DE19828541A1 - Flammwidrige Polycarbonat-ABS-Formmassen - Google Patents

Flammwidrige Polycarbonat-ABS-Formmassen

Info

Publication number
DE19828541A1
DE19828541A1 DE19828541A DE19828541A DE19828541A1 DE 19828541 A1 DE19828541 A1 DE 19828541A1 DE 19828541 A DE19828541 A DE 19828541A DE 19828541 A DE19828541 A DE 19828541A DE 19828541 A1 DE19828541 A1 DE 19828541A1
Authority
DE
Germany
Prior art keywords
weight
parts
alkyl
molding compositions
compositions according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE19828541A
Other languages
English (en)
Inventor
Thomas Eckel
Michael Zobel
Dieter Wittmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer AG
Original Assignee
Bayer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer AG filed Critical Bayer AG
Priority to DE19828541A priority Critical patent/DE19828541A1/de
Priority to EP99929191A priority patent/EP1095097B1/de
Priority to AU46090/99A priority patent/AU4609099A/en
Priority to DE59912270T priority patent/DE59912270D1/de
Priority to CNB998079243A priority patent/CN1207331C/zh
Priority to US09/720,274 priority patent/US6740695B1/en
Priority to PCT/EP1999/004060 priority patent/WO2000000542A1/de
Priority to CA002335965A priority patent/CA2335965A1/en
Priority to KR1020007014732A priority patent/KR100584071B1/ko
Priority to JP2000557300A priority patent/JP4383665B2/ja
Priority to BR9911478-0A priority patent/BR9911478A/pt
Priority to ARP990103071A priority patent/AR016996A1/es
Publication of DE19828541A1 publication Critical patent/DE19828541A1/de
Priority to HK02100803.5A priority patent/HK1039346A1/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K21/00Fireproofing materials
    • C09K21/14Macromolecular materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/5399Phosphorus bound to nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
    • C08L23/28Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment by reaction with halogens or compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L55/00Compositions of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08L23/00 - C08L53/00
    • C08L55/02ABS [Acrylonitrile-Butadiene-Styrene] polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/22Thermoplastic resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2666/00Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
    • C08L2666/02Organic macromolecular compounds, natural resins, waxes or and bituminous materials

Abstract

Die vorliegende Erfindung betrifft mit Phosphazenen ausgerüstete Polycarbonat-ABS-Formmassen, die einen ausgezeichneten Flammschutz und sehr gute Verarbeitungseigenschaften aufweisen, wobei das Pfropfpolymerisat aus Masse-, Lösungs- oder Masse-Suspensions-Polymerisationsverfahren hergestellt wird.

Description

Die vorliegende Erfindung betrifft mit Phosphazenen ausgerüstete Polycarbonat-ABS- Formmassen, die einen ausgezeichneten Flammschutz und sehr gute Verarbeitungs­ eigenschaften aufweisen, wobei das Pfropfpolymerisat mittels Masse-, Lösungs- oder Masse-Suspensions-Polymerisationsverfahren hergestellt wird.
In DE-A 196 16 968 werden polymerisierbare Phosphazenderivate, Verfahren zu deren Herstellung und deren Verwendung als aushärtbare Bindemittel für Lacke, Beschichtungen, Füllmittel, Spachtelmassen, Klebstoffe, Formteile oder Folien beschrieben.
In WO 97/400 92 werden flammgeschützte Formmassen aus thermoplastischen Poly­ meren und unsubstituierten Phosphazenen (Typ PNn-xH1-y) beschrieben.
EP-A 728 811 beschreibt eine thermoplastische Mischung bestehend aus aromati­ schem Polycarbonat, Pfropfcopolymer, Copolymer und Phosphazenen, welche gute Flammschutzeigenschaften, Schlagzähigkeit und Wärmeformbeständigkeit aufweisen.
Aufgabe der vorliegenden Erfindung ist die Bereitstellung von Polycarbonat/ABS- Formmassen mit einer ausgezeichneten Flammfestigkeit und ausgezeichneten Verarbeitungseigenschaften wie gutem Fließverhalten und reduzierter Werkzeug­ belagsbildung während des Verarbeitungsprozesses. Dieses Eigenschaftsspektrum wird besonders bei Anwendungen im Bereich Datentechnik wie etwa für Gehäuse von Monitoren, Druckern, Printern, Kopierern usw. gefordert.
Es wurde nun gefunden, daß PC/ABS-Formmassen, die Phosphazene in Kombination mit mittels Masse-, Lösungs- oder Masse-Suspensions-Polymerisationsverfahren hergestelltem Pfropfpolymerisat auf Basis eines Dienkautschuks die gewünschten Eigenschaften aufweisen.
Gegenstand der Erfindung sind daher thermoplastische Formmassen enthaltend
  • A) 40 bis 99, vorzugsweise 60 bis 98,5 Gew.-Teile aromatisches Polycarbonat und/oder Polyestercarbonat
  • B) 0,5 bis 60, vorzugsweise 1 bis 40, insbesondere 2 bis 25 Gew.-Teile mittels Masse-, Lösungs- oder Masse-Suspensions-Polymerisationsverfahren herge­ stelltes Pfropfpolymerisat von
    • 1. B.1) 50 bis 99, vorzugsweise 65 bis 98 Gew.-% eines oder mehrerer Vinylmono­ meren auf
    • 2. B.2) 50 bis 1, vorzugsweise 35 bis 2 Gew.-% einer oder mehrerer Pfropfgrundlagen mit einer Glasumwandlungstemperatur < 10°C, vorzugsweise < 0°C, besonders bevorzugt < -10°C,
  • C) 0 bis 45, vorzugsweise 0 bis 30, besonders bevorzugt 2 bis 25 Gew.-Teile mindestens eines thermoplastischen Polymers, ausgewählt aus der Gruppe der Vinyl(co)polymerisate und Polyalkylenterephthalate,
  • D) 0,1 bis 50, vorzugsweise 2 bis 35, insbesondere 5 bis 25 Gew.-Teile minde­ stens einer Komponente, ausgewählt aus der Gruppe der Phosphazene der Formeln
    worin
    R jeweils gleich oder verschieden ist und für Amino, jeweils gegebenenfalls halogeniertes, vorzugsweise mit Fluor halogeniertes C1- bis C6-Alkyl oder C1-C8-Alkoxy, jeweils gegebenenfalls durch Alkyl, vorzugsweise C1-C4-Alkyl, und/oder Halogen, vorzugsweise Chlor, Brom, substituiertes C5- bis C6-Cycloalkyl, C6- bis C20-Aryl, vorzugsweise Phenyl oder Naphthyl, C6- bis C20-Aryloxy, vorzugsweise Phenoxy, Naphthyloxy, oder C7-C12-Aralkyl, vorzugsweise Phenyl-C1-C4-alkyl, steht,
    k für 0 oder eine Zahl von 1 bis 15, vorzugsweise für eine Zahl von 1 bis 10 steht,
  • E) 0,05 bis 5, vorzugsweise 0,1 bis 1, besonders bevorzugt 0,1 bis 0,5 Gew.-Teile fluoriertes Polyolefin.
Komponente A
Erfindungsgemäß geeignete aromatische Polycarbonate und/oder aromatische Poly­ estercarbonate gemäß Komponente A sind literaturbekannt oder nach literaturbekann­ ten Verfahren herstellbar (zur Herstellung aromatischer Polycarbonate siehe bei­ spielsweise Schnell, "Chemistry and Physics of Polycarbonates", Interscience Pub­ lishers, 1964 sowie die DE-AS 14 95 626, DE-OS 22 32 877, DE-OS 27 03 376, DE- OS 27 14 544, DE-OS 30 00 610, DE-OS 38 32 396; zur Herstellung aromatischer Polyestercarbonate z. B. DE-OS 30 77 934).
Die Herstellung aromatischer Polycarbonate erfolgt z. B. durch Umsetzung von Diphenolen mit Kohlensäurehalogeniden, vorzugsweise Phosgen und/oder mit aro­ matischen Dicarbonsäuredihalogeniden, vorzugsweise Benzoldicarbonsäuredihalo­ geniden, nach dem Phasengrenzflächenverfahren, gegebenenfalls unter Verwendung von Kettenabbrechern, beispielsweise Monophenolen und gegebenenfalls unter Ver­ wendung von trifunktionellen oder mehr als trifunktionellen Verzweigern, beispiels­ weise Triphenolen oder Tetraphenolen.
Diphenole zur Herstellung der aromatischen Polycarbonate und/oder aromatischen Polyestercarbonate sind vorzugsweise solche der Formel (III)
wobei
A eine Einfachbindung, C1-C5-Alkylen, C2-C5-Alkyliden, C5-C6-Cycloalkyliden, -O-, -SO-, -CO-, -S-, -SO2-, C6-C12-Arylen, an das weitere aromatische gege­ benenfalls Heteroatome enthaltende Ringe kondensiert sein können,
oder ein Rest der Formel (IV) oder (V)
B jeweils C1-C12-Alkyl, vorzugsweise Methyl, Halogen, vorzugsweise Chlor und/oder Brom
x jeweils unabhängig voneinander 0, 1 oder 2,
p 1 oder 0 sind, und
R7 und R8 für jedes X1 individuell wählbar, unabhängig voneinander Wasserstoff oder C1-C6-Alkyl, vorzugsweise Wasserstoff, Methyl oder Ethyl,
X1 Kohlenstoff und
m eine ganze Zahl von 4 bis 7, bevorzugt 4 oder 5 bedeuten, mit der Maßgabe, daß an mindestens einen Atom X1, R7 und R8 gleichzeitig Alkyl sind.
Bevorzugte Diphenole sind Hydrochinon, Resorcin, Dihydroxydiphenole, Bis- (hydroxyphenyl)-C1-C5-alkane, Bis-(hydroxyphenyl)-C5-C6-cycloalkane, Bis- (hydroxyphenyl)-ether, Bis-(hydroxylphenyl)-sulfoxide, Bis-(hydroxyphenyl)-ketone, Bis-(hydroxyphenyl)-sulfone und α,α-Bis-(hydroxyphenyl)-diisopropyl-benzole sowie deren kernbromierte und/oder kernchlorierte Derivate.
Besonders bevorzugte Diphenole sind 4,4'-Dihydroxydiphenyl, Bisphenol-A, 2,4- Bis(4-hydroxyphenyl)-2-methylbutan, 1,1-Bis-(4-hydroxyphenyl)-cyclohexan, 1,1- Bis-(4-hydroxyphenyl)-3.3.5-trimethylcyclohexan, 4,4'-Dihydroxydiphenylsulfid, 4,4'- Dihydroxydiphenyl-sulfon sowie deren di- und tetrabromierten oder chlorierten Der­ viate wie beispielsweise 2,2-Bis(3-Chlor-4-hydroxyphenyl)-propan, 2,2-Bis-(3,5- dichlor-4-hydroxyphenyl)-propan oder 2,2-Bis-(3,5-dibrom-4-hydroxyphenyl)-pro­ pan.
Insbesondere bevorzugt ist 2,2-Bis-(4-hydroxyphenyl)-propan (Bisphenol-A).
Es können die Diphenole einzeln oder als beliebige Mischungen eingesetzt werden.
Die Diphenole sind literaturbekannt oder nach literaturbekannten Verfahren erhältlich.
Für die Herstellung der thermoplastischen, aromatischen Polycarbonate sind geeignete Kettenabbrecher beispielsweise Phenol, p-Chlorphenol, p-tert.-Butylphenol oder 2,4,6-Tribromphenol, aber auch langkettige Alkylphenole, wie 4-(1,3-Tetramethyl­ butyl)-phenol gemäß DE-OS 28 42 005 oder Monoalkylphenol bzw. Dialkylphenole mit insgesamt 8 bis 20 C-Atomen in den Alkylsubstituenten, wie 3,5-di-tert.-Butyl­ phenol, p-iso-Octylphenol, p-tert.-Octylphenol, p-Dodecylphenol und 2-(3,5-Dime­ thylheptyl)-phenol und 4-(3,5-Dimethylheptyl)-phenol. Die Menge an einzusetzenden Kettenabbrechern beträgt im allgemeinen zwischen 0,5 Mol-%, und 10 Mol-%, bezo­ gen auf die Molsumme der jeweils eingesetzten Diphenole.
Die thermoplastischen, aromatischen Polycarbonate haben mittlere Gewichtsmittel­ molekulargewichte (Mw gemessen z. B. durch Ultrazentrifuge oder Streulichtmes­ sung) von 10 000 bis 200 000, vorzugsweise 20 000 bis 80 000.
Die thermoplastischen, aromatischen Polycarbonate können in bekannter Weise ver­ zweigt sein, und zwar vorzugsweise durch den Einbau von 0,05 bis 2,0 Mol-%, bezo­ gen auf die Summe der eingesetzten Diphenole, an dreifunktionellen oder mehr als dreifunktionellen Verbindungen, beispielsweise solchen mit drei und mehr phenoli­ schen Gruppen.
Geeignet sind sowohl Homopolycarbonate als auch Copolycarbonate. Zur Herstellung erfindungsgemäßer Copolycarbonate gemäß Komponente A können auch 1 bis 25 Gew.-%, vorzugsweise 2,5 bis 25 Gew.-% (bezogen auf die Gesamtmenge an ein­ zusetzenden Diphenolen) Polydiorganosiloxane mit Hydroxy-aryloxy-Endgruppen eingesetzt werden. Diese sind bekannt (s. beispielsweise US-Patent 3 419 634) bzw. nach literaturbekannten Verfahren herstellbar. Die Herstellung Polydiorganosiloxan- haltiger Copolycarbonate wird z. B. in DE-OS 33 34 782 beschrieben.
Bevorzugte Polycarbonate sind neben den Bisphenol-A-Homopolycarbonaten die Copolycarbonate von Bisphenol-A mit bis zu 15 Mol-%, bezogen auf die Molsummen an Diphenolen, anderen als bevorzugt bzw. besonders bevorzugt genannten Diphe­ nole, insbesondere 2,2-Bis(3,5-dibrom-4-hydroxyphenyl)-propan.
Aromatische Dicarbonsäuredihalogenide zur Herstellung von aromatischen Polyester­ carbonate sind vorzugsweise die Disäuredichloride der Isophthalsäure, Terephthal­ säure, Diphenylether-4,4'-dicarbonsäure und der Naphthalin-2,6-dicarbonsäure.
Besonders bevorzugt sind Gemische der Disäuredichloride der Isophthalsäure und der Terephthalsäure im Verhältnis zwischen 1 : 20 und 20 : 1.
Bei der Herstellung von Polyestercarbonaten wird zusätzlich ein Kohlensäurehaloge­ nid, vorzugsweise Phosgen als bifunktionelles Säurederivat mitverwendet.
Als Kettenabbrecher für die Herstellung der aromatischen Polyestercarbonate kom­ men außer den bereits genannten Monophenolen noch deren Chlorkohlensäureester sowie die Säurechloride von aromatischen Monocarbonsäuren, die gegebenenfalls durch C1-C22-Alkylgruppen oder durch Halogenatome substituiert sein können, sowie aliphatische C2-C22-Monocarbonsäurechloride in Betracht.
Die Menge an Kettenabbrechern beträgt jeweils 0,1 bis 10 Mol-%, bezogen im Falle der phenolischen Kettenabbrecher auf Mole Diphenole und Falle von Monocarbon­ säurechlorid-Kettenabbrecher auf Mole Dicarbonsäuredichloride.
Die aromatischen Polyestercarbonate können auch aromatische Hydroxycarbonsäuren eingebaut enthalten.
Die aromatischen Polyestercarbonate können sowohl linear als auch in bekannter Weise verzweigt sein (siehe dazu ebenfalls DE-OS 29 40 024 und DE-OS 30 07 934).
Als Verzweigungsmittel können beispielsweise 3- oder mehrfunktionelle Carbonsäu­ rechloride, wie Trimesinsäuretrichlorid, Cyanursäuretrichlorid, 3,3'-, 4,4'-Benzophe­ non-tetracarbonsäuretetrachlorid, 1,4,5,8-Napthalintetracarbonsäuretetrachlorid oder Pyromellithsäuretetrachlorid, in Mengen von 0,01 bis 1,0 Mol-% (bezogen auf einge­ setzte Dicarbonsäuredichloride) oder 3- oder mehrfunktionelle Phenole, wie Phloro­ glucin, 4,6-Dimethyl-2,4,6-tri-(4-hydroxyphenyl)-hepten-2,4,4-Dimethyl-2,4-6-tri-(4- hydroxyphenyl)-heptan, 1,3,5-Tri-(4-hydroxyphenyl)-benzol, 1,1,1-Tri-(4-hydroxy­ phenyl)-ethan, Tri-(4-hydroxyphenyl)-phenylmethan, 2,2-Bis[4,4-bis(4-hydroxy­ phenyl)-cyclohexyl]-propan, 2,4-Bis(4-hydroxyphenyl-isopropyl)-phenol, Tetra-(4- hydroxyphenyl)-methan, 2,6-Bis(2-hydroxy-5-methyl-benzyl)-4-methyl-phenol, 2-(4- Hydroxyphenyl)-2-(2,4-dihydroxyphenyl)-propan, Tetra-(4-[4-hydroxyphenyl-isopro­ pyl]-phenoxy)-methan, 1,4-Bis[4,4'-dihydroxytri-phenyl)-methyl]-benzol, in Mengen von 0,01 bis 1,0 Mol-% bezogen auf eingesetzte Diphenole verwendet werden. Phe­ nolische Verzweigungsmittel können mit den Diphenolen vorgelegt, Säurechlorid- Verzweigungsmittel können zusammen mit den Säuredichloriden eingetragen werden.
In den thermoplastischen, aromatischen Polyestercarbonaten kann der Anteil an Car­ bonatstruktureinheiten beliebig variieren. Vorzugsweise beträgt der Anteil an Carbo­ natgruppen bis zu 100 Mol-%, insbesondere bis zu 80 Mol-%, besonders bevorzugt bis zu 50 Mol-%, bezogen auf die Summe an Estergruppen und Carbonatgruppen. Sowohl der Ester- als auch der Carbonatanteil der aromatischen Polyestercarbonate kann in Form von Blöcken oder statistisch verteilt im Polykondensat vorliegen.
Die relative Lösungsviskosität (ηrel) der aromatischen Polycarbonate und Polyester­ carbonate liegt im Bereich 1,18 bis 1,4, vorzugsweise 1,22 bis 1,3 (gemessen an Lösungen von 0,5 g Polycarbonat oder Polyestercarbonat in 100 ml Methylenchlorid- Lösung bei 25°C).
Die thermoplastischen, aromatischen Polycarbonate und Polyestercarbonate können allein oder im beliebigen Gemisch untereinander eingesetzt werden.
Komponente B
Das kautschukmodifizierte Pfropfpolymerisat B umfaßt ein statistisches (Co)polymerisat aus Monomeren gemäß B.1.1 und B.1.2, sowie einem mit dem statistischen (Co)polymerisat aus B.1.1 und B.1.2 gepfropften Kautschuk B.2, wobei die Herstellung von B in bekannter Weise nach einem Masse- oder Lösungs- oder Masse-Suspensions-Polymerisationsverfahren erfolgt, wie z. B. in den US 3 243 481, US 3 509 237, US 3 660 535, 4 221 833 und US 4 239 863 beschrieben.
Beispiele für Monomere B.1.1 sind Styrol, α-Methylstyrol, halogen- oder alkylkernsubstituierte Styrole wie p-Methylstyrol, p-Chlorstyrol, (Meth)acrylsäure- C1-C8-alkylester wie Methylmethacrylat, n-Butylacrylat und t-Butylacrylat. Beispiele für Monomere B.1.2 sind ungesättigte Nitrile wie Acrylnitril, Methacrylnitril, (Meth)Acrylsäure-C1-C8-alkylester wie Methylmethacrylat, n-Butylacrylat, t- Butylacrylat, Derivate (wie Anhydride und Imide) ungesättigter Carbonsäuren wie Maleinsäureanhydrid und N-Phenyl-maleinimid oder Mischungen davon.
Bevorzugte Monomere B.1.1 sind Styrol, α-Methylstyrol und/oder Methylmeth­ acrylat, bevorzugte Monomere B.1.2 sind Acrylnitril, Maleinsäureanhydrid und/oder Methylmethacrylat.
Besonders bevorzugte Monomere sind B.1.1 Styrol und B.1.2 Acrylnitril.
Für die kautschukmodifizierten Pfropfpolymerisate B geeignete Kautschuke B.2 sind beispielsweise Dienkautschuke, EP(D)M-Kautschuke, also solche auf Basis Ethylen/Propylen und gegebenenfalls Dien, Acrylat-, Polyurethan-, Silikon-, Chloropren- und Ethylen/Vinylacetat-Kautschuke.
Bevorzugte Kautschuke B.2 sind Dienkautschuke (z. B. auf Basis Butadien, Isopren etc.) oder Gemische von Dienkautschuken oder Copolymerisate von Dienkautschuken oder deren Gemischen mit weiteren copolymerisierbaren Monomeren (z. B. gemäß B.1.1 und B.1.2), mit der Maßgabe, daß die Glasübergangstemperatur der Komponente B.2 unterhalb 10°C, vorzugsweise unterhalb -10°C liegt. Besonders be­ vorzugt wird reiner Polybutadienkautschuk.
Die Komponente B kann, falls erforderlich und wenn dadurch die Kautschukeigenschaften der Komponente B.2 nicht beeinträchtigt werden, zusätzlich noch geringe Mengen, üblicherweise weniger als 5 Gew.-%, vorzugsweise weniger als 2 Gew.-%, bezogen auf B.2, vernetzend wirkender ethylenisch ungesättigter Monomeren enthalten. Beispiele für solche vernetzend wirkenden Monomere sind Alkylendiol-di-(meth)-acrylate, Polyester-di-(meth)-acrylate, Divinylbenzol, Trivinylbenzol, Triallylcyanurat, Allyl-(meth)-acrylat, Diallylmaleat und Diallyl­ fumarat.
Das kautschukmodifizierte Pfropfpolymerisat B wird erhalten durch Pfropfpolymerisation von 50 bis 99, bevorzugt 65 bis 98, besonders bevorzugt 75 bis 97 Gew.-Teilen eines Gemischs aus 50 bis 99, bevorzugt 60 bis 95 Gew.-Teilen Monomeren gemäß B.1.1 und 1 bis 50, bevorzugt 5 bis 40 Gew.-Teilen Monomeren gemäß B.1.2 in Gegenwart von 1 bis 50, vorzugsweise 2 bis 35, besonders bevorzugt 2 bis 15, insbesondere 2 bis 13 Gew.-Teilen der Kautschukkomponente B.2, wobei die Pfropfpolymerisation nach einem Masse- oder Lösungs- oder Masse-Suspensions- Polymerisationsverfahren durchgeführt wird.
Wesentlich bei der Herstellung der kautschukmodifizierten Pfropfpolymerisate B ist, daß die Kautschukkomponente B.2 vor der Pfropfpolymerisation im Gemisch der Monomeren B.1.1 und B.1.2 in gelöster Form vorliegt. Die Kautschukkomponente B.2 darf also weder so stark vernetzt sein, daß eine Lösung in B.1.1 und B.1.2 unmöglich wird, noch darf B.2 zu Beginn der Pfropfpolymerisation bereits in Form diskreter Teilchen vorliegen. Die für die Produkteigenschaften von B wichtige Teilchenmorphologie und zunehmende Vernetzung von B.2 bildet sich erst im Verlauf der Pfropfpolymerisation aus (siehe hierzu beispielsweise Ullmann, Encyclopädie der technischen Chemie, Band 19, S. 284 ff., 4. Auflage 1980).
Das statistische Copolymerisat aus B.1.1 und B.1.2 liegt üblicherweise im Polymerisat B zu einem Teil auf dem Kautschuk B.2 auf oder eingetropft vor, wobei dieses Pfropfmischpolymerisat diskrete Teilchen im Polymerisat B ausbildet. Der Anteil des auf oder eingepfropften Copolymerisats aus B.1.1 und B.1.2 am gesamten Copolymerisat aus B.1.1 und B.1.2 - also die Pfropfausbeute (= Gewichtsverhältnis der tatsächlich gepfropften Pfropfmonomeren zu den insgesamt verwendeten Pfropfmonomeren × 100, angegeben in %) - sollte dabei 2 bis 40%, vorzugsweise 3 bis 30%, besonders bevorzugt 4 bis 20% betragen.
Der mittlere Teilchendurchmesser der resultierenden gepfropften Kautschukteilchen (ermittelt durch Auszählung an elektronenmikroskopischen Aufnahmen) liegt im Bereich von 0,5 bis 5 µm, vorzugsweise von 0,8 bis 2,5 µm.
Komponente C
Die Komponente C umfaßt ein oder mehrere thermoplastische Vinyl(co)polymerisate C.1 und/oder Polyalkylenterephthalate C.2.
Geeignet sind als Vinyl(co)Polymerisate C.1 Polymerisate von mindestens einem Mo­ nomeren aus der Gruppe der Vinylaromaten, Vinylcyanide (ungesättigte Nitrile), (Meth)Acrylsäure-(C1-C8)-Alkylester, ungesättigte Carbonsäuren sowie Derivate (wie Anhydride und Imide) ungesättigter Carbonsäuren. Insbesondere geeignet sind (Co)Polymerisate aus
  • 1. C.1.1 50 bis 99, vorzugsweise 60 bis 80 Gew.-Teilen Vinylaromaten und/oder kern­ substituierten Vinylaromaten wie beispielsweise Styrol, α-Methylstyrol, p- Methylstyrol, p-Chlorstyrol) und/oder Methacrylsäure-(C1-C8)-Alkylester wie z. B. Methylmethacrylat, Ethylmethacrylat), und
  • 2. C.1.2 1 bis 50, vorzugsweise 20 bis 40 Gew.-Teilen Vinylcyanide (ungesättigte Nitrile) wie Acrylnitril und Methacrylnitril und/oder (Meth)Acrylsäure-(C1- C8)-Alkylester (wie z. B. Methylmethacrylat, n-Butylacrylat, t-Butylacrylat) und/oder ungesättigte Carbonsäuren (wie Maleinsäure) und/oder Derivate (wie Anhydride und Imide) ungesättigter Carbonsäuren (beispielsweise Maleinsäu­ reanhydrid und N-Phenyl-Maleinimid).
Die (Co)Polymerisate C.1 sind harzartig, thermoplastisch und kautschukfrei.
Besonders bevorzugt ist das Copolymerisat aus C.1.1 Styrol und C.1.2 Acrylnitril.
Die (Co)Polymerisate gemäß C.1 sind bekannt und lassen sich durch radikalische Polymerisation, insbesondere durch Emulsions-, Suspensions-, Lösungs- oder Mas­ sepolymerisation herstellen. Die (Co)Polymerisate besitzen vorzugsweise Molekular­ gewichte Mw (Gewichtsmittel, ermittelt durch Lichtstreuung oder Sedimentation) zwi­ schen 15 000 und 200 000.
Die Polyalkylenterephthalate der Komponente C.2) sind Reaktionsprodukte aus aro­ matischen Dicarbonsäuren oder ihren reaktionsfähigen Derivaten, wie Dimethylestern oder Anhydriden, und aliphatischen, cycloaliphatischen oder araliphatischen Diolen sowie Mischungen dieser Reaktionsprodukte.
Bevorzugte Polyalkylenterephthalate enthalten mindestens 80 Gew.-%, vorzugsweise mindestens 90 Gew.-%, bezogen auf die Dicarbonsäurekomponente Terephthalsäure­ reste und mindestens 80 Gew.-%, vorzugsweise mindestens 90 Mol-%, bezogen auf die Diolkomponente Ethylenglykol- und/oder Butandiol-1,4-Reste.
Die bevorzugten Polyalkylenterephthalate können neben Terephthalsäureresten bis zu 20 Mol-%, vorzugsweise bis zu 10 Mol-%, Reste anderer aromatischer oder cycloali­ phatischer Dicarbonsäuren mit 8 bis 14 C-Atomen oder aliphatischer Dicarbonsäuren mit 4 bis 12 C-Atomen enthalten, wie z. B. Reste von Phthalsäure, Isophthalsäure, Naphthalin-2,6-dicarbonsäure, 4,4'-Diphenyldicarbonsäure, Bernsteinsäure, Adipin­ säure, Sebacinsäure, Azelainsäure, Cyclohexan-diessigsäure.
Die bevorzugten Polyalkylenterephthalate können neben Ethylenglykol- bzw. Butan­ diol-1,4-Resten bis zu 20 Mol-%, vorzugsweise bis zu 10 Mol-%, andere aliphatische Diole mit 3 bis 12 C-Atomen oder cycloalipahtische Diole mit 6 bis 21 C-Atomen enthalten, z. B. Reste von Propandiol-1,3, 2-Ethylpropandiol-1,3, Neopentylglykol, Pentandiol-1,5, Hexandiol-1,6, Cyclohexan-dimethanol-1,4, 3-Ethylpentandiol-2,4, 2- Methylpentandiol-2,4, 2,2,4-Trimethylpentandiol-1,3, 2-Ethylhexandiol-1,3, 2,2- Diethylpropandiol-1,3, Hexandiol-2, 5, 1,4-Di-(β-hydroxyethoxy)-benzol, 2,2-Bis-(4- hydroxycyclohexyl)-propan, 2,4-Dihydroxy-1,1,3,3-tetramethyl-cyclobutan, 2,2-Bis- (4-β-hydroxyethoxy-phenyl)-propan und 2,2-Bis-(4-hydroxypropoxyphenyl)-propan (DE-OS 24 07 674, 24 07 776, 27 15 932).
Die Polyalkylenterephthalate können durch Einbau relativ kleiner Mengen 3- oder 4- wertiger Alkohole oder 3- oder 4-basischer Carbonsäuren, z. B. gemäß DE-OS 19 00 270 und US-PS 3 692 744, verzweigt werden. Beispiele bevorzugter Verzwei­ gungsmittel sind Trimesinsäure, Trimellithsäure, Trimethylolethan und -propan und Pentaerythrit.
Besonders bevorzugt sind Polyalkylenterephthalate, die allein aus Terephthalsäure und deren reaktionsfähigen Derivaten (z. B. deren Dialkylestern) und Ethylenglykol und/oder Butandiol-1,4 hergestellt worden sind, und Mischungen dieser Polyalkylen­ terephthalate.
Mischungen von Polyalkylenterephthalaten enthalten 1 bis 50 Gew.-%, vorzugsweise 1 bis 30 Gew.-%, Polyethylenterephthalat und 50 bis 99 Gew.-%, vorzugsweise 70 bis 99 Gew.-%, Polybutylenterephthalat.
Die vorzugsweise verwendeten Polyalkylenterephthalate besitzen im allgemeinen eine Grenzviskosität von 0,4 bis 1,5 dl/g, vorzugsweise 0,5 bis 1,2 dl/g, gemessen in Phenol/o-Dichlorbenzol (1 : 1 Gewichtsteile) bei 25°C im Ubbelohde-Viskosimeter.
Die Polyalkylenterephthalate lassen sich nach bekannten Methoden herstellen (s. z. B. Kunststoff-Handbuch, Band VIII, S. 695 ff, Carl-Hanser-Verlag, München 1973).
Komponente D
Phosphazene gemäß Komponente D, welche gemäß der vorliegenden Erfindung ein­ gesetzt werden, sind lineare Phosphazene gemäß Formel (Ia) und cyclische Phospha­ zene gemäß Formel (Ib)
wobei
R und k die oben angegebene Bedeutung haben.
Beispielhaft seien genannt:
Propoxyphosphazen, Phenoxyphosphazen, Methylphenoxyphosphazen, Aminophos­ phazen und Fluoralkylphosphazene.
Bevorzugt ist Phenoxyphosphazen.
Die Phosphazene können allein oder als Mischung eingesetzt werden. Der Rest R kann immer gleich sein oder 2 oder mehr Reste in den Formeln (Ia) und (Ib) können verschieden sein.
Die Phosphazene und deren Herstellung sind beispielsweise in EP-A 728 811, DE-A 19 61 668 und WO 97/40092 beschrieben.
Komponente E
Die fluorierten Polyolefine E sind hochmolekular und besitzen Glasübergangstempe­ raturen von über -30°C, in der Regel von über 100°C, Fluorgehalte, vorzugsweise von 65 bis 76, insbesondere von 70 bis 76 Gew.-%, mittlere Teilchendurchmesser d50 von 0,05 bis 1000, vorzugsweise 0,08 bis 20 µm. Im allgemeinen haben die fluorierten Polyolefine E eine Dichte von 1,2 bis 2,3 g/cm3. Bevorzugte fluorierte Polyolefine E sind Polytetrafluorethylen, Polyvinylidenfluorid, Tetrafluorethylen(Hexafluorpropylen- und Ethylen/Tetrafluorethylen-Copolymerisate. Die fluorierten Polyolefine sind be­ kannt (vgl. "Vinyl and Related Polymers" von Schildknecht, John Wiley & Sons, Inc., New York, 1962, Seite 484-494; "Fluorpolymers" von Wall, Wiley-Interscience, John Wiley & Sons, Inc., New York, Band 13, 1970, Seite 623-654; "Modern Plastics Encyclopedia", 1970-1971, Band 47, Nr. 10 A, Oktober 1970, Mc Graw-Hill, Inc., New York, Seite 134 und 774; "Modern Plastica Encyclopedia", 1975-1976, Oktober 1975, Band 52, Nr. 10 A, Mc Graw-Hill, Inc., New York, Seite 27, 28 und 472 und US-PS 3 671 487, 3 723 373 und 3 838 092).
Sie können nach bekannten Verfahren hergestellt werden, so beispielsweise durch Polymerisation von Tetrafluorethylen in wäßrigem Medium mit einem freie Radikale bildenden Katalysator, beispielsweise Natrium-, Kalium- oder Ammoniumperoxidisul­ fat bei Drucken von 7 bis 71 kg/cm2 und bei Temperaturen von 0 bis 200°C, vorzugs­ weise bei Temperaturen von 20 bis 100°C. (Nähere Einzelheiten s. z. B. US-Patent 2 393 967). Je nach Einsatzform kann die Dichte dieser Materialien zwischen 1,2 und 2,3 g/cm3, die mittlere Teilchengröße zwischen 0,5 und 1000 µm liegen.
Erfindungsgemäß bevorzugte fluorierte Polyolefine E sind Tetrafluorethylenpolyme­ risate mit mittleren Teilchendurchmesser von 0,05 bis 20 µm, vorzugsweise 0,08 bis 10 µm, und eine Dichte von 1,2 bis 1,9 g/cm3 und werden vorzugsweise in Form einer koagulierten Mischung von Emulsionen der Tetrafluorethylenpolymerisate E mit Emulsionen eines Pfropfpolymerisats eingesetzt.
Geeignete, in Pulverform einsetzbare fluorierte Polyolefine E sind Tetrafluorethy­ lenpolymerisate mit mittleren Teilchendurchmesser von 100 bis 1000 µm und Dichten von 2,0 g/cm3 bis 2,3 g/cm3.
Zur Herstellung einer koagulierten Mischung aus einem Pfropfpolymerisat B und Komponente E wird zuerst eine wäßrige Emulsion (Latex) eines Pfropfpolymerisates mit einer feinteiligen Emulsion eines Tetraethylenpolymerisates E vermischt; geeignete Tetrafluorethylenpolymerisat-Emulsionen besitzen üblicherweise Feststoffgehalte von 30 bis 70 Gew.-%, insbesondere von 50 bis 60 Gew.-%, vorzugsweise von 30 bis 35 Gew.-%.
In der Emulsionsmischung liegt das Gleichgewichtsverhältnis Pfropfpolymerisat zum Tetrafluorethylenpolymerisat E bei 95 : 5 bis 60 : 40. Anschließend wird die Emulsions­ mischung in bekannter Wiese koaguliert, beispielsweise durch Sprühtrocknen, Gefriertrocknung oder Koagulation mittels Zusatz von anorganischen oder organi­ schen Salzen, Säuren, Basen oder organischen, mit Wasser mischbaren Lösemitteln, wie Alkoholen, Ketonen, vorzugsweise bei Temperaturen von 20 bis 150°C, insbe­ sondere von 50 bis 100°C. Falls erforderlich, kann bei 50 bis 200°C, bevorzugt 70 bis 100°C, getrocknet werden.
Geeignete Tetrafluorethylenpolymerisat-Emulsionen sind handelsübliche Produkte und werden beispielsweise von der Firma DuPont als Teflon® 30 N angeboten.
Die erfindungsgemäßen Formmassen können wenigstens eines der üblichen Additive, wie Gleit- und Entformungsmittel, Nukleiermittel, Antistatika, Stabilisatoren sowie Farbstoffe und Pigmente enthalten.
Die erfindungsgemäßen Formmassen können bis zu 35 Gew.-%, bezogen auf die Gesamt-Formmasse, eines weiteren, gegebenenfalls synergistisch wirkenden Flamm­ schutzmittels enthalten. Beispielhaft werden als weitere Flammschutzmittel organische Halogenverbindungen wie Decabrombisphenylether, Tetrabrombisphenol, anorganische Halogenverbindungen wie Ammoniumbromid, Stickstoffverbindungen, wie Melamin, Melaminformaldehyd-Harze, anorganische Hydroxidverbindungen wie Mg-, Al- Hydroxid, anorganische Verbindungen wie Antimonoxide, Bariummetaborat, Hydroxoantimonat, Zirkonoxid, Zirkonhydroxid, Molybdenoxid, Ammoniummo­ lybdat, Zinkborat, Ammoniumborat, Bariummetaborat und Zinnoxid sowie Siloxan­ verbindungen genannt.
Die erfindungsgemäßen Formmassen enthaltend die Komponenten A bis E und gegebenenfalls weiteren bekannten Zusätzen wie Stabilisatoren, Farbstoffen, Pigmen­ ten, Gleit- und Entformungsmitteln, Nukleiermittel sowie Antistatika, werden herge­ stellt, indem man die jeweiligen Bestandteile in bekannter Weise vermischt und bei Temperaturen von 200°C bis 300°C in üblichen Aggregaten wie Innenknetern, Extru­ dern und Doppelwellenschnecken schmelzcompoundiert und schmelzextrudiert, wobei die Komponente E vorzugsweise in Form der bereits erwähnten koagulierten Mischung eingesetzt wird.
Die Vermischung der einzelnen Bestandteile kann in bekannter Weise sowohl suk­ zessive als auch simultan erfolgen, und zwar sowohl bei etwa 20°C (Raumtemperatur) als auch bei höherer Temperatur.
Gegenstand der vorliegenden Erfindung ist daher auch ein Verfahren zur Herstellung der Formmassen.
Die erfindungsgemäßen thermoplastischen Formmassen eignen sich aufgrund ihrer ausgezeichneten Flammfestigkeit und ihrer guten mechanischen Eigenschaften zur Herstellung von Formkörpern jeglicher Art, insbesondere solchen mit erhöhten Anforderungen an das Verarbeitungsverhalten.
Darunter fallen kompliziert aufgebaute Teile mit mehreren Angußstellen und dünn­ wandige Gehäuseteile mit Wandstärken < 2 mm, vorzugsweise < 1,5 mm.
Die Formmassen der vorliegenden Erfindung können zur Herstellung von Formkör­ pern jeder Art verwendet werden. Insbesondere können Formkörper durch Spritzguß hergestellt werden. Beispiele für herstellbare Formkörper sind: Gehäuseteile jeder Art, z. B. für Haushaltsgeräte wie Saftpressen, Kaffeemaschinen, Mixer, für Büromaschi­ nen, wie Monitore, Drucker, Kopierer oder Abdeckplatten für den Bausektor und Teile für den Kfz-Sektor. Sie sind außerdem auf dem Gebiet der Elektrotechnik ein­ setzbar, weil sie sehr gute elektrische Eigenschaften haben.
Eine weitere Form der Verarbeitung ist die Herstellung von Formkörpern durch Tiefziehen aus vorher hergestellten Platten oder Folien.
Ein weiterer Gegenstand der vorliegenden Erfindung ist daher auch die Verwendung der erfindungsgemäßen Formmassen zur Herstellung von Formkörpern jeglicher Art, vorzugsweise der oben genannten, sowie die Formkörper aus den erfindungsgemäßen Formmassen.
Weiterhin können die erfindungsgemäßen Formmassen beispielsweise zur Herstellung von folgenden Formkörpern bzw. Formteilen verwendet werden:
Innenausbauteile für Schienenfahrzeuge (FR)
Radkappen
Gehäuse von Kleintransformatoren enthaltenden Elektrogeräten
Gehäuse für Geräte zur Informationsverbreitung und -Ubermittlung
Gehäuse und Verkleidung für medizinische Zwecke
Massagegeräte und Gehäuse dafür
Spielfahrzeuge für Kinder
Flächige Wandelemente
Gehäuse für Sicherheitseinrichtungen
Heckspoiler
Wärmeisolierte Transportbehältnisse
Vorrichtung zur Haltung oder Versorgung von Kleintieren
Formteile für Sanitär- und Badeausrüstungen
Abdeckgitter für Lüfteröffnungen
Formteile für Garten- und Gerätehäuser
Gehäuse für Gartengeräte
Beispiele Komponente A
Lineares Polycarbonat auf Basis Bisphenol A mit einer relativen Lösungsviskosität von 1,26, gemessen in CH2Cl2 als Lösungsmittel bei 25°C und einer Konzentration von 0,5 g/100 ml.
Komponente B
  • 1. B.1 Masse-ABS-Polymerisat der DOW Chemical Company Midland, Michigan USA (Handelsname Magnum 3504)
    Acrylnitril : Butadien : Styrol = 22,0 : 10,2 : 67,8
  • 2. B.2 Vergleich
    Pfropfpolymerisat von 40 Gew.-Teilen eines Copolymerisats aus Styrol und Acrylnitril im Verhältnis von 73 : 22 auf 60 Gew.-Teile teilchenförmigen ver­ netzten Polybutadienkautschuk (mittlerer Teilchendurchmesser d50 = 0,28 µm), hergestellt durch Emulsionspolymerisation.
Komponente C
Styrol/Acrylnitril-Copolymerisat mit einem Styrol/Acrylnitril-Gewichtsverhältnis von 72 : 28 und einer Grenzviskosität von 0,55 dl/g (Messung in Dimethylformamid bei 20°C).
Komponente D
Phenoxyphosphazen der Formel
Handelsprodukt P-3800 der Firma Nippon Sodo Co., Ltd., Japan.
Als Entformungsmittel wird Pentaerythrittetrastearat eingesetzt.
Komponente E
Tetrafluorethylenpolymerisat als koagulierte Mischung aus einer SAN-Pfropfpolyme­ risat-Emulsion (Pfropfpolymerisat von 40 Gew.-Teilen eines Copolymerisats aus Styrol und Acrylnitril im Verhältnis von 73 : 27 auf 60 Gew.-Teile teilchenförmigen vernetzten Polybutadienkautschuk, hergestellt durch Emulsionspolymerisation, mittlerer Teilchendurchmesser d50 = 0,28 µm) in Wasser und einer Tetrafluorethylen­ polymerisat-Emulsion in Wasser. Das Gewichtsverhältnis Pfropfpolymerisat B zum Tetrafluorethylenpolymerisat F in der Mischung ist 90 Gew.-% zu 10 Gew.-%. Die Tetrafluorethylenpolyermisat-Emulsion besitzt einen Feststoffgehalt von 60 Gew.-%, der mittlere Teilchendurchmesser liegt zwischen 0,05 und 0,5 µm. Die SAN-Pfropf­ polymerisat-Emulsion besitzt einen Feststoffgehalt von 34 Gew.-% und einen mittleren Latexteilchendurchmesser von d50 = 0,28 µm.
Herstellung von E
Die Emulsion des Tetrafluorethylenpolymerisats (Teflon 30 N der Fa. DuPont) wird mit der Emulsion des SAN-Pfropfpolymerisats vermischt und mit 1,8 Gew.-%, be­ zogen auf Polymerfeststoff, phenolischer Antioxidantien stabilisiert. Bei 85 bis 95°C wird die Mischung mit einer wäßrigen Lösung von MgSO4 (Bittersalz) und Essig­ säure bei pH 4 bis 5 koaguliert, filtriert und bis zur praktischen Elektrolytfreiheit ge­ waschen, anschließend durch Zentrifugation von der Hauptmenge Wasser befreit und danach bei 100°C zu einem Pulver getrocknet. Dieses Pulver kann dann mit den wei­ teren Komponenten in den beschriebenen Aggregaten compoundiert werden.
Herstellung und Prüfung der erfindungsgemäßen Formmassen
Das Mischen der Komponenten erfolgt auf einem 3-l-Innenkneter. Die Formkörper werden auf einer Spritzgießmaschine Typ Arburg 270 E bei 260°C hergestellt.
Die Bestimmung der Wärmeformbeständigkeit nach Vicat B erfolgt gemäß DIN 53 460 (ISO 306) an Stäben der Abmessung 80 × 10 × 4 mm3.
Das Spannungsrißverhalten (ESC-Verhalten) wurde an Stäben der Abmessung 80 × 10 × 4 mm, Preßtemperatur 220°C, untersucht. Als Testmedium wurde eine Mischung aus 60 Vol.-% Toluol und 40 Vol.-% Isopropanol verwendet. Die Probekörper wur­ den mittels einer Kreisbogenschablone vorgedehnt (Vordehnung in Prozent) und bei Raumtemperatur im Testmedium gelagert. Das Spannungsrißverhalten wurde über die Rißbildung bzw. den Bruch in Abhängigkeit von der Vordehnung im Testmedium beurteilt.
Als Maß für die Werkzeugbelagsbildung wurde die thermogravimetrische Analyse (TGA) herangezogen. Dabei wurde der Masseverlust der Mischungen unter N2 als Inertgas im Temperaturbereich von 0 bis 400°C mit einer Aufheizrate von 10 K/min bestimmt. Zur Beurteilung wurde der Masseverlust bei der Temperatur von 280°C, die üblichen Verarbeitungstemperaturen entspricht, herangezogen. Je höher der Zahlenwert, desto größer ist die Tendenz zur Belagsbildung während des Verarbeitungsprozesses. Niedrige Werte zeigen eine geringe Neigung zur Belagsbildung an.
Tabelle
Formmassen und ihre Eigenschaften (Angaben in Gew.-Teile)
Die erfindungsgemäßen Eigenschaften zeichnen sich durch eine günstige Eigenschafts­ kombination aus Flammschutz und mechanischen Eigenschaften aus. Dazu kommt der überraschende Befund, daß die Masse-ABS enthaltenen Formmassen zusätzliche Vorteile im Bereich Verarbeitungsverhalten aufweisen. Sowohl das Fließverhalten (MVR) als auch der Masseverlust, der als Maß für die unter Verarbeitungsbe­ dingungen auftretende Werkzeugbelagsbildung angesehen werden kann, sind deutlich günstiger (ca. 20%) als bei Formmassen mit Emulsions-ABS.

Claims (11)

1. Thermoplastische Formmassen enthaltend
  • A) 40 bis 99 Gew.-Teile aromatisches Polycarbonat und/oder Poly­ estercarbonat
  • B) 0,5 bis 60 Gew.-Teile mittels Masse-, Lösungs- oder Masse- Suspensions-Polymerisationsverfahren hergestelltes Pfropfpolymerisat von
    • 1. B.1) 50 bis 99 Gew.-% einem oder mehreren Vinylmonomeren auf
    • 2. B.2) 50 bis 1 Gew.-% einer oder mehrerer Pfropfgrundlagen mit einer Glasumwandlungstemperatur <10°C,
  • C) 0 bis 45 Gew.-Teile mindestens eines thermoplastischen Polymers, ausgewählt aus der Gruppe der Vinyl(co)polymerisate und Poly­ alkylenterephthalate,
  • D) 0,1 bis 50 Gew.-Teile mindestens einer Komponente, ausgewählt aus der Gruppe der Phosphazene der Formeln
    worin
    R jeweils gleich oder verschieden ist und für Amino, jeweils gegebenenfalls halogeniertes, vorzugsweise mit Fluor halo­ geniertes C1- bis C6-Alkyl oder C1-C8-Alkoxy, jeweils gegebe­ nenfalls durch Alkyl, vorzugsweise C1-C4-Alkyl, und/oder Halogen, vorzugsweise Chlor, Brom, substituiertes C5- bis C6-Cycloalkyl, C6- bis C20-Aryl, vorzugsweise Phenyl oder Naphthyl, C6- bis C20-Aryloxy, vorzugsweise Phenoxy, Naphthyloxy, oder C7-C12-Aralkyl, vorzugsweise Phenyl- C1-C4-alkyl, steht,
    k für 0 oder eine Zahl von 1 bis 15, vorzugsweise für eine Zahl von 1 bis 10 steht,
  • E) 0,05 bis 5 Gew.-Teile fluoriertes Polyolefin.
2. Formmassen gemäß Anspruch 1, enthaltend
60 bis 98,5 Gew.-Teile A)
1 bis 40 Gew.-Teile B)
0 bis 30 Gew.-Teile C)
2 bis 35 Gew.-Teile D) und
0,1 bis 1 Gew.-Teile E)
3. Formmassen gemäß Anspruch 1 und 2 enthaltend 2 bis 25 Gew.-Teile C).
4. Formmassen gemäß der Ansprüche 1 bis 3, enthaltend 5 bis 25 Gew.-Teile D).
5. Formmassen gemäß der vorhergehenden Ansprüche, wobei Vinylmonomere B.1 Gemische aus
  • 1. B.1.1 Styrol, α-Methylstyrol, halogen- oder alkylkernsubstituierte Styrole und/oder (Meth)Acrylsäure-C1-C8-alkylester und
  • 2. B.1.2 ungesättigte Nitrile, (MethAcrylsäure-C1-C8-alkylester und/oder Derivate ungesättigter Carbonsäuren.
6. Formmassen gemäß der vorhergehenden Ansprüche, wobei die Pfropf­ grundlage ausgewählt ist aus mindestens einem Kautschuk aus der Gruppe der Dienkautschuke, EP(D)M-Kautschuke, Acrylat-, Polyurethan-, Silikon-, Chloropren- und Ethylen/Vinylacetat-Kautschuk.
7. Formmassen gemäß der vorhergehenden Ansprüche, enthaltend wenigstens ein Additiv ausgewählt aus der Gruppe der Gleit- und Entformungsmittel, Nukleiermittel, Antistatika, Stabilisatoren, Farbstoffe und Pigmente.
8. Formmassen gemäß der vorhergehenden Ansprüche, enthaltend weitere Flammschutzmittel, welche verschieden sind von Komponente D).
9. Verfahren zur Herstellung von Formmassen gemäß Anspruch 1, wobei die Komponenten A) bis E) mit gegebenenfalls weiteren Zusätzen vermischt und schmelzcompoundiert werden.
10. Verwendung der Formmassen gemäß Anspruch 1 zur Herstellung von Formkörpern.
11. Formkörper, hergestellt aus Formmassen gemäß der Ansprüche 1 bis 8.
DE19828541A 1998-06-26 1998-06-26 Flammwidrige Polycarbonat-ABS-Formmassen Withdrawn DE19828541A1 (de)

Priority Applications (13)

Application Number Priority Date Filing Date Title
DE19828541A DE19828541A1 (de) 1998-06-26 1998-06-26 Flammwidrige Polycarbonat-ABS-Formmassen
CA002335965A CA2335965A1 (en) 1998-06-26 1999-06-12 Flame resistant polycarbonate/abs plastic molding materials
KR1020007014732A KR100584071B1 (ko) 1998-06-26 1999-06-12 방염성 폴리카보네이트/abs 가소성 성형 조성물
DE59912270T DE59912270D1 (de) 1998-06-26 1999-06-12 Flammwidrige polycarbonat-abs-formmassen
CNB998079243A CN1207331C (zh) 1998-06-26 1999-06-12 阻燃聚碳酸酯/abs模塑组合物
US09/720,274 US6740695B1 (en) 1998-06-26 1999-06-12 Flame resistant polycarbonate/ABS plastic molding materials
PCT/EP1999/004060 WO2000000542A1 (de) 1998-06-26 1999-06-12 Flammwidrige polycarbonat-abs-formmassen
EP99929191A EP1095097B1 (de) 1998-06-26 1999-06-12 Flammwidrige polycarbonat-abs-formmassen
AU46090/99A AU4609099A (en) 1998-06-26 1999-06-12 Flame resistant polycarbonate/abs plastic molding materials
JP2000557300A JP4383665B2 (ja) 1998-06-26 1999-06-12 防炎性ポリカーボネート/absプラスチック成形材料
BR9911478-0A BR9911478A (pt) 1998-06-26 1999-06-12 Massas moldáveis de policarbonato-abs resistentes à chama
ARP990103071A AR016996A1 (es) 1998-06-26 1999-06-25 Composiciones de molde de policarbonato/abs ignifugas; procedimiento para su obtencion y empleo de las mismas en cuerpos moldeados
HK02100803.5A HK1039346A1 (zh) 1998-06-26 2002-02-01 阻燃聚碳酸酯/abs模塑組合物

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19828541A DE19828541A1 (de) 1998-06-26 1998-06-26 Flammwidrige Polycarbonat-ABS-Formmassen

Publications (1)

Publication Number Publication Date
DE19828541A1 true DE19828541A1 (de) 1999-12-30

Family

ID=7872128

Family Applications (2)

Application Number Title Priority Date Filing Date
DE19828541A Withdrawn DE19828541A1 (de) 1998-06-26 1998-06-26 Flammwidrige Polycarbonat-ABS-Formmassen
DE59912270T Expired - Lifetime DE59912270D1 (de) 1998-06-26 1999-06-12 Flammwidrige polycarbonat-abs-formmassen

Family Applications After (1)

Application Number Title Priority Date Filing Date
DE59912270T Expired - Lifetime DE59912270D1 (de) 1998-06-26 1999-06-12 Flammwidrige polycarbonat-abs-formmassen

Country Status (12)

Country Link
US (1) US6740695B1 (de)
EP (1) EP1095097B1 (de)
JP (1) JP4383665B2 (de)
KR (1) KR100584071B1 (de)
CN (1) CN1207331C (de)
AR (1) AR016996A1 (de)
AU (1) AU4609099A (de)
BR (1) BR9911478A (de)
CA (1) CA2335965A1 (de)
DE (2) DE19828541A1 (de)
HK (1) HK1039346A1 (de)
WO (1) WO2000000542A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2028228A2 (de) 2004-10-25 2009-02-25 Ciba Holding Inc. Funktionalisierte Nanopartikel
WO2014086743A1 (de) * 2012-12-07 2014-06-12 Bayer Materialscience Ag Flammgeschützte polycarbonatformmassen i
WO2017013028A1 (en) 2015-07-20 2017-01-26 Basf Se Flame retardant polyolefin articles
US9637634B2 (en) 2012-12-07 2017-05-02 Covestro Deutschland Ag Flame-retardant polycarbonate molding materials V
WO2018117834A1 (en) 2016-12-22 2018-06-28 Dsm Ip Assets B.V. Improved heat and electrically resistive thermoplastic resin compositions

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19851676A1 (de) * 1998-11-10 2000-05-11 Bayer Ag Thermoplastische Formmassen mit verbesserten mechanischen Eigenschaften
KR100426723B1 (ko) * 2000-06-01 2004-04-08 주식회사 엘지화학 포스파겐계 난연 열가소성 수지 조성물
DE10027333A1 (de) * 2000-06-02 2001-12-06 Bayer Ag Flammwidrige und anti-elektrostatische Polycarbonat-Formmassen
US6730748B2 (en) * 2002-07-09 2004-05-04 Bayer Polymers Llc Thermoplastic polycarbonate compositions having high toughness
US7446144B2 (en) * 2005-09-14 2008-11-04 Bayer Materialscience Llc Thermoplastic molding composition and articles thermoformed therefrom
JP4059910B2 (ja) * 2005-11-11 2008-03-12 シャープ株式会社 液晶表示装置
US20130313493A1 (en) * 2012-05-24 2013-11-28 Sabic Innovative Plastics Ip B.V. Flame retardant polycarbonate compositions, methods of manufacture thereof and articles comprising the same
US20130317142A1 (en) * 2012-05-24 2013-11-28 Sabic Innovative Plastics Ip B.V. Flame retardant thermoplastic compositions, methods of manufacture thereof and articles comprising the same
BR112015012709A2 (pt) * 2012-12-07 2017-07-11 Bayer Materialscience Ag massas de moldagem ii de policarbonato a prova de fogo iii
EP2928953B1 (de) * 2012-12-07 2018-01-31 Covestro Deutschland AG Flammgeschützte polycarbonatformmassen vi
MX2015006943A (es) * 2012-12-07 2015-09-08 Bayer Materialscience Ag Composiciones de moldeo de policarbonato retardantes de llama iv.
KR20150093747A (ko) 2012-12-07 2015-08-18 바이엘 머티리얼사이언스 아게 난연성 폴리카르보네이트 성형 물질 ii
WO2015019945A1 (ja) * 2013-08-05 2015-02-12 株式会社カネカ ホスファゼン含有ゴムグラフト共重合体及びその熱可塑性樹脂組成物
MX2016003734A (es) 2013-09-27 2016-08-04 Basf Se Composiciones de poliolefina para materiales de construccion.
TWI685524B (zh) 2013-12-17 2020-02-21 美商畢克美國股份有限公司 預先脫層之層狀材料
EP3828236B1 (de) 2019-11-27 2022-06-01 Covestro Intellectual Property GmbH & Co. KG Flammgeschützter polycarbonat-polyester blend
MX2022014287A (es) 2020-05-13 2022-12-07 Covestro Deutschland Ag Composicion de policarbonato retardante de llama.
JP2023549936A (ja) 2020-11-19 2023-11-29 ビーエーエスエフ ソシエタス・ヨーロピア 難燃性粉体組成物及びこの組成物から得られた3d印刷物体
CN114230999A (zh) * 2021-11-23 2022-03-25 金旸(厦门)新材料科技有限公司 一种无卤阻燃抗静电聚碳酸酯树脂组合物及其制备方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4111883A (en) * 1976-12-16 1978-09-05 General Electric Company Plasticized polycarbonate composition
US4946885A (en) * 1989-09-11 1990-08-07 Stamicarbon B.V. Flame retardant thermoplastic containing phospham
US5194477A (en) * 1990-11-16 1993-03-16 General Electric Company Flame retardant compositions
JPH05279429A (ja) * 1992-03-31 1993-10-26 Japan Synthetic Rubber Co Ltd グラフト共重合体および耐フロン性成形材料
DE4429320A1 (de) * 1994-08-18 1996-02-22 Bayer Ag Verfahren zur Herstellung von kautschukmodifizierten ABS-Formmassen durch nichtwäßrige Polymerisation in Gegenwart von Lösungsmitteln
EP0728811B1 (de) * 1995-02-27 2003-09-17 Mitsubishi Chemical Corporation Hammhemmende thermoplastische Harzzusammensetzung
JPH0953009A (ja) * 1995-02-27 1997-02-25 Mitsubishi Chem Corp 難燃性に優れた熱可塑性樹脂組成物
DE19507749A1 (de) * 1995-03-06 1996-09-12 Bayer Ag Thermoplastische Formmassen vom ABS-Typ
DE19615230A1 (de) * 1996-04-18 1997-10-23 Basf Ag Flammgeschützte thermoplastische Formmassen
DE19616968A1 (de) 1996-04-27 1997-11-06 Daimler Benz Ag Polymerisierbares Phosphazenderivat, Verfahren zu dessen Herstellung und dessen Verwendung
JPH1067922A (ja) * 1996-06-13 1998-03-10 Toray Ind Inc 熱可塑性樹脂組成物
JPH11181429A (ja) * 1997-02-14 1999-07-06 Otsuka Chem Co Ltd 難燃剤、難燃性樹脂組成物及び難燃性樹脂成形体
WO1999019383A1 (fr) * 1997-10-15 1999-04-22 Otsuka Chemical Co., Ltd. Composes phenoxyphosphazene reticules, agent ignifugeant, compositions de resine ignifugeante et moulages a base de resines ignifugeante

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2028228A2 (de) 2004-10-25 2009-02-25 Ciba Holding Inc. Funktionalisierte Nanopartikel
WO2014086743A1 (de) * 2012-12-07 2014-06-12 Bayer Materialscience Ag Flammgeschützte polycarbonatformmassen i
US9637634B2 (en) 2012-12-07 2017-05-02 Covestro Deutschland Ag Flame-retardant polycarbonate molding materials V
WO2017013028A1 (en) 2015-07-20 2017-01-26 Basf Se Flame retardant polyolefin articles
EP3564299A1 (de) 2015-07-20 2019-11-06 Basf Se Flammhemmende polyolefinartikel
WO2018117834A1 (en) 2016-12-22 2018-06-28 Dsm Ip Assets B.V. Improved heat and electrically resistive thermoplastic resin compositions

Also Published As

Publication number Publication date
EP1095097A1 (de) 2001-05-02
KR100584071B1 (ko) 2006-05-29
JP2002519462A (ja) 2002-07-02
HK1039346A1 (zh) 2002-04-19
US6740695B1 (en) 2004-05-25
EP1095097B1 (de) 2005-07-13
CN1307608A (zh) 2001-08-08
AR016996A1 (es) 2001-08-01
CN1207331C (zh) 2005-06-22
JP4383665B2 (ja) 2009-12-16
DE59912270D1 (de) 2005-08-18
BR9911478A (pt) 2001-03-20
WO2000000542A1 (de) 2000-01-06
AU4609099A (en) 2000-01-17
CA2335965A1 (en) 2000-01-06
KR20010053159A (ko) 2001-06-25

Similar Documents

Publication Publication Date Title
EP1095100B1 (de) Flammwidrige polycarbonat/abs-formmassen
EP1095099B1 (de) Flammwidrige polycarbonat-abs-formmassen
EP1228136B1 (de) Flammwidrige polycarbonat-abs-blends
EP1095097B1 (de) Flammwidrige polycarbonat-abs-formmassen
EP1144511B1 (de) Flammwidrige polycarbonat-abs-formmassen
DE19734663A1 (de) Flammwidrige wärmeformbeständige Polycarbonat-ABS-Formmassen
DE19734659A1 (de) Flammwidrige Polycarbonat-ABS-Formmassen
DE10061081A1 (de) Flammwidrige Polycarbonat-Blends
EP1196498B1 (de) Flammwidrige formmassen enthaltend polycarbonat und pfropfpolymerisate
EP1047724B1 (de) Polycarbonat-abs-formmassen
WO2002008329A1 (de) Flammwidrige polycarbonat-zusammensetzungen
WO2003027165A1 (de) Schlagzähmodifizierte polycarbonat-zusammensetzung
EP1169385B1 (de) Flammwidrige mit pfropfpolymerisat modifizierte polycarbonat-formmassen
EP1151035B1 (de) Flammwidrige wärmeformbeständige polycarbonat-abs-formmassen
DE19828538A1 (de) Flammwidrige Polycarbonat/ABS-Formmassen
EP1214379B1 (de) Flammwidrige polycarbonat-blends
EP0496240A2 (de) Flammwidrige Polycarbonat/ABS-Legierungen
DE19851676A1 (de) Thermoplastische Formmassen mit verbesserten mechanischen Eigenschaften
DE10027341A1 (de) Flammwidrige transluzente Polycarbonat-Formmassen

Legal Events

Date Code Title Description
8139 Disposal/non-payment of the annual fee