von parasitären Feldeffekt-Transistoranordnungen verursachen, die als Kriechstrecken in Erscheinung treten. Die unerwünschte Inversion des Halbleitermaterials an der Grenzschicht zwischen dem Halbleiterkörper ,und der Oxydschicht kann durch eine Verringerung der Amplitude des über die Oxydschicht wirkenden elektrischen Feldes unterdrückt werden, wobei dies dadurch zu erzielen ist, daß in dem kritischen Bereich, wo die Inversion auftreten kann, für das Wirksamwerden eines geeigneten Potentials an der Oberfläche der Oxydschicht gesorgt wird. Die Unterdrückung solcher Kriechstrecken durch eine Ausdehnung der Metallisation auf die Oxydschicht der kritischen Bereiche, um das Oberflächenpotential auf der Oxydschicht auf gewünschte Werte einzustellen, kann Schwierigkeiten bereiten, insbesondere bei integrierten Halbleiteranordnungen, wenn eine beliebige Freizügigkeit in der Auslegung der Leitungsverbindungen nicht gegeben ist.
Zur Neutralisation in der auf der Oberfläche von Passivierungsschichten sich angesammelten Ladung ist es bekannt, über der Passivierungsschicht eine Widerstandsschicht hohen Widerstandes anzubringen, die auf beiden Seiten der passivierten Grenzschicht in elektrischer Kontaktverbindung mit dem Halbleitermaterial steht. Dadurch lassen sich elektrische Feldspitzen auf der Oberfläche und die dadurch
- 3 - bedingten
309842/0922
MO64P/G-971/72
bedingten Spannungsdurchbrüche verringern (siehe US-Patent 85 638). Der Wider stands wert dieser Widerstandsschicht soll näherungs weise
ο 10 '
in einem Bereich zwischen IO - IO Ohm pro Quadrat liegen, um die Ladungsneutralisation zu bewirken, ohne jedoch größere Leckströme bei den hohen Betriebsspannungen auszulösen. Für diesen Zweck ist es bekannt, polykristalline Siliziumschichten zu verwenden, die einen hohen Schichtwiderstand aufweisen. Es wird jedoch festgestellt, daß der hohe Schichtwiderstand der polykristallinen Siliziumschichten um mehrere Größenordnungen beim Altern der Schicht oder bei nachfolgenden Bearbeitungsschritten abnehmen kann. Es wird angenommen, daß diese Verschlechterung hauptsächlich von Verunreinigungen der Schicht infolge von Feuchtigkeit und Fremdatomen herführt, die aus der Umgebung bzw. der organischen Passivierungs- . • schichten aufgenommen werden. Diese Verringerung des Widerstandswertes verursacht unannehmbar hohe Leckströme. Zur Unterbrechung des elektrischen Feldes im Raumladungsbereich ist es bekannt, Schutzringe in einem Abstand um den Grenzschichtübergang herum zu diffundieren. Diese Schutzringe verringern die Spitzenwerte des elektrischen Feldes in dem Raumladungsbereich. Als Folge davon ergibt sich eine vergrößerte Sperrdurchbruchsspannung.
Der Erfindung liegt die Aufgabe zugrunde, eine Hochspannungs-Halbleiteranordnung zu schaffen, bei der durch Schaffung gleichförmiger . elektrischer Felder auf der Oberfläche von Passivierungs schichten eine Erhöhung der Sperrdurchbruchsspannung erzielt wird. Dabei sollen die Leckstromverluste verringert und die Zuverlässigkeit von Schutzringanordnungen verbessert werden, um eine höhere Zuverlässigkeit an Hochspannungs-PN-Übergängen zu schaffen, indem an
- 4 - den
309842/0922
ζ MOG4P/G-971/72
den Schutzringen ein elektrisches Vorspannungspotential wirksam ist» Das Ziel der Erfindung soll unabhängig von der Art der Halbleiteranordnung erreichbar sein, wobei insbesondere bei bipolaren Halbleiterstrukturen eine Unterdrückung von Kriechströmen auf Grund parasitärer Feldeffekteinflüssen erzielt werden soll, die durch Ladungsanhäufungen auf der Oxydschicht entstehen. Ebenso soll bei integrierten MOS-Schaltkreisen die auf Grund parasitärer MOS-Wirkung durch Ladungsanhäufungen auf der Oxydoberfläche entstehenden Kriechströme unterdrückt werden.
Ausgehend von der eingangs erwähnten Hochspannungs-Halbleiteranordnung wird diese Aufgabe nach dem Anspruch 1 erfindungsgemäß dadurch gelöst, daß eine zweite Passivierungsschicht hoher Vollständigkeit auf der Widerstandsschicht angebracht ist, um diese Widerstandsschicht vor einer Verschlechterung des Widerstandswertes zu schützen.
Weitere Merkmale und Ausgestaltungen der Erfindung sind Gegenstand von weiteren Ansprüchen.
Durch die Maßnahmen der vorliegenden Erfindung wird die Stabilität des Leckstromes bei Halbleiterübergängen für Halbleiterstrukturen verbessert, bei denen eine Widerstandsschicht hohen Widerstandswertes dazu benutzt wird, um gleichförmige elektrische Felder auf der Oberfläche der ersten Passivierungsschicht zu erzielen, die zum Schutz des PN-Überganges den entsprechenden Oberflächenraum-Ladungszonen zugeordnet ist. Durch die Erfindung wird die Widerstandsschicht vor Verunreinigungen geschützt, indem eine zweite Passivierungsschicht hoher Vollkommenheit direkt auf die Wider-
, , : ; f r ! 1 ' Γ r Γ
- 5 - atandsschicht
309842/0922
MO64P/G-971/72
Standsschicht aufgebracht wird. Diese zweite Passivierungsschicht kann sowohl aufgedampft als auch thermisch aufgewachsen werden und aus einer Siliziumdioxydschicht mit einer Dicke von mehreren 1OO bis mehreren lOOO A. bestehen. Schichten dieser Art erweisen sich als besonders vorteilhaft, um einer Verschlechterung des Widerstandswertes entgegen zu.wirken, die durch Verunreinigungen aus der Umgebung oder durch nachfolgend angebrachte Passivierungsmittel verursacht werden.
Die polykristalline Widerstandsschicht steht üblicherweise mit dem N-leitenden Material durch eine Öffnung in der ersten Passivierungsschicht in elektrischer Kontaktverbindung, wogegen der elektrische Kontakt zwischen der Widerstands schicht und dem P-leitenden Bereich üblicherweise durch Metallelektroden bewirkt wird, die auf dem P-leitendeh Bereich aufliegen und dadurch mit einem inneren Teil der Schicht in Kontaktverbindung stehen.
Durch das Anschließen von einem oder mehreren Schutzringen, die den PN-Übergang in einem Abstand umgeben, an die erwähnte Widerstandsschicht wird auf Grund des über die Widerstands schicht fließenden Leckstromes eine Spannungsteilung ausgelöst, die zur Festlegung des Potentials der Schutzringe Verwendung finden kann und dadurch eine Verbesserung der Stabilität der Durchbruchsspannung bewirkt.
Bei einer Halbleiteranordnung, die einen PN-Übergang im Bereich eines Mesa aufweist, wird eine Passivierung normalerweise als Diffusionsmaske nicht benutzt, um den PN-Übergang festzulegen
- 6 - oder
309842/0922
MO64P/G-971/72
oder zu schützen. Auf Grund der vorliegenden Erfindung wird eine Widerstandsschicht auf dem Halbleitermaterial vorgesehen, die den PN-Übergang an seinem Austritt an der Oberfläche bedeckt' und gleichförmige elektrische Felder in der Raumla dungs zone bewirkt. Damit erhält man die gewünschte vorteilhafte Verbesserung der Sperrdurchbruchsspanmmg. Über der Widerstandsschicht wird eine weitere Passivierungsschicht mit hoher Qualität vorgesehen, mit der die Leckströme stabilisiert werden, welche über die Widerstandsschicht einen Nebenschluß für den PN-Übergang bewirken.
Die Erfindung kann in vorteilhafter Weise auch in Form einer undotierten polykristallinen Widerstands schicht dazu benutzt werden, um parasitäre Feldeffekteinflüsse zu unterdrücken, d. h. Kriechströme auszuschalten, die durch Ladungsanhäufungen auf der Oberfläche der ersten passivierenden Schicht entstehen und eine Inversion des darunterliegenden Halbleitermaterials auslösen. Das elektrische Potential der ersten passivierenden Oxydschicht wird auf der Oberfläche auf einen gewünschten Wert festgelegt, der den parasitären Effekt durch eine geringe Leitfähigkeit der polykristallinen Wider stands schicht über der Passivierungsschicht verhindert. Die Widerstandsschicht steht in Kontaktverbindung mit einer Metallisation, die unter normalen Betriebsbedingungen auf dem bestimmten gewünschten Potential der Oxydoberfläche liegt. Über der polykristallinen Silizium schicht als Widerstandsschicht ist eine weitere sehr dünne zweite Passivierungsschicht mit hoher Vollkommenheit angebracht bzw. aufgewachsen, um die Widerstandsschicht gegen eine Widerstands Verschlechterung zu schützen, welche durch spätere Umweltseinflüsse ausgelöst sein können. Diese
_ 7 _ zweite
309842/0922
MO64P/G-971/72
zweite Passivierungsschicht ist ausreichend dünn, um Kontakte durch die Passivierungsschicht mit der polykristallinen Widerstandsschicht im Rahmen einer nachfolgenden Metallisation herstellen zu können.
Die Merkmale und Vorteile der Erfindung ergeben sich auch aus' der nachfolgenden Beschreibung von Ausführungsbeispielen in Verbindung mit den sowohl einzeln als auch in jeder beliebigen Kombination die Erfindung kennzeichnenden Ansprüchen und der Zeichnung. Es zeigen:
Fig. 1 einen Schnitt durch eine Hochspannungsdiode mit einer Schicht höhen Widerstandes über einer Passivierungsschicht um ein gleichförmiges elektrisches Feld an der Oberfläche der Passivierungsschicht in bekannter Art zu bewirken; '
Fig. 2 eine perspektivische teilweise geschnittene Ansicht einer Hochspannungsdiode, bei der eine Passivierungsschicht hoher Vollkommenheit über einer Schicht hohen Widerstandes liegt, welcher mit der Erfindung über einen PN-Übergang geschaltet ist, um die Schicht hohen Widerstandes zu stabilisieren,*
Fig. 3 eine perspektivische Ansicht eines teilweise geschnittenen NPN-Hochspannungstransistors mit einem Aufbau gemäß der Erfindung; : .'
- 8 - . Fig.
9842/0922
MO64P/G-971/72
Fig. 4 einen Schnitt durch eine Mesa-Diode mit einem Aufbau gemäß der Erfindung, wobei eine Schicht hohen Widerstandes über die Grenzschicht verläuft, um ein gleichförmiges elektrisches Feld auf der Oberfläche zu bewirken und wobei eine Passivierungsschicht hoher Vollständigkeit dazu benutzt wird, um die Schicht hohen Widerstandes vor Verunreinigungen* zu schützen.
In Fig. J ist eine Hochspannungsdiode IO bekannter Art dargestellt, die in einer N-leitenden Halbleiterscheibe 13 mit einer Deckfläche 3.3 und einer Bodenfläche 54 ausgebildet ist. In die Halbleiterscheibe .15. ist ein P-leitender Bereich 3 5 eindiffundiert, "so daß ein PN-Übergang 17 entsteht, der bei der Deckfläche 13 austritt. Ein stark dotierter N^-leitender Bereich 38 liegt auf der Bodenfläche 14 auf und erleichtert den elektrischen Kontakt zur Metallelektrode 19 , die auf dem N^-leitenden Bereich 18 angebracht ist. Mit der Metallelektrode 19 ist die untere Anschlußklemme 21 verbunden. Auf der Deckfläche 13 ist eine erste Passivierungsschicht 22 aus Siliziumdioxyd angebracht, die sich über die Halbleiterscheibe 11 erstreckt und Öffnungen 2O sowie 24 aufweist, in welchen der P -leitende Bereich 15 und die N-leitende Halbleiterscheibe 11 freiliegt. Diese Passivierungsschicht bedeckt jedoch den Bereich, in welchem der PN-Übergang 17 an der Deckfläche 13 austritt. Eine Schicht 23 hohen Widerstandes steht in inniger Kontaktverbindung mit der ersten Passivierungsschicht 22 und erstreckt sich einerseits über diese Passivierungsschicht und liegt andererseits auf der N-leitenden Halbleiterscheibe 11 in den öffnungen 24 auf dieser auf. Eine obere Metallelektrode 25 steht in Kontaktverbindung mit dem P-leitenden Bereich 35 durch die öffnung 2O in der ersten Passivierungsschicht 22. Diese Metallelek-
- 9 - trode
309842/0922
;': " MO64P/G-971/72
trode greift auch über die Widerstandsschicht 23 und zwar in einem Umfang, der ausreicht, um einen elektrischen Kontakt sicherzustellen. Die Widerstandsschicht 23 dient der Neutralisierung unkontrollierter Oberflächenladungen sowohl auf der Oberfläche als -auch innerhalb der Passivierungsschicht 22. Jedoch bietet die Widerstandsschicht 23 auch einen Weg für einen Nebenschluß-Leckstrom. Deshalb igt es wünschenswert, daß der Schichtwiderstand der Wider-Standsschicht 23 in einem Bereich von etwa IO - 3O' Ohm pro Quadrat liegt. Man kann jedoch feststellen, daß der Leckstrom amplitudenmäßig um mehrere Größenordnungen zunimmt, nachdem die Oberfläche des Aufbaus gemäß Fig. 1 mit organischen Passivierungsmitteln versehen ist bzw. der. Halbleiter aufbau der üblichen Umgebungseinflüsse für eine gewisse Zeitdauer ausgesetzt ist. Es wird vermutet, daß dies durch die Verschlechterung des Widerstandes der Widerstandsschicht 23 verursacht wird, indem Feuchtigkeit oder andere Verunreinigungen aus dem organischen Passivierungsmittel oder auf Grund von Umweltseinflüssen absorbiert werden.
Diese Schwierigkeiten werden durch die Maßnahmen der vorliegenden Erfindung überwunden. In Fig. 2 ist eine Hochspannungsdiode 28 in einer N-leitenden Halbleiterscheibe 29 mit einer Deckfläche. 3O und einer Bodenfläche 32 dargestellt. Auf der Bodenfläche 32 verläuft ein N -leitender Bereich 33, mit dem die untere an einer Klemme liegende Metallelektrode 34 angebracht ist. In den N-leitenden Bereich 29 ist im Zentrum ein P -leitender Bereich 37 eindiffundiert, so daß ein PN-Übergang 38 entsteht, der an der Deckfläche 31 austritt. In die Deckfläche 31 der Halbleiterscheibe 29 ist ferner ein erster P -leitender Schutzring 40 eindiffundiert, der um den P -leitenden Bereich 37 in einem Abstand verläuft. Ein zweiter P -leiten=
3 09 842/03 2 2
- IO - - ' . , der
MO64P/G-971/72
der Schutzring 41, der ebenfalls in die Deckfläche 31 der Halbleiterscheibe 29 eindiffundiert ist, umgibt in einem Abstand den ersten P leitenden Schutzring 4O.
Eine erste passivierende Oxydschicht 42 liegt auf der Deckfläche 31 auf und bedeckt alle in dieser Fläche austretenden PN-Übergänge. Die passivierende Schicht 42 ist mit öffnungen 44, 45 und 46 versehen, in welchen der P-leitende Bereich 37, der erste Schutzring 4O und der zweite Schutzring 41 entsprechend frei liegt. Die passivierende Oxydschicht 42 hat ferner eine öffnung 47, in welcher die N-leitende Halbleiterscheibe 29 frei liegt. Diese öffnung 47 verläuft um die öffnung 46 und liegt zu dieser konzentrisch. Eine Widerstandsschicht
49 mit hohem Widerstand, bestehend aus polykristallinem Silizium, Überzieht den Halbleiteraufbau und liegt auf der ersten passivierenden Oxydschicht 42 sowie dem Schutzring 4O, dem Schutzring 41 und auf der Halbleiterscheibe 29 in den jeweils zugeordneten Öffnungen 45, 46 und 47 auf. Eine mit einer Klemme 51 verbundene Metallelektrode
50 steht in Kontaktverbindung mit dem P-leitenden Bereich 37 durch die öffnung 44 in der Oxydschicht und greift über die Widerstands schicht 49 so weit über, daß ein elektrischer Kontakt mit dieser Widerstandsschicht sichergestellt ist. Der soweit beschriebene Halbleiteraufbau entspricht mit Ausnahme der Schutzringe dem Aufb au gemäß Fig. 1. Gemäß der Erfindung sind jedoch die beiden Schutzringe 4O und 41 zu diesem Halbleiteraufbau addiert und können in elektrischer Kontaktverbindung mit der Widerstansschicht 49 stehen. Dadurch wird eine an die Klemmen 36 und 51 angelegte Spannung einen niedrigen Stromfluß verursachen, der über den N -leitenden Bereich 33 und die N-leitende Halbleiterscheibe 29 sowie die Öffnung 47 zur Wi-
- Xl - derstandsschicht
30 98 42/09 2 2
v MO64P/G-971/72
derstandsschicht 49 und über diese zur Metallelektrode 50 fließt. Das elektrische Feld entlang der Oberfläche der Oxydschicht 42 ist gleichförmig auf Grund der Neutralisationswirkung der den Strom führenden Schicht 42 auf die Ladungskonzentration,auf dieser Schicht. Der über die Widerstandsschicht 49 fließende Strom bewirkt, daß dieser als Spannungsteiler wirkt, so daß an den konzentrisch liegenden Schutzringen 4O und 4! Spannungen wirksam sein können, die entsprechenden Zwischenwerten der an die Klemmen 36 und 5:1 angelegten Spannung entsprechen. Diese an die P -leitenden Schutzringe 40 und 41 angelegten Spannungen bewirken eine bessere Ausbeute und höhere Zuverlässigkeit bezüglich der mit hoher Spannung beaufschlagten PN-Übergänge, da zufällige Gitterfehler im Silizium Änderungen der Sperrleckströme der P -leitenden Schutzringe verursachen. Dies bewirkt, daß nicht auf einer Vorspannung liegende Schutzringe sich ändernde elektrische Potentiale annehmen und dadurch ihre Funktion der Aufrechterhaltung eines verringerten und gleichförmigen Feldes in der Oberflächenverarmungs zone des PN-Übergangs 38 nicht mehr voll genügen können. Durch die elektrische Kontaktverbindung der Schutzringe 4O und 41 mit der Widerstandsschicht 49 wird ein Teil des über sie fließenden Stromes als Leckstrom den P -leitenden Schutzringen 4O und 41 zugeführt, wodurch sich an diesen die gewünschten Potentiale aufbauen und man dadurch die maximale Sperrdurchbruchs spannung für den PN-Übergang 38 erhält. Wenn jedoch der Leckstrom, z.B. des Schutzringes 4O, aus sergewöhnlich groß ist, kann das Potential der Oberflächenverarmungszone des PN-Überganges 38 auf dem Potential der N-leitenden Halbleiterscheibe 29 festgehalten werden, wodurch die seitliche Erstreckung der Oberflächenverarmungszone stark verkürzt
- 12 - . wird
30 98 4 2/0922
MO64P/G-971/72
wird und dadurch die elektrische Feldintensität ansteigt, was zu einer Verringerung der Durchbruchsspannung führt. Wenn daher hohe Grenzschicht-Leckströme für ein Herstellungsverfahren zu erwarten sind, kann es wünschenswert sein, auf die Kontakte zwischen der Widerstands schicht 49 und der P -leitenden Sohutzringe 4O und 41 zu verzichten. Dies würde die Ergiebigkeit der PN-Übergänge mit einer dazwischen liegenden Sperrdurchbruchsspannung vergrößern. Der Widerstandswert der Widerstandsschicht 49 muß ausreichend hoch sein und etwa im Bereich von 5.O - HO" Ohm pro Quadrat liegen, damit der über die Widerstands schicht fließende Leckstrom einen noch annehmbaren kleinen Wert hat. Der Widerstandswert darf sich nicht bei nachfolgenden Verfahrensschritten oder durch Alterung wesentlich ändern. Bei der vorliegenden Erfindung wird der Widerstand der Schicht 49 durch eine weitere zweite passivierende Oxydschicht 53 stabilisiert, die auf der Widerstandsschicht 49 aufgedampft oder thermisch aufgewachsen ist und die frei liegenden Oberflächen bedeckt. Die passivierende Oxydschicht 53 ist zwischen mehreren hundert A bis mehreren tausend A dick und besteht aus einem Oxyd höchstmöglicher Vollstähdi gkeit.
Die zweite passivierende Schicht mit höchstmöglicher Qualität kann auch vorteilhaft dazu benutzt werden, um den Widerstand von Widerstandsschichten zu stabilisieren, wie sie bei Hochspannungstransistoren Verwendung finden. Ein derartiger Hochspannungstransistor 55 ist in Fig. 3 dargestellt. Eine N-leitende Halbleiterscheibe 56 mit einer Deckfläche 57 und einer Bodenfläche 58 ist mit einem N -leitenden Kollektorkontaktbereich 6O im Bereich der Bodenfläche 58 versehen. Mit dem Kollektorkontaktbereich 6O ist eine
3098U/0922"13'
JU MOö4P/ü-av3/ 12
Metallelektrode 61 verbunden. Ein P-leitender Basisbereich 62" ist in die N-leitende Halbleiterscheibe 56 eindiffundiert; wodurch der den Kollektorbasisübergang bildende PN-Übergang 64 entsteht, der mit dem Randbereich in der Deckfläche 57 austritt. Ein P-leitender Schutzring 63 ist ferner in die Halbleiterscheibe 56 eindiffundiert, wodurch ein weiterer PN-Übergang entsteht, der ebenfalls bis zur Deckfläche 57 der Halbleiterscheibe 56 verläuft. In de η Basisbereich 62 ist ein N -leitender Emitterbereich 65 eindiffundiert, wobei der dadurch entstehende PN-Übergang ebenfalls in der Deckfläche 57 austritt. Eine erste Passivierungsschicht 66 überzieht die Deckfläche 57 der N-leitenden Halbleiterscheibe 56 und hat Öffnungen 71, 70, 68 und 67, in welchen entsprechend die N-leitende Halbleiterscheibe 56,der Schutzring 63, der Basisbereich 62 und der Emitterbereich 65 frei liegt. Eine Metallelektrode 74 steht mit dem Basisbereich 62 über die Öffnung 68 und eine weitere Metallelektrode 73 mit dem Emitterbereich 75 über die Öffnung 67 in Kontaktverbindung. Die passivierende Schicht 66 wird von einer Widerstands· schicht 72 mit hohem Widerstand überzogen und steht durch die Öffnung 71 mit der N-leitenden Halbleiterscheibe 56 sowie mit der Basiselektrode 74 in Kontaktverbindung.
Die Widerstandsschicht 72 bewirkt bei dieser Konfiguration ein gleichförmiges Feld auf der Oberfläche der ersten Passivierungsschicht-66 über der Raumladungsverteilung des Kollektor-Basisübergangs des Hochspannungstransistors 55 gemäß Fig. 3. Der konzentrisch verlaufende Schutzring 63 unterbricht die sich aus- . breitende Raumladungsverteilung unter hohen Sperrspannungsbedingungen und verringert, das'mittlere elektrische Feld in dieser
- 14 - Raumladungs zone
309842/0922
MO64P/G-971/72
Raumladungszone. Die Widerstands schicht 72 bewirkt auch eine Leckstromstrecke parallel zum Kollektorbasisbereich, welche so klein wie möglich gehalten werden muß, während gleichzeitig die Oberflächenladungskonzentration noch wirkungsvoll neutralisiert und der Schutzring 63 noch vorgespannt werden soll. Die zweite Passivierungsschicht 75 mit hoher Vollständigkeit gemäß.der Erfindung verhindert eine Verschlechterung des Widerstandes infolge von Verunreinigungen aus der Umgebung oder nachfolgend angebrachte Passivierungsmittel, indem die Verunreinigungen von der Widerstandsschicht 72 absorbiert werden.
Der Aufbau der Diode 28 gemäß Fig. 2 sowie auch des Transistors gemäß Fig. 3 ist dazu geeignet, derartige Halbleiteranordnungen in typisch integrierten Schaltungen zu verwenden.
Die Maßnahmen der Erfindung sind jedoch auch dazu geeignet, bei Mesa-Halbleiteranordnungen Verwendung zu finden, wie eine solche in Fig. 4 beispielsweise als Mesa-Diode 78 im Schnitt dargestellt ist. Ein P-leitender Bereich 79 bildet zusammen mit dem N-leitenden Halbleiterkörper 81 einen PN-Übergang 8O. Bei einem typischen Mesa-Aufbau endet der PN-Übergang 8O in den Mesa-Seitenwänden und ist Üblicherweise nicht passiviert. Die einzelnen Dioden werden dadurch gegeneinander isoliert, daß um jeden Diodenbereich herum ein Kanal ausreichender Tiefe freigegeben wird, so daß der PN-Übergang in der Kanalwand an die Oberfläche tritt. In Fig. 4 ist dies an den beiden Seitenwänden 85 der eingeätzten Kanalabschnitte der Fall. Entsprechend der vorliegenden Erfindung wird eine Widerstandsschicht 82 mit hohem Widerstandswert, z. B. aus amorphem Silizium,auf
- 15 - den
309842/0922
MOG4P/G-971/72
den Seitenwänden 85 der ausgeätzten Kanäle aufgebracht, um den an den Seitenwänden 85 austretenden PN-Übergang 8O zu bedecken. Die Widerstandsschicht 82 kann mit der oberen Metallelektrode 68 in Kontaktverbindung stehen, die mit einer Anschlußklemme 83 verbunden ist. Durch Diffusion wird eine N -leitende Schicht 88 in der Bodenfläche des N-leitenden Halbleiterkörpers 81 ausgebildet. Auf dieser N -leitenden Schicht 88 liegt eine Metallelektrode 89 auf, die mit einer Klemme 9O verbunden ist. Eine Passivierungsschicht 92 mit hoher Vollständigkeit bzw. hoher Qualität überzieht die Widerstandsschicht 82 und schützt diese vor einer Verschlechterung des Widerstandswertes durch Absorption von Fremdkörpern oder Verunreinigungen aus der Umgebung. Dieser Mesa-Aufbau hat einen höheren Leckstrom als der Halbleiteraufbau gemäß den vorausstehend beschriebenen Figuren, jedoch läßt sich durch die Erfindung ein Mesa-Aufbau schaffen, der eine höhere Sperrdurchbruchsspannung als vorher bekannte Mesa-Anordnungen aufweist.
Neben der Verschlechterung der Sperrdurchbruchsspannung eine's PN-Übergangs bei Halbleiteranordnungen ist es auch bekannt, daß Ladungsanhäufungen auf der Oxydoberfläche parasitäre Feldeffektwirkungen zwischen benachbarten P-leitenden Bereichen innerhalb eines verhältnismäßig leicht dotierten N-leitenden Bereiches auslösen. Diese parasitäre Wirkung wird durch eine Inversion des Halbleitermaterials auf Grund eines elektrischen Feldes verursacht, das an der Oxydschicht oder der Isolationsschicht auf Grund des Vorhandenseins der erwähnten Ladungsanhäufung auf den Oxydflächen auftritt. Das Phänomen der Ladungswanderung auf der Oberfläche eines Oxyds ist in "Physics and Technology of Semivonductor Surfaces" von A. S. Cove auf den Seiten 347 - 35O beschrieben. Ober-
309842/0^22 ' flächenladung
MO64P/G-971/72
flächen
ladung kann sich auch auf Oxydflächen durch eine Ladungswanderung ergeben, die vom Kunststoff von Gehäusen oder anderen umgebenden Substanzen ausgeht. Bei Halbleiteranordnungen mit nebeneinanderliegenden P-leitenden Bereichen kann der dazwischenliegende Bereich auf Grund einer Inversion durch die Ladung auf der Oberfläche des Oxyds wie der Kanalbe'reich eines Feldeffektransistors wirken, wobei der eine P-leitende Bereich als Quelle und der andere P-leitende Bereich als Senke wirksam ist und die L a dungs verteilung auf dem Oxyd wie eine Torelektrode wirkt. Der Aufbau der vorlieg-enden Erfindung kann dazu benutzt werden, um eine solche parasitäre Feldeffektwirkung zu unterdrücken. Ein Weg dazu besteht in der Überwachung des Potentials auf der Oberfläche des Oxyds. Um dies zu erreichen, wird die als Kontaktanschluß verwendete Metallisation Über die kritischen Bereiche des Oxyds erstreckt und zwar über diejenigen Bereiche, die als Kanalbereiche für einen parasitären Feldeffekttransistor infrage kommen können, d. h. zu P-leitenden Bereichen benachbart liegen, wobei diese P-leitenden Bereiche unter dem Einfluß sich ansammelnder negativer Ladung auf der Oxydoberfläche die Funktion einer Quellenelektrode des parasitären Feldeffekttransistors annehmen. Die über die kritischen Bereiche der Oxydschicht sich erstreckende Metallisation wird deshalb verwendet, da die Spannung beim normalen Betrieb der Schaltung näherungsweise gleich dem gewünschten Potential auf der Oxydoberfläche ist, welches notwendig ist, um die den unerwünschten parasitären Kanal auslösende Inversion zu unterdrücken.
Dieses Verfahren arbeitet gut für einfache Fälle, wenn sich für die
- 17 - Metallisation
309842/0922
O64P/G-971/72
Metallisation eine einfache Anordnung ergibt. Häufig wird jedoch die einfache Ausbreitung der Metallisationsschicht für den Zweck der Unterdrückung parasitärer Feldeffektwirkungen begrenzt durch den geometrischen Aufbau bei komplizierten Halbleiteranordnungen, insbesondere bei integrierten Schaltungen. Dementsprechend ist gemäß der Erfindung eine undotierte Schicht aus polykristallinen! Silizium mit hohem Widerstandswert auf der Halbleiteranordnung.wie vorausstehend beschrieben, angebracht. Es werden Vorkehrungen getroffen, d. h. Öffnungen in dem polykristallinen Silizium und der ersten passivierenden Oxydschicht vorgesehen, um Kontaktverbindungen mit dem darunterliegenden Silizium herstellen zu können. Eine sehr dünne zweite passivierende Oxydschieht hoher Qualität mit einer Dicke von mehreren A wird auf der polykristallinen Silizium schicht aufgewachsen, um eine Verschlechterung des Widerstandswertes durch Verunreinigungen zu verhindern. Eine Metallisations schicht mit entsprechendem Muster wird anschließend aufgebracht, um die Kontaktverbindung zu den einzelnen Komponenten der integrierten Schaltung herzustellen. Die polykristalline Silizium schicht bestimmt das Potential auf der Oberfläche der ersten passivierenden Schicht und kontrolliert dabei die Ausbildung parasitärer Feldeffektwirkungen. Der Widerstand der polykristallinen Silizium schicht muß ausreichend hoch sein, damit die sich zwischen benachbarten Me;talisatiönsstreifen ausbildenden Leckströme vernachlässigbar sind. Andererseits muß die polykristalline Silizium schicht noch ausreichend Leitfähigkeit besitzen, um störende Ladungsansammlungen auf der Oxydfläche zu neutralisieren und dadurch das Potential auf der Oxydoberfläche festzulegen. Sinnvolle Vergrößerungen bestimmter Mets-llisationslinien, die die gewünschten Spannungen während
- 3-8 - ' dem
309842/0922
MO64P/G-971/72
dem normalen Betrieb der Schaltung führen, können über kritische Bereiche erstreckt werden, um das Potential auf der Oxydoberfläche genauer einzustellen. Für einige Fälle kann die Erfindung sehr einfach dadurch verwirklicht werden, daß ein polykristallines Material mit hohem Widerstand neben dem Emitter angebracht wird und als Kollektor für den Transistor wirkt, wobei ein isolierter N-leitender Inselbereich mit eindiffundierten Emitter- und Kollektorbereichen als die Basis wirksam ist und wobei ein P -leitender diffundierter Isolationsbereich und ein P-leitendes Substrat die Isolation der Halbleiteranordnung bewirken. Bei diesem Aufbau können zwei parasitäre Feldeffekttransistoren entstehen durch das Vorhandensein von negativer Ladung auf der Oxydoberfläche, welche durch Ladungswanderung von der normalerweise negativen Kollektorelektrode oder von dem Material des Gehäuses herrührt. Eine dieser Anordnungen entsteht zwischen den P-Diffusionen für den Kollektor und den Emitter und kann Üblicherweise leicht durch eine Vergrößerung des metallischen Emitterkontaktes über den Emitterbasisübergang hinaus unterdrückt werden, wodurch ein Potential auf der Oxydoberfläche aufgebaut wird, welches das Einschalten der entsprechenden parasitären Feldeffekttransistoranordnung verhindert. Jedoch kann die andere parasitäre Feldeffekttransistoranordnung, welche durch das Vorhandensein einer negativen Ladungsverteilung zwischen dem P-leitenden Kollektorring und den darum verlaufenden P diffundierten Isolationsbereich eingeschaltet werden kann, nicht vollständig durch eine auf dem Übergang liegende Metallschicht geschützt werden, da es notwendig ist, die Emittermetallisation mit Punkten außerhalb des lateralen PNP-Transistors zu verbinden. Die polykristalline Siliziumschicht mit hohem Widerstand Über der ersten Oxydschicht, die mit einer darüberliegenden Metallschicht in Verbindung steht, ermöglicht gemäß der Erfin-
30984
731659 9
MO64P/G-97J/72
dung die Ausbildung eines Potentials auf der Oxydoberfläche in den kritischen Bereichen und bietet eine Möglichkeit, die metallische Emitterelektrode auszudehnen, ohne einen Kurzschluß zur metallischen Kollektorelektrode zu bewirken. Der Transistor kann weiter verbessert werden, indem der metallische Kollektorkontakt soweit als möglich um den P-leitenden ringförmigen Kollektor herumgeführt wird, ohne einen Kurzschluß mit der Emitterelektrode zu bewirken. Da der Kollektor üblicherweise negativ ist, bewirkt das negative Potential auf der ersten Oxydoberfläche einen vergrößerten Kollektorraumladungsbereich und begünstigt das Einfangen der injezierten Minioritätsträger, was zu einer Verbesserung des'Übertragungsfrequenzgangs des Transistors führt. Die Metallisierung für den Basiskontakt, welche normalerweise negativ ist, kann über die polykristalline Silizium schicht erstreckt werden und mit dieser über die dünne zweite Oxydschicht hoher Güte in Verbindung stehen, wobei sich die Schicht über die den P-leitenden Kollektorringbereich umgebenden N-leitenden Bereich soweit wie möglich erstreckt, ohne mit metallischen Emitter- oder Kollektoranschlußleitungen einen Kurzschluß herzustellen. Dadurch wird die darunterliegende erste Oxydschicht auf einem hierzu relativ positiven Potentialwert gehalten, der eine parasitäre Kanalbildung zwischen dem Kollektor und den. P -leitenden Isolationsbereichen verhindert.
Eine weitere Anwendung dieser Metallisationserstreckung bzw. Ausbreitung der Metallisationsschicht kann bei integrierten MOS-Schal-
t r r r r
- 20 - tungen.
309842/0922
Qi MO64P/G-971/72
tungen Verwendung finden, seitdem es bekannt ist, daß schädliche parasitäre MOS-Anordnungen auftreten können. Für diesen Fall sieht die Erfindung eine stark dotierte polykristalline Silizium schicht über der gesamten Halbleiterscheibe nach der Metallisation und nach allen folgenden Passivierungsschritten vor, wodurch die gesamte Halbleiterscheibe außer den Öffnungen für die Kontaktierungsflächen bedeckt wird. Diese Schicht kann mit dem Substrat, auf welchem die MOS-Anordnungen angebracht sind, oder einer Stromversorgungsleitung in Verbindung stehen. Damit wird eine elektrische Erdungsebene über dem gesamten Halbleiterplättchen außer den Kontaktierungsbereichen angeordnet, wodurch das Potential auf der Oxydfläche über das gesamte Halbleiterplättchen auf einen Wert festgelegt wird, der das Einschalten irgendwelcher parasitärer MOS-Anordnungen auf dem Halbleiterplättchen zu verhindern hilft.
- 21 - Patentansprüche
309842/0922

Claims (4)

7316599 MO64P/G-971/72 Patentansprüche
1. J Hochspannungs-Halbleiteranordnung mit einem ersten Bereich
einer gegebenen Leitfähigkeit und einem angrenzenden zweiten Bereich einer entgegengesetzten Leitfähigkeit, wobei ein an der Oberfläche der Halbleiteranordnung austretender erster PN-Übergang entsteht, der durch eine auf der Oberfläche der Halbleiteranordnung angebrachten ersten Passivierungsschicht bedeckt ist und mit einer auf der Passivierungsschicht vorgesehenen Widerstandsschicht hohen Widerstands, die in elektrischer Kontaktverbindung mit dem ersten und zweiten Bereich steht, dadurch gekennzeichnet, daß eine zweite Passivierungsschicht hoher Vollständigkeit auf der Widerstandsschicht angebracht ist, um diese Widerstandsschicht vor einer Verschlechterung des Widerstandswertes zu schützen.
2. Hochspannungs-Halbleiteranordnung nach Anspruch 1, dadurch gekennzeichnet, daß die Widerstandsschicht hohen Widerstandes aus polykristallinem Silizium besteht.
3. Hochspannungs-Halbleiteranordnung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die zweite Passivierungsschicht aus Siliziumdioxyd besteht.
309842/0922
7316599
to
MO64P/G-971/72
4. Hochspannungs-Halbleiteranordnung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß Halbleiterschutzringe der entgegengesetzten Leitfähigkeit innerhalb des ersten Bereiches vorgesehen sind und mit diesem einen zweiten PN-Übergang bilden, der an der Oberfläche der Halbleiteranordnung austritt, daß die Schutzringe den zweiten Bereich in einem Abstand umgeben,und daß in der ersten Passivierungsschicht eine den Schutzring freilegende Öffnung vorhanden ist, in welcher die Widerstandsschicht mit dem Schutzring in Kontaktberührung steht, um das Potential des Schutzringes auf einem Wert festzuhalten, der zwischen dem Potential des ersten Bereiches und dem Potential des zweiten Bereiches liegt.
309842/0922
, ■'«*'·■*■■
Leerseite
DE19732316599 1972-04-03 1973-04-03 Hochspannungs-halbleiteranordnung Pending DE2316599A1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US24063472A 1972-04-03 1972-04-03

Publications (1)

Publication Number Publication Date
DE2316599A1 true DE2316599A1 (de) 1973-10-18

Family

ID=22907317

Family Applications (2)

Application Number Title Priority Date Filing Date
DE19737312557 Expired DE7312557U (de) 1972-04-03 1973-04-03 Hochspannungs-halbleiteranordnung
DE19732316599 Pending DE2316599A1 (de) 1972-04-03 1973-04-03 Hochspannungs-halbleiteranordnung

Family Applications Before (1)

Application Number Title Priority Date Filing Date
DE19737312557 Expired DE7312557U (de) 1972-04-03 1973-04-03 Hochspannungs-halbleiteranordnung

Country Status (3)

Country Link
JP (1) JPS4917686A (de)
DE (2) DE7312557U (de)
FR (1) FR2178932A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014107287A1 (de) * 2014-05-23 2015-11-26 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und Verfahren zur Überbrückung eines elektrischen Energiespeichers
US11921533B2 (en) 2019-09-03 2024-03-05 Renesas Electronics America Inc. Low-voltage collector-free bandgap voltage generator device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS541431B2 (de) * 1973-12-26 1979-01-24
JPS5598856A (en) * 1979-01-24 1980-07-28 Mitsubishi Electric Corp Method of fabricating semiconductor device
US4412242A (en) * 1980-11-17 1983-10-25 International Rectifier Corporation Planar structure for high voltage semiconductor devices with gaps in glassy layer over high field regions
JPS6351533A (ja) * 1986-08-21 1988-03-04 Mitsubishi Heavy Ind Ltd パワ−シヨベル
JPH07175063A (ja) * 1994-08-08 1995-07-14 Seiko Epson Corp 投写型表示装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014107287A1 (de) * 2014-05-23 2015-11-26 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und Verfahren zur Überbrückung eines elektrischen Energiespeichers
US10186734B2 (en) 2014-05-23 2019-01-22 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Device and method for bridging an electrical energy storage
US11921533B2 (en) 2019-09-03 2024-03-05 Renesas Electronics America Inc. Low-voltage collector-free bandgap voltage generator device

Also Published As

Publication number Publication date
FR2178932A1 (de) 1973-11-16
JPS4917686A (de) 1974-02-16
DE7312557U (de) 1973-08-16

Similar Documents

Publication Publication Date Title
DE4013643C2 (de) Bipolartransistor mit isolierter Steuerelektrode und Verfahren zu seiner Herstellung
DE102008000660B4 (de) Siliziumkarbid-Halbleitervorrichtung
DE69034157T2 (de) Bipolartransistor mit isolierter Gate-Elektrode und Verfahren zur Herstellung
DE3823270C2 (de) Transistor, insbesondere Isoliergate-Bipolartransistor, und Verfahren zu seiner Herstellung
DE19539541B4 (de) Lateraler Trench-MISFET und Verfahren zu seiner Herstellung
DE2611338C3 (de) Feldeffekttransistor mit sehr kurzer Kanallange
DE102010000531B4 (de) Halbleiterbauelement, elektronische Komponente und Verfahren zur Herstellung eines Halbleiterbauelements
DE2559360A1 (de) Halbleiterbauteil mit integrierten schaltkreisen
CH668505A5 (de) Halbleiterbauelement.
DE1944793C3 (de) Verfahren zur Herstellung einer integrierten Halbleiteranordnung
DE102008039845A1 (de) Halbleiterbauelement mit einem Halbleiterkörper
DE112019003790T5 (de) Superjunction-siliziumkarbid-halbleitervorrichtung und verfahren zum herstellen einer superjunction-siliziumkarbid-halbleitervorrichtung
DE112016007257B4 (de) Siliziumcarbid-Halbleitervorrichtung
DE19528998C2 (de) Bidirektionaler Halbleiterschalter und Verfahren zu seiner Steuerung
DE2234973A1 (de) Mis-halbleitervorrichtung
EP0071916A2 (de) Leistungs-MOS-Feldeffekttransistor und Verfahren zu seiner Herstellung
DE102015118616B3 (de) Latchup-fester Transistor
DE4026121A1 (de) Leitfaehigkeitsmodulations-mosfet
DE2316599A1 (de) Hochspannungs-halbleiteranordnung
DE2349938A1 (de) Halbleitervorrichtung
DE1539070A1 (de) Halbleiteranordnungen mit kleinen Oberflaechenstroemen
DE102018123439B4 (de) Leistungshalbleitertransistor, Verfahren zum Verarbeiten eines Leistungshalbleitertransistors und Verfahren zum Produzieren eines Leistungshalbleitertransistors
EP0656659B1 (de) ESD-Schutzstruktur für integrierte Schaltungen
DE19518339C2 (de) Halbleitereinrichtung und ein Verfahren zur Benutzung derselben
DE2535864A1 (de) Halbleiterbauelemente