DE2162808C3 - Einrichtung zum Analysieren der Energieverteilung von Elektronen mit einem Elektronen hoher Energie durchlassenden Kugelgitter-Filter - Google Patents
Einrichtung zum Analysieren der Energieverteilung von Elektronen mit einem Elektronen hoher Energie durchlassenden Kugelgitter-FilterInfo
- Publication number
- DE2162808C3 DE2162808C3 DE19712162808 DE2162808A DE2162808C3 DE 2162808 C3 DE2162808 C3 DE 2162808C3 DE 19712162808 DE19712162808 DE 19712162808 DE 2162808 A DE2162808 A DE 2162808A DE 2162808 C3 DE2162808 C3 DE 2162808C3
- Authority
- DE
- Germany
- Prior art keywords
- electrons
- energy
- electron
- filter
- mirror
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J49/00—Particle spectrometers or separator tubes
- H01J49/44—Energy spectrometers, e.g. alpha-, beta-spectrometers
- H01J49/46—Static spectrometers
- H01J49/48—Static spectrometers using electrostatic analysers, e.g. cylindrical sector, Wien filter
- H01J49/488—Static spectrometers using electrostatic analysers, e.g. cylindrical sector, Wien filter with retarding grids
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
- Electron Tubes For Measurement (AREA)
Description
Die Erfindung betrifft eine Einrichtung zum Analysieren der Energieverteilung der von einer Probe
ausgehenden Elektronen, mit einem Elektronen hoher Energie durchlassenden Filter in Form eines Kugelgitters,
mit einer gleichzeitig eine Bündelung und eine Monochromatisierung bewirkenden, gegebenenfalls als
Filter in Form eines Elektronen niederer Energie durchlassenden Elektronenspiegels ausgebildeten Vorrichtung,
sowie mit einem Detektor zum Bestimmen der Zahl der durchgelassenen Elektronen.
Bei einer derartigen aus »Applied Physics Letters«, Bd. 16, S. 348 (1970), bekannten Einrichtung ist in bezug
auf den Weg der Elektronen von der Probe zum Detektor das Elektronen hoher Energie durchlassende
Filter in Form eines Kugelgitters vor der gleichzeitig eine Bündelung und eine Monochromatisierung bewirkenden,
Elektronen niederer Energie durchlassenden Vorrichtung angeordnet. Sehr energiereiche Elektronen
können dadurch bis zu der zuletzt genannten Vorrichtung gelangen und auf ihrem Weg Sekundärelektronen
erzeugen, die das Meßergebnis verfälschen können und einen Untergrund erzeugen.
Der Erfindung liegt die Aufgabe zugrunde, eine solche Einrichtung derart auszubilden, daß ein durch
Sekundärelektronen bedingter Untergrund vermieden und dadurch ein verbessertes Signal/Untcrgrund-Verhältnis
bewirkt wird.
Diese Aufgabe wird erfindungsgemäß dadurch gelöst,
daß in bezug auf den Weg der Elektronen von der Probe zum Detektor vor der die Bündelung und Monochromatisierung
bewirkenden Vorrichtung ein Elektronen hoher Energie beseitigendes Vorfilter angeordnet ist
und daß das Kugelgitter-Filter in bezug auf den Weg der zum Detektor gelangenden Elektronen der die Bündelung
und Monochromatisierung bewirkenden Vorrichtung nachgeschaltet ist
Eine bevorzugte Ausgestaltung der Einrichtung nach der Erfindung ergibt sich aus dem Unteranspruch.
uie Erfindung wird anhand eines in der Zeichnung dargestellten Ausführungsbeispiels nachfolgend näher
ίο erläutert Es zeigt
F i g. 1 eine Auftragung des Transmissionsstroms gegen die Energie für den von einer mit Röntgenstrahlen
bestrahlten Probe emittierten Photoelektronenstrom,
Fig.2 eine Auftragung des Transmissionsstroms
gegen die Energie für ein Energiefilter mit engem Durchlaßbereich bei einer willkürlich gewählten Energie
E0,
Fig.3A einen Längsschnitt durch ein Ausführungsbeispiel einer Einrichtung gemäß der Erfindung,
Fig.3A einen Längsschnitt durch ein Ausführungsbeispiel einer Einrichtung gemäß der Erfindung,
Fig.3B eine perspektivische Ansicht der auseinandergezogenen
Teile der Einrichtung nach F i g. 3A,
F i g. 3C einen Teil eines Längsschnittes einer anderen Ausführungsform des rechten Umkehrendes,
Fig.4 eine schematische Veranschaulichung des Aufnahmewinkels der Vorrichtung der F i g. 3A und 3B,
F i g. 5 eine Veranschaulichung des Zusammenwirkens von Vorfilter, erstem und zweitem Filter in einer
Einrichtung gemäß der Erfindung und F i g. 6 ein typisches Spektrum, wie es bei der Analyse
einer Goldprobe mit einer Einrichtung gemäß der Erfindung erhalten wird.
Ein Analysator soll a) ein hohes Auflösungsvermögen haben, und b) eine hohe Empfindlichkeit besitzen.
Außerdem soll er für einen hohen Elektronendurchsatz geeignet sein, so daß die Kategorisierung der Elektronenenergie
in relativ kurzer Zeit erfolgen kann.
Die Energieverteilungsspektren von Photoelektronen, die durch Erregen mit Röntgenstrahlen erzeugt
werden, sind derart, daß diejenigen Elektronen, die ein bestimmtes Element kennzeichnen, ein bestimmtes
Energieniveau und im allgemeinen als diskrete Maxima auf einem Untergrund mit breiter Energieverteilung
erscheinen. Der Untergrund entsteht dadurch, daß Elektronen, die selbst eine bestimmte, das Element (oder
die Probe) kennzeichnende Energie haben würden, innerhalb der Probe Zusammenstöße erlitten und dabei
variierende Energiemengen verloren haben. Eine andere Quelle des Untergrundstroms ist die Röntgenbremsstrahlung,
die die gewünschte Röntgenstrahlung enger Energieverteilung (charakteristische Röntgenstrahlung)
überlagert. Eine typische Energieverteilung von Elektronen, die von einer Probe emittiert werden,
einschließlich des unvermeidbaren Untergrundes, ist in F i g. 1 gezeigt.
Da nur Intensität und Form des eine bestimmte Energiedifferenz repräsentierenden Photoelektronenpeaks
gemessen werden soll, werden sowohl die Empfindlichkeit als auch die Meßgenauigkeit proportio-
bo nal verringert, wenn ein anderer Teil des Untergrundes
als der direkt unter dem Peak liegende gemessen wird. Das erfolgt, weil die statistische Variation der Zahl der
Elektronen, die von dem breiten Untergrund aufsteigen, groß ist. Aus diesem Grund sollte der Strom innerhalb
b5 eines Photoelektronenpeaks (der repräsentativ für die
Zahl der IZleklronen in diesem engen Lnergiebereich
ist), mil einem Energiefilter, das nur einen engen Energiebeieich durchläßt, gemessen werden. F i g. 2
zeigt die Transmissionskennkurve eines solchen Filters bei einer willkürlich gewählten Energie E0.
Wenn ein Elektronenspiegel als ein Element in einem Elektronenspektrometer für eine Energieanalyse verwendet
wird, hängt das Auflösungsvermögen des Spektrometers weitgehend von dem Raumwinkel dB,
der von dem Spiegel und der Fläche S2 der Eintrittsöffnung A (Fig.4) bestimmt wird und der
folgenden Beziehung genügt
ab. h
Gleichzeitig bestimmt die Größe des Aufnahmewinkels Ω zum Teil auch die Elektronenauszählung. Bei
Vorgabe einer gewünschten Auflösung-=- können dann
die Spiegelparameter E0 und Ω so spezifiziert werden,
daß eine bestimmte Elektronenauszählung erzielt wird, da die Auszählung proportional der der Luminosität L
ist, d.h.:
A = S2 = (d6) · /P
L= ΑΩ.
L= ΑΩ.
Daraus ergibt sich die Bedeutung einer großen Eintrittsöffnung A und eines großen Aufnahmewinkels
Ω. Mittels eines konkaven kugeligen Elektronenspiegels können in idealer Weise die optimalen Ausgangswe-te
dieser Parameter gewählt werden. Außerdem kann der Spiegel zusammen mit anderen Elementen der Elektronenoptik,
wie Linsen, verwendet werden, so daß diese Auswahl sich auf die Bestimmung einer engen
Spektralbande auswirkt.
F i g. 5 zeigt eine Auftragimg der Elektronentransmission oder Auszählung gegen die Elektronenenergie. Die
mit »Durchl. niedr. Energie« bezeichnete ausgezogene
Linie veranschaulicht die charakteristische Filtration von Elektronen, die durch Röntgenstrahlen erzeugt
werden, mittels eir.es Elektronenspiegels, der so angeordnet ist, daß er einen großen Teil der
eintretenden Elektronen abfängt. Beim Verfolgen dieser Kurve von links nach rechts zeigt sich, daß bei einem
bestimmten Energieniveau M ein verhältnismäßig scharfes »Abschneiden« von durchgelassenen (d. h.
reflektierten) Elektronen durch den Spiegel erscheint, was bedeutet, daß alle Elektronen mit Energien über
diesem Niveau für die weitere Analyse eliminiert werden. Das Gebiet unter dieser Kurve repräsentiert
also die Gesamtzah-en Elektronen des niedrigeren Energiebereiches, die für die weitere Analyse durchgelassen
werden. Von diesen wiederum sind die einzigen Elektronen von Interesse diejenigen am energiereichen
Ende dieser Bande niedriger Energie, nämlich diejenigen Elektronen, die in das Gebiet der Überlappung der
Kurve »Durchl. hoher Energie« mit derjenigen des »Durchl. niedr. Energie« fallen. Wie im folgenden
erläutert, erfolgt das Beseitigen der Elektronen hoher Energie durch ein Kugelgitter mit einem Verzögerungspotential. In Fig. 5 erscheinen noch zwei weitere
Kurven, von denen die eine, in gestrichelten Linien gezeigte, als »Vorfilter« bezeichnet ist: Die Bedeutung
dieser Kurve wird weiter unten näher beschrieben.
Der gesamte in F i g. 3A gezeigte Analysator befindet sich in einem nicht dargestellten evakuierten Gehäuse.
Die erregende Röntgenstrahlung ist ein praktisch monochromatischer Strahl, der längs der Linie N durch
eine öffnung in einem Rohr 10, die mit einem aus einer 1 μπι starken Aluminiumfolie bestehenden Filter abgedeckt
ist, ir -iinem Winkel von etwa 20° auf eine zu
analysierende Probe 11 auftrifft und die Emission von Photoelektronen von dieser Probe 11 verursacht.
Die Messung der Bindungsenergie der von der
Die Messung der Bindungsenergie der von der
5 Oberfläche der Probe 11 emittierten Photoelektronen
ermöglicht eine halbquantitative Analyse der Oberfläche. Diese Messung geschieht wie folgt: der von der
Probe 11 austretende Elektronenstrahl 12 verläuft axial
durch das Rohr 10 und das daran anschließende kegeistumpfförmige Rohr 13, das in einem verhältnismäßig
großen Raumwinkel von der Probe 11 ausgeht. Von dort verläuft der Strahl durch eine Kondensorlinse
14 zwischen den Rohren 13 und 15.
Der schräg abgeschnittene Rohrfortsau 15a bildet eine Verbindung mit einer oberen Ablenkplatte 17a
eines Parallelpllattenfilters 17 sowie mit der Wand Tdes
rohrförmigen Gehäuses. Zwischen den Rohren 13 und
15 ist ein variierbares Verzögerungsfeld angeordnet. Der Elektronenstrahl 12 wird durch die Kondensatorlinse
14 auf eine Stelle in der Mitte einer öffnung 16a, die eine Sperrgitteröffnung ist, gebündelt.
Das Parallelplattenfilter 17 bildet ein Vorfilter für
Photoelektronen niedriger Energie, die in das Loch 16a eintreten, und enthält außer den Ablenkplatten 17a und
\7b eine Elektronenabsorptions- und -erdungsplatte 17a die besonders deutlich in Fig.3B gezeigt ist. Das
Parallelplattenfilter 17 weist auch zwei vertikal orientierte parallele Platten YId und 17eauf, durch die
die Einrichtung zu einer Doppelbündelungseinrichtung wird.
Durch das Vorfilter werden Elektronen mit einer Energie unter dem Abschneidenergieniveau des Parallelplattenfilters
17 um einen Winkel von etwa 90° abgelenkt und verlaufen dann zu dem konkaven kugeligen Elektronenspiegel 18, der ein Rückteil aus
festem Material aufweist. Eine Gitteröffnung 16£> dient als Eintrittsöffnung (typischerweise 1,27 cm Durchmesser,
gemessen längs der Breite der Platte 17a, so daß ihre Projektion auf eine Ebene senkrecht zur Längsachse //
etwa 0,63 cm hoch ist) für den zu dem Elektronenspiegel 18 laufenden Strahl und ist etwas über der Achse H
angeordnet.
Vom Elektronenspiegel 18 wird der Elektronenstrahl, wie allgemein durch die Linien 19 gezeigt, durch die
untere Hälfte einer mit einem zentralen Loch versehenen scheibenförmigen Elektrode 20, die bei
Erdpotential gehalten wird, geführt, an welcher Stelle ein Bild der Gitteröffnung 16i>
gebildet wird.
Der Elektronenstrahl passiert dann das Elektronen
so hoher Energie durchlassende Filter, das aus einem üblichen kugeligen Doppelgitter besteht und zu einem
Elektronenkollektor 22 überleitet. Der Elektronenkollektor 22 weist einen offenen Zylinder 22a auf, der am
äußeren Ende mit einer Platte ml· einem zentralen Elektronenstrahlaustrittsloch 22f>
abgeschlossen ist. Gegenüber diesem Loch ist ein herkömmlicher Kanalelektronenvervielfacher 23 angeordnet.
Der Rohrteil, der den Kollektor 22 und das Kugelgitter 21 umfaßt, ist in einem kleinen Winkel,
typischerweise 0,7°, gegen die Achse H aus der vertikalen F-F (F i g. 3A) nach oben geneigt, um eine
bessere Auflösung zu erzielen. Durch diese Neigung kann die Kollektorachse mit der geometrischen Achse
der unter=n Hälfte des Lochs 20a in der scheibenförmigen Elektrode 20 zusammenfallen. Die gleiche Wirkung
kann erzielt werden, wenn das Filter, das die Elektronen hoher Energie durchläßt, nach unten verschoben wird.
Zwischen dem Parallelpiattenfilter 17 und dem
Zwischen dem Parallelpiattenfilter 17 und dem
Elektronenspiegel 18 befindet sich eine herkömmliche Quadrupollinse 24 aus einem Paar vertikaler gebogener
Platten 24a und einem Paar horizontaler gebogener Platten 246(F i g. 3B), die dazu dienen, den reflektierten
Elektronenstrahl in die untere Hälfte des Lochs 20a zu führen. Ein bei Erdpotential gehaltenes Kugelgitter 25
ist zwischen der Quadrupollinse 24 und dem Spiegel 18 angeordnet und bildet einen Teil der dem Spiegel
zugeordneten Filtermittel, die Elektronen niedriger Energie passieren lassen.
Ringelektroden 26 und der Elektronenspiegel 18 werden bei verschiedenen, mit Bezug auf das Gitter 25
negativen Potentialen gehalten, die in der Richtung des Elektronenstrahls zum Spiegel 18 hin negativer werden.
Diese Aufteilung der elektrostatischen Metallflächen in dem Gebiet zwischen dem Gitter 25 und dem Spiegel 18
in einzelne Segmente verhindert Unregelmäßigkeiten des Feldes und trägt zur Erzielung einer hohen
Auflösung bei. Auch zwischen den Kugelgittern 21a und
2Ii) (Fig.3B) sind mehrere getrennte Ringelektroden
21c, die in der Fortschreitungsrichtung des reflektierten Strahls 19 bei zunehmend negativerem Potential
gehalten werden und zusammen mit den Gittern 21a und 216 den reflektierten Elektronenstrahl so weit
verzögern, daß nur diejenigen der von dem Spiegel 18 reflektierten Elektronen mit einer Energie über einem
bestimmten Abschneidwert das die Elektronen hoher Energie durchlassende Filter passieren und zu dem
Kollektor gelangen, angeordnet. Auf diese Weise wird eine enge Energiebande ausgewählt.
Die Abmessungen des Elektronenanalysators der Fig.3A und 3B sind im allgemeinen derart, daß der
Aufnahmewinkel Ω (Fig.4) zwischen der öffnung 166
des Vorfilters 17 und der Spiegeloberfläche etwa Ve Sterad beträgt. Dies wird erreicht, indem man einen
Spiegelradius von 12,7 cm, gemessen vom untersten Punkt dder Öffnung 166 zum Gitter 25, wählt, wobei die
Sehne des Gitters 25 senkrecht zur Achse H 5,1 cm beträgt. Wenigstens der gleiche Aufnahmewinkel Ω
wird durch das Kegelstumpfrohr 13 vorgegeben, so daß durch den Elektronenspiegel 18 der relativ große
Raumwinkel der Probe über die gesamte Länge des Elektronenstrahls erhalten bleiben kann.
Typische Potentiale an den einzelnen Teilen des Analysators sind während des Betriebs wie folgt:
Kugelspiegel 18
Ringelektroden 26
Ringelektroden 26
Gitter 25
Quadrupollinse 24
Parallelplattenelektrode 17a
Parallelplattenelektrode 176
Parallelplattenelektrode 17c
Parallelplattenelektroden
17dund17e
Kondensorlinse 14
Parallelplattenelektrode 17a
Parallelplattenelektrode 176
Parallelplattenelektrode 17c
Parallelplattenelektroden
17dund17e
Kondensorlinse 14
Ringelektroden 21c
Gitter 216
Gitter 2t a
Kollektor 22a
Gitter 2t a
Kollektor 22a
-75 V
gleichmäßig unterteilte negative Spannungen zwischen Null und -75 V
OV ±10V OV -53 V OV
-48 V ±780 V für eine Probe 11 von + 1334V
gleichmäßig unterteilt zwischen 0 und-74,9 V OV
-74,9 V -74,9 V
Weitere Komponenten vom Potential 0 V sind der Kanalelektronenvervielfacher 23 und die kreisförmige,
mit einem Loch versehene Elektrode 20 sowie das gesamte rohrförmige Gehäuse Γ zwischen den Kugelgittern
216 und 25. Alle Linsenelektroden sind in dem Gehäuse T gehaltert und durch Isolatoren aus
Polytetrafluoräthylen gegen dieses isoliert.
Der Elektronenkollektor 22 nimmt die durch die DoppelgiltL-ranordnung 21 passierten verzögerten
ίο Elektronen auf. Die Innenwand 22a des Elektronenkollektors
22 wird typischerweise bei einem Vorpotential von - 74,9 V gehalten, so daß die in diesen Hohlraum 22
eintretenden Elektronen darin gehalten und zu dem Kanalelektronenvervielfacher 23 vom Potential 0
gezogen werden. Der Kollektor 22 ist im wesentlichen feldfrei, abgesehen von der anziehenden Wirkung des
Elektronenvervielfachers. Ein typischer Weg eines Photoelektrons im Elektronenkollektor 22 ist bei R
(F ig. 3A) gezeigt.
Ein typischer Abstand zwischen den Ablenkplatten 17a und 176 ist 0,89 cm, wobei dieser Wert die
Divergenz des dem Spiegel 18 über das Vorfilter 17 zugeführten Elektronenstrahls bestimmt. Der Abstand
der Gitteröffnung 16a zur Oberfläche der Probe beträgt typischerweise 8,2 cm. Die scheibenförmige Elektrode
20 mit dem zentralen Loch sperrt den Durchtritt von Elektronen mit Energien über dem gewünschten engen
Energiebereich sowie von dem Elektronenspiegel 18 ausgehender sekundärer Parasitenelektronen. Die untere
Hälfte des zentralen Lochs 20a dient als Eintrittsöffnung für das Filter 21 und der Bestimmung von dessen
Auflösung.
Die Platte 17c von Erdpotential dient der Isolierung des reflektierten Elektronenstrahls gegen das Feld des
Parallelplattenfilters 17. Gleichzeitig wird durch die elektrostatische Sperre 17/"der Platte 176 die Gleichmäßigkeit
des Feldes im Parallelplattenfilter 17 mit einer Potentialverteilung in dem Bereich von 0 bis zu dem
Potential von 176 verbessert.
Vor dem Elektronenspiegel 18 ist das Paralleiplattenfilter 17. das Elektronen niedriger Energie durchläßt, als
Vorfilter angeordnet. Andernfalls würden Elektronen hoher Energie, beispielsweise solche, die mit einer
Energie von 100 V oder darüber auf den Spiegel 18 aufprallen würden, die Erzeugung einer großen Menge
Sekundärelektronen niedriger Energie verursachen, und diese Elektronen würden eine Pseudoreflektionswirkung
ergeben, wie durch die ausgezogene Linie P in F i g. 5 gezeigt. Die Verwendung des Parallelplattenfilters
17 mit der in Fig.5 in gestrichelten Linien eingetragenen Kennlinie vermindert diese Wirkung auf
den für die Analyse interessierenden Energiebereich.
Wenn der Analysator zur Aufnahme eines Spektrums verwendet wird, wird die enge Energiebande, die durch
die Abschneidwerte des Elektronenspiegels 18 und des Kugelgitterfilters 21 vorgegeben ist, konstant gehalten
und die Abtastung erfolgt durch Verändern des Potentials bei A oder eine äquivalente Verzögerung des
Strahls an irgendeiner Stelle vor der öffnung 16a
Die gemäß der vorliegenden Erfindung ausgebildete Einrichtung ergibt eine Auflösung von 1,2 eV und eine
Empfindlichkeit von etwa 1600 Zählereignissen/mA Röntgenstrahlstrom.
Zur Veranschaulichung zeigt F i g. 6 ein Spektrum des Golddoublets, das mit der gemäß der vorliegenden
Erfindung ausgebildeten Einrichtung erhalten ist Die Bestrahlung erfolgte mit Aluminium-Ka-Strahlung.
Gezeigt sind die Elektronenlinien von Gold /VVi und
Λ/νιι. Auf der Höhe des Peaks der Linie A/vn betrug die
Elektronenauszählung 49 000/sek bei einer Auflösung in halber Höhe dieser Linie von 1,2 eV. Die zur Erzeugung
dieses Spektrums verwendete Röntgenstrahlenergie betrug 10 kV bei 3OmA. Der Elektronenspiegel 18
wurde ebenso wie das Kugelgitter, das Elektronen hoher Energie durchläßt, bei -67,5 V gehalten. Die mit
dem Analysator der vorliegenden Erfindung erzielte Verbesserung ist zweifellos zum großen Teil auf den
großen Aufnahmewinkel Ω, der möglicherweise bis zu einem Höchstwert vom Raumwinkel 1 vergrößert
werden könnte, zurückzuführen.
Die Teile der erfindungsgemäß ausgebildeten Einrichtung können aus verschiedenen Metallen bestehen.
Die Rohre 10, 13 und 15,15a können aus Aluminium, die Linse 14 kann aus Kupfer und die Platten 17a. b. c. dund
e können aus rostfreiem Stahl bestehen. Die elektrostatische Sperre 17/ kann aus Kupfer, die Scheibenelektrode
20 aus Aluminium und die Quadrupollinse 24 kann aus Messing bestehen. Das Kugelgitter 25 kann einen
Aluminiumring und ein Netz aus Stahl oder Kupfer aufweisen. Die Ringelektroden 26 können aus Messing
bestehen. Der Kugelspiegel 18 mit festem Rückteil kann aus Aluminium bestehen. Der Kollektor 22 kann aus
rostfreiem Stahl bestehen. Die Gitter 21a und 21 b können ein Gitter aus Stahl und Kupfer oder Stahl und
Nickel mit Aluminiumrändern aufweisen.
Die Maschengröße des Gitters 21a beträgt 39 Linien/cm, so daß 80% des Elektronenstrahls durchtreten
können, d. h. 20% sind Drahtgebiet und 80% offenes Maschengebiet. Alle anderen Gitter haben Maschengrößen
von 7,9 Linien/cm und eine Durchlässigkeit von 97%. Der Zweck der Verwendung feinmaschiger Gitter
von dem gewünschten Potential ist es, den die betreffenden Filter erreichenden Elektronen so weit wie
möglich eine riefelfreie Äquipotentialfläche entgegenzustellen. Selbst bei Verwendung der feinst möglichen
Gitter kann aber die Potentialfläche niemals völlig riefelfrei sein, da die Masche selbst Riefel von geringe
Spannung liefert.
In Fig. 3C 18' wird ein offcnmaschiger kugelige
Elektronenspiegel 18' anstelle des Spiegels 18 mi ■>
festem Rückteil der Ausführungsform der Fi g. 3A um 3B verwendet. Vor dem Elektronenspiegel 18' sine
Kugelgitter 25' und Ringelektroden 26', die gleich denei der in der oben beschriebenen Ausführungsform sind
angeordnet. Tatsächlich kann der Elektronenspiegel 18
ίο ebenso aufgebaut sein, wie das Gitter 21a, d.h. ein<
Maschengröße von 39 Linien/cm haben, so daß di< Drahtfläche 20% und die offene Maschenflächc 80<M
beträgt.
Bei dieser Ausführungsform durchsetzt der groß«
ΙΊ Teil der Elektronen hoher Energie die öffnungen de:
Spiegels, ohne auf die Drähte aufzutreffen, so daß kein« unechte Sekundärelektronenerzeugung bewirkt wird
Um die durch den Elektronenspiegel 18' hindurchge henden Elektronen hoher Geschwindigkeit aufzufan
gen, wird unmittelbar hinter dem Spiegel eint Elektronenfalle 30 angeordnet. Diese Falle kann einfad
ein durchlöchertes Metallteil, wie es in einem Autoküh ler verwendet wird, sein, der an der Rückseite
verschlossen ist, um den Durchtritt von Elektronen zi
2r> sperren und der bei einem positiven Potential vor
typischerweise + 100 bis +300 V gehallen wird, um aiii
durch den Spiegel hindurchtretenden Elektronen mi Sicherheit aufzufangen.
Für den Elektronenspiegel 18' kann ein Netz mit einei
M) maximalen offenen Maschenfläche verwendet werden
gewünschtenfalls kann aber auch ein Paar planarei Spiegel anstelle des Elektronenspiegels 18' verwende
werden. In diesem Fall wird vor die Spiegel ein< elektrostatische Kollimatorlinse angeordnet, die dam
j5 entlang des Weges 19 rückkehrende Elektronen bündel
und dadurch die gleiche Funktion hat, die sonst von den Elektronenspiegel 18 ausgeübt wird.
Hierzu 4 Blatt Zeichnungen
809 636/17:
Claims (2)
1. Einrichtung zum Analysieren der Energieverteilung der von einer Probe ausgehenden Elektronen,
mit einem Elektronen hoher Energie durchlassenden Filter in Form eines Kugelgitters, mit einer
gleichzeitig eine Bündelung und eine Monochromatisierung bewirkenden, gegebenenfalls als Filter in
Form eines Elektronen niederer Energie durchlassenden Elektronenspiegels ausgebildeten Vorrichtung,
sowie mit einem Detektor zum Bestimmen der Zahl der durchgelassenen Elektronen, dadurch
gekennzeichnet, daß in bezug auf den Weg der Elektronen von der Probe (11) zum Detektor
(23) vor der die Bündelung und Monochromatisierung bewirkenden Vorrichtung (18, 25) ein Elektronen
hoher Energie beseitigendes Vorfilier (17) angeordnet ist und daß das Kugelgitter-Filter (21) in
bezug auf den Weg der zum Detektor (23) gelangenden Elektronen der die Bündelung und
Monochromatisierung bewirkenden Vorrichtung (18,25) nachgeschaltet ist.
2. Einrichtung nach Anspruch 1, dadurch gekennzeichnet, daß das Vorfilter Ablenkplatten (17a, 176/
von denen die eine [Ma) mit einem schräg abgeschnittenen Rohrfortsatz (\5a) in Verbindung
steht, sowie eine Elektronenabsorptions- und Erdungsplatte (17c^ und dazu senkrecht orientierte
parallele Platten (17c/, 17e^ aufweist, wodurch eine
doppelte Bündelung erreicht wird, und daß an dem Bildpunkt einer öffnung (\6b) des Vorfilters (17)
eine mit einem zentralen Loch versehene scheibenförmige Elektrode (20) angeordnet ist.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US9947570A | 1970-12-18 | 1970-12-18 | |
US16857571A | 1971-08-03 | 1971-08-03 |
Publications (3)
Publication Number | Publication Date |
---|---|
DE2162808A1 DE2162808A1 (de) | 1972-07-06 |
DE2162808B2 DE2162808B2 (de) | 1977-12-29 |
DE2162808C3 true DE2162808C3 (de) | 1978-09-07 |
Family
ID=26796151
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE19712162808 Expired DE2162808C3 (de) | 1970-12-18 | 1971-12-17 | Einrichtung zum Analysieren der Energieverteilung von Elektronen mit einem Elektronen hoher Energie durchlassenden Kugelgitter-Filter |
Country Status (6)
Country | Link |
---|---|
JP (1) | JPS512396B1 (de) |
CA (1) | CA942435A (de) |
DE (1) | DE2162808C3 (de) |
GB (1) | GB1370360A (de) |
NL (1) | NL173799C (de) |
SE (1) | SE367279B (de) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5335691U (de) * | 1976-09-02 | 1978-03-29 | ||
JPS55129083A (en) * | 1979-03-27 | 1980-10-06 | Kasai Kk | Playing tool for child |
DE3138927A1 (de) * | 1981-09-30 | 1983-04-14 | Siemens AG, 1000 Berlin und 8000 München | Abbildendes spektrometer fuer die elektronenstrahl-messtechnik und elektronenstrahl-messgeraet |
DE3206309A1 (de) * | 1982-02-22 | 1983-09-15 | Siemens AG, 1000 Berlin und 8000 München | Sekundaerelektronen-spektrometer und verfahren zu seinem betrieb |
EP1605492B1 (de) | 2004-06-11 | 2015-11-18 | ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH | Teilchenstrahlgerät mit Gegenfeldspektrometer |
CN112799120B (zh) * | 2019-11-13 | 2024-03-22 | 中国科学院国家空间科学中心 | 一种离子和电子同步测量的双通道静电分析器 |
-
1971
- 1971-11-30 CA CA128,998A patent/CA942435A/en not_active Expired
- 1971-12-17 NL NL7117400A patent/NL173799C/xx not_active IP Right Cessation
- 1971-12-17 DE DE19712162808 patent/DE2162808C3/de not_active Expired
- 1971-12-17 SE SE1622371A patent/SE367279B/xx unknown
- 1971-12-17 GB GB5869571A patent/GB1370360A/en not_active Expired
- 1971-12-17 JP JP10197271A patent/JPS512396B1/ja active Pending
Also Published As
Publication number | Publication date |
---|---|
NL173799B (nl) | 1983-10-03 |
JPS512396B1 (de) | 1976-01-26 |
DE2162808A1 (de) | 1972-07-06 |
NL7117400A (de) | 1972-06-20 |
GB1370360A (en) | 1974-10-16 |
CA942435A (en) | 1974-02-19 |
SE367279B (de) | 1974-05-20 |
DE2162808B2 (de) | 1977-12-29 |
NL173799C (nl) | 1984-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE2043323C3 (de) | Vorrichtung für die Elektronenspektroskopie zur chemischen Analyse (ESCA) | |
DE69118492T2 (de) | Massenspektrometer mit elektrostatischem Energiefilter | |
DE2255302C3 (de) | Einrichtung für die Sekundär-Ionen-Massenspektroskopie | |
DE1937482C3 (de) | Mikrostrahlsonde | |
DE2213719A1 (de) | Vorrichtung zur Spektroskopie mit geladenen Teilchen | |
DE2538123A1 (de) | Anordnung zum massenspektrometrischen nachweis von ionen | |
DE2152467B2 (de) | Gerät zur Elementenanalyse | |
DE2719856C2 (de) | ||
DE2420275C3 (de) | Vorrichtung zum Analysieren einer Oberflächenschicht durch Ionenzerstreuung | |
DE2458025C2 (de) | Analysevorrichtung für eine Oberflächenschicht | |
DE2162808C3 (de) | Einrichtung zum Analysieren der Energieverteilung von Elektronen mit einem Elektronen hoher Energie durchlassenden Kugelgitter-Filter | |
DE2705430C3 (de) | Elektrostatischer Analysator für geladene Teilchen | |
EP0911860A2 (de) | Teilchenstrahlgerät mit Energiefilter | |
DE2031811B2 (de) | Doppelfokussierendes stigmatisch abbildendes Massenspektrometer | |
DE2659385C3 (de) | Ionen-Mikrosonden-Analysator | |
DE2835978C3 (de) | Energieanalysator zur Analyse der Energie geladener Teilchen | |
DE1448178A1 (de) | Massenspektrometerroehre | |
DE2402728C3 (de) | Vorrichtung zum Analysieren einer Oberflachenschicht durch Ionenzerstreuung | |
DE2162835A1 (de) | Energieanalyse geladener Teilchen | |
EP0185789B1 (de) | Analysator für geladene Teilchen | |
DE2329190A1 (de) | Roentgenspektrometer | |
DE2103306C3 (de) | Einrichtung zum Bestimmen der Energie geladener Teilchen mit zwei zwischen einer Teilchenquelle und einer Teilchennachweiseinrichtung liegenden fokussierenden Elektroden | |
DE2022132A1 (de) | Spektrometer | |
DE2733966C3 (de) | lonenemissionsmikroskop-Mikroanalysator | |
DE1764033C3 (de) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C3 | Grant after two publication steps (3rd publication) |