DE1646770C3 - Porzellan für elektrische Isolatoren - Google Patents

Porzellan für elektrische Isolatoren

Info

Publication number
DE1646770C3
DE1646770C3 DE19651646770 DE1646770A DE1646770C3 DE 1646770 C3 DE1646770 C3 DE 1646770C3 DE 19651646770 DE19651646770 DE 19651646770 DE 1646770 A DE1646770 A DE 1646770A DE 1646770 C3 DE1646770 C3 DE 1646770C3
Authority
DE
Germany
Prior art keywords
weight
percent
porcelain
content
quartz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
DE19651646770
Other languages
English (en)
Inventor
Hiroshi Nagoya Fukui (Japan)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Application granted granted Critical
Publication of DE1646770C3 publication Critical patent/DE1646770C3/de
Expired legal-status Critical Current

Links

Description

Die Erfindung betrifft Porzellan auf Cristobalitbasis für elektrische Isolatoren mit einem Gehalt an Siliciumdioxid, Alkalioxid. Eisenoxid. Calciumoxid, Magnesiumoxid und Aluminiumoxid. Ferner betrifft die Erfindung ein Verfahren zur Herstellung dieses Porzellans.
Aus Hecht, Elektrokeramik, 1959, S. 6 und 7, ist es bekannt, daß bei der Herstellung von Porzellanen eine Vermehrung des Feldspatanteils einer Erhöhung der elektrischen Festigkeit entspricht, daß mit zunehmendem Quarzgehalt die mechanischen und mit vermehrtem Tonsubstanzgehalt die thermischen Eigenschaftswerte gesteigert werden. Dieser Stand der Technik läßt jedoch den Aufbau des fertigen Porzellans außer acht und führt nicht zu einer gleichzeitigen Verbesserung mehrerer Eigenschaften. Ähnlich ist Salmang, Die Keramik, 1958, S. 304 bis 306, lediglich zu entnehmen, wie jeweils eine bestimmte Eigenschaft, und zwar Durchschlagsfestigkeit, Wärmefestigkeit und mechanische Festigkeit, durch Variation des Anteils von Feldspat, Kaolin und Quarz im Einsatzmaterial bei der Herstellung von Porzellan verbessert werden kann. Auch aus Schüller, Ber. DKG, 1962, S. 286 bis 293, ist es lediglich bekannt, durch eine bestimmte Zusammensetzung der Ausgangsmischung aus Feldspat, Kaolin und Quarz für die Herstellung von Porzellan eine bestimmte Eigenschaft, hier die Biegefestigkeit, zu verbessern. Budnikow, Technologie der keramischen Erzeugnisse, 1953, S. 536, sind Angaben über Hochspannungsisolatoren zu entnehmen; da diese Angaben sich gleichfalls nur auf das Ausgangsmateria] zur Porzellanherstellung beziehen, ist davon ausgehend eine gezielte Verbesserung der für Isolierporzellan wesentlichen Eigenschaften nicht möglich. Aus Sitlmang.loc. cit.,S. 308 bis 311, ist zwar der Einfluß von Flußmittelzusatz auf unter anderem Glasbildung und Mullitausscheidung im Porzellan und die Koexistenz verschiedener Phasen bei 14000C bekannt, jedoch handelt es sich dabei wiederum nur um Teilaspekte, die nicht speziell auf die Herstellung von befriedigendem Isolierporzellan zugeschnitten sind.
Das gleiche gilt schließlich für einen Übersichtsartikel über »Die mechanische Festigkeit von Porzel- lan« von Yamamoto in NGK-Review, Nr. 25, S. 17 bis 22 vom April 1962. In dieser Literaturstelle sind u. a. Porzellane auf Cristobalitbasis abgehandelt, welche eine aus Cristobal«, Mullit und Quarz bestehende Kristallphase in einer heterogenen Glasphase enthalten. Unter anderem wird in dieser Veröffentlichung der Zusammenhang zwischen dem Gesamtkristallanteil des Porzellans und der mechanischen Festigkeit untersucht, wobei von Porzellanen mit einem Gesamtkristallanteil von etwa 30 bis 70% ausgegangen wird und allgemein eine Zunahme der Bruchfestigkeit des Porzellans mit zunehmendem Kristallgehalt festgestellt wird. Irgendwelche quantitativen Angaben über die relativen Anteile der einzelnen Kristallarten zueinander innerhalb der Kristallphase und über mögliche Auswirkungen dieser Relativanteile auf die Festigkeit oder die anderweitigen relevanten Eigenschaften der Porzellane sowie irgendwelche qualitative oder quantitative Angaben über die Bedeutsamkeit anderweitiger für die Gesamtqualität ausschlaggebender wesentlicher Bestandteile sind dieser Entgegenhaltung nicht zu entnehmen. Des weiteren finden sich in der Entgegenhaltung keinerlei nähere Angaben über die Herstellungsbedingungen zur Erzielung einer bestimmten, nach Qualität und Quantität definierten Kristallphase.
Aufgabe der Erfindung ist es, Porzellanisolatoren mit derart verbesserten Eigenschaften vorzusehen, daß sie sich insbesondere bei hohen und sehr hohen Spannungen verwenden lassen.
Erfindungsgemäß wird eine mineralogische Zusammensetzung zuverlässig und reproduzierbar in einem bestimmten Bereich gehalten, der für die Herstellung von Porzellan mit den vorstehend erwähnten, überlegenen Eigenschaften wesentlich ist. Zu diesem Zweck wird die Herstellung des Hauptrohstoffgemisches, das aus einem System Feldspat-Ton-Quarz besteht, so gesteuert, daß die chemischen Zusammensetzungen innerhalb bestimmter Bereiche liegen, worauf bestimmte, kleine Mengen der erforderlichen Zusatzstoffe zugesetzt werden, das Material in für gewöhnliches Porzellan bekannter Weise verarbeitet, beispielsweise verformt wird, und die so erhaltenen Körper bei einer Temperatur von 1250 bis 1380° C gebrannt werden.
Durch das Brennen der aus Feldspat, Ton und Quarz bestehenden grünen Körper erhält man Körper mit zwei kristallinen Phasen, nämlich einer Mullit- und einer Quarzphase, ferner einer nichthomogenen Phase aus geschmolzenem Glas und ge-
w> legentlich noch einer kristallinen Phase aus Cristobalit. Für die mechanische Festigkeit dieser Körper gibt es verschiedene Untersuchungen. Diese beruhen auf einer sogenannten Gefügespannungstheorie, wonach vorwiegend während der auf das Brennen folgen-
bi den Abkühlung infolge des Unterschiedes zwischen den Wärmedehnzahlen auf die die Kristallphasen umgebende Glasphase eine Druckkraft ausgeübt wird, die zu Innenspannungen führt. Derzeit liegt noch keine
maßgebende Untersuchung der Festigkeit von Porzellan vor. Daher ist es schwierig, mit Bestimmtheit zu sagen, daß die Festigkeit allein durch "die Innenspannungen bestimmt wird, obwohl diese jedenfalls für die Festigkeit von großer Bedeutung sind. Wenn Innenspannungen absichtlich erzeugt werden und ihr Wert gesteuert wird, entsteht die Frage des Einflusses der Art des in dem Porzellan erzeugten Kristalls und des Mengenverhältnisses zwischen dem kristallinen und dem Glasmaterial. In bestimmten Bereichen beeinflussen diese Bedingungen die Festigkeit durch andere Faktoren als durch die inneren Spannungen, beispielsweise durch den Füllfaktor, die Dichte sowie die Festigkeit des kristallinen und des Glasmaterials. Ferner beeinflussen diese Bedingungen auch andere als die mechanischen Eigenschaften, beispielsweise die elektrischen Isoliereigenschaften, die Korrosionsbeständigkeit und die Wärmeschockbeständigkeit.
Im Rahmen der Erfindung wurde das Problem der Bestimmung der chemischen Zusammensetzung eines Porzellans, das die verschiedenen Forderungen am besten erfüllt, und der Schaffung eines stabilisierten Verfahrens zur wirtschaftlichen Herstellung eines derartigen Porzellans eingehend untersucht. Diese Arbeiten führten zu folgenden Ergebnissen:
Die mechanische Festigkeit nimmt mit dem Kristallgehalt des Porzellans bis zu einer gewissen Grenze zu und bei einem höheren Kristallgehalt wieder ab. Ferner ist es notwendig, durch einen Quarzzusatz eine Kristallisation zu Cristobalit herbeizuführen,dadie mechanische Festigkeit mit dem Cristobalitgehalt zunimmt. Auch dieser hat jedoch eine Grenze. Auch für den Quarzgehalt gibt es einen zweckmäßigen Bereich. Der Rest besteht vorzugsweise zum größeren Teil aus Mullit, damit geeignete Innenspannungen erzeugt werden, weil in dem System Feldspat-Ton-Quarz die Kristallisation zu Mullit leichter stattfindet als zu anderen Phasen als Cristobalit und Quarz. Ein hoher Mullitgehalt ist auch vom Gesichtspunkt der Wärmedehnzahl aus gesehen zweckmäßig. Diese Tatsache geht aus den in der Tabelle 1 angegebenen Versuchsergebnissen deutlich hervor. Nach der Tabelle 1 besteht ein gewisser Unterschied zwischen dem Bereich der Gehalte von Cristobalit, Quarz und Mullit, bei dem die höchste mechanische Festigkeit erhalten wird, und dem Bereich, der für andere Eigenschaften am günstigsten ist. Beispielsweise wird bei einer Erhöhung der Wärmeschockbeständigkeit die mechanische Festigkeit herabgesetzt, wenn auch nicht in hohem Maße.
Die eingangs erläuterte Aufgabe löst nun ein Porzellan auf Cristobalitbasis für elektrische Isolatoren mit einem Gehalt an Siliciumdioxid, Alkalioxid, Eisenoxid, Calciumoxid, Magnesiumoxid und Aluminiumoxid, das durch einen Gesamtkristallgehalt von 35 bis 75 Gewichtsprozent, wobei die Cristobalit-Kristallmenge 25 bis 50 Gewichtsprozent und die Quarz-Krislallmenge 5 bis 15 Gewichtsprozent beträgt und der Rest im wesentlichen aus Mullitkristallen besteht, bezogen auf das Gesamtgewicht des Porzellans, und durch 65 bis 80 Gewichtsprozent SiO2, 2,0 bis 4,0 Gewichtsprozent Alkalioxid, 0,5 bis 1,5 Gewichtsprozent Fe2O1, 0,2 bis 1,3 Gewichtsprozent TiO-,, weniger als 0,5 Gewichtsprozent jeder der Verbindungen CaO und MgO und weniger als 1,0 Gewichtsprozent andere Verunreinigungen, wobei das SiO2/Al2Oj-Verhältnis 2,8 bis 4,5 und das K2O/Na,O-Verhällnis 0,01 bis 1.5 beträgt, gekennzeichnet ist.
Das erfindungsgemäße Porzellan zeichnet sich durch verbesserte elektrische Isolierfähigkeit, mechanische Festigkeit, Korrosionsbeständigkeit und Wärmeschockbeständigkeit aus, wodurch es sich insbesondere bei hohen und sehr hohen Spannungen verwenden läßt. Der Zweck der Erfindung kann nur erzielt werden, wenn auch die Glasphase, welche die Kristallphasen umgibt, hinsichtlich der mechanischen Festigkeit, der Wärmedehnzahl und des Fortschritts der Reaktion
ίο an den Korngrenzen bestimmte Forderungen erfüllt. Aus diesem Grund muß die chemische Zusammensetzung der Glasphase in einem bestimmten Bereich liegen.
Zur Erzielung der vorstehend angegebenen Be-Ziehung zwischen der Kristall- und der Glasphase muß vor allem der Fortschritt der Quarzumwandlungsreaktion gesteuert werden. Es liegen zwar schon sehr eingehende Untersuchungen hinsichtlich der Umwandlung von Quarz vor, jedoch nicht für den Fall, daß auch andere Bestandteile vorhanden sind.
Zur Begrenzung des Gesamtkristallgehalts und zur Bestimmung des Quarzgehalts muß die Menge, in welcher der Mullit zersetzt wird, gesteuert werden. Daher muß der erforderliche Gehalt der zuerst ausgeschiedeaen Substanzen, Aluminiumoxid und Siliciumdioxid, geklärt, die Grenzen der Menge des als Flußmittels vorhandenen Alkalis bestimmt, sowie der Einfluß anderer Bestandteile die Gruppe dieser einzuführenden Verbindungen untersucht werden.
Ein Merkmal der Erfindung betrifft den Einfluß der Zusätze. Nachstehend sind die die chemische Zusammensetzung betreffenden Gewichtsprozentangaben auf das fertige Porzellan bezogen.
Zur wirtschaftlichen Herstellung von für den Handel geeigneten Produkten müssen als Rohstoffe natürliche Mineralien oder Gesteine verwendet werden. Zur Erzielung von stabilisierten Produkten in der keramischen Industrie, in der ein Verfahrensschritt, beispielsweise in einem Ofen, durchgeführt werden muß, der gelegentlich zu beträchtlichen Veränderungen führt, insbesondere im Falle eines Porzellans wie des vorliegenden, muß man die Rohstoffe genügend kontrollieren, damit die chemische Zusammensetzung innerhalb eines bestimmten Bereiches liegt. Mit diesen Maßnahmen allein ist es jedoch äußerst schwierig, zuverlässig eine Reproduzierbarkeit der Produkte zu erzielen, die hinsichtlich verschiedener Eigenschaften die höchste Qualität besitzen, wie beispielsweise das erfindungsgemäße Porzellan, und in denen im fertigen Zustand die mineralogische und chemische Zusammensetzung genau vorgeschrieben ist. Zur Förderung der Reaktion der Bestandteile sind Mineralisatoren erforderlich. Im Rahmen der Erfindung werden für diesen Zweck Fe2O3 und TiO2 verwendet. Der Zweck der Erfindung kann bei gleichzeitigem Vorhandensein dieser beiden Substanzen erzielt werden. In der Tabelle 2 sind Versuchsergebnisse angegeben, welche die Wirkung dieser beiden Substanzen erläutern. Man erkennt, daß Zusammensetzungen, die kein Fe2O3 und TiO2 enthalten, zu Endprodukten mit starken Unterschieden in der mineralogischen Zusammensetzung führen. Dies ist auf die Veränderungen zurückzuführen, die in den Verfahrensschritten, insbesondere beim Brennen eintreten, selbst wenn die
b5 anderen Gehalte konstant gehalten werden. Der Gehalt an Fe2O3 und TiO2 liegt vorzugsweise im Bereich von 0,5 bis 1,5 Gewichtsprozent bzw. von 0,2 bis 1,3 Gewichtsprozent. Wenn der Fe,O,-Geha!t
über diesem Bereich liegt, wird der mineralogische Aufbau nicht beeinträchtigt, doch zeigen die Produkte Verfärbungen oder Flecken, die nicht nur das Aussehen, sondern in hohem Maße auch die mechanische Festigkeit und elektrischen Isoliereigenschaften beeinträchtigen, wobei unter mechanischer Belastung oder beim Anlegen der Prüfspannung die Gefahr einer Rißbildung besteht. Eine Erhöhung des TiO2-Gehalts führt nicht zu erkennbaren Nachteilen, aber auch nicht zu einer stärkeren Stabilisationswirkung. Wenn jedoch eine größere M^nge dieses Materials erwünscht ist, muß sie in Form von z. B. TiO2 zugesetzt werden, was vom Gesichtspunkt der Rohmaterialkosten unzweckmäßig ist. Vorzugsweise wird eine Grenze von etwa 1,3 Gewichtsprozent eingehalten.
Hinsichtlich der Quellen von Fe2O3 und TiO2 wurde ein Vergleichsversuch zwischen Rohmaterialien durchgefiihrt, die große Mengen Fe2O3 und TiO2 enthielten, beispielsweise Eisenrot und Titanoxidpulver, und natürlichen Mineralstoffen, die zur Zuführung von Aluminiumoxid und Siliciumdioxid dienten und Fe2O3 und TiO2 in kleinen Mengen enthielten. In dem erstgenannten Fall erzielte man etwas bessere Ergebnisse, doch ist der Unterschied nicht so groß, als daß nicht i eide Methoden anwendbar wären, sofern sie nur zu der geforderten mineralogischen Zusammensetzung des Porzellans führen.
Der Alkaligehalt wird vorwiegend von dem Feldspat geliefert. Er wirkt als Flußmittel und heu eine wichtige Aufgabe bei der Ausscheidung von Mullit und Cristobalit.
Bei der Durchführung des stabilisierten technischen Verfahrens zur Herstellung von großen und dicken Produkten muß natürlich die Brenntemperatur begrenzt sein. In dem erfindungsgemäßen Verfahren erzielt man die geforderten Eigenschaften in wirtschaftlicher Weise mit einer Brenntemperatur von 1250 bis 13800C.
Es hat sich gezeigt, daß für eine genügende Verglasung und die erforderliche Ausscheidung von Mullit und Cristobalit der Absolutgehalt an Alkalioxid /nachstehend als Alkaligehalt bezeichnet) und das Verhältnis von K20/Na20 in der alkalischen Komponente von großer Bedeutung ist. Der Alkaligehalt soll 2,0 bis 4,0 Gewichtsprozent, bezogen auf das Gesamtgewicht, und das Verhältnis von K2O zu Na2O 0,01 bis 1,5 betragen. Wenn dei Alkaligehalt zu weit über diesem Bereich liegt, wird das Produkt beim Brennen zu weich, so daß beispielsweise große Produkte unter der Wirkung ihres Eigengewichts ihre Form nicht halten können und die mechanische Festigkeit stark herabgesetzt wird. Wenn diese Menge jedoch zu klein ist, schreitet die Reaktion nicht genügend weit fort, so daß ein Produkt mit dem gewünschten Gefüge nicht erzielt werden kann und in extremen Fällen poröse Körper erhalten und die elektrischen Isoliereigenschaften, die mechanische Festigkeit und Korrosionsbeständigkeit stark beeinträchtigt werden.
Das Verhältnis K2 0/Na2 O ist einer der kritischen Werte, die bei den der Erfindung zugrunde liegenden Arbeiten festgestellt wurden und stellt eine wesentliche Bedingung zur Erzielung eines Produkts mit der gewünschten Zusammensetzung dar. Wenn das Verhältnis von K2O/Na2O höher ist als 1,5, wird der Brenntemperaiurbereich, in dem ein Produkt mit der gewünschten Zusammensetzung erzielt werden kann, sehr klein, so daß homogene Produkte nicht erhalten werde ι können. Ferner geht aus den in der Tabelle 3 angegebenen Versuchsergebnissen hervor, daß mit einer Zunahme des Na2O-Gehalts auch die Menge des ausgeschiedenen Cristobalits zunimmt. Diese Wirk-ing auf die Ausscheidung des Cristobalits ist seit langem bekannt. Bei dem erfindungsgemäßen Porzellan ist jedoch nicht die Menge des ausgeschiedenen Cristobalits, sondern die Erzielung eines technisch durchführbaren, stabilisierten, reproduzierbaren Ver-
Ό fahrens entscheidend. Zur Einführung dieses Alkaligehalts, insbesondere der notwendigen Menge Na2O, verwendet man vorzugsweise Feldspat aber kein Natriumsalz mit hohem Na2O-Gehalt.
Die Erfindung bezweckt die Herstellung von großen und dicken Porzellanprodukten. Wenn man vom wasserhaltigen Zustand ausgeht, und beim Mischen, Formen und Trocknen eine große Menge des Natriumions dissoziiert wird, tritt die bekannte Entflockung von Ton in einem stärkeren Maße auf als erforderlich ist, so daß große Produkte nicht geformt werden können und das Trocknen sehr erschwert wird. Daher muß man Materialien, beispielsweise auf der Grundlage von Feldspat verwenden, die Alkali im gebundenen Zustand enthalten. Ferner ist es notwendig, mehr als die Hälfte des Rohmaterials auf FeIdspatgrur.dlage in Form von Natronfeldspat-Rohmaterial zu verwenden. Außerdem muß das vorstehend genannte Verhältnis von K2O zu Na2O in dem Bereich von 0,01 bis 1,5 vorwiegend durch den Alkaligehall des Feldspat-Rohmaterials gegeben sein. Durch Erfüllung dieser Bedingung erhält man ohne weiteres die untere Grenze von 0,01 des Verhältnisses von K2O/ Na2O. Das zeigt, daß es kaum Feldspat-Rohmaterialien gibt, die überhaupt kein K2O enthalten, und daß bei der Verwendung von wirtschaftlichem, technisch brauchbarem Material die untere Grenze des K2O-Gehalts ohne weiteres erreicht wird.
Der erforderliche Gehalt an Siliciumdioxid und Aluminiumoxid kann von der mineralogischen Zusammensetzung des Produkts der Erfindung annähernd abgeleitet werden. Durch Versuche wurde bestätigt, daß das Verhältnis von SiO2 und Al2O3 in dem Bereich von 2,8 bis 4,5 und der SiO2-Gehalt in dem Bereich von 65 bis 80 Gewichtsprozent der Gesamtmenge liegen muß.
Diese Verbindungen werden in jene, welche kristalline Phasen bilden, und solche geteilt, die eine Glasphase bilden. Sie sind mehr für das Verhältnis von SiO2 zu Al2O3 von Bedeutung als durch ihren absoluten Gehalt. Die Verwendung dieser beiden Verbindungen in diesen Anteilen ist an sich bekannt. Für das erfindungsgemäße Porzellan ist sie jedoch in Kombination mit anderen Verbindungen erforderlich.
Zur Erzielung einer hohen Wirtschaftlichkeit kann man als Quelle dieser Verbindungen eine Kombination von gebräuchlichem Ton-, Quarz- und Feldspatais Haupt-Rohmaterial verwenden. Erfindungsgemäß muß das Haupt-Rohmaterial 20 bis 30 Gewichtsteile Feldspatsubstanz, 40 bis 55 Gewichtsteile Quarzsubstanz und 30 bis 50 Gewichtsteile Tonsubstanz enthalten, damit die vorstehend genannten Forderungen erfüllt werden.
Zusätzlich zu den Hauptbestandteilen können CaO und MgO vorhanden sein, die jedoch keine besonderen Wirkungen haben. Sofern sie nur in den Mengen auftreten, die gewöhnlich in den Rohmaterialien als Verunreinigungen vorkommen, d. h., in Mengen von wenirtor öle Π ^ Γίο..ΜΓ-Vit mr-n-rani fiir \aAo Junr \inrW.~
tvi MlJ \J,-J OblMVllljpiULblll IUI JXiVJV UJVJVI < blUIII"
düngen, braucht man ihnen keine besondere Beachtung zu schenken.
Die vorstehend angegebene Begrenzung der chemischen Zusammensetzung ermöglicht eine Ausscheidung der gewünschten Kristalle in bestimmten Mengenbereichen, während die anderen Bestandteile schmelzen und eine Glasphase bilden, deren chemische Zusammensetzung ebenfalls in einem bestimmten Bereich liegen muß. Tabelle 3 gibt den Einfluß der durch Mischen von Rohmaterialien erzielten chemischen Zusammensetzungen von Körpern auf die mineralogische Zusammensetzung und die Kennwerte der gebrannten Produkte an.
Ausgehend von den Haupt-Rohstoffen in Form von natürlichen Mineralien auf der Grundlage von Feldspat, Ton bzw. Siliciumdioxid erfolgt die Herstellung von Produkten mit einer erwünschten mineralogischen Zusammensetzung, indem man die Rohmaterialien derart auswählt, daß der Gehalt an SiO2 65 bis 80 Gewichtsprozent der Gesamtmenge, das Verhältnis SiO,/ Al2O3 2,8 bis 4,5, der Alkalioxidgehalt 2,0 bis 4,0 Gewichtsprozent der Gesamtmenge, das Verhältnis K2O/ Na2O 0,01 bis 1,5, der Fe2O3-Gehalt 0.5 bis 1,5 Gewichtsprozent, der TiO2-Gehalt 0,2 bis 1.3 Gewichtsprozent und der Gehalt an CaO und MgO höchstens je 0,5 Gewichtsprozent beträgt und nach den üblichen Schritten des Mischens, Formens und Trocknens bei 1250 bis 138O°C brennt. Auf diese Weise kann man ein Porzellan mit verbesserten Eigenschaften, insbesondere für Elektroporzellan erzeugen.
Wie vorstehend angegeben wurde, muß das Feldspat-Rohmaterial mindestens zur Hälfte aus Natronfeldspat bestehen. Diese Bedingungen können jedoch ohne besondere Schwierigkeiten mit im Handel er-hältlichen Rohmaterialien erfüllt werden. In den nachstehend beschriebenen Ausführungsbeispielen werden auch verschiedene Ansätze angegeben, doch kann man erforderlichenfalls auch ein chemisches Rohmaterial verwenden, das einen besonders hohen Gehalt an Fe3O3, TiO2 und Al2O3 hat. Beispielsweise kann die erforderliche Gesamtmenge an Fe2O3 und
ι» TiO2 und bis zu 5% der erforderlichen Menge an AI2O3 in Form von chemischem Rohmaterial eingeführt werden.
In dem technischen Verfahren muß die chemische Zusammensetzung der verwendeten Rohmaterialien genau geregelt werden. Wie aus den Ausführungsbeispielen hervorgeht, zeigen die erfindungsgemäß hergestellten grünen Körper eine gute Verarbeilbarkeil, sind leicht zu großen Produkten zu verarbeiten und erfordern in allen Verfahrensschritten des Mischens,
2n Formens und Trocknens keine besonderen Maßnahmen.
Wenn beispielsweise beim Formen der Feuchtigkeitsgehalt genügend verändert wird, kann man zum Formen Verfahren wie Strangpressen, Gießen, Pulverpressen od. dgl. anwenden.
Zur Herabsetzung der Herstellungskosten verwendet man in dem erfindungsgemäßen Verfahren meistens natürliche Rohstoffe, so daß kleine Verunreinigungen nicht vermieden werden können. Diese beeinträchtigen jedoch kaum das Porzellanprodukt, sofern ihr Anteil in der Analyse des Fertigprodukts 1,0% nicht übersteigt.
Tabelle 1
Mineralogische Zusammensetzung und Kennwerte von Feldspat-Ton-Quarz-Porzellan, das bei einer Temperatur von 1250 bis 138O0C gebrannt wurde
reine reine Reine Mineralzusammensetzung (Gewichtsprozent) Mullit Quarz Glasphase Gesamt
Quarzsubstanz Tonsubstanz % % % kristallgehalt
Versuch 42,0 36,6 Cristobalit 19,4 9,1 36,2 %
Nr. 38,1 20,0 reine Feldspat % 8,3 8,0 76.4 63,8
44,4 26,3 substanz 35,3 13,1 25,0 59,8 23,6
1 40.5 38,9 21,4 7,3 29,1 8,9 33,1 40,2
2 41,0 37,2 41,9 2,1 23,1 5.8 39,9 66,9
3 37,9 36,9 29,3 28,9 17,2 6,4 56,4 60,1
4 30,3 49,6 20.6 31,2 25,7 16,6 47,9 43,6
5 33,0 33,0 21,8 20,0 18,3 21,3 60,4 52,1
6 37,2 55,3 25,2 9,8 32,8 1,7 34,9 39,6
7 34,7 16,3 20,1 0,0 5,2 5,4 80,0 65,1
8 40,8 26,9 34,0 30,6 13,6 8,2 65,3 20,0
9 37,5 49,1 7,5 9,4 26,7 12,7 45,7 34,7
10 14,8 58,0 49,0 12,9 33,5 6,3 56,2 54,3
11 30,0 45,1 32,3 14,9 19,9 9,6 52,0 43,8
12 40,8 37,5 13,4 4,0 29,6 5,0 40,1 48,0
13 42,1 39,6 27,2 18,5 21,5 13,5 43,8 59/J
14 51,5 17,7 24,9 25,3 5,4 6,5 72,4 56,2
15 41,8 50,3 21,7 21,2 30,7 3,8 35,7 27,6
16 18,3 15,7 64,3
17 30,8 29,8
18 7,9
9 1646 770 10 Wärmeschock
beständigkeit
Mechanische Festigkeit Säurebeständigkeit C
Versuch kg/cm2 Spezifischer elektrischer
Widerstand
% 95
Nr. 1510 10'2OhTi cm 0,07 143
1 950 1,4 0,09 ' 150
2 850 0,8 0,35 97
3 1330 0,8 0,09 93
4 1480 1,5 0,07 128
5 1160 1,8 0,10 130
6 920 1,2 0,07 142
7 880 1,0 0.08 120
8 1230 1,0 0,08 154
9 900 1,4 0,08 140
10 930 1,1 0,09 146
11 910 1,0 0,07 135
12 940 0,7 0,07 130
13 1020 0,9 0,09 115
14 1280 0,8 0,10 128
15 1000 1,4 0,12 115
16 1130 0,8 0,09 110
17 1250 1,3 0,10
18 1,4
Die mechanische Festigkeit ist die Querbruchfestigkeit eines Rundstabes von 10 mm Durchmesser mit einer Einspannlänge von 100 mm. Die Säurefestigkeit wird durch die Pulvermethode (Japanische Industrienorm) gemessen. Die Wärmeschockbeständigkeit wird durch den Temperaturunterschied angegeben, bei dem in Rundstabprüflingen von 50 mm Länge und 20 mm Durchmesser eine Rißbildung auftritt.
Tabelle 2
Einfluß von TiO2 und Fe2O3 auf die mineralogische Zusammensetzung von Porzellan
Glühverlust SiO2 Al2O3 Chemische Zusammensetzung des Rohmaterialgemisches (% TiO, CaO MgO K2O ) Na2O Gesamt
Versuch
Wr
71,21 24,50 0,53 0,24 0,23 0,88 1,75 100,03
INI. 0,08 70,78 25,16 Fe2O3 0,40 0,22 0,22 0,93 1,60 99,69
1 0,06 69,63 25,12 0,61 1,42 0,20 0,26 0,89 1,87 99,98
2 0,11 72,70 22,15 0,32 0,23 0,24 0,23 1,07 1,76 100,06
3 0,05 73,15 21,83 0,48 0,96 0,20 0,22 0,82 1,95 100,29
4 0,09 71,05 24,30 1,63 Spur 0,18 0,21 1,05 1,88 99,06
5 0,08 71,59 23,87 1,07 0,12 0,17 0,23 0,84 1,82 99,49
6 0,09 69,84 24,01 0,31 2,43 0,18 0,26 0,96 1,80 100,10
7 0,09 72,48 22,30 0,76 Spur 0,23 0,22 0,98 1,96 100,01
8 0,10 68,46 22,98 0,53 3,09 0,20 0,27 1,13 1,89 !00,08
9 0,11 L74
10 1,95
Versuch Cristobalit Mineralogische Zusammensetzung des gebrannten Produkts (%) Quarz Gesamtkristallgehalt Glasphase
Nr. 37,5 Mullit 6,4- 63,4 36,6
1 21,7 19,5 20,7 59,7 40,3
2 24,8 17,3 16,1 57,8 42,2
3 33,6 16,9 8,0 60,2 39,8
4 39,4 18,6 6,0 65,5 34,5
5 20,8 20,1 13,6 56,9 43,1
6 29,9 22,5 9,7 57,6 42,4
7 35,8 18,0 7,2 62,2 37,8
8 26,3 19,2 14,2 57,5 42,5
9 33,1 17,0 9,6 61,4 38,6
10 18,7
Tabelle 3 (1)
Einfluß von Al2O3, SiO2, Na2O, K2O u.dgl. auf die Kennwerte von Porzellan
Versuch Glühverlust SiO2 Chemische Zusammensetzung des Rohmaterialgemisches (%) Al2O3 Fe2O3 TiO2 CaO MgO K2O Na2O Gesamt
Nr. 0,05 60,27 35,24 0,58 0,12 0,24 0,39 1,08 2,11 100,08
1 0,07 55,39 40,29 0,76 Spur 0,35 0,21 1,13 1,87 100,07
2 0,05 76,82 18,70 0,77 0,35 0,33 0,03 1,69 1,31 100,05
3 0,10 67,12 28,20 1,01 0,21 0,21 0,22 1,02 1,95 100,04
4 0,08 71,21 24,50 0,61 0,53 0,24 0,23 0,88 1,75 100,03
5 0,09 72,15 23,25 0,22 0,60 0,38 0,31 0,96 2,08 100,04
6 0,11 80,53 13,36 0,49 1,58 0,42 0,34 0,95 2,23 100,01
7 0,06 70,22 24,34 0,71 0,89 0,18 0,45 1,12 2,01 99,98
8 0,05 71,41 23,75 0,72 0,51 0,16 0,12 1,52 1,71 99,95
9 0,05 74,19 20,35 0,51 0,43 0,16 0,13 3,01 0,71 99,54
10 0,12 75,57 19,22 0,43 0,92 0,27 0,21 2,69 0,62 100,05
11 0,07 73,55 24,17 0,52 Spur 0,24 0,31 0,75 0,51 100,12
12 0,06 70,45 22,25 0,61 0,71 0,15 0,48 2,53 2,78 100,02
13 0,08 67,65 26,77 1,68 0,31 0,19 0,41 1,63 1,29 100,01
14 0,08 71,55 20,31 0,31 3,91 0,17 0,28 1,81 1,51 99,93
15 0,08 74,10 21,87 0,92 0,51 0,21 0,18 2,46 0,63 100,96
16 0,12 72,48 22,66 0,98 0,45 0,34 0,20 1,68 1,16 100,07
17 0,06 72,82 22,57 0,78 0,68 0,27 0,17 0,59 1,93 99,87
18 0,18 72,60 21,19 1,02 0,75 0,16 0,28 3,06 0,80 100,04
19 0,02 73,33 21,26 0,96 0,48 0,31 0,19 2,02 1,51 100,08
20 0,04 72,54 22,41 0,88 0,58 0,20 0,22 0,59 2,52 99,98
21 0,09 69,81 23,81 1,03 0,61 0,28 0,29 3,25 1,41 100,58
22
Tabelle 3 (2)
Versuch Cristobalit Mineralogische Zusammensetzung des gebrannten Produkts (%) Glasphase
Nr. 11,0 Mullit 58,4
1 9,1 25,5 65,6
2 11,8 21,1 54,3
3 10,1 18,8 63,3
4 39,4 20,5 34,7
5 14,6 19,5 43,8
6 22,4 20,5 49,3
7 38,7 10,2 33,4
8 34,7 19,9 37,4
9 25,3 20,1 39,4
10 26,4 15,5 39,7
11 12,9 14,3 51,8
12 31,6 11,8 41,8
13 13,4 16,1. 51,5
14 36,9 13,5 34,6
15 25,1 19,5 45,3
16 39,1 18,3 30,5
17 45,3 21,5 25,5
18 21,3 23,1 53,3
19 22,4 15,9 56,5
20 36,8 17,1 32,9
21 19,5 20,5 51,1
22 11,3
Quarz Gesamtkristallgehalt
5,1 41,6
4,2 34,4
15,1 45,7
6,1 36,7
6,4 65,3
21,1 56,2
18,1 50,7
8,0 66,6
7,8 62,6
19,8 60,6
19,6 60,3
23,5 48,2
10,5 58,2
21,6 48,5
9,0 65,4
11,3 54,7
8,9 69,5
6,1 74,5
9,5 46,7
4,0 43,5
9,8 67,1
18,1 48,9
13
14
I Kennwerte
Versuch Mechanische Festigkeit
kg/cm
1370
1080
1450
1270
1100
880
930
1350
1030
900
850
830
940
1080
900
1070
1510
1490
1080
1010
1430
980
Spezifischer elektrischer Widerstand
1012 Ohm · cm
0,5
0,7
0,2
,2
,6
,1
,0
,3
,8
1,0
1,0
0,2
,9
,5
,0
,1
,6
,9
1,5
0,9
1,8
1,0 Wärmeschockbeständigkeit
Das Verziehen ist das Ausmaß der Verformung der Mittellinie von zylindrischen Produkten mit einer Gesamtlänge von 1.5 m. einem Außendurchmesser von 0,5 m und einem Innendurchmesser von 0,4 m.
Ein besseres Verständnis der Erfindung wird durch die nachstehenden Ausführungsbeispiele ermöglicht, auf welche die Erfindung jedoch nicht eingeschränkt
Beispiel 1
28 Gewichtsteile Feldspat (A) aus der Präfektur Nagasaki (Japan), 10 Gewichtsteile »Gairome«- Ton (A) aus der Präfektur Gifu (Japan), 15 Gewichtsteile »Kibushi«-Ton aus der Präfektur Gifu (Japan), und 37 Gewichtsteile »Tohseki« (A) aus der Präfektur Kumamoto (Japan) wurden miteinander vermischt. »Tohseki« ist Liparit, der durch Verwitterung zu einer harten Substanz zersetzt worden ist.
Vor dem Vermischen der Rohmaterialien wurden Feldspat und »Tohseki« in Brechern vorgebrochen und in Kugelmühlen naßgemahlen. Der »Gairome«- Ton und »Kibushi«-Ton wurden mit Wasser aufgeschlämmt und zugesetzt. Das Gemisch wurde gerührt, so daß eine Rohmaterialtrübe erhalten wurde. Diese Trübe wurde durch ein Sieb von 0,149 mm Maschenweite geführt, so daß bei Messung der Teilchengröße
Säurebeständigkeit Verziehen
% mm
0,07 5.6
0,19 7.6
0,35 4.2
0.10 2.2
0,06 6,1
0.08 8,2
0.08 5,9
0,07 7,2
0.05 8,0
0,08 11,3
0,08 14.4
0.35 9.8
0,06 15.2
0.07 5.4
0.08 8,3
0,11 13.0
0.05 5.3
0.09 9.0
0,21 10.5
0.17 7.8
0,06 9.3
0.28 13.7
111 150 105 136 130 122 122 136 149 122 122 105 151 140 122 133 168 125 103 110 158 121
mit der Andreasen-Pipette der Anteil von Rohstoffteilchen über 10 Mikron kleiner war als 26,5 Gewichtsprozent. Danach wurde die Trübe in einer Filterpresse entwässert und von löslichen Salzen befreit. Der so erhaltene Kuchen enthielt etwa 25% Wasser und wurde in einer Knetmaschine behandelt und zu einem zylindrischen Rohstrang gepreßt, der einen Außendurchmesser von 1,5 m, einen Innendurchmesser von 0,9 m und eine Länge von 1 m hatte und in einer Trockenkammer etwa 2 Wochen lang bei einer Temperatur von 35 bis 450C und bei einer relativen Luftfeuchtigkeit von 70 bis 90% getrocknet wurde.
Diese Maßnahme hatte den Zweck, eine homogene Trocknung und eine bessere Verarbeitbarkeit zu erzielen. Das Rohgut, dessen Wassergehalt auf etwa 21 Gewichtsprozent herabgesetzt worden war. wurde auf einer Drehbank Ln die gewünschte Form gebracht und dann 5 bis 10 Tage lang in einer Trockenkammer auf einen Wassergehalt von 1 Gewichtsprozent getrocknet. Danach wurde die Glasur aufgespritzt und getrocknet und in einem Muffelofen bei etwa 1280c C zu dem Fertigprodukt gebrannt.
Die einzelnen verwendeten Rohmaterialien hatten folgende chemische Zusammensetzung und durch Röntgenstrahlenuntersuchung festgestellte mineralogische Zusammensetzung:
»Tohseki«
(A) aus der Präfektur Kumamoto Feldspat
(A) aus der Präfektur Nagasaki
»Kibushi«-Ton aus der Präfektur Gifu
»Gairomea-Ton aus der Präfektur Gifu
Glühverlust
SiO2
Al2O3
Fe,O,
3,40 78,70 13,90
1,03 0,68 79,34 12,57 0,15
11,66
54?54
29,29
1,49
13,29
49,39
33,95
1,25
Forlsetzung
TiO2
CaO
MgO
»Tohseki«
(A) aus der Präfeklur Kumamoto
Na2O ...
Insgesamt
Quarz
Kaolinit .,
Sencit
Albit
0,27 0,10 0,09 2.46 0,39 100.34 57,3 4,8 35,0 Feldspat
(A) aus der Präfeklur Nagasaki
0,03
0,43
0,02
0,64
6,15
100,01
37,5
50,3
»Kibushi«-Ton aus der Präfektur Gifu
1,13
0,21
0,53
1,05
0,13
100,03
7,4
85,9
»Gairoroe«-Ton aus dei Präfektur Gifu
0,84 0,06 0,29 0,26 0,12
99,45 4,8
90,2
Die chemische Analyse und Röntgenstrahlenuntersuchung der gebrannten Produkte, die aus den in der Beispielen verwendeten Rohmaterialgemischen hergestellt wurden, ergaben folgende chemische und mineralogische Zusammensetzung:
Glüh
verlust
SiO2 Al2O3 Fe2O3 TiO, CaO MgO K2O Na2O ins
gesamt
Cristobalit MuIlK Quarz Tridyrait Insgesamt
0,03 74,00 20.47 1,09 0.54 0,27 0.18 1,66 1,81 100,05 25,0 20.3 9,7 0 55,0
Die Produkte hatten folgende Kennwerte:
Wärmedehnungszahl
(Raumtemperatur bis 800°C): 6.25 · IO~h. Mechanische Festigkeit: 1450 kg/cm2. Säurebeständigkeit: 0,10%.
Wärmeschockbeständigkeit: 155C C. Spezifischer elektrischer Widerstand:
2,6 · 1012 Ohm · cm.
Die Prüfbedingungen zur Bestimmung der Kennwerte waren wie folgt:
Mechanische Festigkeit: Querbruchprüfung.
Einspannlänge 100 mm,
Säurebeständigkeit: Pulvermethode, Wärmeschockbeständigkeit: Zur Rißbildung erforderliche Temperaturdifferenz.
Beispiel 2
Unter Verwendung einer gewöhnlichen Kugelmühle und einer Filterpresse wurde ein Gemisch von 35 Teilen Gewichtsteilen »Tohseki« (B) aus der Präfektur Kumamoto, 25 Gewichtsteilen Feldspat (B) aus der Präfektur Nagasaki und 40 Gewichtsteilen »Gairome«-Ton aus der Präfektur Gifu hergestellt. Der Filterkuchen, der 25 Gewichtsprozent Wasser enthielt, wurde in einer Knetmaschine behandelt, zu zylindrischen Rohkörpern stranggepreßt und nach dem Trocknen bei 13500C gebrannt. Die von der Kugelmühle angegebene Trübe wurde durch ein Sieb von 0,149 mm Maschenweite geführt, so daß bei Bestimmung der Teilchengröße mit der Andreasen-Pipette der Anteil der Teilchen über 10 Mikron kleiner war als 23,5%.
Die einzelnen verwendeten Rohmaterialien hatter folgende chemische Zusammensetzung und durch Röntgenstrahlenuntersuchung festgestellte mineralo gische Zusammensetzung:
Glühverlust.
SiO2
Al2O3
Fe2O3
TiO2
CaO
MgO
K2O
Na2O
Insgesamt ..
Quarz
Kaolinit ...
Sericit
Albit
»Tohseki« Feldspat
(B) aus der (B) aus der
Präfektur Präfektur
Kumamoto Nagasaki
2,72 0,54
78,82 79,36
14,11 12,50
0,79 0,15
0,15 0,03
0,04 0,39
0,05 0,06
3,25 0,41
0,22 6,59
100,15 100,03
56,9 39,3
5,3
35,2
49,1
»Gairome«-
Tun
(B) aus der Präfektur
Gifu
13,22
49,07
33,51 1,80 0,70 0,04 0,35 1,16 0,11
99,96 5,6
83,5
Die chemische Analyse und Röntgenstrahlenuntersuchung der gebrannten Produkte, die aus den in den Beispielen verwendeten Rohmaterialgemischen hergestellt wurden, ergaben folgende chemische und mineralogische Zusammensetzung:
Glüh
verlust
SiO2 Al2O3 Fe2O3 TiO2 CaO
0.05 71.69 23.01 1.11 0.38 0.14
MgO
0.05
K2O
1.73 Na2O
1.90
Insgesamt
100.06
Cristobalit
36.2
MuIIiI
21.0
Quarz [ Tridymit
4.0
Insgesamt 61.2
809 608/34
Die Produkte hatten folgende Kennwerte:
Wärmedehnzahl (Raumtemperatur bis 8000C):
7,0 ■ 1(T6,
Mechanische Festigkeit: 1430 kg/cm2. Säurebeständigkeit: 0,07%,
Wärmeschockbeständigkeit: 148° C, Spezifischer elektrischer Widerstand:
1,5 1012OhIn cm.
Beispiel 3
Mit Hilfe der Kugelmühle wurden 30 Gewichtsteile Quarzit aus der Präfektur Fukushima, 20 Gewichtsteile »Gairome«-Ton aus der Präfektur Gifu, 20 Ge-
wichtsteil·.; »Kibushi«-Ton aus der Präfektur Aichi und 30 Gewichtsteile Feldspat (B) aus der Präfektur Nagasaki gemischt und feingemahlen. Es wurden Wasser und als Entflockungsmittel 0,5 Gewichtsteile Wasserglas sowie 0,1 Gewichtsteil Natriumcarbonat zugesetzt. Die so erhaltene Trübe wurde durch ein Sieb von 0,149 mm Maschen weite geführt, so daß die Menge der Teilchen über 10 Mikron kleiner war als 28,8 Gewichtsprozent. Die Masse wurde durch Gießen geformt, getrocknet und bei einer Temperatur von 13200C gebrannt.
Die vorstehend genannten Rohmaterialien hitten folgende chemische und mineralogische Zusammensetzung:
Quarzit aus der Präfektur Fukushima
Feldspat
(B) aus der Präfektur Nagasaki »Gairome«-Ton aus der Präfektur Gifu
»Kibushi«-Ton aus der Präfektur Aichi
Glüh vertust
SiO2
Al2O3
Fe2O3
TiO2
CaO
MgO
K2O
Na2O
Insgesamt..
Quarz
Kaolinit ...
Feldspat ...
0,20
99,61
0,06
0,06
99,87 100,0
0,54
79,36
12,56
0,15
0,03
0,39
0,06
0,41
6,59
100,09
39,3
49,1 J 5,20
49,83
33,27
0,98
0,25
0,08
0,04
0,40
0,05
100,10
4,5
91,5
13,02
51,74
30,28
1,88
1,14
0,07
0,62
1,00
0,19
99,94
10,1
80,3
Die gebrannten Produkte, die aus den in den Beispielen verwendeten Rohmaterialgemischen hergestellt wurden, hatten folgende chemische und mineralogische Zusammensetzung:
Glüh-
veriust
SiO2 Al2O, Fe2O3 TiO2 CaO MgO K2O Na2O Ins
gesamt
Crislobalit Mullit Quarz Tridymit Insgesamt
0,03 75,10 21,29 0,51 0,31 0,16 0,15 0,43 2,16 100,14 40,2 22,4 4,4 0 67,0
Die Produkte hatten folgende Kennwerte:
Wärmedehnzahl (Raumtemperatur bis 800°C): 6,5 · 10"6,
Mechanische Festigkeit: 1390 kg/cm2, Säurebeständigkeit: 0,06%,
Wärmeschock beständigkeit: 143° C, Spezifischer elektrischer Widerstand: 1,6 · 1012 Ohm ■ cm.

Claims (2)

Patentansprüche:
1. Porzellan auf Cristobalitbasis für elektrische Isolatoren mit einem Gehalt an Siliciumdioxid, Alkalioxid, Eisenoxid, Calciumoxid, Magnesiumoxid und Aluminiumoxid, gekennzeichnet durch einen Gesamtkristallgehalt von 35 bis 75 Gewichtsprozent, wobei die Cristobalit-Kristallmenge 25 bis 50 Gewichtsprozent und die Quarz-Kristallmenge 5 bis 15 Gewichtsprozent beträgt und der Rest im wesentlichen aus Mullitkristallen besteht, bezogen auf das Gesamtgewicht des Porzellans, und durch 65 bis 80 Gewichtsprozent SiO2, 2,0 bis 4,0 Gewichtsprozent Alkalioxid, 0,5 bis 1,5 Gewichtsprozent Fe2O3, 0,2 bis 1,3 Gewichtsprozent TiO2, weniger als 0,5 Gewichtsprozent jeder der Verbindungen CaO und MgO und weniger als 1,0 Gewichtsprozent andere Verunreiniguneen, wobei das SiO2/Al2O3-Verhältnis 2,8 bis 4,5 und das K20/Na2 O-Verhältnis 0,01 bis 1,5 beträgt.
2. Verfahren zur Herstellung des Porzellans gemäß Anspruch 1, dadurch gekennzeichnet, daß man Rohmineral-Materialien in einem den gewünschten Reingehalt an Feldspatsubstanz, Quarzsubstanz und Tonsubstanz ergebenden Mengenverhältnis in bekannter Weise mischt, die Mischung formt, die geformte Masse trocknet und danach bei einer Temperatur von 1250 bis 1380' C brennt.
DE19651646770 1964-04-27 1965-04-27 Porzellan für elektrische Isolatoren Expired DE1646770C3 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2372164 1964-04-27
DEN0026643 1965-04-27

Publications (1)

Publication Number Publication Date
DE1646770C3 true DE1646770C3 (de) 1978-02-23

Family

ID=

Similar Documents

Publication Publication Date Title
DE2533871A1 (de) Glaskeramik der cordierit-art mit kernbildungsmittel
DE1471161B2 (de) Verfahren zur herstellung eines keramischen werkstoffes
DE1421859B2 (de) Verfahren zur herstellung eines glas keramik formkoerpers mit in einem breiten bereich variierbarem waermeausdehnungskoef fizienten
DE19942137C2 (de) Verfahren zur Herstellung eines Porzellans, Porzellan sowie Verwendung des Porzellans als keramischer Isolator
DE1646770B2 (de) Porzellan fuer elektrische isolatoren
DE2932914C2 (de) Hochfeste Tonerdeporzellanmasse für elektrische Isolatoren
DE1771652A1 (de) Hitzebestaendige Glas-Keramik-Materialien und entglasungsfaehige Glasmaterialien und Verfahren zu deren Herstellung
DE1646770C3 (de) Porzellan für elektrische Isolatoren
DE2554969C3 (de) Glasierbare, nichtporöse keramische Sinterkörper hoher mechanischer Festigkeit mit steatitanalogen elektrischen Isolationseigenschaften
DE1771273B2 (de) Verfahren zur herstellung von teilen aus zirkonoxidkeramik
DE3026570C2 (de) Feuerfester Stein mit einem Gehalt an Stahl- oder Edelstahlfasern und Verwendung des Steins
DE1961144C (de) Verfahren zur Herstellung kera mischer Wandfliesen Ausscheidung aus 1925060
DE1496487B2 (de) Verfahren zur herstellung eines glas kristall mischkoerpers mit hoher mechanischer festigkeit und relativ hohem waermeausdehnungskoeffizienten sowie hohem elektrischen isolations widerstand
DE3618758C2 (de)
DE2645555C3 (de) Keramischer Sinterkörper und Verfahren zum Herstellen
DE977695C (de) Verfahren zum Herstellen dielektrischer Materialien
DE1914982B2 (de) Verwendung eines elektrogeschmolzenen feuerfesten Materials
DE2842176C2 (de) Chemisch abbindende Masse mit hohem Tonerdegehalt auf Bauxitbasis ohne Zusatz von Tonen und ihre Verwendung als Formkörper, insbesondere Steine, zur Auskleidung von Aluminiumschmelzaggregaten
DE1227821B (de) Verfahren zur Herstellung einer porzellanartigen Masse hoher Temperaturwechselbestaendigkeit
DE2542710C3 (de) Verfahren zur Verbesserung der Druckfestigkeit von gebrannten Tonwaren
DE3229303C2 (de)
DE1961144B2 (de) Verfahren zur Herstellung keramischer Wandfliesen. Ausscheidung aus: 1925060
DE1471161C (de) Verfahren zur Herstellung eines ke ramischen Werkstoffes
DE3536407A1 (de) Verfahren zur herstellung von formkoerpern aus al(pfeil abwaerts)2(pfeil abwaerts)0(pfeil abwaerts)3(pfeil abwaerts) und zr0(pfeil abwaerts)2(pfeil abwaerts) sowie nach dem verfahren hergestellte formkoerper
DE900911C (de) Verfahren zur Herstellung von synthetischen anorganischen Silikaten