DE19806200A1 - Wasch- und Reinigungsmittelformkörper mit Bleichmittel - Google Patents

Wasch- und Reinigungsmittelformkörper mit Bleichmittel

Info

Publication number
DE19806200A1
DE19806200A1 DE19806200A DE19806200A DE19806200A1 DE 19806200 A1 DE19806200 A1 DE 19806200A1 DE 19806200 A DE19806200 A DE 19806200A DE 19806200 A DE19806200 A DE 19806200A DE 19806200 A1 DE19806200 A1 DE 19806200A1
Authority
DE
Germany
Prior art keywords
detergent tablets
weight
detergent
tablets according
bleach
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE19806200A
Other languages
English (en)
Inventor
Gerhard Blasey
Christian Block
Monika Boecker
Heinke Jebens
Hans-Friedrich Kruse
Andreas Lietzmann
Antoni Machin
Fred Schambil
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=25681999&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=DE19806200(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Priority to DE19806200A priority Critical patent/DE19806200A1/de
Priority to DE59803243T priority patent/DE59803243D1/de
Priority to ES98955440T priority patent/ES2173640T3/es
Priority to SK1202-2000A priority patent/SK12022000A3/sk
Priority to AT98955440T priority patent/ATE213768T1/de
Priority to PL98342343A priority patent/PL342343A1/xx
Priority to JP2000531532A priority patent/JP2002503761A/ja
Priority to CN98813639.2A priority patent/CN1284991A/zh
Priority to PCT/EP1998/006474 priority patent/WO1999041351A1/de
Priority to HU0100727A priority patent/HUP0100727A2/hu
Priority to EP98955440A priority patent/EP1056833B1/de
Publication of DE19806200A1 publication Critical patent/DE19806200A1/de
Priority to CA002315298A priority patent/CA2315298A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/39Organic or inorganic per-compounds
    • C11D3/3942Inorganic per-compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0047Detergents in the form of bars or tablets
    • C11D17/0065Solid detergents containing builders
    • C11D17/0073Tablets
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/39Organic or inorganic per-compounds
    • C11D3/3902Organic or inorganic per-compounds combined with specific additives
    • C11D3/3905Bleach activators or bleach catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Detergent Compositions (AREA)

Description

Die vorliegende Erfindung betrifft Wasch- und Reinigungsmittelformkörper, die Bleichmittel enthalten. Insbesondere betrifft die Erfindung solche Formkörper wie Waschmitteltabletten, Reinigungsmitteltabletten, Bleichtabletten oder Wasserenthärtertabletten mit Bleichmittel.
Wasch- und Reinigungsmittelzusammensetzungen in Form von Formkörpern, insbesondere Tabletten, sind im Stand der Technik lange bekannt und breit beschrieben, obwohl diese An­ gebotsform auf dem Markt bislang keine herausragende Bedeutung hat. Dies hat seine Ursa­ che darin, daß die Angebotsform des Formkörpers neben einer Reihe von Vorteilen auch Nachteile hat, die sowohl die Herstellung und Verwendung als auch die Verbraucherakzep­ tanz beeinträchtigen. Die wesentlichen Vorteile von Formkörpern wie der Wegfall des Ab­ messens der benötigten Produktmenge durch den Verbraucher, die höhere Dichte und damit der verringerte Verpackungs- und Lageraufwand und ein nicht zu unterschätzender ästheti­ scher Aspekt werden dabei durch Nachteile wie die Dichotomie zwischen akzeptabler Härte und genügend schneller Desintegration und Auflösung der Formkörper sowie zahlreiche tech­ nologische Schwierigkeiten bei der Herstellung und Verpackung relativiert.
Insbesondere die Dichotomie zwischen einem genügen harten Formkörper und einer hinrei­ chend schnellen Zerfallszeit ist dabei ein zentrales Problem. Da hinreichend stabile, d. h. form- und bruchbeständige Formkörper nur durch verhältnismäßig hohe Preßdrucke hergestellt wer­ den können, kommt es zu einer starken Verdichtung der Formkörperbestandteile und zu einer daraus folgenden verzögerten Desintegration des Formkörpers in der wäßrigen Flotte und da­ mit zu einer zu langsamen Freisetzung der Aktivsubstanzen im Wasch- bzw. Reinigungsvor­ gang. Die verzögerte Desintegration der Formkörper hat weiterhin den Nachteil, daß sich üb­ liche Wasch- und Reinigungsmittelformkörper nicht über die Einspülkammer von Haushalts­ waschmaschinen einspülen lassen, da die Tabletten nicht in hinreichend schneller Zeit in Se­ kundärpartikel zerfallen, die klein genug sind, um aus der Einspülkammer in die Waschtrom­ mel eingespült zu werden.
Zur Überwindung der Dichotomie zwischen Härte, d. h. Transport- und Handhabungsstabilität, und leichtem Zerfall der Formkörper sind im Stand der Technik viele Lösungsansätze ent­ wickelt worden. Ein insbesondere aus der Pharmazie bekannter und auf das Gebiet der Wasch- und Reinigungsmittelformkörper ausgedehnter Ansatz ist die Inkorporation bestimmter Des­ integrationshilfsmittel, die den Zutritt von Wasser erleichtern oder bei Zutritt von Wasser quellen bzw. gasentwickelnd oder in anderer Form desintegrierend wirken. Andere Lösungs­ vorschläge aus der Patentliteratur beschreiben die Verpressung von Vorgemischen bestimmter Teilchengrößen, die Trennung einzelner Inhaltsstoffe von bestimmten anderen Inhaltsstoffen sowie die Beschichtung einzelner Inhaltsstoffe oder des gesamten Formkörpers mit Binde­ mitteln.
So offenbart die EP-A-0 522 766 (Unilever) Formkörper aus einer kompaktierten, teilchen­ förmigen Waschmittelzusammensetzung, enthaltend Tenside, Builder und Desintegrations­ hilfsmittel (beispielsweise auf Cellulosebasis), wobei zumindest ein Teil der Partikel mit dem Desintegrationsmittel beschichtet ist, das sowohl Binder- als auch Desintegrationswirkung beim Auflösen der Formkörper in Wasser zeigt. Diese Schrift weist auch auf die generelle Schwierigkeit hin, Formkörper mit adäquater Stabilität bei gleichzeitig guter Löslichkeit her­ zustellen. Die Teilchengröße im zu verpressenden Gemisch soll dabei oberhalb von 200 µm liegen, wobei Ober- und Untergrenze der einzelnen Teilchengrößen um nicht mehr als 700 µm voneinander abweichen sollen.
Weitere Schriften, die sich mit der Herstellung vom Waschmittelformkörpern befassen, sind die EP-A-0 716 144 (Unilever), die Formkörper mit einer externen Hülle aus wasserlöslichem Material beschreibt, sowie die EP-A-0 711 827 (Unilever), die als Inhaltsstoff ein Citrat mit einer definierten Löslichkeit enthalten.
Der Einsatz von Bindemitteln, die gegebenenfalls Sprengwirkung entfalten (insbesondere Polyethylenglycol), wird in der EP-A-0 711 828 (Unilever) offenbart, die Waschmittelform­ körper beschreibt, welche durch Verpressen einer teilchenförmigen Waschmittelzusammen­ setzung bei Temperaturen zwischen 28°C und dem Schmelzpunkt des Bindematerials herge­ stellt werden, wobei stets unterhalb der Schmelztemperatur verpreßt wird. Aus den Beispielen dieser Schrift ist zu entnehmen, daß die gemäß ihrer Lehre hergestellten Formkörper höhere Bruchfestigkeiten aufweisen, wenn bei erhöhter Temperatur verpreßt wird.
Waschmitteltabletten, in denen einzelne Inhaltsstoffe getrennt von anderen vorliegen, werden auch in der EP-A-0 481 793 (Unilever) beschrieben. Die in dieser Schrift offenbarten Waschmitteltabletten enthaltend Natriumpercarbonat, das von allen anderen Komponenten, die seine Stabilität beeinflussen könnten, räumlich getrennt vorliegt.
In keinem der genannten Dokumente des Standes der Technik, die sich mit Wasch- und Rei­ nigungsmittelformkörpern beschäftigen, wird der physikalischen Beschaffenheit einzelner Inhaltsstoffe, insbesondere Bleichmittel, besondere Bedeutung zugemessen. Keines der ge­ nannten Dokumente beschäftigt sich mit der Verbesserung der Löslichkeit von Wasch- und Reinigungsmitteltabletten durch gezielten Einsatz von Bleichmitteln innerhalb bestimmter Teilchengrößebereiche.
Der vorliegenden Erfindung liegt demnach die Aufgabe zugrunde, Wasch- und Reinigungs­ mittelformkörper bereitzustellen, welche Bleichmittel enthalten und eine hohe Härte aufwei­ sen sowie über hervorragende Zerfallseigenschaften verfügen. Diese Wasch- und Reini­ gungsmittelformkörper sollen dabei auch über die Einspülkammer dosiert werden können, ohne daß dem Verbraucher hierdurch Nachteile durch Rückstände in der Einspülkammer und zu wenig Waschmittel in der Waschlauge erwachsen. Neben diesen Formkörper-spezifischen Eigenschaften sollen auch die Wasch- und Reinigungsleistungen der erfindungsgemäßen Formkörper vorbildlich sein.
Gegenstand der Erfindung sind Wasch- und Reinigungsmittelformkörper aus verdichtetem teilchenförmigen Wasch- und Reinigungsmittel, umfassend Bleichmittel, Gerüststoff(e) sowie gegebenenfalls weitere Wasch- und Reinigungsmittelbestandteile, bei denen das Bleichmittel eine mittlere Teilchengröße oberhalb 0,4 mm aufweist.
Die mittlere Teilchengröße ist dabei im Rahmen der vorliegenden Erfindung eine rechnerische Größe, die sich aus der Multiplikation des prozentualen Anteils einer Siebfraktion mit der Maschenweite des Siebs ergibt. Die Einzelwerte solcher Mittelwerte können stark streuen, wenn beispielsweise extrem kleine und extrem große Teilchen nebeneinander vorliegen. Im rahmen der vorliegenden Erfindung ist es aber bevorzugt, daß die Teilchengrößenverteilung des Bleichmittels nicht stark streut, sondern relativ eng um den Mittelwert liegt. Insbesondere Feinanteile sollten dabei weitgehend ausgeschlossen werden, so daß im rahmen der vorlie­ genden Erfindung Wasch- und Reinigungsmittelformkörper bevorzugt sind, bei denen das Bleichmittel substantiell frei von Teilchen mit Größen unterhalb 0,2 mm ist.
Unter "substantiell frei" werden im Rahmen der vorliegenden Erfindung Gehalte unter 2 Gew.-%, vorzugsweise unter 1 Gew.-% und insbesondere unter 0,5 Gew.-% verstanden.
Es ist im Rahmen der vorliegenden Erfindung nicht nur bevorzugt, daß Staub- und Feinanteile des Bleichmittels weitestgehend abwesend sind, auch sollte der Gehalt an Teilchen mit einer Größe unter 0,4 mm möglichst klein gehalten werden. Dabei sind solche Wasch- und Reini­ gungsmittelformkörper bevorzugt, bei denen das Bleichmittel weniger als 30 Gew.-%, vor­ zugsweise weniger als 20 Gew.-% und insbesondere weniger als 10 Gew.-% Teilchen einer Größe unterhalb 0,4 mm aufweist.
Demzufolge sollte der Anteil größerer Bleichmittel-Teilchen möglichst hoch sein. Hierbei ist es wiederum bevorzugt, wenn die Teilchen des Bleichmittels nicht nur größer als 0,4 mm, sondern deutlich größer sind, beispielsweise größer als 0,8 mm. Hier sind wiederum Wasch- und Reinigungsmittelformkörper bevorzugt, bei denen das Bleichmittel mehr als 10 Gew.-%, vorzugsweise mehr als 20 Gew.-% und insbesondere mehr als 30 Gew.-% Teilchen einer Größe oberhalb 0,8 mm aufweist.
Dennoch sollte das Bleichmittel selbstverständlich nicht in Form grober Klumpen in die Wasch- und Reinigungsmittelformkörper der vorliegenden Erfindung eingearbeitet werden.
Aus praktischen Gesichtspunkten haben sich Teilchengrößen des Bleichmittels unter 2,0 mm bewährt, wobei es bevorzugt ist, wenn das in den Wasch- und Reinigungsmittelformkörpern enthaltene Bleichmittel substantiell frei von Teilchen mit Größen oberhalb 1,6 mm ist.
Zur Entfaltung der gewünschten Bleichleistung enthalten die Wasch- und Reinigungsmittel­ formkörper der vorliegenden Erfindung ein oder mehrere Bleichmittel. Unter den als Bleich­ mittel dienenden, in Wasser H2O2 liefernden Verbindungen haben das Natriumperboratte­ trahydrat und das Natriumperboratmonohydrat besondere Bedeutung. Weitere brauchbare Bleichmittel sind beispielsweise Natriumpercarbonat, Peroxypyrophosphate, Citratperhydrate sowie H2O2 liefernde persaure Salze oder Persäuren, wie Perbenzoate, Peroxophthalate, Di­ perazelainsäure, Phthaloiminopersäure oder Diperdodecandisäure. Die Bleichmittel werden in Abhängigkeit vom gewünschten Produkt in variierenden Mengen in den erfindungsgemäßen Wasch- und Reinigungsmittelformkörpern eingesetzt. Übliche Gehalte liegen dabei zwischen 5 und 50 Gew.-%, vorzugsweise zwischen 10 und 40 Gew.-% und insbesondere zwischen 15 und 35 Gew.-%, jeweils bezogen auf den gesamten Formkörper.
Auch ist bei den Bleichmitteln der Gehalt der Formkörper an diesen Stoffen vom Einsatz­ zweck der Formkörper abhängig. Während übliche Universalwaschmittel in Tablettenform zwischen 5 und 30 Gew.-%, vorzugsweise zwischen 7,5 und 25 Gew.-% und insbesondere zwischen 12,5 und 22,5 Gew.-% Bleichmittel enthalten, liegen die Gehalte bei Bleichmittel- oder Bleichboostertabletten zwischen 15 und 50 Gew.-%, vorzugsweise zwischen 22,5 und 45 Gew.-% und insbesondere zwischen 30 und 40 Gew.-%.
Besonders bevorzugte Bleichmittel sind im Rahmen der vorliegenden Erfindung Natriumper­ borat oder Natriumpercarbonat. Mit besonderer Bevorzugung wird dabei Natriumperborat- Monohydrat eingesetzt.
Zusätzlich zum Bleichmittel können die erfindungsgemäßen Wasch- und Reinigungsmittel­ formkörper Bleichaktivator(en) enthalten, was im Rahmen der vorliegenden Erfindung bevor­ zugt ist. Bleichaktivatoren werden in Wasch- und Reinigungsmittel eingearbeitet, um beim Waschen bei Temperaturen von 60°C und darunter eine verbesserte Bleichwirkung zu errei­ chen. Als Bleichaktivatoren können Verbindungen, die unter Perhydrolysebedingungen ali­ phatische Peroxocarbonsäuren mit vorzugsweise 1 bis 10 C-Atomen, insbesondere 2 bis 4 C- Atomen, und/oder gegebenenfalls substituierte Perbenzoesäure ergeben, eingesetzt werden. Geeignet sind Substanzen, die O- und/oder N-Acylgruppen der genannten C-Atomzahl und/oder gegebenenfalls substituierte Benzoylgruppen tragen. Bevorzugt sind mehrfach acy­ lierte Alkylendiamine, insbesondere Tetraacetylethylendiamin (TAED), acylierte Triazinderi­ vate, insbesondere 1,5-Diacetyl-2,4-dioxohexahydro-1,3,5-triazin (DADHT), acylierte Gly­ kolurile, insbesondere Tetraacetylglykoluril (TAGU), N-Acylimide, insbesondere N- Nonanoylsuccinimid (NOSI), acylierte Phenolsulfonate, insbesondere n-Nonanoyl- oder Iso­ nonanoyloxybenzolsulfonat (n- bzw. iso-NOBS), Carbonsäureanhydride, insbesondere Phthalsäureanhydrid, acylierte mehrwertige Alkohole, insbesondere Triacetin, Ethylenglykol­ diacetat und 2,5-Diacetoxy-2,5-dihydrofuran.
Zusätzlich zu den konventionellen Bleichaktivatoren oder an deren Stelle können auch soge­ nannte Bleichkatalysatoren in die Formkörper eingearbeitet werden. Bei diesen Stoffen han­ delt es sich um bleichverstärkende Übergangsmetallsalze bzw. Übergangsmetallkomplexe wie beispielsweise Mn-, Fe-, Co-, Ru - oder Mo-Salenkomplexe oder -carbonylkomplexe. Auch Mn-, Fe-, Co-, Ru-, Mo-, Ti-, V- und Cu-Komplexe mit N-haltigen Tripod-Liganden sowie Co-, Fe-, Cu- und Ru-Amminkompiexe sind als Bleichkatalysatoren verwendbar.
Die erfindungsgemäßen Formkörper enthalten, jeweils bezogen auf den gesamten Formkör­ per, zwischen 0,5 und 30 Gew.-%, vorzugsweise zwischen 1 und 20 Gew.-% und insbesonde­ re zwischen 2 und 15 Gew.-% eines oder mehrerer Bleichaktivatoren oder Bleichkatalysato­ ren. Je nach Verwendungszweck der hergestellten Formkörper können diese Mengen variie­ ren. So sind in typischen Universalwaschmitteltabletten Bleichaktivator-Gehalte zwischen 0,5 und 10 Gew.-%, vorzugsweise zwischen 2 und 8 Gew.-% und insbesondere zwischen 4 und 6 Gew.-% üblich, während Bleichmitteltabletten durchaus höhere Gehalte, beispielsweise zwi­ schen 5 und 30 Gew.-% vorzugsweise zwischen 7,5 und 25 Gew.-% und insbesondere zwi­ schen 10 und 20 Gew.-% aufweisen können. Der Fachmann ist dabei in seiner Formulierungs­ freiheit nicht eingeschränkt und kann auf diese Weise stärker oder schwächer bleichende Waschmitteltabletten, Reinigungsmitteltabletten oder Bleichmitteltabletten herstellen, indem er die Gehalte an Bleichaktivator und Bleichmittel variiert.
Ein besonders bevorzugt verwendeter Bleichaktivator ist das N,N,N',N'- Tetraacetylethylendiamin, das in Wasch- und Reinigungsmitteln breite Verwendung findet. Dementsprechend sind bevorzugte Wasch- und Reinigungsmittelformkörper dadurch gekenn­ zeichnet, daß als Bleichaktivator Tetraacetylethylendiamin in den oben genannten Mengen eingesetzt wird.
Neben den genannten Inhaltsstoffen können die erfindungsgemäßen Wasch- und Reinigungs­ mittelformkörper weitere Inhaltsstoffe enthalten, deren Mengen sich nach dem Verwendungs­ zweck der Formkörper richten. So sind insbesondere Stoffe aus den Gruppen der Tenside, der Gerüststoffe und der Polymere für den Einsatz in den erfindungsgemäßen Wasch- und Reini­ gungsmittelformkörper geeignet. Dem Fachmann wird es auch hier keine Schwierigkeiten bereiten, die einzelnen Komponenten und ihre Mengengehalte auszuwählen. So wird eine Universalwaschmitteltablette höhere Mengen an Tensid(en) enthalten, während bei einer Bleichmitteltabletten auf deren Einsatz eventuell sogar ganz verzichtet werden kann. Auch die Menge an Gerüststoff(en), die eingesetzt werden, variiert je nach beabsichtigtem Verwen­ dungszweck.
In den erfindungsgemäßen Wasch- und Reinigungsmittelformkörpern können alle üblicher­ weise in Wasch- und Reinigungsmitteln eingesetzten Gerüststoffe enthalten sein, insbesonde­ re also Zeolithe, Silikate, Carbonate, organische Cobuilder und - wo keine ökologischen Vor­ urteile gegen ihren Einsatz bestehen - auch die Phosphate.
Geeignete kristalline, schichtförmige Natriumsilikate besitzen die allgemeine Formel NaMSixO2x-1.H2O, wobei M Natrium oder Wasserstoff bedeutet, x eine Zahl von 1,9 bis 4 und y eine Zahl von 0 bis 20 ist und bevorzugte Werte für x 2, 3 oder 4 sind. Derartige kristalline Schichtsilikate werden beispielsweise in der europäischen Patentanmeldung EP-A-0 164 514 beschrieben. Bevorzugte kristalline Schichtsilikate der angegebenen Formel sind solche, in denen M für Natrium steht und x die Werte 2 oder 3 annimmt. Insbesondere sind sowohl β- als auch δ-Natriumdisilikate Na2Si2O5.yH2O bevorzugt, wobei β-Natriumdisilikat beispiels­ weise nach dem Verfahren erhalten werden kann, das in der internationalen Patentanmeldung WO-A-91/08171 beschrieben ist.
Einsetzbar sind auch amorphe Natriumsilikate mit einem Modul Na2O : SiO2 von 1 : 2 bis 1 : 3,3, vorzugsweise von 1 : 2 bis 1 : 2,8 und insbesondere von 1 : 2 bis 1 : 2,6, welche löseverzö­ gert sind und Sekundärwascheigenschaften aufweisen. Die Löseverzögerung gegenüber her­ kömmlichen amorphen Natriumsilikaten kann dabei auf verschiedene Weise, beispielsweise durch Oberflächenbehandlung, Compoundierung, Kompaktierung/Verdichtung oder durch Übertrocknung hervorgerufen worden sein. Im Rahmen dieser Erfindung wird unter dem Be­ griff "amorph" auch "röntgenamorph" verstanden. Dies heißt, daß die Silikate bei Röntgen­ beugungsexperimenten keine scharfen Röntgenreflexe liefern, wie sie für kristalline Substan­ zen typisch sind, sondern allenfalls ein oder mehrere Maxima der gestreuten Röntgenstrah­ lung, die eine Breite von mehreren Gradeinheiten des Beugungswinkels aufweisen. Es kann jedoch sehr wohl sogar zu besonders guten Buildereigenschaften führen, wenn die Silikatpar­ tikel bei Elektronenbeugungsexperimenten verwaschene oder sogar scharfe Beugungsmaxima liefern. Dies ist so zu interpretieren, daß die Produkte mikrokristalline Bereiche der Größe 10 bis einige Hundert nm aufweisen, wobei Werte bis max. 50 nm und insbesondere bis max. 20 nm bevorzugt sind. Derartige sogenannte röntgenamorphe Silikate, welche ebenfalls eine Lö­ severzögerung gegenüber den herkömmlichen Wassergläsern aufweisen, werden beispielswei­ se in der deutschen Patentanmeldung DE-A-44 00 024 beschrieben. Insbesondere bevorzugt sind verdichtete/kompaktierte amorphe Silikate, compoundierte amorphe Silikate und über­ trocknete röntgenamorphe Silikate.
Der eingesetzte feinkristalline, synthetische und gebundenes Wasser enthaltende Zeolith ist vorzugsweise Zeolith A und/oder P. Als Zeolith P wird Zeolith MAP® (Handelsprodukt der Firma Crosfield) besonders bevorzugt. Geeignet sind jedoch auch Zeolith X sowie Mischun­ gen aus A, X und/oder P. Kommerziell erhältlich und im Rahmen der vorliegenden Erfindung bevorzugt einsetzbar ist beispielsweise auch ein Co-Kristallisat aus Zeolith X und Zeolith A (ca. 80 Gew.-% Zeolith X), das von der Firma CONDEA Augusta S.p.A. unter dem Marken­ namen VEGOBOND AX® vertrieben wird und durch die Formel
nNa2O.(1-n)K2O.Al2O3.(2 - 2,5)SiO2.(3,5 - 5,5)H2O
beschrieben werden kann. Der Zeolith kann dabei sowohl als Gerüststoff in einem granularen Compound eingesetzt, als auch zu einer Art "Abpuderung" der gesamten zu verpressenden Mischung verwendet werden, wobei üblicherweise beide Wege zur Inkorporation des Zeoliths in das Vorgemisch genutzt werden. Geeignete Zeolithe weisen eine mittlere Teilchengröße von weniger als 10 µm (Volumenverteilung; Meßmethode: Coulter Counter) auf und enthal­ ten vorzugsweise 18 bis 22 Gew.-%, insbesondere 20 bis 22 Gew.-% an gebundenem Wasser.
Selbstverständlich ist auch ein Einsatz der allgemein bekannten Phosphate als Buildersub­ stanzen möglich, sofern ein derartiger Einsatz nicht aus ökologischen Gründen vermieden werden sollte. Geeignet sind insbesondere die Natriumsalze der Orthophosphate, der Pyro­ phosphate und insbesondere der Tripolyphosphate.
Die Menge an Gerüststoff beträgt üblicherweise zwischen 10 und 70 Gew.-%, vorzugsweise zwischen 15 und 60 Gew.-% und insbesondere zwischen 20 und 50 Gew.-%. Wiederum ist die Menge an eingesetzten Buildern abhängig vom Verwendungszweck, so daß Bleichmit­ teltabletten höhere Mengen an Gerüststoffen aufweisen können (beispielsweise zwischen 20 und 70 Gew.-%, vorzugsweise zwischen 25 und 65 Gew.-% und insbesondere zwischen 30 und 55 Gew.-%), als beispielsweise Waschmitteltabletten (üblicherweise 10 bis 50 Gew.-%, vorzugsweise 12,5 bis 45 Gew.-% und insbesondere zwischen 17,5 und 37,5 Gew.-%).
Brauchbare organische Gerüstsubstanzen sind beispielsweise die in Form ihrer Natriumsalze einsetzbaren Polycarbonsäuren, wie Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Weinsäure, Zuckersäuren, Aminocarbonsäuren, Nitrilotriessigsäure (NTA), sofern ein derarti­ ger Einsatz aus ökologischen Gründen nicht zu beanstanden ist, sowie Mischungen aus die­ sen. Bevorzugte Salze sind die Salze der Polycarbonsäuren wie Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Weinsäure, Zuckersäuren und Mischungen aus diesen.
Bevorzugte Wasch- und Reinigungsmittelformkörper enthalten weiterhin ein oder mehrere Tensid(e).
In den erfindungsgemäßen Wasch- und Reinigungsmittelformkörpern können anionische, nichtionische, kationische und/oder amphotere Tenside beziehungsweise Mischungen aus diesen eingesetzt werden. Bevorzugt sind aus anwendungstechnischer Sicht Mischungen aus anionischen und nichtionischen Tensiden. Der Gesamttensidgehalt der Formkörper liegt bei 5 bis 60 Gew.-%, bezogen auf das Formkörpergewicht, wobei Tensidgehalte über 15 Gew.-% bevorzugt sind.
Als anionische Tenside werden beispielsweise solche vom Typ der Sulfonate und Sulfate ein­ gesetzt. Als Tenside vom Sulfonat-Typ kommen dabei vorzugsweise C9-13-Alkylbenzolsul­ fonate, Olefinsulfonate, d. h. Gemische aus Alken- und Hydroxyalkansulfonaten sowie Disul­ fonaten, wie man sie beispielsweise aus C12-18-Monoolefinen mit end- oder innenständiger Doppelbindung durch Sulfonieren mit gasförmigem Schwefeltrioxid und anschließende al­ kalische oder saure Hydrolyse der Sulfonierungsprodukte erhält, in Betracht. Geeignet sind auch Alkansulfonate, die aus C12-18-Alkanen beispielsweise durch Sulfochlorierung oder Sul­ foxidation mit anschließender Hydrolyse bzw. Neutralisation gewonnen werden. Ebenso sind auch die Ester von α-Sulfofettsäuren (Estersulfonate), z. B. die α-sulfonierten Methylester der hydrierten Kokos-, Palmkern- oder Talgfettsäuren geeignet.
Weitere geeignete Aniontenside sind sulfierte Fettsäureglycerinester. Unter Fettsäureglyceri­ nestern sind die Mono-, Di- und Triester sowie deren Gemische zu verstehen, wie sie bei der Herstellung durch Veresterung von einem Monoglycerin mit 1 bis 3 Mol Fettsäure oder bei der Umesterung von Triglyceriden mit 0,3 bis 2 Mol Glycerin erhalten werden. Bevorzugte sulfierte Fettsäureglycerinester sind dabei die Sulfierprodukte von gesättigten Fettsäuren mit 6 bis 22 Kohlenstoffatomen, beispielsweise der Capronsäure, Caprylsäure, Caprinsäure, Myri­ stinsäure, Laurinsäure, Palmitinsäure, Stearinsäure oder Behensäure.
Als Alk(en)ylsulfate werden die Alkali- und insbesondere die Natriumsalze der Schwefelsäu­ rehalbester der C12-C18-Fettalkohole, beispielsweise aus Kokosfettalkohol, Talgfettalkohol, Lauryl-, Myristyl-, Cetyl- oder Stearylalkohol oder der C10-C20-Oxoalkohole und diejenigen Halbester sekundärer Alkohole dieser Kettenlängen bevorzugt. Weiterhin bevorzugt sind Alk(en)ylsulfate der genannten Kettenlänge, welche einen synthetischen, auf petrochemischer Basis hergestellten geradkettigen Alkylrest enthalten, die ein analoges Abbauverhalten besit­ zen wie die adäquaten Verbindungen auf der Basis von fettchemischen Rohstoffen. Aus waschtechnischem Interesse sind die C12-C16-Alkylsulfate und C12-C15-Alkylsulfate sowie C14-C15-Alkylsulfate bevorzugt. Auch 2,3-Alkylsulfate, welche beispielsweise gemäß den US-Patentschriften 3,234,258 oder 5 075 041 hergestellt werden und als Handelsprodukte der Shell Oil Company unter dem Namen DAN® erhalten werden können, sind geeignete Anion­ tenside.
Auch die Schwefelsäuremonoester der mit 1 bis 6 Mol Ethylenoxid ethoxylierten geradketti­ gen oder verzweigten C7-21-Alkohole, wie 2-Methyl-verzweigte C9-11-Alkohole mit im Durch­ schnitt 3,5 Mol Ethylenoxid (EO) oder C12-18-Fettalkohole mit 1 bis 4 EO, sind geeignet. Sie werden in Reinigungsmitteln aufgrund ihres hohen Schaumverhaltens nur in relativ geringen Mengen, beispielsweise in Mengen von 1 bis 5 Gew.-%, eingesetzt.
Weitere geeignete Aniontenside sind auch die Salze der Alkylsulfobernsteinsäure, die auch als Sulfosuccinate oder als Sulfobernsteinsäureester bezeichnet werden und die Monoester und/oder Diester der Sulfobernsteinsäure mit Alkoholen, vorzugsweise Fettalkoholen und insbesondere ethoxylierten Fettalkoholen darstellen. Bevorzugte Sulfosuccinate enthalten C8-18-Fettalkoholreste oder Mischungen aus diesen. Insbesondere bevorzugte Sulfosuccinate ent­ halten einen Fettalkoholrest, der sich von ethoxylierten Fettalkoholen ableitet, die für sich betrachtet nichtionische Tenside darstellen (Beschreibung siehe unten). Dabei sind wiederum Sulfosuccinate, deren Fettalkohol-Reste sich von ethoxylierten Fettalkoholen mit eingeengter Homologenverteilung ableiten, besonders bevorzugt. Ebenso ist es auch möglich, Alk(en)ylbernsteinsäure mit vorzugsweise 8 bis 18 Kohlenstoffatomen in der Alk(en)ylkette oder deren Salze einzusetzen.
Als weitere anionische Tenside kommen insbesondere Seifen in Betracht. Geeignet sind ge­ sättigte Fettsäureseifen wie die Salze der Laurinsäure, Myristinsäure, Palmitinsäure, Stearin­ säure, hydrierte Erucasäure und Behensäure sowie insbesondere aus natürlichen Fettsäuren, z. B. Kokos-, Palmkern- oder Talgfettsäuren, abgeleitete Seifengemische.
Die anionischen Tenside einschließlich der Seifen können in Form ihrer Natrium-, Kalium- oder Ammoniumsalze sowie als lösliche Salze organischer Basen, wie Mono-, Di- oder Triet­ hanolamin, vorliegen. Vorzugsweise liegen die anionischen Tenside in Form ihrer Natrium- oder Kaliumsalze, insbesondere in Form der Natriumsalze vor.
Als nichtionische Tenside werden vorzugsweise alkoxylierte, vorteilhafterweise ethoxylierte, insbesondere primäre Alkohole mit vorzugsweise 8 bis 18 C-Atomen und durchschnittlich 1 bis 12 Mol Ethylenoxid (EO) pro Mol Alkohol eingesetzt, in denen der Alkoholrest linear oder bevorzugt in 2-Stellung methylverzweigt sein kann bzw. lineare und methylverzweigte Reste im Gemisch enthalten kann, so wie sie üblicherweise in Oxoalkoholresten vorliegen. Insbesondere sind jedoch Alkoholethoxylate mit linearen Resten aus Alkoholen nativen Ur­ sprungs mit 12 bis 18 C-Atomen, z. B. aus Kokos-, Palm-, Talgfett- oder Oleylalkohol, und durchschnittlich 2 bis 8 EO pro Mol Alkohol bevorzugt. Zu den bevorzugten ethoxylierten Alkoholen gehören beispielsweise C12-14-Alkohole mit 3 EO oder 4 EO, C9-11-Alkohol mit 7 EO, C13-15-Alkohole mit 3 EO, 5 EO, 7 EO oder 8 EO, C12-18-Alkohole mit 3 EO, 5 EO oder 7 EO und Mischungen aus diesen, wie Mischungen aus C12-14-Alkohol mit 3 EO und C12-18- Alkohol mit 5 EO. Die angegebenen Ethoxylierungsgrade stellen statistische Mittelwerte dar, die für ein spezielles Produkt eine ganze oder eine gebrochene Zahl sein können. Bevorzugte Alkoholethoxylate weisen eine eingeengte Homologenverteilung auf (narrow range ethoxyla­ tes, NRE). Zusätzlich zu diesen nichtionischen Tensiden können auch Fettalkohole mit mehr als 12 EO eingesetzt werden. Beispiele hierfür sind Talgfettalkohol mit 14 EO, 25 EO, 30 EO oder 40 EO.
Außerdem können als weitere nichtionische Tenside auch Alkylglykoside der allgemeinen Formel RO(G)x eingesetzt werden, in der R einen primären geradkettigen oder methylver­ zweigten, insbesondere in 2-Stellung methylverzweigten aliphatischen Rest mit 8 bis 22, vor­ zugsweise 12 bis 18 C-Atomen bedeutet und G das Symbol ist, das für eine Glykoseeinheit mit 5 oder 6 C-Atomen, vorzugsweise für Glucose, steht. Der Oligomerisierungsgrad x, der die Verteilung von Monoglykosiden und Oligoglykosiden angibt, ist eine beliebige Zahl zwi­ schen 1 und 10; vorzugsweise liegt x bei 1,2 bis 1,4.
Eine weitere Klasse bevorzugt eingesetzter nichtionischer Tenside, die entweder als alleiniges nichtionisches Tensid oder in Kombination mit anderen nichtionischen Tensiden eingesetzt werden, sind alkoxylierte, vorzugsweise ethoxylierte oder ethoxylierte und propoxylierte Fett­ säurealkylester, vorzugsweise mit 1 bis 4 Kohlenstoffatomen in der Alkylkette, insbesondere Fettsäuremethylester, wie sie beispielsweise in der japanischen Patentanmeldung JP 58/217598 beschrieben sind oder die vorzugsweise nach dem in der internationalen Patentan­ meldung WO-A-90/13533 beschriebenen Verfahren hergestellt werden.
Auch nichtionische Tenside vom Typ der Aminoxide, beispielsweise N-Kokosalkyl-N,N-di­ methylaminoxid und N-Talgalkyl-N,N-dihydroxyethylaminoxid, und der Fettsäurealkano­ lamide können geeignet sein. Die Menge dieser nichtionischen Tenside beträgt vorzugsweise nicht mehr als die der ethoxylierten Fettalkohole, insbesondere nicht mehr als die Hälfte da­ von.
Weitere geeignete Tenside sind Polyhydroxyfettsäureamide der Formel (I),
in der RCO für einen aliphatischen Acylrest mit 6 bis 22 Kohlenstoffatomen, R1 für Wasser­ stoff, einen Alkyl- oder Hydroxyalkylrest mit 1 bis 4 Kohlenstoffatomen und [Z] für einen linearen oder verzweigten Polyhydroxyalkylrest mit 3 bis 10 Kohlenstoffatomen und 3 bis 10 Hydroxylgruppen steht. Bei den Polyhydroxyfettsäureamiden handelt es sich um bekannte Stoffe, die üblicherweise durch reduktive Aminierung eines reduzierenden Zuckers mit Am­ moniak, einem Alkylamin oder einem Alkanolamin und nachfolgende Acylierung mit einer Fettsäure, einem Fettsäurealkylester oder einem Fettsäurechlorid erhalten werden können.
Zur Gruppe der Polyhydroxyfettsäureamide gehören auch Verbindungen der Formel (II),
in der R für einen linearen oder verzweigten Alkyl- oder Alkenylrest mit 7 bis 12 Kohlenstof­ fatomen, R1 für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Arylrest mit 2 bis 8 Kohlenstoffatomen und R2 für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Arylrest oder einen Oxy-Alkylrest mit 1 bis 8 Kohlenstoffatomen steht, wobei C1-4-Alkyl- oder Phenylreste bevorzugt sind und [Z] für einen linearen Polyhydroxyalkylrest steht, dessen Alkylkette mit mindestens zwei Hydroxylgruppen substituiert ist, oder alkoxylierte, vorzugsweise ethoxylierte oder Propxylierte Derivate dieses Restes.
[Z] wird vorzugsweise durch reduktive Aminierung eines reduzierten Zuckers erhalten, bei­ spielsweise Glucose, Fructose, Maltose, Lactose, Galactose, Mannose oder Xylose. Die N-Alkoxy- oder N-Aryloxy-substituierten Verbindungen können dann beispielweise nach der Lehre der internationalen Anmeldung WO-A-95/07331 durch Umsetzung mit Fettsäureme­ thylestern in Gegenwart eines Alkoxids als Katalysator in die gewünschten Polyhydroxyfett­ säureamide überführt werden.
Im Rahmen der vorliegenden Erfindung sind Wasch- und Reinigungsmittelformkörper bevor­ zugt, die anionische(s) und nichtionische(s) Tensid(e) enthalten, wobei anwendungstechnische Vorteile aus bestimmten Mengenverhältnissen, in denen die einzelnen Tensidklassen einge­ setzt werden, resultieren können.
So sind beispielsweise Wasch- und Reinigungsmittelformkörper besonders bevorzugt, bei denen das Verhältnis von Aniontensid(en) zu Niotensid(en) zwischen 10 : 1 und 1 : 10, vor­ zugsweise zwischen 7,5 : 1 und 1 : 5 und insbesondere zwischen 5 : 1 und 1 : 2 beträgt.
Es kann aus anwendungstechnischer Sicht Vorteile haben, wenn bestimmte Tensidklassen in einigen Phasen der Wasch- und Reinigungsmittelformkörper oder im gesamten Formkörper, d. h. in allen Phasen, nicht enthalten sind. Eine weitere wichtige Ausführungsform der vorlie­ genden Erfindung sieht daher vor, daß mindestens eine Phase der Formkörper frei von nich­ tionischen Tensiden ist.
Umgekehrt kann aber auch durch den Gehalt einzelner Phasen oder des gesamten Formkör­ pers, d. h. aller Phasen, an bestimmten Tensiden ein positiver Effekt erzielt werden. Das Ein­ bringen der oben beschriebenen Alkylpolyglycoside hat sich dabei als vorteilhaft erwiesen, so daß Wasch- und Reinigungsmittelformkörper bevorzugt sind, in denen mindestens eine Phase der Formkörper Alkylpolyglycoside enthält.
Ahnlich wie bei den nichtionischen Tensiden können auch aus dem Weglassen von anioni­ schen Tensiden aus einzelnen oder allen Phasen Wasch- und Reinigungsmittelformkörper resultieren, die sich für bestimmte Anwendungsgebiete besser eignen. Es sind daher im Rah­ men der vorliegenden Erfindung auch Wasch- und Reinigungsmittelformkörper denkbar, bei denen mindestens eine Phase der Formkörper frei von anionischen Tensiden ist.
Um den Zerfall hochverdichteter Formkörper zu erleichtern, ist es möglich, Desintegrations­ hilfsmittel, sogenannte Tablettensprengmittel, in diese einzuarbeiten, um die Zerfallszeiten zu verkürzen. Unter Tablettensprengmitteln bzw. Zerfallsbeschleunigern werden gemäß Römpp (9. Auflage, Bd. 6, S. 4440) und Voigt "Lehrbuch der pharmazeutischen Technologie" (6. Auflage, 1987, S. 182-184) Hilfsstoffe verstanden, die für den raschen Zerfall von Tabletten in Wasser oder Magensaft und für die Freisetzung der Pharmaka in resorbierbarer Form sor­ gen.
Diese Stoffe, die auch aufgrund ihrer Wirkung als "Spreng"mittel bezeichnet werden, ver­ größern bei Wasserzutritt ihr Volumen, wobei einerseits das Eigenvolumen vergrößert (Quel­ lung), andererseits auch über die Freisetzung von Gasen ein Druck erzeugt werden kann, der die Tablette in kleinere Partikel zerfallen läßt. Altbekannte Desintegrationshilfsmittel sind beispielsweise Carbonat/Citronensäure-Systeme, wobei auch andere organische Säuren einge­ setzt werden können. Quellende Desintegrationshilfsmittel sind beispielsweise synthetische Polymere wie Polyvinylpyrrolidon (PVP) oder natürliche Polymere bzw. modifizierte Natur­ stoffe wie Cellulose und Stärke und ihre Derivate, Alginate oder Casein-Derivate.
Bevorzugte Wasch- und Reinigungsmittelformkörper enthalten 0,5 bis 10 Gew.-%, vorzugs­ weise 1 bis 6 Gew-.% und insbesondere 3 bis 5 Gew.-% eines Desintegrationshilfsmittels jeweils bezogen auf das Formkörpergewicht.
Als bevorzugte Desintegrationsmittel werden im Rahmen der vorliegenden Erfindung Desin­ tegrationsmittel auf Cellulosebasis eingesetzt, so daß bevorzugte Wasch- und Reinigungsmit­ telformkörper ein solches Desintegrationsmittel auf Cellulosebasis in Mengen von 0,5 bis 10 Gew.-%, vorzugsweise 1 bis 6 Gew.-% und insbesondere 3 bis 5 Gew.-% enthalten. Reine Cellulose weist die formale Bruttozusammensetzung (C6H10O5)n auf und stellt formal be­ trachtet ein β-1,4-Polyacetal von Cellobiose dar, die ihrerseits aus zwei Molekülen Glucose aufgebaut ist. Geeignete Cellulosen bestehen dabei aus ca. 500 bis 5000 Glucose-Einheiten und haben demzufolge durchschnittliche Molmassen von 50 000 bis 500 000. Als Desintegra­ tionsmittel auf Cellulosebasis verwendbar sind im Rahmen der vorliegenden Erfindung auch Cellulose-Derivate, die durch polymeranaloge Reaktionen aus Cellulose erhältlich sind. Sol­ che chemisch modifizierten Cellulosen umfassen dabei beispielsweise Produkte aus Vereste­ rungen bzw. Veretherungen, in denen Hydroxy-Wasserstoffatome substituiert wurden. Aber auch Cellulosen, in denen die Hydroxy-Gruppen gegen funktionelle Gruppen, die nicht über ein Sauerstoffatom gebunden sind, ersetzt wurden, lassen sich als Cellulose-Derivate einset­ zen. In die Gruppe der Cellulose-Derivate fallen beispielsweise Alkalicellulosen, Carboxy­ methylcellulose (CMC), Celluloseester und -ether sowie Aminocellulosen.
Die genannten Cellulosederivate werden vorzugsweise nicht allein als Desintegrationsmittel auf Cellulosebasis eingesetzt, sondern in Mischung mit Cellulose verwendet. Der Gehalt die­ ser Mischungen an Cellulosederivaten beträgt vorzugsweise unterhalb 50 Gew.-%, besonders bevorzugt unterhalb 20 Gew.-%, bezogen auf das Desintegrationsmittel auf Cellulosebasis. Besonders bevorzugt wird als Desintegrationsmittel auf Cellulosebasis reine Cellulose einge­ setzt, die frei von Cellulosederivaten ist.
Als weiteres Desintegrationsmittel auf Cellulosebasis oder als Bestandteil dieser Komponente kann mikrokristalline Cellulose verwendet werden. Diese mikrokristalline Cellulose wird durch partielle Hydrolyse von Cellulosen unter solchen Bedingungen erhalten, die nur die amorphen Bereiche (ca. 30% der Gesamt-Cellulosemasse) der Cellulosen angreifen und voll­ ständig auflösen, die kristallinen Bereiche (ca. 70%) aber unbeschadet lassen. Eine nachfol­ gende Desaggregation der durch die Hydrolyse entstehenden mikrofeinen Cellulosen liefert die mikrokristallinen Cellulosen, die Primärteilchengrößen von ca. 5 µm aufweisen und bei­ spielsweise zu Granulaten mit einer mittleren Teilchengröße von 200 µm kompaktierbar sind.
Neben den genannten Bestandteilen Bleichmittel, Bleichaktivator, Builder, Tensid und Des­ integrationshilfsmittel, können die erfindungsgemäßen Wasch- und Reinigungsmittelform­ körper weitere in Wasch- und Reinigungsmittel übliche Inhaltsstoffe aus der Gruppe der Farb­ stoffe, Duftstoffe, optischen Aufheller, Enzyme, Schauminhibitoren, Silikonöle, Antiredepo­ sitionsmittel, Vergrauungsinhibitoren, Farbübertragungsinhibitoren und Korrosionsinhibitoren enthalten.
Um den ästhetischen Eindruck der erfindungsgemäßen Wasch- und Reinigungsmittelform­ körper zu verbessern, können sie mit geeigneten Farbstoffen eingefärbt werden. Bevorzugte Farbstoffe, deren Auswahl dem Fachmann keinerlei Schwierigkeit bereitet, besitzen eine hohe Lagerstabilität und Unempfindlichkeit gegenüber den übrigen Inhaltsstoffen der Mittel und gegen Licht sowie keine ausgeprägte Substantivität gegenüber Textilfasern, um diese nicht anzufärben.
Bevorzugt für den Einsatz in den erfindungsgemäßen Wasch- und Reinigungsmittelformkör­ pern sind alle Färbemittel, die im Waschprozeß oxidativ zerstört werden können sowie Mi­ schungen derselben mit geeigneten blauen Farbstoffen, sog. Blautönern. Es hat sich als vor­ teilhaft erwiesen Färbemittel einzusetzen, die in Wasser oder bei Raumtemperatur in flüssigen organischen Substanzen löslich sind. Geeignet sind beispielsweise anionische Färbemittel, z. B. anionische Nitrosofarbstoffe. Ein mögliches Färbemittel ist beispielsweise Naphtholgrün (Colour Index (CI) Teil 1: Acid Green 1; Teil 2 : 10020), das als Handelsprodukt beispielswei­ se als Basacid® Grün 970 von der Fa. BASF, Ludwigshafen, erhältlich ist, sowie Mischungen dieser mit geeigneten blauen Farbstoffen. Als weitere Färbemittel kommen Pigmosol® Blau 6900 (CI 74 160), Pigmosol® Grün 8730 (CI 74 260), Basonyl® Rot 545 FL (CI 45 170), San­ dolan® Rhodamin EB400 (CI 45 100), Basacid® Gelb 094 (CI 47 005), Sicovit® Patentblau 85 E 131 (CI 42 051), Acid Blue 183 (CAS 12217-22-0, CI Acidblue 183), Pigment Blue 15 (CI 74 160), Supranol® Blau GLW (CAS 12219-32-8, CI Acidblue 221)), Nylosan® Gelb N-7GL SGR (CAS 61814-57-1, CI Acidyellow 218) und/oder Sandolan® Blau (CI Acid Blue 182, CAS 12219-26-0) zum Einsatz.
Bei der Wahl des Färbemittels muß beachtet werden, daß die Färbemittel keine zu starke Af­ finität gegenüber den textilen Oberflächen und hier insbesondere gegenüber Kunstfasern auf­ weisen. Gleichzeitig ist auch bei der Wahl geeigneter Färbemittel zu berücksichtigen, daß Färbemittel unterschiedliche Stabilitäten gegenüber der Oxidation aufweisen. Im allgemeinen gilt, daß wasserunlösliche Färbemittel gegen Oxidation stabiler sind als wasserlösliche Fär­ bemittel. Abhängig von der Löslichkeit und damit auch von der Oxidationsempfindlichkeit variiert die Konzentration des Färbemittels in den Wasch- oder Reinigungsmitteln. Bei gut wasserlöslichen Färbemitteln, z. B. dem oben genannten Basacid® Grün oder dem gleichfalls oben genannten Sandolan® Blau, werden typischerweise Färbemittel-Konzentrationen im Be­ reich von einigen 10-2 bis 10-3 Gew.-% gewählt. Bei den auf Grund ihrer Brillanz insbesondere bevorzugten, allerdings weniger gut wasserlöslichen Pigmentfarbstoffen, z. B. den oben ge­ nannten Pigmosol®-Farbstoffen, liegt die geeignete Konzentration des Färbemittels in Wasch- oder Reinigungsmitteln dagegen typischerweise bei einigen 10-3 bis 10-4 Gew.-%.
Die Formkörper können optische Aufheller vom Typ der Derivate der Diaminostilbendi­ sulfonsäure bzw. deren Alkalimetallsalze enthalten. Geeignet sind z. B. Salze der 4,4'-Bis(2- anilino-4-morpholino-1,3,5-triazinyl-6-amino)stilben-2,2'-disulfonsäure oder gleichartig auf­ gebaute Verbindungen, die anstelle der Morpholino-Gruppe eine Diethanolaminogruppe, eine Methylaminogruppe, eine Anilinogruppe oder eine 2-Methoxyethylaminogruppe tragen. Weiterhin können Aufheller vom Typ der substituierten Diphenylstyryle anwesend sein, z. B. die Alkalisalze des 4,4'-Bis(2-sulfostyryl)-diphenyls, 4,4'-Bis(4-chlor-3-sulfostyryl)-di­ phenyls, oder 4-(4-Chlorstyryl)-4'-(2-sulfostyryl)-diphenyls. Auch Gemische der vorge­ nannten Aufheller können verwendet werden. Die optischen Aufheller werden in den erfin­ dungsgemäßen Wasch- und Reinigungsmittelformkörper in Konzentrationen zwischen 0,01 und 1 Gew.-%, vorzugsweise zwischen 0,05 und 0,5 Gew.-% und insbesondere zwischen 0,1 und 0,25 Gew.-%, jeweils bezogen auf den gesamten Formkörper, eingesetzt.
Duftstoffe werden den erfindungsgemäßen Mitteln zugesetzt, um den ästhetischen Eindruck der Produkte zu verbessern und dem Verbraucher neben der Weichheitsleistung ein visuell und sensorisch "typisches und unverwechselbares" Produkt zur Verfügung zu stellen. Als Parfümöle bzw. Duftstoffe können einzelne Riechstoffverbindungen, z. B. die synthetischen Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe verwendet werden. Riechstoffverbindungen vom Typ der Ester sind z. B. Benzylacetat, Phenoxyethylisobutyrat, p-tert.-Butylcyclohexylacetat, Linalylacetat, Dimethylbenzyl­ carbinylacetat, Phenylethylacetat, Linalylbenzoat, Benzylformiat, Ethylmethylphenyl­ glycinat, Allylcyclohexylpropionat, Styrallylpropionat und Benzylsalicylat. Zu den Ethern zählen beispielsweise Benzylethylether, zu den Aldehyden z. B. die linearen Alkanale mit 8-18 C-Atomen, Citral, Citronellal, Citronellyloxyacetaldehyd, Cyclamenaldehyd, Hydroxy-citro­ nellal, Lilial und Bourgeonal, zu den Ketonen z. B. die Jonone, ∝-Isomethylionon und Methyl­ cedrylketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Geraniol, Linalool, Phenyle­ thylalkohol und Terpineol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene wie Limonen und Pinen. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Solche Parfümöle können auch natürliche Riechstoffgemische enthalten, wie sie aus pflanzlichen Quellen zugänglich sind, z. B. Pine-, Citrus-, Jasmin-, Patchouly-, Rosen- oder Ylang-Ylang-Öl. Ebenfalls geeig­ net sind Muskateller, Salbeiöl, Kamillenöl, Nelkenöl, Melissenöl, Minzöl, Zimtblätteröl, Lin­ denblütenöl, Wacholderbeeröl, Vetiveröl, Olibanumöl, Galbanumöl und Labdanumöl sowie Orangenblütenöl, Neroliol, Orangenschalenöl und Sandelholzöl.
Üblicherweise liegt der Gehalt der erfindungsgemäßen Wasch- und Reinigungsmittelform­ körper an Duftstoffen bis zu 2 Gew.-% der gesamten Formulierung. Die Duftstoffe können direkt in die erfindungsgemäßen Mittel eingearbeitet werden, es kann aber auch vorteilhaft sein, die Duftstoffe auf Träger aufzubringen, die die Haftung des Parfüms auf der Wäsche verstärken und durch eine langsamere Duftfreisetzung für langanhaltenden Duft der Textilien sorgen. Als solche Trägermaterialien haben sich beispielsweise Cyclodextrine bewährt, wobei die Cyclodextrin-Parfüm-Komplexe zusätzlich noch mit weiteren Hilfsstoffen beschichtet werden können.
Als Enzyme kommen solche aus der Klasse der Proteasen, Lipasen, Amylasen, Cellulasen bzw. deren Gemische in Frage. Besonders gut geeignet sind aus Bakterienstämmen oder Pil­ zen, wie Bacillus subtilis, Bacillus licheniformis und Streptomyces griseus gewonnene enzy­ matische Wirkstoffe. Vorzugsweise werden Proteasen vom Subtilisin-Typ und insbesondere Proteasen, die aus Bacillus lentus gewonnen werden, eingesetzt. Dabei sind Enzymmischun­ gen, beispielsweise aus Protease und Amylase oder Protease und Lipase oder Protease und Cellulase oder aus Cellulase und Lipase oder aus Protease, Amylase und Lipase oder Protease, Lipase und Cellulase, insbesondere jedoch Cellulase-haltige Mischungen von besonderem Interesse. Auch Peroxidasen oder Oxidasen haben sich in einigen Fällen als geeignet erwie­ sen. Die Enzyme können an Trägerstoffen adsorbiert und/oder in Hüllsubstanzen eingebettet sein, um sie gegen vorzeitige Zersetzung zu schützen. Der Anteil der Enzyme, En­ zymmischungen oder Enzymgranulate in den erfindungsgemäßen Formkörpern kann bei­ spielsweise etwa 0,1 bis 5 Gew.-%, vorzugsweise 0,1 bis etwa 2 Gew.-% betragen.
Zusätzlich können die Wasch- und Reinigungsmittelformkörper auch Komponenten enthalten, welche die Öl- und Fettauswaschbarkeit aus Textilien positiv beeinflussen (sogenannte soil repellents). Dieser Effekt wird besonders deutlich, wenn ein Textil verschmutzt wird, das be­ reits vorher mehrfach mit einem erfindungsgemäßen Waschmittel, das diese öl- und fettlösen­ de Komponente enthält, gewaschen wurde. Zu den bevorzugten öl- und fettlösenden Kompo­ nenten zählen beispielsweise nichtionische Celluloseether wie Methylcellulose und Me­ thylhydroxy-propylcellulose mit einem Anteil an Methoxyl-Gruppen von 15 bis 30 Gew.-% und an Hydroxypropoxyl-Gruppen von 1 bis 15 Gew.-%, jeweils bezogen auf den nichtioni­ schen Celluloseether, sowie die aus dem Stand der Technik bekannten Polymere der Phthal­ säure und/oder der Terephthalsäure bzw. von deren Derivaten, insbesondere Polymere aus Ethylenterephthalaten und oder Polyethylenglykolterephthalaten oder anionisch und/oder nichtionisch modifizierten Derivaten von diesen. Besonders bevorzugt von diesen sind die sulfonierten Derivate der Phthalsäure- und der Terephthalsäure-Polymere.
Die Herstellung wasch- und reinigungsaktiver Formkörper geschieht durch Anwendung von Druck auf ein zu verpressendes Gemisch, das sich im Hohlraum einer Presse befindet. Im einfachsten Fall der Formkörperherstellung, die nachfolgend vereinfacht Tablettierung ge­ nannt wird, wird die zu tablettierende Mischung direkt, d. h. ohne vorhergehende Granulation verpreßt. Die Vorteile dieser sogenannten Direkttablettierung sind ihre einfache und kosten­ günstige Anwendung, da keine weiteren Verfahrensschritte und demzufolge auch keine weite­ ren Anlagen benötigt werden. Diesen Vorteilen stehen aber auch Nachteile gegenüber. So muß eine Pulvermischung, die direkt tablettiert werden soll, eine ausreichende plastische Ver­ formbarkeit besitzen und gute Fließeigenschaften aufweisen, weiterhin darf sie während der Lagerung, des Transports und der Befüllung der Matrize keinerlei Entmischungstendenzen zeigen. Diese drei Voraussetzungen sind bei vielen Substanzgemischen nur außerordentlich schwierig zu beherrschen, so daß die Direkttablettierung insbesondere bei der Herstellung von Wasch- und Reinigungsmitteltabletten nicht oft angewendet wird. Der übliche Weg zur Her­ stellung von Wasch- und Reinigungsmitteltabletten geht daher von pulverförmigen Kompo­ nenten ("Primärteilchen") aus, die durch geeignete Verfahren zu Sekundärpartikeln mit höhe­ rem Teilchendurchmesser agglomeriert bzw. granuliert werden. Diese Granulate oder Gemi­ sche unterschiedlicher Granulate werden dann mit einzelnen pulverformigen Zuschlagstoffen vermischt und der Tablettierung zugeführt.
Im Rahmen der vorliegenden Erfindung bevorzugte Wasch- und Reinigungsmittelformkörper werden durch Verpressen teilchenförmiger Vorgemische aus mindestens einem tensidhaltigen Granulat und mindestens einer nachträglich zugemischten pulverförmigen Komponente er­ halten. Die tensidhaltigen Granulate können dabei über übliche Granulierverfahren wie Mi­ scher- und Tellergranulation, Wirbelschichtgranulation, Extrusion, Pelletierung oder Kom­ paktierung hergestellt werden. Es ist dabei für die späteren Wasch- und Reinigungsmittel­ formkörper von Vorteil, wenn die zu verpressenden Vorgemische ein Schüttgewicht aufwei­ sen, das dem üblicher Kompaktwaschmittel nahe kommt. Insbesondere ist es bevorzugt, daß das zu verpressende Vorgemisch ein Schüttgewicht von mindestens 500 g/l, vorzugsweise mindestens 600 g/l und insbesondere oberhalb von 700 g/l, aufweist. Ein weiterer Vorteil kann aus einer engeren Teilchengrößenveneilung der eingesetzten Tensidgranulate resultie­ ren. Im Rahmen der vorliegenden Erfindung sind Wasch- und Reinigungsmittelformkörper bevorzugt, bei denen die Granulate Teilchengrößen zwischen 10 und 4000 µm, vorzugsweise zwischen 100 und 2000 µm und insbesondere zwischen 600 und 1400 µm aufweisen.
Es ist weiterhin bevorzugt, daß die nachträglich zugemischte(n) Komponente(n) das Bleich­ mittel in der genannten erfindungsgemäßen Teilchengrößenverteilung umfaßt.
Vor der Verpressung des teilchenförmigen Vorgemischs zu Wasch- und Reinigungsmittel­ formkörpern kann das Vorgemisch mit feinteiligen Oberflächenbehandlungsmitteln "abgepudert" werden. Dies kann für die Beschaffenheit und physikalischen Eigenschaften sowohl des Vorgemischs (Lagerung, Verpressung) als auch der fertigen Wasch- und Reini­ gungsmittelformkörper von Vorteil sein. Feinteilige Abpuderungsmittel sind im Stand der Technik altbekannt, wobei zumeist Zeolithe, Silikate oder andere anorganische Salze einge­ setzt werden. Bevorzugt wird das Vorgemisch jedoch mit feinteiligem Zeolith "abgepudert", wobei Zeolithe vom Faujasit-Typ bevorzugt sind. Im Rahmen der vorliegenden Erfindung kennzeichnet der Begriff "Zeolith vom Faujasit-Typ" alle drei Zeolithe, die die Faujasit- Untergruppe der Zeolith-Strukturgruppe 4 bilden (Vergleiche Donald W. Breck: "Zeolite Molecular Sieves", John Wiley & Sons, New York, London, Sydney, Toronto, 1974, Seite 92). Neben dem Zeolith X sind also auch Zeolith Y und Faujasit sowie Mischungen dieser Verbindungen einsetzbar, wobei der reine Zeolith X bevorzugt ist.
Auch Mischungen oder Cokristallisate von Zeolithen des Faujasit-Typs mit anderen Zeoli­ then, die nicht zwingend der Zeolith-Strukturgruppe 4 angehören müssen, sind als Abpude­ rungsmittel einsetzbar, wobei es von Vorteil ist, wenn mindestens 50 Gew.-% des Abpude­ rungsmittels aus einem Zeolithen vom Faujasit-Typ bestehen.
Im Rahmen der vorliegenden Erfindung sind Wasch- und Reinigungsmittelformkörper bevor­ zugt, die aus einem teilchenförmigen Vorgemisch bestehen, das granulare Komponenten und nachträglich zugemischte pulverförmige Stoffe enthält, wobei die bzw. eine der nachträglich zugemischten pulverförmigen Komponenten ein Zeolith vom Faujasit-Typ mit Teilchengrö­ ßen unterhalb 100 µm, vorzugsweise unterhalb 10 µm und insbesondere unterhalb 5 µm ist und mindestens 0,2 Gew.-% vorzugsweise mindestens 0,5 Gew.-% und insbesondere mehr als 1 Gew.-% des zu verpressenden Vorgemischs ausmacht.
Die feinteiligen Aufbereitungskomponenten mit den obengenannten Teilchengrößen können dabei dem zu verpressenden Vorgemisch trocken zugemischt werden. Es ist aber auch mög­ lich und bevorzugt, sie durch Zugabe geringer Mengen flüssiger Stoffe an die Oberfläche der gröberen Teilchen "anzukleben". Diese Abpuderungsverfahren sind im Stand der Technik breit beschrieben und dem Fachmann geläufig. Als flüssige Komponenten, die sich zur Haft­ vermittlung der Abpuderungsmittel eignen, können beispielsweise nichtionischen Tenside oder wäßrige Lösungen von Tensiden oder anderen Wasch- und Reinigungsmittelinhaltsstof­ fen eingesetzt werden. Im Rahmen der vorliegenden Erfindung ist es bevorzugt, als flüssigen Haftvermittler zwischen feinteiligem Abpuderungsmittel und den grobkörnigen Teilchen Par­ füm einzusetzen.
Zur Herstellung der erfindungsgemäßen Formkörper werden die Vorgemische in einer soge­ nannten Matrize zwischen zwei Stempeln zu einem festen Komprimat verdichtet. Dieser Vor­ gang, der im folgenden kurz als Tablettierung bezeichnet wird, gliedert sich in vier Abschnit­ te: Dosierung, Verdichtung (elastische Verformung), plastische Verformung und Ausstoßen. Die Tablettierung erfolgt in handelsüblichen Tablettenpressen, die prinzipiell mit Einfach- oder Zweifachstempeln ausgerüstet sein können. Im letzteren Fall wird nicht nur der Ober­ stempel zum Druckaufbau verwendet, auch der Unterstempel bewegt sich während des Preß­ vorgangs auf den Oberstempel zu, während der Oberstempel nach unten drückt. Für kleine Produktionsmengen werden vorzugsweise Exzentertablettenpressen verwendet, bei denen der oder die Stempel an einer Exzenterscheibe befestigt sind, die ihrerseits an einer Achse mit einer bestimmten Umlaufgeschwindigkeit montiert ist. Die Bewegung dieser Preßstempel ist mit der Arbeitsweise eines üblichen Viertaktmotors vergleichbar. Die Verpressung kann mit je einem Ober- und Unterstempel erfolgen, es können aber auch mehrere Stempel an einer Exzenterscheibe befestigt sein, wobei die Anzahl der Matrizenbohrungen entsprechend er­ weiten ist. Die Durchsätze von Exzenterpressen variieren ja nach Typ von einigen hundert bis maximal 3000 Tabletten pro Stunde.
Für größere Durchsätze wählt man Rundlauftablettenpressen, bei denen auf einem sogenann­ ten Matrizentisch eine größere Anzahl von Matrizen kreisförmig angeordnet ist. Die Zahl der Matrizen variiert je nach Modell zwischen 6 und 55, wobei auch größere Matrizen im Handel erhältlich sind. Jeder Matrize auf dem Matrizentisch ist ein Ober- und Unterstempel zugeord­ net, wobei wiederum der Preßdruck aktiv nur durch den Ober- bzw. Unterstempel, aber auch durch beide Stempel aufgebaut werden kann. Der Matrizentisch und die Stempel bewegen sich um eine gemeinsame senkrecht stehende Achse, wobei die Stempel mit Hilfe schienenar­ tiger Kurvenbahnen während des Umlaufs in die Positionen für Befüllung, Verdichtung, pla­ stische Verformung und Ausstoß gebracht werden. An den Stellen, an denen eine besonders gravierende Anhebung bzw. Absenkung der Stempel erforderlich ist (Befüllen, Verdichten, Ausstoßen), werden diese Kurvenbahnen durch zusätzliche Niederdruckstücke, Niederzug­ schienen und Aushebebahnen unterstützt. Die Befüllung der Matrize erfolgt über eine starr angeordnete Zufuhreinrichtung, den sogenannten Füllschuh, der mit einem Vorratsbehälter für die Vorgemische verbunden ist. Der Preßdruck auf das jeweilige Vorgemisch ist über die Preßwege für Ober- und Unterstempel individuell einstellbar, wobei der Druckaufbau durch das Vorbeirollen der Stempelschaftköpfe an verstellbaren Druckrollen geschieht.
Rundlaufuressen können zur Erhöhung des Durchsatzes auch mit zwei oder mehreren Füll­ schuhen versehen werden. Zur Herstellung zwei- und mehrschichtiger Formkörper werden mehrere Füllschuhe hintereinander angeordnet, ohne daß die leicht angepreßte erste Schicht vor der weiteren Befüllung ausgestoßen wird. Durch geeignete Prozeßführung sind auf diese Weise auch Mantel- und Punkttabletten herstellbar, die einen zwiebelschalenartigen Aufbau haben, wobei im Falle der Punkttabletten die Oberseite des Kerns bzw. der Kernschichten nicht überdeckt wird und somit sichtbar bleibt. Auch Rundlauftablettenpressen sind mit Ein­ fach- oder Mehrfachwerkzeugen ausrüstbar, so daß beispielsweise ein äußerer Kreis mit 50 und ein innerer Kreis mit 35 Bohrungen gleichzeitig zum Verpressen benutzt werden. Die Durchsätze moderner Rundlauftablettenpressen betragen über eine Million Formkörper pro Stunde.
Im Rahmen der vorliegenden Erfindung geeignete Tablettiermaschinen sind beispielsweise erhältlich bei den Firmen Apparatebau Holzwarth GbR, Asperg, Wilhelm Fette GmbH, Schwarzenbek, Hofer GmbH. Weil, KILIAN, Köln, KOMAGE, Kell am See, KORSCH Pres­ sen GmbH, Berlin, Mapag Maschinenbau AG, Bern (CH) sowie Courtoy N.V., Halle (BE/LU). Besonders geeignet ist beispielsweise die Hydraulische Doppeldruckpresse HPF 630 der Firma LAEIS, D.
Die Formkörper können dabei in vorbestimmter Raum form und vorbestimmter Größe gefer­ tigt werden, wobei sie immer aus mehreren Phasen, d. h. Schichten, Einschlüssen oder Kernen und Ringen bestehen. Als Raum form kommen praktisch alle sinnvoll handhabbaren Ausge­ staltungen in Betracht, beispielsweise also die Ausbildung als Tafel, die Stab- bzw. Barren­ form, Würfel, Quader und entsprechende Raumelemente mit ebenen Seitenflächen sowie ins­ besondere zylinderförmige Ausgestaltungen mit kreisförmigem oder ovalem Querschnitt. Diese letzte Ausgestaltung erfaßt dabei die Darbietungsform von der Tablette bis zu kompak­ ten Zylinderstücken mit einem Verhältnis von Höhe zu Durchmesser oberhalb 1.
Die portionierten Preßlinge können dabei jeweils als voneinander getrennte Einzelelemente ausgebildet sein, die der vorbestimmten Dosiermenge der Wasch- und/oder Reinigungsmittel entspricht. Ebenso ist es aber möglich, Preßlinge auszubilden, die eine Mehrzahl solcher Mas­ seneinheiten in einem Preßling verbinden, wobei insbesondere durch vorgegebene Sollbruch­ stellen die leichte Abtrennbarkeit portionierter kleinerer Einheiten vorgesehen ist. Für den Einsatz von Textilwaschmitteln in Maschinen des in Europa üblichen Typs mit horizontal angeordneter Mechanik kann die Ausbildung der portionierten Preßlinge als Tabletten, in Zy­ linder- oder Quaderform zweckmäßig sein, wobei ein Durchmesser/Höhe-Verhältnis im Be­ reich von etwa 0,5 : 2 bis 2 : 0,5 bevorzugt ist. Handelsübliche Hydraulikpressen, Ex­ zenterpressen oder Rundläuferpressen sind geeignete Vorrichtungen insbesondere zur Her­ stellung derartiger Preßlinge.
Die Raumform einer anderen Ausführungsform der Formkörper ist in ihren Dimensionen der Einspülkammer von handelsüblichen Haushaltswaschmaschinen angepaßt, so daß die Form­ körper ohne Dosierhilfe direkt in die Einspülkammer eindosiert werden können, wo sie sich während des Einspülvorgangs auflöst. Selbstverständlich ist aber auch ein Einsatz der Waschmittelformkörper über eine Dosierhilfe problemlos möglich.
Ein weiterer bevorzugter mehrphasiger Formkörper, der hergestellt werden kann, hat eine platten- oder tafelartige Struktur mit abwechselnd dicken langen und dünnen kurzen Segmen­ ten, so daß einzelne Segmente von diesem "Mehrphasen-Riegel" an den Sollbruchstellen, die die kurzen dünnen Segmente darstellen, abgebrochen und in die Maschine eingegeben werden können. Dieses Prinzip des "riegelförmigen" Formkörperwaschmittels kann auch in anderen geometrischen Formen, beispielsweise senkrecht stehenden Dreiecken, die lediglich an einer ihrer Seiten längsseits miteinander verbunden sind, verwirklicht werden. Hier bietet es sich aus optischen Gründen an, die Dreiecksbasis, die die einzelnen Segniente miteinander verbin­ det, als eine Phase auszubilden, während die Dreiecksspitze die zweite Phase bildet. Eine unterschiedliche Anfarbung beider Phasen ist in dieser Ausführungsform besonders reizvoll.
Nach dem Verpressen weisen die Wasch- und Reinigungsmittelformkörper eine hohe Stabili­ tät auf. Die Bruchfestigkeit zylinderförmiger Formkörper kann über die Meßgröße der diame­ tralen Bruchbeanspruchung erfaßt werden. Diese ist bestimmbar nach
Hierin steht σ für die diametrale Bruchbeanspruchung (diametral fracture stress, DFS) in Pa, P ist die Kraft in N, die zu dem auf den Formkörper ausgeübten Druck führt, der den Bruch des Formkörpers verursacht, D ist der Formkörperdurchmesser in Meter und t ist die Höhe der Formkörper.
Beispiele
Zur Herstellung Bleichmittel-haltiger Wasch- und Reinigungsmittelformkörper wurde ein Tensidgranulat mit weiteren Aufbereitungskomponenten vermischt und auf einer Exzenter- Tablettenpresse zu Formkörpern verpreßt. Das über die Aufbereitungskomponenten zugege­ bene Bleichmittel (Natriumperborat-Monohydrat) wies dabei je nach Formkörper-Serie unter­ schiedliche Teilchengrößenverteilungen auf. Die Zusammensetzung des Tensidgranulats ist in der folgenden Tabelle 1 angegeben, die Zusammensetzung des zu verpressenden Vorgemischs (und damit die Zusammensetzung der Formkörper) findet sich in Tabelle 2. Tabelle 3 zeigt die Teilchengrößenverteilungen des in den unterschiedlichen Formkörpern eingesetzten Per­ borat-Monohydrats.
Tabelle 1
Tensidgranulat [Gew.-%]
Tabelle 2
Vorgemisch [Gew.-%]
Tabelle 3
Natriumperborat-Monohydrat: Teilchengrößenverteilung [Gew.-%]
Die Härte der Tabletten wurde durch Verformung der Tablette bis zum Bruch gemessen, wo­ bei die Kraft auf die Seitenflächen der Tablette einwirkte und die maximale Kraft, der die Ta­ blette standhielt, ermittelt wurde.
Zur Bestimmung des Tablettenzerfalls wurde die Tablette in ein Becherglas mit Wasser gelegt (600 ml Wasser, Temperatur 30°C) und die Zeit bis zum vollständigen Tablettenzerfall gemes­ sen.
Für den Einspültest wurden jeweils zwei Tabletten in die Einspülkammer einer handelsübli­ chen Waschmaschine gelegt und das Waschprogramm gestartet. Nach dem Ablauf der Ein­ spülphase wurde die Einspülkammer herausgezogen und visuell bewertet. Sind in der Kam­ mer deutliche Rückstände zu erkennen, so wurden die Tabletten als nicht einspülbar bewertet. Die einzelnen Vorgemische wurden mit Hilfe einer Exzenter-Tablettenpresse zu Serien von Tabletten verpreßt. Dabei wurden durch Variation des Preßdrucks jeweils zwei unterschied­ lich harte Serien von Tabletten hergestellt.
Die experimentellen Daten der einzelnen Tablettenserien zeigt Tabelle 4:
Tabelle 4
Waschmitteltabletten [physikalische Daten]
Neben den überragenden physikalischen Eigenschaften der erfindungsgemäßen Formkörper E1 und E1' weisen diese zusätzlich eine verbesserte Reinigungsleistung an enzymatisch zu entfernenden Anschmutzungen (Ei, Blut, Kakao) auf.

Claims (14)

1. Wasch- und Reinigungsmittelformkörper aus verdichtetem teilchenförmigen Wasch- und Reinigungsmittel, umfassend Bleichmittel, Gerüststoff(e) sowie gegebenenfalls weitere Wasch- und Reinigungsmittelbestandteile, dadurch gekennzeichnet, daß das Bleichmittel eine mittlere Teilchengröße oberhalb 0,4 mm aufweist.
2. Wasch- und Reinigungsmittelformkörper nach Anspruch 1, dadurch gekennzeichnet, daß das Bleichmittel substantiell frei von Teilchen mit Größen unterhalb 0,2 mm ist.
3. Wasch- und Reinigungsmittelformkörper nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß das Bleichmittel weniger als 30 Gew.-%, vorzugsweise weniger als 20 Gew.-% und insbesondere weniger als 10 Gew.-% Teilchen einer Größe unterhalb 0,4 mm aufweist.
4. Wasch- und Reinigungsmittelformkörper nach einem der Ansprüche 1 bis 3, dadurch ge­ kennzeichnet, daß das Bleichmittel mehr als 10 Gew.-%, vorzugsweise mehr als 20 Gew.-% und insbesondere mehr als 30 Gew.-% Teilchen einer Größe oberhalb 0,8 mm aufweist.
5. Wasch- und Reinigungsmittelformkörper nach einem der Ansprüche 1 bis 4, dadurch ge­ kennzeichnet, daß das Bleichmittel substantiell frei von Teilchen mit Größen oberhalb 1,6 mm ist.
6. Wasch- und Reinigungsmittelformkörper nach einem der Ansprüche 1 bis 5, dadurch ge­ kennzeichnet, daß als Bleichmittel Natriumperborat oder Natriumpercarbonat, insbesonde­ re Natriumperborat-Monohydrat, eingesetzt wird.
7. Wasch- und Reinigungsmittelformkörper nach einem der Ansprüche 1 bis 6, dadurch ge­ kennzeichnet, daß der Formkörper weiterhin ein oder mehrere Bleichaktivator(en) enthält.
8. Wasch- und Reinigungsmittelformkörper nach einem der Ansprüche 1 bis 7, dadurch ge­ kennzeichnet, daß der Formkörper weiterhin ein oder mehrere Tensid(e) enthält.
9. Wasch- und Reinigungsmittelformkörper nach einem der Ansprüche 1 bis 8, dadurch ge­ kennzeichnet, daß sie durch Verpressen eines teilchenformigen Vorgemischs aus minde­ stens einem tensidhaltigen Granulat und mindestens einer nachträglich zugemischten pul­ verförmigen Komponente erhalten wurden.
10. Wasch- und Reinigungsmittelformkörper nach Anspruch 9, dadurch gekennzeichnet, daß die Granulate über übliche Granulierverfahren wie Mischer- und Tellergranulation, Wir­ belschichtgranulation, Extrusion, Pelletierung oder Kompaktierung hergestellt wurden.
11. Wasch- und Reinigungsmittelformkörper nach einem der Ansprüche 9 oder 10, dadurch gekennzeichnet, daß die Granulate Teilchengrößen zwischen 10 und 4000 µm, vorzugs­ weise zwischen 100 und 2000 µm und insbesondere zwischen 600 und 1400 µm aufwei­ sen.
12. Wasch- und Reinigungsmittelformkörper nach einem der Ansprüche 9 bis 11, dadurch gekennzeichnet, daß die nachträglich zugemischte(n) pulverförmige(n) Komponente(n) das Bleichmittel umfaßt.
13. Wasch- und Reinigungsmittelformkörper nach einem der Ansprüche 9 bis 12, dadurch gekennzeichnet, daß das zu verpressende Vorgemisch ein Schüttgewicht von mindestens 500 g/l, vorzugsweise mindestens 600 g/l und insbesondere oberhalb von 700 g/l, auf­ weist.
14. Wasch- und Reinigungsmittelformkörper nach einem der Ansprüche 1 bis 13, enthaltend weiterhin einen oder mehrere Stoffe aus der Gruppe der Enzyme, pH-Stellmittel, Duftstof­ fe, Parfümträger, Fluoreszenzmittel, Farbstoffe, Schauminhibitoren, Silikonöle, Antirede­ positionsmittel, optischen Aufheller, Vergrauungsinhibitoren, Farbübertragungsinhibito­ ren und Korrosionsinhibitoren.
DE19806200A 1998-02-16 1998-02-16 Wasch- und Reinigungsmittelformkörper mit Bleichmittel Withdrawn DE19806200A1 (de)

Priority Applications (12)

Application Number Priority Date Filing Date Title
DE19806200A DE19806200A1 (de) 1998-02-16 1998-02-16 Wasch- und Reinigungsmittelformkörper mit Bleichmittel
EP98955440A EP1056833B1 (de) 1998-02-16 1998-10-13 Wasch- und reinigungsmittelformkörper mit bleichmittel
JP2000531532A JP2002503761A (ja) 1998-02-16 1998-10-13 漂白剤を含むタブレット
ES98955440T ES2173640T3 (es) 1998-02-16 1998-10-13 Cuerpos moldeados de agentes de lavado y de limpieza con agente de blanqueo.
SK1202-2000A SK12022000A3 (sk) 1998-02-16 1998-10-13 Tvarovaný výrobok pracích a čistiacich prostriedkov s bieliacim prostriedkom
AT98955440T ATE213768T1 (de) 1998-02-16 1998-10-13 Wasch- und reinigungsmittelformkörper mit bleichmittel
PL98342343A PL342343A1 (en) 1998-02-16 1998-10-13 Laundry washing and cleaning agent compacts containing a whitening agent
DE59803243T DE59803243D1 (de) 1998-02-16 1998-10-13 Wasch- und reinigungsmittelformkörper mit bleichmittel
CN98813639.2A CN1284991A (zh) 1998-02-16 1998-10-13 含有漂白剂的洗涤和清洁片
PCT/EP1998/006474 WO1999041351A1 (de) 1998-02-16 1998-10-13 Wasch- und reinigungsmittelformkörper mit bleichmittel
HU0100727A HUP0100727A2 (hu) 1998-02-16 1998-10-13 Fehérítőt tartalmazó, formázott mosó- és tisztítószer készítmény
CA002315298A CA2315298A1 (en) 1998-02-16 2000-08-17 Washing and cleaning agent shaped body with bleaching agent

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19806200A DE19806200A1 (de) 1998-02-16 1998-02-16 Wasch- und Reinigungsmittelformkörper mit Bleichmittel
CA002315298A CA2315298A1 (en) 1998-02-16 2000-08-17 Washing and cleaning agent shaped body with bleaching agent

Publications (1)

Publication Number Publication Date
DE19806200A1 true DE19806200A1 (de) 1999-08-19

Family

ID=25681999

Family Applications (2)

Application Number Title Priority Date Filing Date
DE19806200A Withdrawn DE19806200A1 (de) 1998-02-16 1998-02-16 Wasch- und Reinigungsmittelformkörper mit Bleichmittel
DE59803243T Revoked DE59803243D1 (de) 1998-02-16 1998-10-13 Wasch- und reinigungsmittelformkörper mit bleichmittel

Family Applications After (1)

Application Number Title Priority Date Filing Date
DE59803243T Revoked DE59803243D1 (de) 1998-02-16 1998-10-13 Wasch- und reinigungsmittelformkörper mit bleichmittel

Country Status (11)

Country Link
EP (1) EP1056833B1 (de)
JP (1) JP2002503761A (de)
CN (1) CN1284991A (de)
AT (1) ATE213768T1 (de)
CA (1) CA2315298A1 (de)
DE (2) DE19806200A1 (de)
ES (1) ES2173640T3 (de)
HU (1) HUP0100727A2 (de)
PL (1) PL342343A1 (de)
SK (1) SK12022000A3 (de)
WO (1) WO1999041351A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000065017A1 (de) * 1999-04-24 2000-11-02 Henkel Kommanditgesellschaft Auf Aktien Bleichmittelhaltige waschmitteltabletten

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19847277A1 (de) * 1998-10-14 2000-04-20 Henkel Kgaa Bleichaktivator-haltige Wasch- und Reinigungsmittelformkörper
JP4619526B2 (ja) * 2000-12-15 2011-01-26 花王株式会社 錠剤型洗剤
US8871699B2 (en) 2012-09-13 2014-10-28 Ecolab Usa Inc. Detergent composition comprising phosphinosuccinic acid adducts and methods of use
US9994799B2 (en) 2012-09-13 2018-06-12 Ecolab Usa Inc. Hard surface cleaning compositions comprising phosphinosuccinic acid adducts and methods of use
US20140308162A1 (en) 2013-04-15 2014-10-16 Ecolab Usa Inc. Peroxycarboxylic acid based sanitizing rinse additives for use in ware washing
US9752105B2 (en) 2012-09-13 2017-09-05 Ecolab Usa Inc. Two step method of cleaning, sanitizing, and rinsing a surface
CN105331459A (zh) * 2015-12-15 2016-02-17 濮阳宏业环保新材料股份有限公司 一种染色过碳酸钠及其制备方法
CN107312645B (zh) * 2017-06-19 2021-04-13 深圳市科玺化工有限公司 一种活氧洗衣片及其制备方法
CN107488531A (zh) * 2017-08-29 2017-12-19 广州立白企业集团有限公司 一种中性速溶型块状洗涤剂组合物及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4405486A (en) * 1981-08-31 1983-09-20 Warner-Lambert Company Method for preparing granulated perborate salts containing a polymeric fluorocarbon
GB9022724D0 (en) * 1990-10-19 1990-12-05 Unilever Plc Detergent compositions
GB9114184D0 (en) * 1991-07-01 1991-08-21 Unilever Plc Detergent composition
GB9422925D0 (en) * 1994-11-14 1995-01-04 Unilever Plc Detergent compositions

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000065017A1 (de) * 1999-04-24 2000-11-02 Henkel Kommanditgesellschaft Auf Aktien Bleichmittelhaltige waschmitteltabletten

Also Published As

Publication number Publication date
WO1999041351A1 (de) 1999-08-19
PL342343A1 (en) 2001-06-04
ATE213768T1 (de) 2002-03-15
SK12022000A3 (sk) 2001-05-10
CN1284991A (zh) 2001-02-21
CA2315298A1 (en) 2000-10-29
DE59803243D1 (de) 2002-04-04
EP1056833A1 (de) 2000-12-06
ES2173640T3 (es) 2002-10-16
EP1056833B1 (de) 2002-02-27
HUP0100727A2 (hu) 2001-06-28
JP2002503761A (ja) 2002-02-05

Similar Documents

Publication Publication Date Title
DE19808757B4 (de) Duftperlen in Wasch- und Reinigungsmittelformkörpern
EP1056833B1 (de) Wasch- und reinigungsmittelformkörper mit bleichmittel
EP1056832B1 (de) Mehrphasen-formkörper mit optimiertem phasensplit
DE19739384A1 (de) Wasch- und Reinigungsmittelformkörper mit verbesserter Löslichkeit
DE19739383A1 (de) Wasch- und Reinigungsmittelformkörper mit verbesserter Löslichkeit
EP1051474B1 (de) Mehrphasige waschmitteltabletten
EP1037960B1 (de) Wasch- und reinigungsmittelformkörper mit verbesserten zerfallseigenschaften
DE19903288A1 (de) Mehrphasige Waschmitteltabletten
DE19749749A1 (de) Verfahren zur Herstellung stabiler und schnell zerfallender Waschmittelformkörper
EP1051475B1 (de) Mehrphasige waschmitteltabletten
DE19807321A1 (de) Wasch- und Reinigungsmittelformkörper mit verbessertem Eigenschaftsprofil
DE19847283A1 (de) Wasch- und Reinigungsmittelformkörper mit wasserfrei granuliertem Brausesystem
DE19841146A1 (de) Waschmitteltabletten mit Bindemitteln
DE19743837A1 (de) Verfahren zur Herstellung von stabilen und schnellöslichen Waschmitteltabletten
DE19843778A1 (de) Wasch- und Reinigungsmittelformkörper mit Natriumpercarbonat
DE19754292A1 (de) Wasch- und Reinigungsmittelformkörper mit verbesserten Zerfallseigenschaften
WO1999055812A1 (de) Wasch- und reinigungsmittelformkörper mit verbesserten zerfallseigenschaften
DE19847277A1 (de) Bleichaktivator-haltige Wasch- und Reinigungsmittelformkörper
DE19847281A1 (de) Wasch- und Reinigungsmittelformkörper mit organischen Oligocarbonsäuren
DE19851442A1 (de) Wasch- und Reinigungsmittelformkörper mit feinteiligen Lösungsvermittlern
DE10129228B4 (de) Gelbildung verhindernde Zusätze zu Tensiden und Waschmittelformulierungen und ihre Anwendung in Wasch-und Reinigungsmitteln
DE19843938A1 (de) Wasch- und Reinigungsmittelformkörper mit grobteiligen Aufbereitungskomponenten
DE19841362A1 (de) ABS-haltige Wasch- und Reinigungsmittelformkörper
DE19841360A1 (de) Wasch- und Reinigungsmittelformkörper mit speziellem Tensidgranulat
DE19831707A1 (de) Verfahren zur Herstellung fettalkoholsulfathaltiger Wasch- und Reinigungsmittelformkörper

Legal Events

Date Code Title Description
8110 Request for examination paragraph 44
8127 New person/name/address of the applicant

Owner name: HENKEL AG & CO. KGAA, 40589 DUESSELDORF, DE

R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee

Effective date: 20110901