DE1591225B1 - Generator zur erzeugung von entladungsstoessen hochfre quenter impulssignale mit hoher impulsfolgefrequenz - Google Patents

Generator zur erzeugung von entladungsstoessen hochfre quenter impulssignale mit hoher impulsfolgefrequenz

Info

Publication number
DE1591225B1
DE1591225B1 DE19671591225 DE1591225A DE1591225B1 DE 1591225 B1 DE1591225 B1 DE 1591225B1 DE 19671591225 DE19671591225 DE 19671591225 DE 1591225 A DE1591225 A DE 1591225A DE 1591225 B1 DE1591225 B1 DE 1591225B1
Authority
DE
Germany
Prior art keywords
wave
transmission line
pulse
generator according
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE19671591225
Other languages
English (en)
Inventor
Huber Henry J
Proud Jun Joseph M
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IKOR Inc
Original Assignee
IKOR Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IKOR Inc filed Critical IKOR Inc
Publication of DE1591225B1 publication Critical patent/DE1591225B1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/78Generating a single train of pulses having a predetermined pattern, e.g. a predetermined number
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/64Generators producing trains of pulses, i.e. finite sequences of pulses

Description

1 2
Die Erfindung betrifft einen Generator zur Erzeu- erzielen, deren Dauer kürzer ist als einige Mikro-
gung von Entladungsstößen, bestehend aus einer vor- Sekunden.
bestimmten Anzahl hochfrequenter Impulssignale mit Der Erfindung liegt die Aufgabe zugrunde, einen hoher Impulsfolgefrequenz. Hochfrequenzgenerator zu schaffen, der impulsför-Kurze Impulse von Mikrowellenenergie bei Fre- 5 mige Mikrowellenenergie mit hoher Ausgangsleistung quenzen in der Größenordnung von 1 GHz und dar- und hohem Wirkungsgrad liefert und dennoch einüber werden bis jetzt im allgemeinen mit HiMe von fach im Aufbau und mit relativ geringen Kosten her-Magnetronen, Klystronröhren und Frequenzverviel- stellbar ist.
fachern erzeugt. Bei den Klystronröhren handelt es Gemäß der Erfindung wird diese Aufgabe dadurch sich gewöhnlich um Vorrichtungen mit geringer Aus- io gelöst, daß der Innenleiter einer an eine Ladeschalgangsenergie. Magnetrone sind Vorrichtungen von rung angeschalteten Übertragungsleitung in mehrere hoher Genauigkeit, deren Herstellung hohe Kosten durch dielektrische Spalte distanzierte und elektrisch verursacht. Bei beiden Arten von Vorrichtungen ist gekoppelte Abschnitte aufgeteilt ist, wobei die Anes bei einer Erhöhung der Betriebsfrequenz erforder- Ordnung und Abmessung derart getroffen ist, daß lieh, die Abmessungen der Konstruktion zu verklei- 15 eine von der Ladeschaltung gelieferte lange Rechtnern, so daß sich die Fähigkeit der Vorrichtung, eckwelle in einer ersten Richtung längs des Leiters Wärme abzugeben, verringert; infolgedessen ergibt wandert und jeder Spalt innerhalb einer vorbestimmsich in der Praxis eine Begrenzung sowohl bezüglich ten Zeitdauer auf das Eintreffen der Front der Welle der verfügbaren Ausgangsenergie als auch bezüglich an dem betreffenden Spalt anspricht und ein eine der erreichbaren Frequenz. 20 vorbestimmte Länge aufweisender Teil dieser Welle Zwar ermöglichen Frequenzvervielfacher das Ar- reflektiert wird, indem der Spalt diesem Teil einen beiten im Bereich noch kürzerer Wellen, wobei die großen Widerstand darbietet, und daß der verblei-Frequenzvervielfacher gewöhnlich mit Kristallen ar- bende Teil der langen Rechteckwelle auf den nächbeiten, mittels deren eine erzeugte Welle verzerrt sten Leiterabsehnitt übertragen wird, indem der bewird, doch geht die aus den Harmonischen abgeleitete 25 treffende Spalt so dimensioniert ist, daß er diesem Energie bei zunehmenden Frequenzen sehr schnell verbleibenden Teil nur einen kleinen Widerstand zurück. darbietet.
Brauchbare Energiemengen können bei Wellen- Durch diesen Generator können außerordentlich längen unter 5 mm mit Hilfe von Funkengeräten er- kurze Wellen während einer sehr kurzen Gesamtzeit zielt werden, bei denen resonanzfähige Dipole in 3° erzeugt werden. Die Wellenzüge treten mit sehr einem isolierenden Medium verwendet werden. Bei hochfrequenten Wellen auf, und die Zahl der Wellen einer solchen Vorrichtung ist ein resonanzfähiger kann auf vier oder fünf beschränkt-seinT Die Gesamt-Dipol, der gewöhnlich kugelförmig ist, in einem dauer, während der dieser Impulszug auftritt, liegt in Abstand zwischen zwei Elektroden angeordnet. der Größenordnung von see 10~9. Somit stellt jede Eine Funkenentladung über die Funkenstrecke 35 Wellenimpulsfolge einen Entladungsstoß dar, und zwischen der Elektrode und dem Resonator erregt die Frequenz der Wellen und die Ausgangsleistung die Eigenschwingung des Resonators dadurch, in dem Entladungsstoß ist sehr groß, daß sie ein plötzliches Zusammenbrechen des Es ist zwar bekannt, zur Erzeugung kurzer Imelektrischen Feldes bewirkt. Die Funken sind von pulse einer elektrischen Übertragungsleitung durch gedämpften Wellenzügen von regelloser Phasen- 40 Impulslademittel eine lange Rechteckschwingüng zulage begleitet. Solche Vorrichtungen bilden daher zuführen, von der ein Teil infolge Fehlanpassung am Breitbandfunksender, und ihre .Energieabgabe ist Ende der Leitung reflektiert wird.: Bei einem bekannbegrenzt, ten Verfahren dieser Art wird eine einzige Länge eines Es wurden auch bereits Versuche unternommen, ungeteilten Koaxialkabels benutzt, welches als Verum die Anzahl der resonanzfähigen Dipole dadurch 45 zögerungsleitung dient. Dabei kamt-das Kabel an zu vergrößern, daß die Dipole in Form einer langen einem Ende kurzgeschlossen sein, um ein reflektie-Reihe angeordnet wurden, um die Energieabgabe zu rendes Ende zu bilden, und am anderen Ende kann vergrößern. Zwar wird hierbei eine Vergrößerung der das Kabel an das Gitter einer Röhre angeschaltet Energieabgabe erzielt, doch steht die Energieabgabe sein, wobei das freie Ende des Kabels an ein Potenin keinem brauchbaren Verhältnis zu der Zahl der 50 tiometer angeschlossen ist. Die Impulsbreite wird zusätzlich verwendeten Dipole. dadurch verringert, daß die Differenz eines unver-Ferner hat man Funkenstrecken in Mikrowellen- zögerten Impulses und eines Impulses entgegengesetzhohlräumen angeordnet, die als resonanzfähige FiI- ter Polarität, der durch das Kabel verzögert worden ter wirken sollten. Bei diesen Vorrichtungen handelt ist, benutzt werden. Auch diese bekannte Anordnung es sich theoretisch um mit hohem Wirkungsgrad ar- 55 besitzt jedoch einen schlechten Wirkungsgrad und beitende Vorrichtungen, doch arbeiten diese Vor- ist bezüglich der Frequenz und der Leistungsabgabe richtungen in der Praxis mit einer geringen Ausgangs- beschränkt (deutsche Auslegeschrift 1 098 055). leistung. Man kann alle vorstehend beschriebenen Demgegenüber ist nach der Erfindung der Innen-Vorrichtungen als harmonische Generatoren be- leiter einer elektrischen Übertragungsleitung durch zeichnen, da es sich um schwingende Vorrichtungen 60 Luftspalte in mehrere aufeinanderfolgende Abhandelt, die durch ein resonanzfähiges Element ge- schnitte aufgeteilt, und diese Luftspalte wirken als steuert werden, durch welches die Grundfrequenz Schaltmittel, um elektrisch jeden Abschnitt mit dem bestimmt wird. nächstfolgenden Abschnitt in der Weise zu koppeln, Ferner ist bei der Anwendung impulsförmiger Mi- daß eine Aufteilung in Einzelimpulse erfolgt, wenn krowellen bei Entfernungsmeßsystemen das erzielbare 65 eine lange Rechteckwelle am Einspeiseende zugeführt Auflösungsvermögen eine Funktion der Impulsdauer. wird. Zweckmäßigerweise sind die als Funkenstrek-Bei den bis jetzt bekannten Mikrowellenverfahren ist ken wirkenden Spalte mit einem sich selbsttätig eres außerordentlich schwierig, Impulse oder Stöße zu gänzenden Dielektrikum ausgefüllt. Dabei können
ORiGiNALiNSPECTED
sämtliche Spalte die gleiche Durchbruchsverzöge- als Dielektrikum Luft unter einem Druck von. rungszeit gegenüber der eine vorbestimmte Spannung 760 mm Hg verwendet wird, wobei die Länge der ■aufweisenden Rechteckwelle besitzen. Funkenstrecke etwa 0,25 mm beträgt, wird die Fun-
Nachstehend wird ein Ausführungsbeispiel der Er- kenstrecke z. B. bei einer Spannung von 30 kV innerfindung an Hand der Zeichnung beschrieben. In der 5 halb einer Nanosekunde oder weniger leitfähig, was Zeichnung zeigt sich jeweils nach dem Kathodenmaterial und den geo-
F i g. 1 eine schematische Darstellung einer Aus- metrischen Verhältnissen der Funkenstrecke richtet, führungsform der Erfindung und diese teilweise in Um eine große Zahl von Rechteckwellen zu erzeu-
■einem Blockdiagramm und teilweise in einem Teil- gen, kann man mehrere Funkenstrecken hmtereinanschnitt längs der Fortpflanzungsachse eines Hoch- io der in eine Übertragungsleitung einschalten. Grundfrequenzimpulses, wobei die wesentlichen Elemente sätzlich wird dann die ursprünglich in einer rechtder Erfindung dargestellt sind, eckigen Wanderwelle gespeicherte Energie durch
F i g. 2 in einem idealisierten Zeitdiagramm die mehrere Reflexionsvorgänge an den nacheinander fortschreitende Entstehung von beispielhaften WeI- zusammenbrechenden Funkenstrecken unterbrochen, lenformen bei der Anordnung nach F i g. 1, 15 so daß man einen Satz von kurzen Wanderwellen er-
F i g. 3 im Längsschnitt eine weitere Ausführungs- hält. Die Breite jedes Impulses ist dann durch Tt geform der Erfindung mit einem System zum Abfüh- geben, wobei J^ der Durchbruchsverzögerungszeit ren des Hochfrequenzimpulses aus der Vorrichtung, jeder Funkenstrecke G1- entspricht. Man kann den
Fig. 4 im Schnitt eine weitere Ausführungsform Wellenzug periodisch oder aperiodisch machen, in-r der Erfindung und läßt ein anderes System zum Ab- 20 dem man die Funkenstrecken auf geeignete Weise führen des Hochfrequenzimpulses erkennen, ausbildet, d. h., indem man die Durchbruchszeit regelt
F i g. 5 ein idealisiertes Zeitdiagramm, das die Wir- und/oder indem man die Länge der Übertragungskungsweise der Anordnung nach F i g. 4 veranschaü- leitung von Funkenstrecke zu Funkenstrecke auf gelicht, eignete Weise wählt. Da keine resonanzfähigen^Ele-
Der erfindungsgemäße Hochfrequenzgenerator 35 mente verwendet werden, darf ein solcher Hochfreumfaßt allgemein eine Übertragungsleitung und Mit- quenzgenerator nicht als harmonischer Generator betel, um einen Impulserzeugungsteil dieser Leitung trachtet werden.
mit Hilfe eines Gleichspannungsimpulses aufzuladen; In F i g. 1 erkennt man eine erfindungsgemäße Vor-
hierbei ist die Übertragungsleitung in mehrere Ab- richtung mit einer Übertragungsleitung 20 in Form schnitte unterteilt, die jeweils durch Schaltmittel mit- 30 eines koaxialen Kabels mit einem zylindrischen hoh- «inander verbunden werden können, wobei diese len äußeren Leiter 22 und einem damit konzentri-Schaltmittel nacheinander dadurch betätigt werden, sehen, insgesamt mit 24 bezeichneten inneren Leiter,, •daß an die Schaltmittel ein vorbestimmtes Potential der von dem äußeren Leiter durch ein dielektrisches über den unmittelbar vorangehenden Teil der Lei- Material 26, z. B. Luft, getrennt ist. Man kann Untung angelegt wird, und wobei die Schaltmittel im 35 terstützungen, z. B. geschlitzte Scheiben aus Kunstgeöffneten Zustand einen hohen Widerstand haben, stoff, verwenden, um die beiden Leiter in der richtiwährend sie im geschlossenen Zustand einen Wider- gen Lage zueinander zu halten; aus Gründen der stand haben, der nahezu gleich dem charakteristi- Deutlichkeit sind diese Unterstützungen in Fig. 1 sehen Leitungswiderstand ist. Im übrigen ist der nicht dargestellt. Ferner sind zur Vereinfachung der Widerstand jedes Leitungsabschnitts vorzugsweise 40 Zeichnung die Ableitungswiderstände nicht dargegleichmäßig und dem charakteristischen Leitungs- stellt, die jeden Abschnitt des Mittelleiters 24 mit "widerstand angepaßt. Wenn bei der bevorzugten Aus- dem" äußeren Leiter 22 verbinden. Diese Wider* führungsform ein Schaltmittel geschlossen wird, so stände, die in einem typischen Fall einen Widerdaß eine Fortleitung von Energie zwischen benach- standswert von 1 Megohm haben, dienen zum Abbarten Teilen der Übertragungsleitung erfolgt, blei- 45 führen der elektrischen Restladung, die anderenfalls ben die Schaltmittel für Impulse geschlossen, die sich einen unregelmäßigen Betrieb verursachen würden in der einen oder anderen Richtung fortpflanzen, und und insbesondere einen Betrieb mit einer hohen Im-"während einer Zeit, die derjenigen Zeit entspricht, pulsfrequenz behindern wurden. Wenn solche Widerweiche benötigt wird, um dem einen oder anderen stände eingebaut sind, werden alle Teile der Über-Ende der Vorrichtung die hochfrequente Energie zu 50 tragungsleitung auf dem Erdpotential gehalten, beentnehmen. Die Dämpfung an jedem der Schaltmittel vor die Vorrichtung betätigt wird, um einen Wellensoll gering sein; dies entspricht einer schnellen Ände- zug zu erzeugen. Der äußere Leiter 22 dient, wie rung des Zustandes zwischen einem »unendlich gro- im folgenden näher erläutert, in erster Linie als Abßen« Widerstand und einem Widerstand, der eine schirmung, und daher ist er lückenlos entweder aus sehr kleine ohmsche Komponente umfaßt. 55 einem massiven Material oder aus einem geklöppel-
. Zwar können Schaltvorrichtungen, z. B. Thyra- ten bzw. geflochtenen Material od. dgl. ausgebildet, trone, mit außerordentlich kurzen Schaltzeiten ar- und er besteht aus Kupfer oder einem ähnlichen Mabeiten, die nur einigen Nanosekunden entsprechen, terial von hoher elektrischer Leitfähigkeit, wenn Energieimpulse von erheblicher Größe in Frage Eine Einrichtung zum Einführen einer im wesent-
kommen, doch können die einfachsten und außer- 60 liehen rechteckigen Welle in die Übertragungsleitung ordentlich schnell arbeitenden Leistungsschalter ein- ist in Fig. 1 in Form einer Ladeschaltung 28 dargefach durch in die Übertragungsleitung eingeschaltete stellt, die mit einem Impulserzeugungsabschnitt 30 Funkenstrecken gebildet werden, in denen ein dielek- des Mittelleiters zusammenarbeitet. Solche Impulstrisches Material angeordnet ist. Wenn in der Über- ladeschaltungen sind bereits bekannt, und man kann tragungsleitung an einer solchen Funkenstrecke eine 65 normalerweise einen i?C-Kreis oder eine resonanz-Uberspannung auftritt, bricht die Funkenstrecke zu- fähige Ladeschaltung verwenden. Der Mittelleiter 24 sammen, so daß sie sehr schnell leitfähig wird. Bei ist in mehrere hintereinander angeordnete Abschnitte einer Übertragungsleitungs-Funkenstrecke, bei der 30,32, 34, 36, 38 und 40 unterteilt.
5 6
' Teder Abschnitt der Übertragungsleitung ist dem Form eines Impulses an den Leitungsabschnitt 30 nächstfolgenden Abschnitt nahe benachbart und von durch die Schaltung 28 angelegt, so daß der Abschnitt ihm durch Schaltmittel in Form eines engen Spaltes 30 aufgeladen wird. Wenn an der Funkenstrecke 42 getrennt, in dem sich ein dielektrisches Material be- eine hohe Überspannung erscheint, erfolgt ein Überfindet. Die Anordnung nach Fig. 1 umfaßt somit die 5 schlag, so daß das in dem Abschnitt 30 vorhandene mit 42, 44, 46, 48 und 50 bezeichneten Funkenstrek- Potential plötzlich dem Abschnitt 32 in Form einer ken. Das dielektrische Material in den Spalten der Wanderwellenfront 52 zugeführt wird, wie es in Funkenstrecken ist vorzugsweise ein sogenanntes Fig. 2A gezeigt ist. Diese die Funkenstrecke 44 erselbstheilendes Material, so daß sich das dielektrische reichende Wellenfront trifft auf den anf anglich hohen Material nach dem Überschlagen eines Funkens ίο Widerstand der Funkenstrecke 44, so daß sie in der selbsttätig erneuern kann. Die Enden der Abschnitte in Fig. 2B gezeigten Weise reflektiert wird, wie es des Leiters 24, welche jede Funkenstrecke abgren- durch die gestrichelt eingezeichnete reflektierte Weizen, sollen auf bekannte Weise so geformt sein, daß lenfront 54 angedeutet ist. Aus Gründen der Deutsich eine möglichst kurze Durchbruchszeit ergibt und lichkeit ist die reflektierte Wellenfront mit einer etwas daß das Material durch die beim Durchbrechen der 15 kleineren Amphtude dargestellt als die Wanderwellej Funkenstrecken auftretenden Lichtbogen möglichst obwohl dann, wenn der Widerstand der nicht leitwenig beschädigt wird. Wenn das dielektrische Ma- fähigen Funkenstrecke im Vergleich zum Widerstand terial 26 der Übertragungsleitung strömungsfähig ist, der Leitung hoch ist, in der Praxis nur eine geringe kann es natürhch auch das Dielektrikum rn den Fun- Dämpfung auftritt. Die Funkenstrecke 44 bricht kenstrecken bilden. 20 schnell zusammen, z.B. innerhalb einer halben
Die Leitungsabschnitte 32, 34, 36, 38 und 40 bil- Nanosekunde, so daß die Wellenfront 52 in den Leiden zusammen mit den Funkenstrecken Impulserzeu- tungsabschnitt 34 übergeführt wird. Schließlich ergungsmittel, die es ermöglichen, erne sich längs des reicht die Wellenfront 52 die nächste Funkenstrecke Abschnitts 30 fortpflanzende rechteckige Welle in 46, wie es in Fig. 2C gezeigt ist. Hierbei beendete mehrere Impulse oder einen Wellenzug zu verwan- 25 natürlich der Überschlag an der Funkenstrecke 44 dein: Bei der Anordnung nach Fig. 1 haben alle die reflektierte Wellenform54, die sich dann als Im-Funkenstrecken 44, 46, 48 und 50 im wesentlichen puls 58 längs des Mittelleiters 24 nach hinten bedie 'gleichen. Abmessungen und daher auch gleich wegte.
große Durchbruehsverzögerungszeiten. Im Hinblick Wenn die Front der Rechteckwelle jetzt auf den
auf ihre im folgenden beschriebene Funktion ist die 30 durch die Funkenstrecke 46 gebildeten großen Wi-Funkenstrecke 42 so eingestellt, daß sie im Vergleich derstand trifft, wie es in Fig. 2D gezeigt ist, wird zu deri Funkenstrecken 44, 46, 48 und 50 langsamer die Rechteckwelle ebenfalls durch den hohen Wideranspricht./ · stand der nicht leitfähigen Funkenstrecke reflektiert, Wenn der Abschnitt 30 der "Übertragungsleitung so daß sie beginnt, sich nach hinten in Richtung auf mit Hilfe der Schaltung 28 auf ein Potential V auf- 35 den Anfang der Übertragungsleitung zu bewegen: ' geladen wird und' wenn eine plötzliche Umschaltung Jedoch bewirkt das Eintreffen der Wellenfront an der zu "dem nächsten Abschnitt 32 mit, einem ähnlichen Funkenstrecke 46, daß an dieser Funkenstrecke eine charakteristischen Widerstand erfolgt, wird bekannt- Überspannung auftritt, so daß diese Funkenstrecke lieh in'deni.ursprünglich nicht geladenen Abschnitt 32 sehr schnell durchschlagen wird. Dieses Zusammenejrie Wanderwelle von rechteckiger- Wellenform er- 40 brechen der Funkenstrecke ermöglicht es, die anzeugt. Die Amplitude der Wellenform ist dann mit fängliche Wanderwelle in den nächsten Abschnitt 36 V/2 gegeben, und die Länge T der rechteckigen WeI- der Leitung zu überführen, wobei gleichzeitig belepform ist gleich dem Zweifachen, der elektrischen wirkt wird, daß das reflektierte Potential zurückgeht. Länge des Abschnitts 30. Die Funkenstrecke 42 ist Auf diese Weise bewegt sich ein kurzer Impuls 60 so,eingestellt, daß sie mit'einer ausreichenden Ver- 45 mit der Dauer Tg, die im wesentlichen durch die zögerung durchschlagen-wird, damit der Abschnitt Durchbruchszeit der Funkenstrecke 46 bestimmt 30.auf seine volle Spannung V aufgeladen werden wird, in der entgegengesetzten Richtung längs des !-kann. »Beim Zusammenbrechen wird die Funken- Leiters 24, wie es in F i g. 2E gezeigt ist. ■ vStaecke:42 schnell leitfähig, so daß dem Abschnitt 32 Wenn man annimmt, daß die Funkenstrecken 44 - eine schnell ansteigende rechteckige Welle zugeführt 50 und 46 gleich große Durchbruchsverzögerungszeiten wird/Wenn jedoch gemäß der Erfindung eine wei- gleich Tg aufweisen, wird die Dauer der längs des tere Funkenstrecke 44 so angeordnet wird, daß sie Abschnitts 36 wandernden Rechteckwelle jetzt auf •den Abschnitt32 abschließt, trifft die Wanderwelle T—2Tg verkürzt. Wenn die Front der Welle die ■auf ;detf hohen Widerstand dieser Funkenstrecke, so nächste Funkenstrecke 48 erreicht, tritt eine kleine daß sie', nach hinten reflektiert wird. Die so reflek- 55 Verzögerung ein, die auf die Durchbruchsverzögetierte Welle wandert nach hinten in Richtung auf rungszeit dieser Funkenstrecke zurückzuführen ist. ihre ursprüngliche Quelle durch die jetzt leitfähige Hierbei wird durch Reflexion ein Impuls 62 erzeugt, Funkenstrecke 42 mit einer Amplitude Vj2 und einer während sich die Impulse 58 und 60 längs des Mittel-Dauer Tg. Wenn sich die Wanderwelle gegenüber der leiters bewegen, wie es in Fig.2F gezeigt ist. Es Funkenstrecke 44 auf einer hohen Überspannung be- 60 liegt auf der Hand, daß sich danach eine ähnhche fand, wird die Funkenstrecke 44 automatisch durch- Erscheinung an der Funkenstrecke 50 abspielt, schlagen, so daß sie plötzlich der Wanderwelle den Der zeitliehe Abstand zwischen den Impulsen 58 für die Leitung charakteristischen Widerstand dar- und 60 ist gleich der Zeit, die die Wellenfront 52 bebietet, so daß die reflektierte Welle plötzlich abklingt! nötigt, um sich längs des Abschnitts 34 fortzupflan-Die Dauer Tg der letzteren reflektierten Welle wird 65 zen, zuzüglich der Zeit, welche die reflektierte Welle daher durch die Zeit bestimmt, die die Funkenstrecke benötigt, um sich nach hinten längs des Abschnitts 34 benötigt, um vollständig zusammenzubrechen. ' fortzupflanzen. Somit entspricht der zeitliche Ab-Somit wird eine hohe Spannung von z. B. 2Q kV in stand zwischen den verschiedenen Impulsen dem
7 8
Zweifachen der elektrischen Länge der die verschie- Die oberen' Frequenzgrenzen des durch den er-
denen Funkenstrecken voneinander trennenden Lei- findungsgemäßen Hochfrequenzgenerator erzeugten tungsabschnitte. Wellenzuges werden offenbar in erster Linie durch
Wenn man die Durchbruchsverzögerungszeiten Tg bestimmt. Zeitverzögerungen bis herab zu der Funkenstrecken und die Länge der Abschnitte 5 0,3 Nanosekunden wurden routinemäßig gemessen, der Übertragungsleitung auf geeignete Weise wählt, und es wird angenommen, daß Funkenstrecken, wird somit durch aufeinanderfolgende Reflexionsvor- denen eine hohe Überspannung zugeführt wird, Vergänge an den verschiedenen Funkenstrecken eine zögerungszeiten aufweisen können, die kürzer sind Impulsreihe erzeugt. Die Impulse können sich längs als 0,1 Nanosekunde. Somit lassen sich Frequenzen der Übertragungsleitung nach hinten, d. h. entgegen io bis zu 1010 Hz oder darüber erzielen. Natürlich erder ursprünglichen Laufrichtung der anfänglichen hält das System bei niedrigen Frequenzen eine un-Rechteckwelle, ohne Verzögerung oder Reflexion handliche Länge, woraus sich in der Praxis eine Befortpflanzen, da jede Funkenstrecke, sobald sie ein- grenzung der Anwendbarkeit ergibt,
mal durchschlagen wurde, im leitfähigen Zustand Betrachtet man die ursprünglich in dem ersten Imgehalten wird, und zwar deshalb, weil das Potential 15 pulserzeugungsteil der Leitung gespeicherte Energie der anfänglichen Rechteckwelle vorhanden ist und und deren nachfolgende Unterteilung in einen WeI-die Widerstände der Leitungsabschnitte einander an- Ienzug, so ist die in einem solchen Wellenzug enthalgepaßt sind, sowie deshalb, weil das Abklingen des tene Energie P annähernd durch folgenden Ausdruck leitfähigen Zustandes einer Funkenstrecke gewöhn- gegeben:
lieh erheblich langsamer erfolgt, als es der Durch- 20 j> ^ iqs γ 2. (watt) . (3)
bruchsverzögerungszeit entspricht. Somit wirken
diese durch leitfähige Funkenstrecken miteinander Bekannte Impulsladeverfahren ermöglichen das
verbundenen Abschnitte wie eine gewöhnliche Über- Arbeiten mit Ladespannungen V0 von bis zu 103 V tragungsleitung. und möglicherweise bis zu 107 V. Somit kann man
Das Endergebnis dieser aufeinanderfolgenden 25 eine Rechteckwelle mit einem Energieinhalt erzeugen, Schaltvorgänge besteht darin, daß die Gleichspan- der etwa 109 bis etwa 10uWatt beträgt. Bei der nungsenergie des rechteckigen Impulses in eine Reihe vorstehend beschriebenen Umwandlung kann man von durch Abstände getrennten Impulsen verwandelt unter Berücksichtigung von Verringerungen infolge wird, wie es in Fig.2 G dargestellt ist. Man kann von Verlusten sowie des Wirkungsgrades der Umeine periodische Impulsreihe auf einfache Weise da- 30 Wandlung eine vergleichbare Energie in dem Hochdurch erzeugen, daß man die elektrische Länge jedes frequenzspektrum erwarten. Zusätzlich zu der Span-Abschnitts des Impulserzeugungsteils des Mittelleiters nung, die einen der Parameter bildet, durch welche auf geeignete Weise wählt; alternativ kann man eine die Energie bestimmt wird, bestehen zahlreiche veraperiodische Impulsreihe dadurch erzeugen, daß man schiedene Möglichkeiten, die Übertragungsleitung einen Mittelleiter verwendet, bei dem sich die Ab- 35 geometrisch auszubilden. Beispielsweise könnte man schnitte bezüglich ihrer Länge unterscheiden. Die eine Streifen- oder Bandleitung verwenden, um die Zahl der jeweils erzeugten Impulse richtet sich nach Kapazität je Längeneinheit und damit den Energieder Zahl der Abschnitte des Impulserzeugungsteils inhalt der erzeugten Impulse zu vergrößern,
der Leitung. Wenn vier Abschnitte vorhanden sind, F i g. 3 zeigt eine Ausführungsform ähnlich der-
wie es in Fig. 1 gezeigt ist, werden somit vier ent- 4° jenigen nach Fig. 1, wobei gleiche Teile jeweils mit sprechende Impulse erzeugt, wie sie in F i g. 2 G dar- den gleichen Bezugszahlen bezeichnet sind. Man ergestellt sind. Wenn die Vorrichtung einwandfrei ar- kennt jedoch, daß geeignete Mittel, z. B. in Form beiten soll, müssen natürlich alle Funkenstrecken mit eines den Außenleiter 22 mit dem Leitungsabschnitt Ausnahme der letzten Funkenstrecke 50 während 40 verbindenden Widerstandes 66, vorgesehen sind, einer Zeitspanne leitfähig bleiben, die ausreicht, um 45 um die Übertragungsleitung abzuschließen. Der es dem letzten Impuls 64 zu ermöglichen, das System Widerstandswert des Widerstandes 66 wird entweder zudurchlaufen. so gewählt, daß er annähernd gleich dem Wellen-
Die Dauer T der anfänglichen Rechteckwelle muß widerstand der Leitung ist, wenn keine Reflexion erin der nachstehend angegebenen Weise in einer Be- wünscht ist, oder daß ein großer Widerstandsziehung zu den Schaltmitteln stehen: 5° abstimmungsfehler vorhanden ist, wenn eine Re-
N flexion erzielt werden soll. Ferner ist gemäß Fig. 3
T > "V Tgi. (1) eme Leitung 68 vorgesehen, die bezüglich ihres
^" ί+ί Widerstandes auf die Übertragungsleitung abge
stimmt ist, sich quer zur Achse der Übertragungs-
Hierin ist N die Zahl der Schalter, ζ. B-. der Fun- 55 leitung durch eine Öffnung 70 des Außenleiters 22 kenstrecken zum Erzeugen reflektierter Impulse mit erstreckt und direkt mit dem Leitungsabschnitt 30 der Dauer Tgi. Wenn die Schaltmittel durch Funken- verbunden ist. Diese Anordnung ermöglicht es, die strecken gebildet werden, ist natürlich Tgi die Durch- durch Reflexion an den Funkenstrecken erzeugte bruchsverzögerungszeit der j-ten Funkenstrecke. Impulsreihe dem System zu entnehmen. Die T-för-Wenn alle Verzögerungszeiten gleich Tg sind, und 6a mige Anordnung, die durch die Leitung 68 und den wenn Tg seinerseits gleich der Laufzeit in beiden Abschnitt 30 gebildet wird, kann eine Kopplung für Richtungen durch die Abschnitte zwischen den Fun- einen Wellenleiter oder eine weitere koaxiale Leikenstrecken ist, wird eine periodische und symme- rung oder eine Hälfte einer Halbwellenantenne oder irische Wellenform erzeugt, deren Frequenz durch eines Dipols bilden.
den folgenden Ausdruck gegeben ist: 65, Es ist ersichtlich, daß bei der Anordnung nach
Fig. 3 die hochfrequente Impulsreihe dem Genera-
f _ # (2) tQr nahe dem Ende der Übertragungsleitung entnom-
2T1J, men wird, in welchem der anfängliche Rechteck-
9 10
impuls erzeugt wird,,-d.h. nach einmaligen Reflexio- der Übertragungsleitung in der gleichen Richtung nen der dem System ursprünglich zugeführten Ein- fortpflanzt wie der ursprüngliche Rechteckimpuls, gangsenergie. Jedoch kann der hochfrequente Im- wie es in Fig. 5 J dargestellt ist. Vorzugsweise kann puls der Übertragungsleitung auch an deren anderem der ursprüngliche Rechteckimpuls gerade genügend Ende entnommen werden. Fig. 4 zeigt eine Anord- 5 lang sein, um eine solche Impulsreihe zu erzeugen, so nung, bei der die typische Ladeschaltung 28 eine Ein- daß die gesamte anfänglich in dem langen Impuls gangsklemme 72 umfaßt, die mit einer Quelle für eine enthaltene Energie jetzt in der durch die kurzen Imhohe Ladespannung von z. B. 20 kV verbunden wer- pulse gebildeten Reihe verteilt ist.
den kann. Eine Seite des Ladewiderstandes 74 ist mit Bei der Anordnung nach F i g. 4 ist das hintere
der Klemme 72 verbunden, während das andere Ende io Ende der Übertragungsleitung, d.h. der Abschnitt an eine Klemme eines Speicherkondensators 78 an- 40, durch eine Vorrichtung zum Entnehmen der geschlossen ist. Die aridere Klemme des Kondensa- Hochfrequenzenergie abgeschlossen, die typischertors ist geerdet. Bei einer Ausführungsform kann der weise durch eine einem Türknopf ähnelnde Verdik-Kondensator eine Kapazität von etwa 500 Picofarad kung 84 des Abschnitts 40 gebildet wird, welche die haben, und der Widerstandswert des Widerstandes 74 15 Energie einem rechteckigen Wellenleiter 88 zuführt kann etwa 1 Gigaohm betragen. Der Knotenpunkt und vorzugsweise in einem Abstand von einer Vierzwischen dem Kondensator und dem Ladewiderstand telwellenlänge vom gekrümmten Ende 86 des WeI-ist über einen Dämpfungswiderstand 76 von z.B. lenleiters 88 angeordnet ist.
etwa 2000 Ohm mit der Klemme 80 verbunden. Die Bei einer Versuchsausführung der erfindungsgemä-
Klemme 80 ist bei einer typischen Anordnung durch 20 ßen Anordnung nach Fig. 3 wurde die Ubertraschnell arbeitende Schaltmittel, z. B. eine Funken- gungsleitung aus Aluminiumrohr mit einem Durchstrecke 82, vom Eingangsende des Mittelleiters 24 messer von etwa 50 mm für den Außenleiter 22 herder Übertragungsleitung 20 getrennt, gestellt; hierbei bestand der Innenleiter 24 aus einer
Es sei bemerkt, daß der Kondensator 78 auf ge- Messingstange mit einem Durchmesser von etwa laden wird, wenn eine hohe Spannung an die Klemme 25 9,5 mm. Der Innenleiter wurde durch mehrere Schei-72 angelegt wird. Wenn diese Ladung bewirkt, daß ben aus Polyäthylen unterstützt, wobei darauf gean der Funkenstrecke 82 eine Überspannung er- achtet wurde, daß die Unstetigkeiten des Widerstanscheint, wird die Funkenstrecke durchschlagen, so des möglichst klein gehalten wurden. Bei dieser Andaß die Spannung zu dem ersten Abschnitt 30 des Ordnung nach Fig. 3 hatte der Abschnitt 30 eine Mittelleiters 24 der Übertragungsleitung gelangt. Der 30 Länge von etwa 1320 mm, die Abschnitte 32, 34, 36 Widerstand 76 gewährleistet, daß die Ladung in den und 38 hatten jeweils eine Länge von etwa 150 mm, Abschnitt 82 exponentiell und nicht etwa schwingend und die Länge des Abschnitts 40 betrug etwa 255 mm. übergeführt wird, um eine im wesentlichen gleich- Der Widerstand 66 hatte einen Widerstandswert, der mäßige oder zügige Annäherung an die Ladespan- gleich dem Wellenwiderstand der Übertragungsleitung nung V sicherzustellen. 35 war und etwa 100 Ohm betrug. Kapazitätsuntertei-
Wenn die nächste Funkenstrecke 42 zusammen- lungssonden waren sowohl am vorderen als auch bricht, wird die rechteckige Wanderwelle in den Ab- am hinteren Ende eingebaut, um eine Messung der schnitt 32 der Übertragungsleitung übergeführt, wie Wellenform zu ermöglichen. Die Impulsladeschaltung es an Hand von Fig. 1 beschrieben wurde und wie 28 entsprach der Darstellung in Fig. 4. Der Wideres in Fig. 5A erneut dargestellt ist. Gemäß Fig. 5B 40 standswert des Widerstandes 74 betrug 1 Gigaohm, und 5 C entsteht eine erste Wellenfront 54 durch eine der Kondensator 78 hatte eine Kapazität von 900 Pico-Reflexion an der Funkenstrecke 44, so daß dann der farad, und der Widerstandswert des Widerstandes 76 Impuls 58 nach Fig. 5C entsteht. Fig. 5D und 5E betrug 2 Kiloohm. An die Klemme 72 wurde eine veranschaulichen die Entstehung des nächstfolgenden Spannung von 20 kV angelegt. Gemäß Fig.3 bil-Impulses 60, der an der Funkenstrecke 46 auftritt, 45 dete die Leitung 68 zusammen mit ihrem Außen-Zwar wandert die anf angliche Rechteckwelle in einer leiter einen koaxialen Dipolstrahler mit einer Ge-Richtung längs der Übertragungsleitung, doch pflan- samtlänge von etwa 305 mm. Ein einfacher Eckenzen sich die reflektierten Impulse 58 und 60 in der reflektor aus Aluminium war hinter dem Dipol angeentgegengesetzten Richtung fort. Fig. 5F und 5G ordnet, um jede etwa auftretende Strahlung zu veranschaulichen das nachfolgende Entstehen der 50 richten.
Impulse 62 und 64. Wenn jeder dieser Impulse nach- Die mit Hilfe der Kapazitätsteiler gemessene Welle
einander auf den großen Widerstand trifft, der z.B. zeigte die erwartete Form, d. h., sie hatte die Form durch den Dämpfungswiderstand 76 gebildet wird, eines Wellenzuges, bei dem Tg etwa gleich 0,6 Nanowerden diese Impulse erneut reflektiert, so daß sie Sekunden betrug. Die einzelnen Impulse des Wellensich in der gleichen Richtung wie die anfängliche 55 zuges waren durch Abstände von 1,0 Nanosekunden Rechteckwelle fortpflanzen, wobei sie jedoch der getrennt, was der Zweiwegelaufzeit längs der Ab-Rechteckwelle nacheilen. Dies ist in Fig. 5H, 51 schnitte zwischen den Funkenstrecken entsprach.Der und 5 J dargestellt. Man erkennt, daß jeder erzeugte Wellenzug wurde dann durch eine Frequenz von reflektierte Impuls die Dauer der anfänglichen recht- etwa 600 MHz mit einer Gesamtdauer von 6,4Nanoeckigen Wanderwelle um einen Betrag verkürzt, der 60 Sekunden beschrieben. Während des Betriebs wurin der beschriebenen Weise gleich der Dauer jedes den Impulsfolgefrequenzen von 20 Impulsen/sec erdieser reflektierten Impulse ist. Somit wird der an- zielt, wobei die Spitzenenergie innerhalb der Impulsfängliche rechteckige Gleichspannungsimpuls von reihe etwa 105 Watt betrug. Somit ermöglichte es das langer Dauer dazu benutzt, eine Reihe oder Serie von vorstehend beschriebene Versuchssystem, eine Imwandemden kleinen Rechteckwellen zu erzeugen, 65 pulsreihe oder einen Stoß zu erzeugen, der kürzer von denen jede durch eine Reflexion an der betref- war und eine höhere Energiemenge enthielt, als es fenden Funkenstrecke entsteht und von denen jede bis jetzt ohne Schwierigkeiten erreichbar ist. Da alle danach erneut reflektiert wird, so daß sie sich längs Funkenstrecken von dem Außenleiter der koaxialen
Leitung umschlossen sind, haben alle regellosen Wellen, die in den Funkenstrecken erzeugt werden, bestenfalls eine sehr geringe Energie, so daß sie nur eine geringe Dämpfung bewirken, und diese Wellen werden durch den Außenleiter gut abgeschirmt.
Unter Anwendung der vorstehend beschriebenen Betriebsbedingungen wurden mit dem erfindungsgemäßen System weitere Versuche durchgeführt, bei denen der Hochfrequenzstoß oder Impuls in der Form beobachtet wurde, in der er in der beschriebenen Weise von dem Dipol und dem Eckenreflektor abgestrahlt wurde. Es wurde ein Impuls bzw. Stoß von 600 MHz beobachtet, dessen Breite zwischen den der halben Energie entsprechenden Punkten etwa Nanosekunden betrug. Das erzeugte Signal war sehr stark (mehrere hundert V/m bei Laboratoriumsentfernungen), und die Amplitude und die Phase des Signals waren so gleichmäßig, daß eine Entfernungsmessung mit einem Auflösungsvermögen von erheblich weniger als 0,3 m möglich war.

Claims (9)

Patentansprüche:
1. Generator zur Erzeugung von Entladungsstößen, bestehend aus einer vorbestimmten An- zahl hochfrequenter Impulssignale mit hoher Impulsfolgefrequenz, dadurch gekennzeichnet, daß der Innenleiter (24) einer an eine Ladeschaltung (28) angeschalteten Übertragungsleitung (20) in mehrere durch dielektrische Spalte (42, 44, 46, 48, 50) distanzierte und elektrisch gekoppelte Abschnitte (30, 32, 34, 36, 38, 40) aufgeteilt ist, wobei die Anordnung und Abmessung derart getroffen ist, daß eine von der Ladeschaltung (28) gelieferte lange Rechteckwelle in einer ersten Richtung längs des Leiters wandert und jeder Spalt innerhalb einer vorbestimmten Zeitdauer auf das Eintreffen der Front der Welle an dem betreffenden Spalt anspricht und ein eine vorbestimmte Länge aufweisender Teil dieser Welle reflektiert wird, indem der Spalt diesem Teil einen großen Widerstand darbietet, und daß der verbleibende Teil der langen Rechteckwelle auf den nächsten Leiterabschnitt übertragen wird, indem der betreffende Spalt so dimensioniert ist, daß er diesem verbleibenden Teil nur einen kleinen Widerstand darbietet.
2. Generator nach Anspruch 1, dadurch gekennzeichnet, daß die als Funkenstrecken wirkenden Spalte (42 ... 50) mit einem sich selbsttätig ergänzenden Dielektrikum ausgefüllt sind.
3. Generator nach den Ansprüchen 1 und 2, dadurch gekennzeichnet, daß sämtliche Spalte (42 ... 50) die gleiche Durchbruchsverzögerungszeit gegenüber der eine vorbestimmte Spannung aufweisenden Rechteckwelle besitzen.
4. Generator nach Anspruch 1, dadurch gekennzeichnet, daß die aufeinanderfolgenden Leiterabschnitte (30 ... 40) bezüglich ihres Widerstandes aufeinander abgestimmt sind.
- 5. Generator nach Anspruch 1, dadurch gekennzeichnet, daß die Übertragungsleitung (20) als Koaxialleitung ausgeführt ist, deren Außenleiter (22) über Übergangswiderstände in der Größenordnung von 1 Megohm mit den Abschnitten (30 ... 40) des Irmenleiters verbunden ist.
6. Generator nach den Ansprüchen 1 bis 5, dadurch gekennzeichnet, daß die Ladeschaltung einen Leitungsabschnitt aufweist, dessen eines Ende (80) von dem Ende des ersten Innenleiterabschnitts (30) durch eine Funkenstrecke (82) getrennt ist.
7. Generator nach Anspruch 1, dadurch gekennzeichnet, daß am Einspeiseende der Übertragungsleitung (20) quer zu dieser eine Koaxialleitung angeschlossen ist, deren Innenleiter (68) durch eine Ausnehmung (70) des Außenleiters mit dem Innenleiterabschnitt (30) verbunden ist, um der Übertragungsleitung (20) den reflektierten Teil der Welle entnehmen zu können.
8. Generator nach den Ansprüchen 1 bis 7, dadurch gekennzeichnet, daß das dem Einspeiseende gegenüberliegende Ende der Übertragungsleitung (20) mit dem Wellenwiderstand (66) (wenn keine Reflexion erwünscht ist) bzw. mit einem hiervon abweichenden Widerstand abgeschlossen ist (wenn eine Reflexion erzielt werden soll).
9. Generator nach Anspruch 1, dadurch gekennzeichnet, daß der von der Einspeisestelle am weitesten entfernte Innenleiterabschnitt (40) mit seinem vorderen verdickten Ende (84) in einen Rechteckhohlleiter (88) einsteht und im Abstand von λ/4 vom gekrümmten Ende (86) des Wellenleiters (88) angeordnet ist.
Hierzu 1 Blatt Zeichnungen Copy
DE19671591225 1966-10-24 1967-10-24 Generator zur erzeugung von entladungsstoessen hochfre quenter impulssignale mit hoher impulsfolgefrequenz Withdrawn DE1591225B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US58891866A 1966-10-24 1966-10-24

Publications (1)

Publication Number Publication Date
DE1591225B1 true DE1591225B1 (de) 1971-09-30

Family

ID=24355850

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19671591225 Withdrawn DE1591225B1 (de) 1966-10-24 1967-10-24 Generator zur erzeugung von entladungsstoessen hochfre quenter impulssignale mit hoher impulsfolgefrequenz

Country Status (3)

Country Link
US (1) US3484619A (de)
DE (1) DE1591225B1 (de)
GB (1) GB1132183A (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1473866A1 (de) * 2003-04-29 2004-11-03 Diehl Munitionssysteme GmbH & Co. KG Mikrowellengenerator und Verfahren zum Abstrahlen von Mikrowellenenergie
DE102007044821A1 (de) * 2007-09-20 2009-06-18 Diehl Bgt Defence Gmbh & Co. Kg Mikrowellengenerator

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3564277A (en) * 1969-08-25 1971-02-16 Sperry Rand Corp Coaxial line reed switch fast rise signal generator with attenuation means forming outer section of the line
US3748528A (en) * 1972-03-23 1973-07-24 Ikor Inc Microwave generator
US4003007A (en) * 1975-11-13 1977-01-11 The United States Of America As Represented By The Secretary Of The Army High power pulse compression techniques
US4063132A (en) * 1976-08-04 1977-12-13 Gte Laboratories Inc. DC powered microwave discharge in an electrodeless light source
US4104557A (en) * 1976-11-15 1978-08-01 Gte Laboratories Incorporated Liquid dielectric radio frequency pulse generators
US4104558A (en) * 1976-11-15 1978-08-01 Gte Laboratories Incorporated Tunable radio frequency pulse generators
US4104556A (en) * 1976-11-15 1978-08-01 Gte Laboratories Incorporated High energy radio frequency pulse generators
US4176295A (en) * 1978-06-15 1979-11-27 Westinghouse Electric Corp. High peak power microwave generator using light activated switches
US4459511A (en) * 1981-11-12 1984-07-10 Igor Alexeff Maser
DE3216285C2 (de) * 1982-04-26 1986-07-24 Hahn-Meitner-Institut für Kernforschung Berlin GmbH, 1000 Berlin Impulsgenerator mit einer Gleichspannungsquelle
US4477746A (en) * 1982-05-19 1984-10-16 The United States Of America As Represented By The United States Department Of Energy Microwave-triggered laser switch
US4719429A (en) * 1986-04-14 1988-01-12 Ga Technologies Inc. Transmission line microwave generator
US5109203A (en) * 1986-04-24 1992-04-28 Energy Compression Research Corp. Generated and method for generating microwaves
US5185586A (en) * 1986-04-24 1993-02-09 Energy Compression Research Corp. Method and apparatus for digital synthesis of microwaves
DE3743756A1 (de) * 1987-06-25 1989-01-05 Beerwald Hans Triggerbare funkenstrecke
US4875022A (en) * 1988-03-28 1989-10-17 The United States Of America As Represented By The Secretary Of The Army High power microwave expander for producing fast rise time pulses
US5118969A (en) * 1990-02-09 1992-06-02 General Atomics Multiple pulse generator using saturable inductor
US5452222A (en) * 1992-08-05 1995-09-19 Ensco, Inc. Fast-risetime magnetically coupled current injector and methods for using same
US5650670A (en) * 1995-07-27 1997-07-22 The United States Of America As Represented By The Secretary Of The Air Force Induction charge microwave pulse generator having a split ground plane
US8207634B2 (en) * 2009-01-30 2012-06-26 Bae Systems Information And Electronic Systems Integration Inc. Compact multi-cycle high power microwave generator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE889617C (de) * 1950-05-13 1953-09-10 Gasaccumulator Svenska Ab Fuer Radarzwecke bestimmte Reflektoranlage
DE1098055B (de) * 1958-09-25 1961-01-26 Iaweseria Flugzeugbau G M B H Verfahren zur zeitlichen Verkuerzung der Video-Impulse im Empfangsteil eines Ortungsgeraetes, z.B. eines Radargeraetes

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2420302A (en) * 1943-08-19 1947-05-13 Bell Telephone Labor Inc Impulse generator
US2792508A (en) * 1953-08-24 1957-05-14 Gen Electric Pulse generator
US2769909A (en) * 1954-02-03 1956-11-06 Stoddart Aircraft Radio Co Inc Pulse generators
US2932802A (en) * 1956-12-28 1960-04-12 Empire Devices Inc Coaxial line type impulse generator with centering means for coaxial conductor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE889617C (de) * 1950-05-13 1953-09-10 Gasaccumulator Svenska Ab Fuer Radarzwecke bestimmte Reflektoranlage
DE1098055B (de) * 1958-09-25 1961-01-26 Iaweseria Flugzeugbau G M B H Verfahren zur zeitlichen Verkuerzung der Video-Impulse im Empfangsteil eines Ortungsgeraetes, z.B. eines Radargeraetes

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1473866A1 (de) * 2003-04-29 2004-11-03 Diehl Munitionssysteme GmbH & Co. KG Mikrowellengenerator und Verfahren zum Abstrahlen von Mikrowellenenergie
DE102007044821A1 (de) * 2007-09-20 2009-06-18 Diehl Bgt Defence Gmbh & Co. Kg Mikrowellengenerator
DE102007044821B4 (de) * 2007-09-20 2009-07-23 Diehl Bgt Defence Gmbh & Co. Kg Mikrowellengenerator
US8026772B2 (en) 2007-09-20 2011-09-27 Diehl Bgt Defence Gmbh & Co. Kg Microwave generator having at least two spark gaps connected in series

Also Published As

Publication number Publication date
US3484619A (en) 1969-12-16
GB1132183A (en) 1968-10-30

Similar Documents

Publication Publication Date Title
DE1591225B1 (de) Generator zur erzeugung von entladungsstoessen hochfre quenter impulssignale mit hoher impulsfolgefrequenz
DE2437156C2 (de) Verfahren und Impulsgeneratorschaltung zur Erzeugung von Subnanosekunden-Impulsen
EP1686684B1 (de) Mikrowellengenerator
EP1600748B1 (de) Radar-Füllstandsmessgerät
EP2144363A1 (de) Mikrowellengenerator
DE10319475B4 (de) Mikrowellengenerator und Verfahren zum Abstrahlen von Mikrowellenenergie
DE2118938C3 (de) Impulsgenerator
DE2924341A1 (de) Mikrowellengenerator
DE2442693B2 (de) Hochfrequenzimpulsgenerator
DE1020070B (de) Einrichtung mit einem Hohlleiter mit rechteckigem Querschnitt zur UEbertragung senkrecht zueinander polarisierter Wellen
DE2141832A1 (de) Vorrichtung zur Erzeugung von Hochfrequenzimpulsen mit kurzer Dauer
DE2503850C2 (de) Aus mehreren Einzelantennen bestehende Hohlleiterantenne
DE1591225C (de) Generator zur Erzeugung von Entladungs stoßen hochfrequenter Impulssignale mit ho her Impulsfolgefrequenz
DE10352157A1 (de) Hochfrequenzsignale und Mikrowellensignale
DE3130487A1 (de) Reflexionsarme, geschirmte, metallische simulationskammer fuer elektromagnetische strahlung
EP2782244A1 (de) Vorrichtung zur Erzeugung von Mikrowellen
CH658961A5 (de) Generator zum erzeugen von hochspannungs-rechteckimpulsen.
DE4401350C1 (de) Mikrowellen-Impulsgenerator mit Ladungsspeicherdiode
DE2627783A1 (de) Filtersystem zum aussondern eines bestimmten frequenzbandes, insbesondere fuer radaranlagen
DE1263878B (de) Multipactorschalter
DE947988C (de) Auskopplungstransformator fuer Magnetronsender
DE2629979C2 (de) Hochspannungs-Hochstrompulser mit stufenweise variabler Impedanz im Nanosekundenbereich
DE1059063B (de) Hohlleiter fuer die UEbertragung von elektromagnetischen Rohrwellen mit transversalem elektrischem Zirkularfeld, insbesondere von H-Wellen
DE2013548C3 (de) Impulsgenerator
DE2108531A1 (de) Speiseschaltung

Legal Events

Date Code Title Description
E77 Valid patent as to the heymanns-index 1977
8339 Ceased/non-payment of the annual fee