DE19535526C1 - Doppelkern-Faserlaser - Google Patents

Doppelkern-Faserlaser

Info

Publication number
DE19535526C1
DE19535526C1 DE19535526A DE19535526A DE19535526C1 DE 19535526 C1 DE19535526 C1 DE 19535526C1 DE 19535526 A DE19535526 A DE 19535526A DE 19535526 A DE19535526 A DE 19535526A DE 19535526 C1 DE19535526 C1 DE 19535526C1
Authority
DE
Germany
Prior art keywords
core
laser
double
pump
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
DE19535526A
Other languages
English (en)
Inventor
Holger Zellmer
Joern Bonse
Sonnja Unger
Volker Reichel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LDT Laser Display Technology GmbH
Original Assignee
Institut fuer Physikalische Hochtechnologie eV
LZH Laser Zentrum Hannover eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to DE19535526A priority Critical patent/DE19535526C1/de
Application filed by Institut fuer Physikalische Hochtechnologie eV, LZH Laser Zentrum Hannover eV filed Critical Institut fuer Physikalische Hochtechnologie eV
Priority to JP51313597A priority patent/JP3830969B2/ja
Priority to CN96191114A priority patent/CN1095606C/zh
Priority to EP96934466A priority patent/EP0793867B1/de
Priority to RU97111166A priority patent/RU2138892C1/ru
Priority to CA002204865A priority patent/CA2204865C/en
Priority to DE59602381T priority patent/DE59602381D1/de
Priority to DK96934466T priority patent/DK0793867T3/da
Priority to US08/836,588 priority patent/US5864645A/en
Priority to PCT/EP1996/004187 priority patent/WO1997012429A1/de
Application granted granted Critical
Publication of DE19535526C1 publication Critical patent/DE19535526C1/de
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01225Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
    • C03B37/01228Removal of preform material
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02042Multicore optical fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/34Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with rare earth metals, i.e. with Sc, Y or lanthanides, e.g. for laser-amplifiers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/12Non-circular or non-elliptical cross-section, e.g. planar core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094003Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094003Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre
    • H01S3/094007Cladding pumping, i.e. pump light propagating in a clad surrounding the active core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094069Multi-mode pumping

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Lasers (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

Die Erfindung betrifft einen Doppelkern-Faserlaser gemäß Oberbegriff des Anspruchs.
Aus "Optics Letters", 1995, Vol. 20, Nr. 6, Seiten 578 bis 580, ist bereits ein solcher Doppelkern-Faserlaser mit einem im Querschnitt runden Pumpkern bekannt, in dem ein Laserkern zentrisch angeordnet ist und der von einer Umhüllung umgeben ist. Dieser bekannte Doppelkern-Faserlaser hat den Nachteil, daß nur ein Teil des Pumplichtes im zentrischen Laserkern absorbiert wird, weil sich im Innern des Pumpkernes soge­ nannte Helixstrahlen ausbilden, die den Laserkern nicht kreuzen und daher nicht absorbiert werden.
Aus der US 4 815 079 ist ein Doppelkern-Faserlaser mit rundem Pumpkern und azentrischem Laserkern bekannt. Die­ ser Doppelkern-Faserlaser ist schwer zu fertigen, und der Laserkern neigt dazu, sich im Querschnitt zu einer Ellipsen form zu verformen. Aus dieser Patentschrift ist ferner ein Doppelkern-Faserlaser mit einem im Querschnitt rechteckför­ migen Pumpkern und zentrischem Laserkern bekannt. Auch dieser Doppelkern-Faserlaser ist nur mit hohem Aufwand zu fertigen. Bei diesem Doppelkern-Faserlaser gestaltet sich das Einkop­ peln von Laserdioden wegen der Abmessungen schwerer als bei Doppelkern-Faserlasern mit rundem Pumpkern.
Aus der DE 29 01 092 C2 ist ein optischer Wellenleiter in Form einer Doppelkernfaser mit einem zentrischen Faserkern, einer den Faserkern umgebenden Mantelschicht und einer die Mantelschicht umgebenden Außenhüllenschicht bekannt, wobei die Außenhüllenschicht diametrale Abschliffe aufweisen kann.
Die Aufgabe der vorliegenden Erfindung besteht darin, einen Doppelkern-Faserlaser anzugeben, der einfach herstell­ bar ist und eine im wesentlichen vollständige Absorption des Pumplichtes im Laserkern ermöglicht.
Diese Aufgabe wird durch die Erfindung nach dem Anspruch gelöst.
Die Erfindung schlägt einen runden Pumpkern vor, der einen zentrisch eingebetteten Laserkern aufweist und der au­ ßenseitig wenigstens einen in Längsrichtung des Doppelkern- Faserlasers verlaufenden Abschliff aufweist, so daß ein im Querschnitt D-förmiger Pumpkern entsteht. Durch diesen Ab­ schliff wird die Symmetrie des Pumpkerns gebrochen, wodurch sich keine Helixstrahlen mehr ausbilden können. Statt dessen wird der Strahlverlauf im Pumpkern chaotisch, wodurch er­ reicht wird, daß das eingekoppelte Pumplicht nahezu voll­ ständig im Laserkern absorbiert wird. Die im wesentlichen runde Faser mit zentrischem Faserkern erlaubt eine einfache Verbindung mit anderen faseroptischen Komponenten sowie eine einfache Einkopplung des Pumplichtes.
Die Erfindung soll nachfolgend anhand der beigefügten Zeichnung näher erläutert werden.
Es zeigt
Fig. 1 schematisch den prinzipiellen Aufbau eines Fa­ serlasers,
Fig. 2 einen Doppelkern-Faserlaser mit rundem Pumpkern gemäß Stand der Technik,
Fig. 3 einen erfindungsgemäß ausgebildeten Doppelkern- Faserlaser im Querschnitt,
Fig. 4 einen Teil eines Schnittes A-A durch den Doppel­ kern-Faserlaser nach Fig. 3 und
Fig. 5 eine grafische Darstellung der Pumplichtab­ sorption in Abhängigkeit von der Größe des Abschliffs und der Faserlänge.
Die Fig. 1 zeigt den prinzipiellen Aufbau eines Faser­ lasers 100, bestehend aus einer Laserdiode 102, deren Strah­ lung 104 über eine Koppeloptik 106 und einen Einkoppelspie­ gel 108 als Pumplicht in eine Faser 110 eingekoppelt wird. Die in der Faser erzeugte Laserstrahlung 112 wird über einen Auskoppelspiegel 114 ausgekoppelt. Die beiden Spiegel sind auf den Faserenden angeordnet.
Die Fig. 2 zeigt einen herkömmlichen Doppelkern-Faser­ laser 2 im Querschnitt. Dieser Doppelkern-Faserlaser 2 weist einen runden Pumpkern 4, beispielsweise aus Quarzglas auf, in dem ein runder Laserkern 6, beispielsweise aus einem mit Neodym oder mit anderen seltenen Erden dotierten Medium zen­ trisch angeordnet ist und der eine Umhüllung 8, beispiels­ weise aus einem transparenten Polymer mit niedrigem Bre­ chungsindex aufweist. Der Pumpkern 4 dient sowohl als Umhül­ lung für den Laserkern als auch als Wellenleiter mit hoher numerischer Apertur für das Pumplicht. Die Fig. 2 verdeut­ licht, daß sich bei Doppelkern-Faserlasern mit im Quer­ schnitt kreisrundem Pumpkern Helixstrahlen 10 ausbilden, die den Laserkern nicht kreuzen und daher vom Laserkern nicht absorbiert werden können. Solche Doppelkern-Faserlaser kön­ nen daher nur etwa 10% der Pumpstrahlung absorbieren.
Die Fig. 3 und 4 zeigen einen erfindungsgemäß ausgebil­ deten Doppelkern-Faserlaser 20 mit einem beispielsweise aus Quarzglas bestehenden Pumpkern 22, in dem ein runder, bei­ spielsweise aus Nd-dotiertem Medium bestehender Laserkern 24 zentrisch angeordnet ist und der von einer beispielsweise aus einem transparenten, einen niedrigen Brechungsindex auf­ weisenden Polymer bestehenden Umhüllung 26 umgeben ist.
Anders als bei dem herkömmlichen Doppelkern-Faserlaser 2 nach Fig. 2 ist der Pumpkern 22 außenseitig mit einem Ab­ schliff 28 in Längsrichtung versehen und ansonsten im Quer­ schnitt kreisrund ausgebildet. Durch den Abschliff 28 wird die Kreis-Symmetrie eines Doppelkern-Faserlasers nach Fig. 1 gebrochen. Die Fig. 3 verdeutlicht, daß sich durch den Ab­ schliff 28 ein chaotischer Strahlverlauf ausbildet, wodurch der Laserkern 24 praktisch immer gekreuzt wird und eine na­ hezu 100%ige Absorption des Pumplichtes erreicht wird. Der Abschliff verhindert die Ausbildung von Helixstrahlen und ist leicht herstellbar. Es können auch mehrere solcher Ab­ schliffe vorgesehen werden.
Mögliche Abmessungen des Doppelkern-Faserlasers 20 sind wie folgt:
Pumpkernradius (an der Stelle ohne Abschliff):
ca. 50 bis 300 µm,
Laserkern: ca. 2,5 bis 10 µm,
Stärke der Umhüllung: ca. 12,5 µm
Länge der Faser: ca. 1 bis 50 µm,
Abschliff: beispielsweise 1 bis 25 µm.
Zur Ausführung eines Faserresonators sind, wie dies in der Fig. 1 und teilweise in der Fig. 4 dargestellt ist, auf den Faserenden dielektrische Spiegel angeordnet, wobei auf der Pumpseite bzw. Einkoppelseite ein Spiegel 108 (Fig. 1) bzw. 32 (Fig. 4) mit hohem Reflexionsgrad für das Laserlicht und mit hohem Transmissionsgrad für das Pumplicht 104 (Fig. 1) bzw. 34 (Fig. 4) und auf der Auskoppelseite ein Spiegel 114 (Fig. 1) mit hohem Reflexionsgrad für das Pumplicht und hohem Transmissionsgrad für das Laserlicht 112 (Fig. 1) bzw. 36 (Fig. 4) verwendet wird. Die Spiegel können direkt auf die Faserendfläche aufgebracht werden, oder es können Spie­ gel auf die Faserenden gepreßt oder vor die Faserenden ge­ stellt werden. Der Auskoppelspiegel ist in der Fig. 4 nicht dargestellt. Die Pumpstrahlung wird innerhalb der Doppel­ kernfaser an der Umhüllung mehrfach reflektiert, kreuzt da­ bei den Laserkern 24 und wird vom Laserkern absorbiert.
Die Fig. 5 zeigt eine Darstellung der Pumplichtabsorp­ tion in einem Doppelkern-Faserlaser gemäß Fig. 3 und 4 in Abhängigkeit vom Abschliff und der Faserlänge, vgl. Kurven 40, 42 und 44 und im Vergleich zu einem Doppelkern-Faserla­ ser mit rundem Pumpkern nach dem Stand der Technik, vgl. Kurve 46. Man erkennt deutlich, daß die Absorption bei einem Doppelkern-Faserlaser mit abgeschliffenem Pumpkern deutlich über der Absorption in einem Doppelkern-Faserlaser mit her­ kömmlichem rundem Pumpkern liegt. Die Absorption steigt fer­ ner mit zunehmender Faserlänge, während die Zunahme der Ab­ sorption mit größer werdendem Abschliff nicht so stark aus­ gebildet ist.

Claims (1)

  1. Doppelkern-Faserlaser mit einem Pumpkern, einem im Pumpkern zentrisch angeordneten Laserkern, einer den Pumpkern umgeben­ den Umhüllung und dielektrischen Spiegeln, die auf den Fase­ renden angeordnet sind, dadurch gekennzeichnet, daß der im Querschnitt im wesentlichen kreisrund ausgebildete Pumpkern (22) außenseitig einen in Längsrichtung des Doppelkern-Faser­ lasers (20) verlaufenden Abschliff (28) aufweist, der 1% bis 90% des Pumpkernradius beträgt.
DE19535526A 1995-09-25 1995-09-25 Doppelkern-Faserlaser Expired - Fee Related DE19535526C1 (de)

Priority Applications (10)

Application Number Priority Date Filing Date Title
DE19535526A DE19535526C1 (de) 1995-09-25 1995-09-25 Doppelkern-Faserlaser
CN96191114A CN1095606C (zh) 1995-09-25 1996-09-25 双芯光导纤维及其制作方法和双芯光纤放大器
EP96934466A EP0793867B1 (de) 1995-09-25 1996-09-25 Doppelkern-lichtleitfaser, verfahren zu ihrer herstellung, doppelkern-faserlaser und doppelkern-faserverstärker
RU97111166A RU2138892C1 (ru) 1995-09-25 1996-09-25 Оптическое волокно с двумя сердцевинами, способ его изготовления, волоконный лазер с двумя сердцевинами и волоконный усилитель с двумя сердцевинами
JP51313597A JP3830969B2 (ja) 1995-09-25 1996-09-25 二重コア光ファイバ、二重コア光ファイバの製造方法、二重コア・ファイバ・レーザ及び二重コア・ファイバ増幅器
CA002204865A CA2204865C (en) 1995-09-25 1996-09-25 Double-core light-conducting fiber, process for producing the same, double-core fiber laser, and double-core fiber amplifier
DE59602381T DE59602381D1 (de) 1995-09-25 1996-09-25 Doppelkern-lichtleitfaser, verfahren zu ihrer herstellung, doppelkern-faserlaser und doppelkern-faserverstärker
DK96934466T DK0793867T3 (da) 1995-09-25 1996-09-25 Dobbeltkernet optisk fiber, fremgangsmåde til dens fremstilling, dobbeltkerne-fiberlaser og dobbeltkerne-fiberforstærker
US08/836,588 US5864645A (en) 1995-09-25 1996-09-25 Double-core light-conducting fiber, process for producing the same, double-core fiber laser, and double-core fiber amplifier
PCT/EP1996/004187 WO1997012429A1 (de) 1995-09-25 1996-09-25 Doppelkern-lichtleitfaser, verfahren zu ihrer herstellung, doppelkern-faserlaser und doppelkern-faserverstärker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19535526A DE19535526C1 (de) 1995-09-25 1995-09-25 Doppelkern-Faserlaser

Publications (1)

Publication Number Publication Date
DE19535526C1 true DE19535526C1 (de) 1997-04-03

Family

ID=7773065

Family Applications (2)

Application Number Title Priority Date Filing Date
DE19535526A Expired - Fee Related DE19535526C1 (de) 1995-09-25 1995-09-25 Doppelkern-Faserlaser
DE59602381T Expired - Lifetime DE59602381D1 (de) 1995-09-25 1996-09-25 Doppelkern-lichtleitfaser, verfahren zu ihrer herstellung, doppelkern-faserlaser und doppelkern-faserverstärker

Family Applications After (1)

Application Number Title Priority Date Filing Date
DE59602381T Expired - Lifetime DE59602381D1 (de) 1995-09-25 1996-09-25 Doppelkern-lichtleitfaser, verfahren zu ihrer herstellung, doppelkern-faserlaser und doppelkern-faserverstärker

Country Status (9)

Country Link
US (1) US5864645A (de)
EP (1) EP0793867B1 (de)
JP (1) JP3830969B2 (de)
CN (1) CN1095606C (de)
CA (1) CA2204865C (de)
DE (2) DE19535526C1 (de)
DK (1) DK0793867T3 (de)
RU (1) RU2138892C1 (de)
WO (1) WO1997012429A1 (de)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19723267A1 (de) * 1997-06-03 1998-12-10 Heidelberger Druckmasch Ag Verfahren und Anordnung zur Reduzierung des Pumplichts am Austritt eines Fiberlasers
DE19736155A1 (de) * 1997-08-14 1999-02-25 Forschungsverbund Berlin Ev Anordnung zur Erzeugung von Laserstrahlung
DE19819473A1 (de) * 1998-04-30 1999-11-11 Richard Wallenstein Einrichtung zum Erzeugen kohärenter Strahlung
EP1090887A2 (de) * 1999-10-08 2001-04-11 Shin-Etsu Chemical Co., Ltd. Optische Faser, Vorform für optische Faser und Verfahren zur Herstellung der Vorform mit einem deformierten ersten Mantel
DE10009379A1 (de) * 2000-02-29 2001-09-13 Schneider Laser Technologies Faseroptischer Verstärker
DE19620159C2 (de) * 1996-05-07 2002-08-08 Inst Physikalische Hochtech Ev Faserlaser oder Faserverstärker mit neuartiger Brechzahlstruktur
US6832021B2 (en) 2002-01-29 2004-12-14 Osram Opto-Semiconductors Gmbh Configuration for coupling radiation into an optical fiber
EP1492206A1 (de) * 2003-06-24 2004-12-29 Fujikura Ltd. Mit Übergangsmetall dotierte Glasfaser und Glasfaserlaser
US7161966B2 (en) 2003-01-24 2007-01-09 Trumpf, Inc. Side-pumped fiber laser
US7542488B2 (en) 2003-01-24 2009-06-02 Trumpf, Inc. Fiber laser
WO2010103011A1 (de) 2009-03-10 2010-09-16 J-Fiber Gmbh Optische faser, verfahren zur herstellung und rohrsegment hierfür

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0984844B1 (de) * 1997-05-27 2002-11-13 SDL, Inc. Lasermarkierungssystem und energiesteuerungsverfahren
DE19728889A1 (de) * 1997-07-07 1999-01-14 Daimler Benz Ag Lasersystem zur Farbbildprojektion mit integrierter Bildmodulation
DE19729539A1 (de) * 1997-07-10 1999-01-14 Daimler Benz Ag Laseroszillator und Verstärker zur Farbbildprojektion mit integrierter Bildmodulation
US5949941A (en) * 1997-11-21 1999-09-07 Lucent Technologies Inc. Cladding-pumped fiber structures
US6157763A (en) * 1998-01-28 2000-12-05 Sdl, Inc. Double-clad optical fiber with improved inner cladding geometry
JP3251223B2 (ja) * 1998-02-25 2002-01-28 日本電気株式会社 光増幅器
DE19825037C2 (de) * 1998-06-04 2000-12-21 Zeiss Carl Jena Gmbh Kurzkohärente Lichtquelle und deren Verwendung
US6192713B1 (en) 1998-06-30 2001-02-27 Sdl, Inc. Apparatus for the manufacture of glass preforms
JP3827883B2 (ja) * 1999-05-07 2006-09-27 三菱電線工業株式会社 光ファイバ
DE19926299A1 (de) * 1999-06-09 2000-12-21 Zeiss Carl Jena Gmbh Upconversionlaser
US6996316B2 (en) * 1999-09-20 2006-02-07 Cidra Corporation Large diameter D-shaped optical waveguide and coupler
DE10009380B4 (de) * 2000-02-29 2007-11-08 Jenoptik Ldt Gmbh Faserverstärker
JP2001267665A (ja) 2000-03-16 2001-09-28 Sumitomo Electric Ind Ltd 光増幅用光ファイバ、光ファイバ増幅器および光ファイバレーザ発振器
WO2001099243A1 (de) * 2000-06-20 2001-12-27 Evotec Oai Ag Faser-laser
JP2002111101A (ja) * 2000-09-28 2002-04-12 Toshiba Corp レーザ光源装置
US6477307B1 (en) 2000-10-23 2002-11-05 Nufern Cladding-pumped optical fiber and methods for fabricating
US6516124B2 (en) * 2001-03-02 2003-02-04 Optical Power Systems Incorporated Fiber for enhanced energy absorption
US6608956B2 (en) 2001-03-12 2003-08-19 Verrillon Inc. Dual-clad polarization-preserving optical fiber
US6816513B2 (en) * 2001-04-02 2004-11-09 Apollo Instruments, Inc. High power high efficiency cladding pumping fiber laser
US6625363B2 (en) 2001-06-06 2003-09-23 Nufern Cladding-pumped optical fiber
US6687445B2 (en) * 2001-06-25 2004-02-03 Nufern Double-clad optical fiber for lasers and amplifiers
ATE373249T1 (de) * 2001-07-12 2007-09-15 Ocg Technology Licensing Llc Optische faser
US7116887B2 (en) * 2002-03-19 2006-10-03 Nufern Optical fiber
DE10216627B4 (de) * 2002-04-15 2007-12-20 Carl Zeiss Jena Gmbh Faserlaser
US7400808B2 (en) 2003-01-10 2008-07-15 The Furukawa Electric Co., Ltd. Optical fiber, light amplifier, and light source
WO2004066007A1 (ja) * 2003-01-10 2004-08-05 The Furukawa Electric Co., Ltd 光ファイバ、光増幅器及び光源
US6959022B2 (en) * 2003-01-27 2005-10-25 Ceramoptec Gmbh Multi-clad optical fiber lasers and their manufacture
GB0314817D0 (en) * 2003-06-25 2003-07-30 Southampton Photonics Ltd Apparatus for providing optical radiation
US7400812B2 (en) * 2003-09-25 2008-07-15 Nufern Apparatus and methods for accommodating loops of optical fiber
JP3952033B2 (ja) * 2004-04-02 2007-08-01 松下電器産業株式会社 光増幅ファイバと光増幅方法とレーザ発振方法とレーザ増幅装置とレーザ発振装置とレーザ装置とレーザ加工機
US20050226580A1 (en) * 2004-04-08 2005-10-13 Samson Bryce N Optical fiber for handling higher powers
US7483610B2 (en) * 2004-05-03 2009-01-27 Nufern Optical fiber having reduced defect density
US7317857B2 (en) * 2004-05-03 2008-01-08 Nufem Optical fiber for delivering optical energy to or from a work object
CA2466970A1 (en) * 2004-05-12 2005-11-12 Coractive High-Tech Inc. Double-clad optical fibers
US7412135B2 (en) * 2005-01-21 2008-08-12 Nufern Fiber optic coupler, optical fiber useful with the coupler and/or a pump light source, and methods of coupling light
WO2007022641A1 (en) * 2005-08-25 2007-03-01 Institut National D'optique Flow cytometry analysis across optical fiber
JP2007094209A (ja) * 2005-09-29 2007-04-12 Rohm Co Ltd 光受信装置
JP4299826B2 (ja) * 2005-11-30 2009-07-22 株式会社住田光学ガラス 蛍光ファイバを用いた白色発光装置
US7835608B2 (en) * 2006-03-21 2010-11-16 Lockheed Martin Corporation Method and apparatus for optical delivery fiber having cladding with absorbing regions
US7768700B1 (en) 2006-11-30 2010-08-03 Lockheed Martin Corporation Method and apparatus for optical gain fiber having segments of differing core sizes
DK2140294T3 (en) * 2007-03-21 2016-08-22 Nufern Optical fiber article to handling of major energy and manufacturing method or use thereof
CN101657943A (zh) 2007-08-28 2010-02-24 株式会社藤仓 稀土掺杂纤芯多包层光纤、光纤放大器和光纤激光器
ES2561777T3 (es) * 2008-12-02 2016-02-29 Biolitec Unternehmensbeteilligung Ll Ag Dispositivo médico mediado por vapor/plasma inducidos por láser
JP5531589B2 (ja) * 2009-12-03 2014-06-25 パナソニック株式会社 ダブルクラッドファイバ及びファイバレーザ装置
EP2526401A4 (de) 2010-01-18 2015-04-22 Handyem Inc Flusszytometrieanalyse in glasfasern
CN103253859A (zh) * 2013-05-09 2013-08-21 中国科学院上海光学精密机械研究所 涂覆层d形磷酸盐微结构带隙型光纤的制备方法
CN104022431A (zh) * 2014-04-28 2014-09-03 中国科学院上海光学精密机械研究所 宽带宽高信噪比超短激光脉冲装置
WO2022035707A1 (en) * 2020-08-08 2022-02-17 Pavilion Integration Corporation Multi-core fiber, methods of making and use thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4815079A (en) * 1987-12-17 1989-03-21 Polaroid Corporation Optical fiber lasers and amplifiers
DE2901092C2 (de) * 1978-01-13 1992-01-02 At & T Technologies, Inc., New York, N.Y., Us
US5309452A (en) * 1992-01-31 1994-05-03 Rutgers University Praseodymium laser system
US5373527A (en) * 1992-08-17 1994-12-13 Ishikawajima-Harima Heavy Industries Co., Ltd. Laser generating apparatus having an arrangement for converging and diverging excitation light

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5373576A (en) * 1993-05-04 1994-12-13 Polaroid Corporation High power optical fiber
US5418880A (en) * 1994-07-29 1995-05-23 Polaroid Corporation High-power optical fiber amplifier or laser device
US5530710A (en) * 1995-05-15 1996-06-25 At&T Corp. High-power pumping of three-level optical fiber laser amplifier

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2901092C2 (de) * 1978-01-13 1992-01-02 At & T Technologies, Inc., New York, N.Y., Us
US4815079A (en) * 1987-12-17 1989-03-21 Polaroid Corporation Optical fiber lasers and amplifiers
US5309452A (en) * 1992-01-31 1994-05-03 Rutgers University Praseodymium laser system
US5309452B1 (en) * 1992-01-31 1998-01-20 Univ Rutgers Praseodymium laser system
US5373527A (en) * 1992-08-17 1994-12-13 Ishikawajima-Harima Heavy Industries Co., Ltd. Laser generating apparatus having an arrangement for converging and diverging excitation light

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
In GB-Z: Electronics Letters, Vol. 29, No. 17, 1993, pp. 1500-1501 *
In US-Z: Optics Letter, Vol. 20, No. 6, 1995, pp. 578-580 *
JP 6-235 838 A - In: Patent Abstracts of Japan, Sect. P, Vol. 18 (1994), Nr. 621 (P-1832) *
PO, H. et.al.: High Power Neodymium-Doped Single Transverse Mode Fibre Laser *
ZELLMER, H., et.al.: High-Power CW Neodymium-DopedFiber Laser Operating at 9.2 W with High Beam Quality *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19620159C2 (de) * 1996-05-07 2002-08-08 Inst Physikalische Hochtech Ev Faserlaser oder Faserverstärker mit neuartiger Brechzahlstruktur
DE19723267A1 (de) * 1997-06-03 1998-12-10 Heidelberger Druckmasch Ag Verfahren und Anordnung zur Reduzierung des Pumplichts am Austritt eines Fiberlasers
DE19736155A1 (de) * 1997-08-14 1999-02-25 Forschungsverbund Berlin Ev Anordnung zur Erzeugung von Laserstrahlung
DE19736155C2 (de) * 1997-08-14 2001-12-13 Forschungsverbund Berlin Ev Anordnung für einen kompakten Faserlaser zur Erzeugung von Laserstrahlung
DE19819473A1 (de) * 1998-04-30 1999-11-11 Richard Wallenstein Einrichtung zum Erzeugen kohärenter Strahlung
DE19819473C2 (de) * 1998-04-30 2000-02-10 Richard Wallenstein Einrichtung zum Erzeugen kohärenter Strahlung
AT500694B1 (de) * 1998-04-30 2007-03-15 Lumera Laser Gmbh Einrichtung zum erzeugen kohärenter strahlung
EP1090887A2 (de) * 1999-10-08 2001-04-11 Shin-Etsu Chemical Co., Ltd. Optische Faser, Vorform für optische Faser und Verfahren zur Herstellung der Vorform mit einem deformierten ersten Mantel
EP1090887A3 (de) * 1999-10-08 2001-05-02 Shin-Etsu Chemical Co., Ltd. Optische Faser, Vorform für optische Faser und Verfahren zur Herstellung der Vorform mit einem deformierten ersten Mantel
DE10009379C2 (de) * 2000-02-29 2002-04-25 Schneider Laser Technologies Faseroptischer Verstärker
DE10009379A1 (de) * 2000-02-29 2001-09-13 Schneider Laser Technologies Faseroptischer Verstärker
US6832021B2 (en) 2002-01-29 2004-12-14 Osram Opto-Semiconductors Gmbh Configuration for coupling radiation into an optical fiber
US7161966B2 (en) 2003-01-24 2007-01-09 Trumpf, Inc. Side-pumped fiber laser
US7542488B2 (en) 2003-01-24 2009-06-02 Trumpf, Inc. Fiber laser
EP1492206A1 (de) * 2003-06-24 2004-12-29 Fujikura Ltd. Mit Übergangsmetall dotierte Glasfaser und Glasfaserlaser
WO2010103011A1 (de) 2009-03-10 2010-09-16 J-Fiber Gmbh Optische faser, verfahren zur herstellung und rohrsegment hierfür
DE102009035375A1 (de) 2009-03-10 2010-09-30 J-Fiber Gmbh Verfahren zur Herstellung einer optischen Faser

Also Published As

Publication number Publication date
RU2138892C1 (ru) 1999-09-27
US5864645A (en) 1999-01-26
CN1166239A (zh) 1997-11-26
CA2204865C (en) 2001-08-14
JPH10510104A (ja) 1998-09-29
DE59602381D1 (de) 1999-08-12
CA2204865A1 (en) 1997-04-03
JP3830969B2 (ja) 2006-10-11
CN1095606C (zh) 2002-12-04
EP0793867B1 (de) 1999-07-07
DK0793867T3 (da) 2000-04-10
EP0793867A1 (de) 1997-09-10
WO1997012429A1 (de) 1997-04-03

Similar Documents

Publication Publication Date Title
DE19535526C1 (de) Doppelkern-Faserlaser
DE69414139T2 (de) Kopplungsanordnung zwischen einer multimodalen lichtquelle und einer optischen faser mittels eines faserzwischenstücks
DE69824493T2 (de) Verjüngte Faserbündel zum Ein- und Auskoppeln von Licht aus mantelgepumpten Faservorrichtungen
DE1539653C3 (de) Laser mit faserförmigem, flexiblem stimulierbarem Medium
DE69631895T2 (de) Vorrichtung und verfahren zum seitlichen pumpen einer optischen faser
DE69801405T2 (de) Mantelgepumpte Faserlaser
DE60027087T2 (de) Vorrichtung zum seitlichen optischen Pumpen einer optischen Faser
DE69026227T2 (de) Gepumpte Laser mit eingebetteter Bragg-Gitterstruktur
EP0012189B1 (de) Koppelelement zum Auskoppeln eines Lichtanteils aus einem einen Kern und einen Mantel aufweisenden Glasfaser-Lichtwellenleiter
DE10296886T5 (de) Mantelgepumpter Faserlaser
DE4032184A1 (de) Faseroptische sonde und verfahren zum abgeben von energie
DE3920416A1 (de) Optisches bauteil, und verfahren zu seiner herstellung
DE2851667C2 (de)
DE102008062847A1 (de) Spleißverbindung zwischen zwei optischen Fasern sowie Verfahren zum Herstellen einer solchen Spleißverbindung
EP0495202B1 (de) Anordnung zum Umwandeln einer optischen Welle kleiner Fleckweite in eine Welle grösserer Fleckweite
EP0356872B1 (de) Verfahren zum Ändern des Fleckdurchmessers von Monomode-Stufenfasern
DE69320657T2 (de) EIN DIODENGEPUMPTER,KONTINUIERLICH ARBEITENDER OPTISCHER EINZELMODEN-FASERLASER, der bei 976 nm emittiert
EP0436193B1 (de) Gefalteter Wellenleiterlaser
DE69800827T2 (de) Vorrichtung mit einem mit seltenen Erden dotierten optischen Faserlaser
DE60127757T2 (de) Verfahren zum Verspleissen von Glasfasern
DE2851654A1 (de) Koppelelement zum auskoppeln eines lichtanteils aus einem optischen wellenleiter und wiedereinkoppeln desselben in einen abzweigenden optischen wellenleiter sowie verfahren zur herstellung des elements
EP2406193B1 (de) Verfahren zur herstellung einer optischen faser
DE19620159C2 (de) Faserlaser oder Faserverstärker mit neuartiger Brechzahlstruktur
DE2758833A1 (de) Laserkopf
DE10203392B4 (de) Anordnung zur Einkopplung von Strahlung in eine Lichtleitfaser

Legal Events

Date Code Title Description
8100 Publication of the examined application without publication of unexamined application
D1 Grant (no unexamined application published) patent law 81
8327 Change in the person/name/address of the patent owner

Owner name: LDT GMBH & CO. LASER-DISPLAY-TECHNOLOGIE KG, 07552

8364 No opposition during term of opposition
8327 Change in the person/name/address of the patent owner

Owner name: SCHNEIDER LASER TECHNOLOGIES AKTIENGESELLSCHAFT, 0

8327 Change in the person/name/address of the patent owner

Owner name: JENOPTIK LDT GMBH, 07548 GERA, DE

R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee

Effective date: 20130403