DE1533607B2 - Erdbohrverfahren und Vorrichtung zur Durchführung dieses Verfahrens - Google Patents

Erdbohrverfahren und Vorrichtung zur Durchführung dieses Verfahrens

Info

Publication number
DE1533607B2
DE1533607B2 DE1533607A DE1533607A DE1533607B2 DE 1533607 B2 DE1533607 B2 DE 1533607B2 DE 1533607 A DE1533607 A DE 1533607A DE 1533607 A DE1533607 A DE 1533607A DE 1533607 B2 DE1533607 B2 DE 1533607B2
Authority
DE
Germany
Prior art keywords
drill bit
pressure
borehole
cavity
drilling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE1533607A
Other languages
English (en)
Other versions
DE1533607C3 (de
DE1533607A1 (de
Inventor
Auf Nichtnennung Antrag
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hughes Tool Co
Original Assignee
Hughes Tool Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hughes Tool Co filed Critical Hughes Tool Co
Publication of DE1533607A1 publication Critical patent/DE1533607A1/de
Publication of DE1533607B2 publication Critical patent/DE1533607B2/de
Application granted granted Critical
Publication of DE1533607C3 publication Critical patent/DE1533607C3/de
Expired legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/18Drilling by liquid or gas jets, with or without entrained pellets
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B21/00Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor
    • E21B21/08Controlling or monitoring pressure or flow of drilling fluid, e.g. automatic filling of boreholes, automatic control of bottom pressure
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/24Drilling using vibrating or oscillating means, e.g. out-of-balance masses

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Mechanical Engineering (AREA)
  • Earth Drilling (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Durchführung von Erdbohrungen unter Verwendung von periodischen Druckänderungen in der Spülflüssigkeit, bei dem eine am unteren Ende des Bohrstranges sitzende Bohrkrone zur Ausübung einer auf . die, zu durchbohrende Erdformation an der Bohrlochsohle
3 4
wirkenden Kraft belastet wird und bei dem von der gehend weiterzubilden, daß sich in der Spülflüssig-Erdoberfläche aus der Bohrstrang mit der Bohrkrone. keit an der Bohrlochsohle mit Hilfe eines direkt anin Drehung versetzt und Spülflüssigkeit zwischen der gekoppelten Schwingungsgenerators erzeugte Druck-Bohrlochsohle und der Erdoberfläche umgewälzt änderungen zur Erhöhung der Vortriebsgeschwindigwird und bei dem die Druckänderungen im Bereich 5 keit bei dem üblichen Rotary-Verfahren ausnutzen der Bohrkrone erzeugt werden. Die Erfindung betrifft lassen, da solche Druckänderungen verhältnismäßig außerdem eine Vorrichtung zur Durchführung eines große Amplituden besitzen und in Amplitude und solchen Verfahrens. Frequenz optimal steuerbar sind.
Bisher war man bei Vibrationsbohrgeräten yorwie-. Erfindungsgemäß ist diese Aufgabe dadurch gegendbemüht,; im Bohrstrang oder in der Bohrkrone io .löst, daß der Druck der die Bohrkrone umgebenden selbst elastische Schwingungen zu erzeugen.. Bei An-. Spülflüssigkeit periodischen Schwankungen um seinen Wendung dieser Geräte treten als Nebenwirkung. Durchschnittswert unterworfen wird, wobei der Bohr-Druckänderungen in.der Bohrflüssigkeit auf, die sich strang von den die Druckschwankungen erzeugenden mit Bezug . auf;:; die Bohr-Vortriebsgeschwindigkeit Vorrichtungen schwingungsmäßig isoliert bleibt, nachteilig auswirken.. 15 Auf Grund der direkt in der Spülflüssigkeit inner-
Aus der ÜSA.-Patentschrift. 25 54 005 ist es be- halb des die Bohrkrone umgebenden Hohlraums erkannt, in.einer elastischen. Stange eine stehende Welle zeugten Druckänderungen wird die Bohrkrone bei ; zu erzeugen, die aus einer oder mehreren Schwer- den periodischen Druckminderungen und bei dem stangen oder aus dem gesamten Bohrstrang bestehen. sich daraus ergebenden Saugeffekt kraftvoll in die Dadurch schwingt die am unteren Ende der elasti- 20 Bohrlochsohle hineingezogen. Die Minderung des sehen Stange sitzende Bohrkrone in. Längsrichtung unterhalb der Bohrkrone herrschenden Flüssigkeitsmit und schlägt auf die Bohrlochsohle. Wenn die auf : druckes verringert die auf den Bohrstrang nach oben die Bohrlochsohle ausgeübte Bohrkraft ihren Maxi- gerichtete Kraft, so daß ein größerer'Gewichtsanteil maiwert erreicht, befindet sich wegen der Abwärts- auf die Bohrkrone bzw. auf die Bohrlochsohle wirkt, bewegung der Bohrkrone der dort herrschende Druck 25 Darüber hinaus wird bei der periodischen Druckebenfalls auf einem Maximalwert, und.zwar insbe- minderung an der Bohrlochsohle auch die Geschwinsondere dann, wenn: die. üblichen inkompressiblen digkeit der aus der Bohrkrone austretenden Spül-' Bohrflüssigkeiten verwendet werden. Bei der Ab- flüssigkeit periodisch erhöht. Somit entstehen gleichwärtsbewegung der Bohrkrone in Richtung auf das, zeitig periodische Druckminderungen an der Bohrnoch nicht zerschnittene Gestein verdrängt sie die 30 lochsohle, periodische Erhöhungen der Bohrkronenunter ihr befindliche Bohrflüssigkeit und erzeugt da- last sowie periodische Erhöhungen der Strahlausbei eine Druckänderung,.die ihren Höchstwert gleich- trittsgeschwindigkeit. Obwohl während anderer Bezeitig mit der auftretenden höchsten Kraft der nach reiche einer vollständigen Druckwechselperiode unten schlagenden Bohrkrone erreicht.; gleichzeitig : periodische Druckerhöhungen an der
Bei diesen und ähnlichen Geräten ergibt sich der 35 Bohrlochsohle, und periodische Verringerungen der Nachteil, daß eine Erhöhung des Druckes, an der .·. Bohrkronenlast sowie der Strahlaustrittsgeschwindig-Bohrlochsohle.'; zu - einer Verringerung der , Bohr- .' keit auftreten, ergibt sich dennoch auf überraschende geschwindigkeit führt. Das beabsichtigte Ergebnis der Weise eine wesentliche Erhöhung der Bohrvortriebs-Schlagwirkurig der Bohrkrone geht mindestens teil-: geschwindigkeit..
weise wegen der gleichzeitig auf tretenden Druck-: 40 Vorzugsweise liegt die Frequenz der Druckändeerhöhungen-an der Bohrlochsohle verloren, da diese hingen zwischen 30 und 1000 Hz. Außerdem kann Druckerhöhungen mit den ausgeübten Schlagkräften die Amplitude der Druckänderungen etwa gleich dem in Phase liegen. Dies bedeutet, daß bei Abwärts- an der Bohrlochsohle herrschenden hydrostatischen bewegung der Bohrkrone zum Angriff, einer, neuen. ·: Druck sein.
Formation der Druck an. der Bohrlochsohle plötzlich 45 Bei der Ausführung des Verfahrens kann es ferner ansteigt und den Vortrieb behindert. vorteilhaft sein, wenn die Druckänderungen durch
Aus der. USA.-Patentschrift 31 11 931: ist ein im., einen von der durch den Bohrstrang abwärts strösonaren Bereich mit Flüssigkeit arbeitender. Sch win-, menden Flüssigkeit angetriebenen Schwingungerreger· ^ gungserzeuger bekannt, der innerhalb, eines Bohr- ν erzeugt werden und ein sonares Ankopplungsgerät stranges angeordnet ist und bei dem die durch den 50 mit der durch den Erreger strömenden sowie mit der Bohrstrang, nach unten geführte Spülflüssigkeit aus* die Bohrkrone umgebenden Spülflüssigkeit in Vergenutzt wirdj um auf einen das Förderrohr, umgeben- bindung steht.
den rohrförmigen Resonatorkörper Schwingungen i;. ,Eine Vorrichtung zur Erzeugung und Übertragung auszuüben. Diese Schwingungen werden dann als,, elastischer Schwingungen auf eine im Bereich einer Schläge direkt auf die Bohrkrone übertragen. 55 Bohrkrone befindliche Spülflüssigkeit bei Erdbohrun-
Weiterhin ist es aus,, der.:,,.: USA.-Patentschrift i gen ;zur Durchführung des vorbeschriebenen Ver-32 16 514 bekannt, den durch die Spülflüssigkeit auf - fahrens ist erfindungsgemäß gekennzeichnet durch die Formation im Bereich der Bohrkrone ausgeübten ; einen :an einem Bohrstrangglied befestigten Schwinhydrostatischen Druck periodisch zu verringern, um gungserreger für elastische Schwingungen und durch dadurch auf die Bohrkrone die Wirkung eines Was- 60 ein ebenfalls an einem Bohrstrangglied befestigbares serhammers auszuüben. Zu diesem Zweck wird die;- und an den Schwingungserreger angeschlossenes so-Spüiflüssigkeitsströmung durch : eine -Ventileinrich-: nares Ankopplungsgerät, das mit der; Spülflüssigkeit tung im Bereich der Bohrkrone periodisch unter- in dem Hohlraum schwingungsmäßig gekoppelt und brachen, so daß^ im Augenblick der Unterbrechung gegen den Bohrstrang schwingungsmäßig isoliert ist. der volle Druck der über der Bohrkrone lastenden: 65 Es wird somit eine Kombination von Schwingungs-Spülflüssigkeitssäule wirkt. . erreger und Ankopplungsbauteilen vorgeschlagen, die
Der Erfindung liegt die Aufgabe zugrunde, ein , zur Erhöhung der Vortriebsgeschwindigkeit beim Verfahren der eingangs bezeichneten Art dahin- Rotary-Bohrverfahren zur Anwendung kommt und
dahingehend zusammenwirkt, daß sonare Schwingungen erzeugt werden die man der Bohrflüssigkeit innerhalb des die Bohrkrone umgebenden Hohlraums derart ankoppelt, daß Verluste an Schwingungsenergie durch den Bohrstrang hindurch oder durch die Bohrflüssigkeit innerhalb des Ringraumes zwischen Bohrlochwandung und Bohrstrang vermieden werden.
Die Erfindung ist nachfolgend an Hand von in den Zeichnungen dargestellten
näher erläutert. Es zeigt
kraft W die Bohrkrone 11 gegen die Bohrlochsohle 19 drückt. Elastische Schwingungen werden direkt in dem Bohrschlamm (d. h. in dem die Bohrkrone umgebenden Hohlraum) durch Einrichtungen erzeugt, die hier schematisch als hin- und hergehender Kolben 21 angedeutet wird.
Das Prinzip bekannter Verfahren zur Erzeugung von Lastschwingungen ist in Fig. 1 gezeigt, wo eine Bohrkrone 11 durch den Schlag eines fallenden Ham-
Ausführungsbeispielen io mers23 wechselnd belastet wird. Die Schlagkraft FP
in Verbindung mit der Schwerkraft W lockert und
F i g. 1 einen Schnitt durch ein bekanntes Gerät löst unter der Wirkung der Zähne 15 das Bohrgut 17 zur Erzeugung von Schwingungen an der Bohrkrone, auf der Bohrlochsohle 19.
Fig. 1-A bis 1-D in graphischen Schaubildern die Bei der Erfindung werden nun elastische Schwin-
Bohrgeschwindigkeit über veränderliche Bohrkronen- 15 gungen in der die Bohrkrone umgebenden Bohrflüslast, über dem Druckunterschied an der Bohrloch- sigkeit erzeugt, während bei den bekannten Verfahsohle, über dem Flüssigkeitsdruck bzw. über der ren der Bohrstrang oder die Bohrkrone direkt zu Strahlaustrittsgeschwindigkeit, elastischen Schwingungen angeregt werden. Als Folge
F i g. 2 schematisch das Erfindungsprinzip, von Schwingungen der Bohrkrone ergeben sich Än-
F i g. 2-A in drei Kurvenzügen Veränderungen des 20 derungen des auf die Bohrlochsohle wirkenden Druckes an der Bohrlochsohle, der Bohrkronenlast Druckes, die sich in Phase mit Schwingungen der
Bohrkronenbelastung befinden. Der Druck an der Bohrlochsohle steigt also gerade zu dem Zeitpunkt an, wenn die Bohrkrone nach unten schlägt, so daß deren Abwärtsbewegung behindert ist.
Die, Nachteile der bekannten Verfahren werden besonders deutlich bei Betrachtung von vier der wesentlichen Einflußgrößen für den Vortrieb eines Bohrmeißels. Fig. 1-A zeigt beispielsweise die Besieh
ändernder Bohrmeißellast L. Aus der Kurve geht hervor, daß die Vortriebsgeschwindigkeit linear mit dem auf der Bohrkrone lastenden Gewicht ansteigt.
Fig. 1-B zeigt unter der Annahme von durchläs-
gerätes und zugehörender Ausrüstungsgegenstände 35 sigem Felsmaterial die Wechselbeziehung von Vorzur Ausführung des erfindungsgemäßen Verfahrens, triebs- oder Bohrgeschwindigkeit und dem Druck-
und der Strahlgeschwindigkeit unter dem Einfluß eines Schwingungsgenerators, der mit der Bohrflüssigkeit in dem die Bohrkone umgebenden Hohlraum direkt gekoppelt ist,
Fig. 3 ein Schaubild, in dem die erfindungsgemäß verbesserten Bohrgeschwindigkeiten in Sandstein und Marmor denjenigen gegenübergestellt sind, die sich mit dem üblichen Rotary-Verfahren erreichen lassen,
F i g. 4 eine übliche Rotary-Bohranlage in Verbin- 30 einflussung der Vortriebsgeschwindigkeit bei
dung mit einer bevorzugten Unterbringung des
Schwingungsgenerators nach der Erfindung,
F i g. 5-A und 5-B Längsschnitt einer Ausführungsform des Schwingungsgenerators eines Kopplungs-
Fig. 6 eine perspektivische Ansicht der in F i g. 5-A gezeigten Baugruppe, wobei der obere Generatorteil der Deutlichkeit halber aus seiner normalen Betriebslage entsprechend hoben dargestellt ist,
F i g. 7 eine Ansicht eines Oszillatorabschnittes, der Bestandteil des Gerätes nach Fig. 5-A und 6 ist,
F i g. 8 einen Querschnitt längs der Linie VIII-VIII inFig. 6,
F i g. 9 eine perspektivische Ansicht einer anderen Ausführungsform eines Kopplungsgerätes, dessen Wandung teilweise gebrochen gezeigt ist, Fig. 10 einen hydro-akustischen Übertrager nach
differential (P- P1) zwischen der Bohrlochflüssigkeit und der Flüssigkeit innerhalb der miteinander verbundenen Poren der Fonnation. Wie aus der Kurve F i g. 5-A ange- 40 hervorgeht, nimmt die Bohrgeschwindigkeit mit steigendem Druckdifferential ab.
Diese Erscheinung ist in erster Linie darauf zurückzuführen, daß die Bohrlochsohle ungenügend gereinigt wird. Eine Theorie zur Erklärung der Abnähme der Bohrgeschwindigkeit in durchlässigem Felsmaterial bei ansteigendem Druckdifferential (P-P1) liefert der Aufsatz »Laboratory Study .of Effect of Overburden, Formation and Mud Column Pressures on Drilling Rate of Permeable Formations«
Art eines zur Ausführung der Erfindung dienenden 5° in Trans., AIME (1959) 217.9. Danach setzt sich an Schwingungsgenerators, ' der Wand und der Sohle des Bohrloches eine Schicht
Fig. 11 und 12 Schnitte längs der SchnittlinieXI- von Schlammpartikeln ab, die Bohrgutstücke ein-
fängt, wobei die Schlammschicht vergleichbar ist mit einem Schlickerguß in einer porösen Form, von
XI bzw. XII-XII in F i g. 10,
Fig. 13 einen vergrößerten Teilschnitt des unteren
Endes des in F i g. 10 gezeigten Ventils,
Fig. 14 eine weitere Ausführungsform eines Schwingungsgenerators und
Fig. 15 einen Querschnitt längs· der Schnittlinie XV-XV in F ig. 14.
der das Wasser absorbiert wird. In F i g. 1 ist die Schlammschicht 25 angedeutet, die das gesamte Bohrloch einschließlich der Bohrlochsohle 19 abdeckt. Von den Zähnen 15 werden Mineralstücke 17 aus der Formation herausgeschnitten und normaler-
Bei dem schematisch in Fig. 2 gezeigten Verfah- 60 weise von der zirkulierenden Bohrflüssigkeit an die ren nach der Erfindung tritt nach dem zentral ange- Oberfläche gespült. Wenn das Druckdifferential groß ordneten Kanal 13 einer Bohrkrone 11 eine Bohrflüssigkeitsströmung V aus. Dieser Bohrschlamm
unterstützt die
aus.
Zähne 15 beim
Herausfördern des
genug ist, wird der Filterkuchen 25 dick und so fest zusammengepreßt j daß zusätzliche Kräfte notwendig sind, um die Mineralstücke 17 von der Bohrioch-Bohrgutes 17 aus der Bohrlochsohle 19. Die Bohr- 65 sohle zu lockern. Da die Bohrkrone 11 die Mineralkrone 11 wird in üblicher Weise in Drehbewegung stücke 17 zermahlt, anstatt in die noch nicht erschlossene Formation weiter einzudringen, wird die Bohrgeschwindigkeit erheblich verringert.
gesetzt, wobei sie unter der Last der nicht dargestellten Bohrstrangglieder steht, so daß deren Schwer-
7 8
Fig. 1-C zeigt den Einfluß einer veränderlichen Druck an der Bohrlochsohle unter seinem Durch-Flüssigkeitsdrucksäule auf die Vortriebsgeschwindig- schnittswert, der am Filterkuchen bestehende Druckkeit bei undurchlässigem Felsmaterial. Die Geschwin- unterschied ist stark verringert, die Strahlaustrittsdigkeit nimmt mit steigendem Druck an der Bohr- geschwindigkeit (Kurvenzug 35) ist erheblich erhöht lochsohle ab, und zwar hauptsächlich auf Grund von 5 und die Last auf der Bohrkrone liegt entsprechend zwei Einflußgrößen: (1) als Folge der größeren Kraft Kurvenzug 31 ebenfalls beträchtlich über dem Durchan den Zähnen der Bohrkrone, die erforderlich ist, schnittswert.
um das gleiche Felsvolumen bei einem größeren All diese Einflußgrößen wirken zusammen, um die Druck herauszulösen und (2) als Folge einer unzu- Bohrgeschwindigkeit stark während der Zeit zu erreichenden Reinigung der Bohrlochsohle. io höhen, in der sich der Flüssigkeitsdruck unter seinem
Bei den durch eine hohe Flüssigkeitssäule erzeug- Durchschnittswert befindet. Bei der Durchführung ten Drücken unterliegt das Gestein an der Bohrloch- von Ölbohrungen ist es üblich, den Druck im Bohrsohle einer hohen hydrostatischen Druckbeanspru- loch um 35 bis 70 kg/cm2 größer zu halten, als er chung. Obwohl Felsmaterial eine niedrige Zugspan- innerhalb der Poren der gebohrten Formation benungsfestigkeit besitzt, ist durch das Ansteigen der 15 steht. Wenn die Amplitude Pe der im Kurvenzug 27 hydrostatischen Last die Möglichkeit stark verringert, (Fig. 2-A) gezeigten Druckänderung etwa 70 kg/cm2 mit den Bohrkronenzähnen einen Spannungsbruch beträgt, so liegt, wenn sich der Druck P an seinem im Gestein zu erzeugen. Unter diesen Umständen Minimalwert Pmin befindet, das Druckdifferential sind größere Zahnbeanspruchungen notwendig, um P-P/am Filterkuchen entweder bei Null oder einem das gleiche Felsvolumen zu beseitigen wie bei niedri- 20 negativen Wert. Offensichtlich führen diese Verhältgeren Drücken. nisse zu einer beträchtlichen Erhöhung der augen-
Die oben im Zusammenhang mit durchlässigem blicklichen Bohrgeschwindigkeit. Dies gilt auch desGestein erwähnte unzureichende Reinigung bleibt halb, weil bei allen üblichen erfindungsgemäß erzielauch im Fall von undurchlässigem Gestein bestehen, baren Frequenzen die Zeitdauer für das Entstehen da die Bildung von Mahl- oder Bruchgut durch die 25 eines Bruches im Gestein unterhalb der Bohrkronen-Bohrkrone ebenfalls zu einer gewissen Durchlässig- verzahnung oder für das Wegspülen eines Felsbrokkeit führt und die gleichen Kräfte vorhanden sind, kens vom Bohrlochboden durch den Düsenstrahl die das Bruchgut unten halten und am Ausspülen relativ kurz ist im Vergleich mit der Zeitdauer der hindern. negativen Halbwelle der Flüssigkeitsdruckänderung.
Fig. 1-D zeigt den Einfluß veränderlicher Strahl- 30 Darüber hinaus ist die Eingriffszeit der Bohrkrone geschwindigkeit der aus den Düsen der Bohrkrone mit dem Bohrlochboden extrem lang im Vergleich austretenden Bohrflüssigkeit auf die Vortriebs- mit der Zeitdauer des Entstehens eines Felsbruches geschwindigkeit. Die bei zunehmender Strahl- und auch um ein Mehrfaches langer als die Zeitdauer geschwindigkeit erhöhte Vortriebsgeschwindigkeit ist der Druckänderungsperiode in der Bohrflüssigkeitseine Folge der verbesserten Reinigung der Bohrloch- 35 säule. Jedesmal wenn ein Zahn der Bohrkrone den sohle. Wegen der höheren Strahlgeschwindigkeit kann Bohrlochboden berührt, laufen mehrere Druckändedie Flüssigkeit den Filterkuchen leichter durchdrin- rungsperioden der Flüssigkeitssäule ab, so daß sich gen und die am Boden liegenden Bruchstücke besser mehrere günstige Gelegenheiten für das Entstehen wegspülen. eines Felsbruches ergeben.
Die Erfindung macht Gebrauch von der Erkennt- 40 Befindet sich der Druck der Flüssigkeitssäule auf nis, daß periodische Änderungen des Druckes der seinem Minimalwert Pmin, so sinken die auf das Flüssigkeitssäule bzw. Schwingungen um den Durch- untere Ende der Bohrkrone wirkenden hydraulischen schnittswert die Vortriebsgeschwindigkeit beträcht- Kräfte unter den Durchschnittswert ab, so daß die Hch erhöhen können. F i g. 2-A zeigt in dem Kurven- durch Bohrkrone und Bohrstrang auf die Formation zug 27 sinusförmige Änderungen des Bohrflüssig- 45 wirkende Last ansteigt. Zur gleichen Zeit wird der keitsdruckes P an der Bohrlochsohle. Die unterbro- hydraulische Druckabfall an den Düsen der Bohrchene waagerechte Linie 29 zeigt den durchschnitt- krone erhöht, was zu einer Erhöhung der Strahlauslichen Druck der Flüssigkeitsäule sowie das Druck- trittsgeschwindigkeit zu der Zeit führt, wo das Druck-Zeit-Verhältnis bei Fehlen der erfindungsgemäßen differential P-Pi gleich Null oder negativ ist. Zu Wirkungen. Der Kurvenzug 31 zeigt die resultieren- 50 diesen Zeitpunkten können der Filterkuchen von der den Änderungen der Bohrkronenbelastung 11, die Flüssigkeitsströmung leicht durchdrungen und die ebenfalls um einen durch die waagerechte Linie 33 Bruchstücke weggespült werden,
gegebenen Mittelwert pendelt. Der Kurvenzug 35 -■ Diese Ausführungen machen klar, daß sich bei zeigt die periodischen Änderungen der Strahlaus- einem Minimalwert des Flüssigkeitsdruckes das trittsgeschwindigkeit bezüglich eines durch die waage- 55 Druckdifferential P — Pf auf einem Minimalwert, die rechte Linie 37 angegebenen Mittelwerts. Dabei ist von der Bohrkrone auf die Formation ausgeübte zu beachten, daß der sinusförmige Kurvenweg 35 Kraft auf einem Maximalwert und die Strahlungseine Phasenverschiebung um 180° bezüglich der austrittsgeschwindigkeit ebenfalls auf einem Maximalperiodischen Änderungen der Flüssigkeitsdrucksäule wert befinden. Sämtliche Einflußgrößen, die in der (Kurvenzug 27) jOdoch die gleiche Phasenlage wie 60 richtigen Phasenbeziehung zusammenarbeiten, fühdie periodischen Änderungen der Bohrkronenbela- ren in Kombination mit der Eingriffszeit der Bohrstung (Kurvenzug 31) aufweist. kronenverzahnung, mit der Größe der Druckände-
Zum Verständnis, wie eine Änderung des Druckes rungsperiode, mit der Zeitdauer für das Wegspülen
der Flüssigkeitssäule zu einer Erhöhung der Bohr- von Felsbruchmaterial sowie für das Auftreten eines
geschwindigkeit beitragen kann, sei der Zustand der 65 Felsbruches zu einer beträchtlichen Erhöhung der
Bohrlochsohle betrachtet, wenn sich der Druck der Bohrgeschwindigkeit. Überraschenderweise werden
Flüssigkeitssäule auf seinem Kleinstwert Pmin (Fig. die während des Durchlaufs negativer hydrostatischer 2-A) befindet. Zu diesem Zeitpunkt befinden sich der Druckwerte (Pmi„) bewirkten Erhöhungen der Bohr-
geschwindigkeit bei Durchlaufen positiver Druckwerte bis zum Maximaldruck Pmax. Die sich einstellende Bohrgeschwindigkeit entspricht etwa einem Wert, der sich erreichen ließe, wenn der Druck an der Bohrlochsohle bleibend auf dem Wert entsprechend Pmin in F i g. 2 gehalten würde.
Einzelne Beispiele für die Erhöhung der Bohrgeschwindigkeit durch das Verfahren nach der Erfindung gegenüber dem bekannten Rotary-Bohrverfahren sind in F i g. 3 angegeben. Die schwarzen Säulen 39 bis 47 beziehen sich auf mit bekannten Rotary-Bohrkronen erreichte Bohrgeschwindigkeiten, bei denen keine erzwungenen Schwingungen direkt der Schlammsäule aufgedrückt werden, ohne daß sie zunächst den Bohrstrang und die Bohrkrone durchlaufen haben. Die weißen Säulen 49 bis 57 zeigen die erheblich verbesserten Eindringgeschwindigkeiten, die erfindungsgemäß sich mit den gleichen Bohrkronen unter gleichen Bedingungen erzielen lassen. Der einzige Unterschied besteht also in den der die Bohrkronen umgebenden Flüssigkeit angekoppelten elastischen Schwingungen.
Die Ergebnisse wurden durch Laboratoriumsversuche unter kontrollierten Bedingungen erzielt, die den echten Verhältnissen im Bohrfeld eng nachgeahmt waren. Die Größe der Bohrkrone betrug 3,18 cm, und weitere Bedingungen wie Gewicht der Bohrkrone, Drehzahl usw. sind in F i g. 3 angegeben. Mit Ausnahme der Abszissenbezeichnung P-P1 erklärt sich das Schaubild selbst. Wie in der Figur angegeben, bezieht sich P auf den Druck der Schlammsäule, während P1 der Formationsdruck ist, d. h. der hydrostatische Druck der Flüssigkeit in der Formation an der Bohrlochsohle. Die Bohrgeschwindigkeit ist tatsächlich eher eine Funktion dieses Druckdifferentials als des Druckes am Bohrlochboden allein. Wenn beispielsweise der Formationsdruck P1 gleich dem Druck P an der Bohrlochsohle ist (obwohl P einen sehr großen Wert haben könnte), so wird die Formation sehr schnell durchdrungen. Falls andererseits der Formationsdruck P, klein und der Druck P an der Bohrlochsohle groß ist, wird die Formation normalerweise sehr langsam durchdrungen. Das Druckdifferential P Pf bildet somit den kritischen Wert beim Durchbohren von durchlässigen Formationen wie Sandstein, und aus diesem Grund dient diese Größe als Abszisse des Schaubildes für die Bohrgeschwindigkeit in Sandstein.
Von Interesse ist die stärkere Zunahme der Bohrgeschwindigkeit bei Anwendung der Erfindung in durchlässigem Berea-Sandstein im Vergleich mit dem Ansteigen in praktisch undurchlässigem Batesville-Marmor. Dieser Unterschied beruht auf der bekannten jedoch weniger verständlichen Tatsache, daß die Beeinflussung der Bohrgeschwindigkeit durch Verringerung des Druckes an der Bohrlochsohle bei undurchlässigem Gestein nicht so groß wie bei durchlässigem Gestein ist. Dem Fachmann ist diese Erscheinung bekannt, obwohl keine ausreichende Erklärung vorliegt. Die Säulen 45, 47 und 55,57 in F i g. 3 zeigen, daß duroh Anwendung der Erfindung selbst bei undurchlässigem Gestein eine merkliche Erhöhung der Bohrgeschwindigkeiten möglich ist.
Die Erfindung ist somit in ihrem weitesten Sinn ein Bohrverfahren, das sich unabhängig von besonderen Geräten durchführen läßt. Es gibt eine Anzahl von Geräten, die zur Erzeugung von Druckschwingungen in der die Bohrkrone umgebenden Flüssigkeit verwendet werden können. Das schematisch gezeigte Gerät nach F i g. 2 erläutert die allgemeine Wirkungsweise und ist auch kennzeichnend für das Gerät, das in den Laborversuchen, aus denen die Angaben nach F i g. 3 entstanden sind, verwendet worden ist. Ein derartiges Gerät ist jedoch zur Ausführung von tiefen Erdbohrungen, beispielsweise von Öl- und Gasbohrungen, unpraktisch.
F i g. 4 zeigt eine übliche Rotary-Bohranlage, bei der das erfindungsgemäße Verfahren zur Anwendung kommt. Ein Bohrturm 59 befindet sich über einem Bohrloch 61, in dem sich ein Standrohr 63, Bohrstangen 65 sowie Schwerstangen 67 und eine Bohrkrone 69 befinden. Der Schwingungsgenerator 70 befindet sich in dem Bohrstrang direkt oberhalb der Bohrkrone. Die Drehbewegung der Bohrkrone 69 wird durch den Eingriff eines Drehtisches 71 mit einer Mitnehmerstange 73 erzielt, die den obersten rohrförmigen Bauteil des Bohrstranges bildet. Die Mitnehmerstange 73 ist an einem Spülkopf 75 befestigt, der in dem Bohrturm 59 mittels eines Bohrhakens 77 und eines Flaschenzugkolbens an dem Seil 81 aufgehängt ist. Das Seil 81 läuft über Rollen auf dem nicht gezeigten Oberteil des Bohrturms und ist an einem Hebewerk 83 befestigt, das den Bohrstrang.anhebt und absenkt.
Das Umlaufsystem für die Spül- oder Bohrflüssigkeit besteht aus einem Sumpf oder Saugloch 85, aus dem Bohrschlamm mit Hilfe einer Spülpumpe 87 abgezogen wird. Der Bohrschlamm durchströmt eine .Standleitung 89 innerhalb des Bohrturmes 59, einen Spülschlauch 91, die Mitnehmerstange 73 bis schließlich zur Bohrkrone 69. Das Bohrklein vom Boden des Bohrloches wird mit Hilfe des Schlamms durch das Bohrloch 61 außerhalb des Bohrstranges nach oben gespült und anschließend durch ein Rüttelgerät von dem Schlamm getrennt. Der Schlamm wird dann in den Sumpf 85 zurückgeleitet, von wo der Umlauf wieder beginnt.
Der an den Schwerstangen 67 oberhalb der Bohrkrone 69 befestigte Schwingungsgenerator 70 besteht aus einem Gerät, das in der Spülflüssigkeit an der Bohrlochsohle rund um die Bohrkrone Druckänderungen erzeugt. Dieses Gerät wird vorzugsweise durch die zirkulierende Spülflüssigkeit betätigt, so daß keine zusätzliche äußere Kraftquelle wie bei der Vorrichtung nach F i g. 2 notwendig ist.
In F i g. 5 bis 8 ist eine vorteilhafte Ausführungsform eines Schwingungsgenerators gezeigt, der auch als flüssigkeitsbetätigter Generator bezeichnet werden kann, da er keine beweglichen mechanischen Bauteile enthält; er besitzt außerdem ein Kopplungselement für die Einleitung in die Bohrflüssigkeit. -Das Kopplungsgerät enthält ebenfalls keine beweglichen mechanischen Teile. Der Schwingungsgenerator ist mit A, das Kopplungsgerät mit B und zwei Helmholtz-Resonatoren sind mit C und D bezeichnet.
Der obere Abschnitt 111 (Fig. 5-B) der Anordnung wird mit dem Bohrstrang verschraubt und besitzt die Form eines Rohres 112 mit einem Hohlraum 113, der teilweise durch eine innere Hülse 114 gebildet ist. Der untere Abschnitt 115 des Rohres 112 ist zur Verschraubung mit einer weiteren Bohrstange 117 ebenfalls mit Gewinde versehen. Mehrere Bohrungen 119 verbinden eine axial verlaufende Bohrung 121 mit dem Hohlraum 113. Der Hohlraum 113 und die Bohrungen 119 bilden einen Helmholtz-Resonator C.
Ein Zwischenteil 123 der Anordnung ist an seinem oberen Ende 125 zum Anschluß an die Schwerstange 117 mit Gewinde versehen und enthält einen ringförmigen Hohlraum 126. Das untere Ende 127 des Zwischenteils ist mit Gewinde versehen zum Anschluß an eine Schwerstange 129, die eine Anzahl von Bohrungen 131 enthält, die von dem Hohlraum 126 nach außen verlaufen. Der Zwischenteil 123 und die besonders ausgebildete Schwerstange 129 bilden einen weiteren Helmholtz-Resonator D, dessen Aufgäbe weiter unten beschrieben ist. Der untere Abschnitt 133 (Fig. 5-A) der Anordnung trägt am oberen Ende 135 Gewinde zum Anschluß an die Schwerstange 129 und nimmt den Schwingungsgenerator A sowie einen Kopplungsbauteil 137 des Kopplungsgerätes B auf.
Entsprechend Fig. 6 enthält der Schwingungsgenerator A einen Körperteil 139, der aus einem zylindrischen Metallstück hergestellt worden ist. Eine zentrale axial verlaufende Bohrung 141 innerhalb des Körperteils steht mit der Bohrung 121 in Verbindung. Zwei weitere axial verlaufende Bohrungen 143 und 145 erstrecken sich teilweise durch den Körperteil und enden an den Stellen 147, 149 oberhalb des unteren Endes 151 des Körperteils 139. Die oberen Enden der Bohrungen sind durch Stopfen 153, 155 verschlossen, so daß innerhalb des Körperteils 139 zwei Hohlräume entstehen.
Die beiden axialen Bohrungen bzw. daraus hergestellten Hohlräume 143, 145 stehen jeweils mit zwei Querbohrungen 157, 159 bzw. 158, 160 in Verbindung und bilden je einen Rückkopplungskanal zur Steuerung der Frequenz der Flüssigkeitsoszillatoreinheit 161 (Fig. 6 und 7), die aus einem bistabilen Flüssigkeitsverstärker mit hohem Verstärkungsgrad besteht, mitsekoppelt ist, um das Schwingen der bistabilen Einheit zu gewährleisten. Derartige Vorrichtungen sind im Prinzip in der Veröffentlichung »The Proceedings of the Fluid Amplification Symposium«, Harry Diamont Laboratories, Oktober 1965, Volume III, S. 131 bis 159, herausgegeben von The Clearinghouse for Federal, Scientific and Technical Information, Department of Commerce, beschrieben.
Die Flüssigkeit wird dem Oszillator 161 von der zentralen Bohrung 141 durch eine radial verlaufende Leitung 163, die in den Block 165 (F i g. 6 und 7) des Gerätes eingeformt ist, sowie durch den Körperteil 139 zugeführt. Die Leitung 163 steht mit einer Antriebs- oder Anregungsdüse 167 über einen'sich verjüngenden Kanal 169 in Verbindung. Zwei zueinander ausgerichtete Steuerdüsen 171, 173 sind stromab hinter der Düse 167 angeordnet und über trichterförmige Kanäle 175, 177 an Bohrungen 179, 181 angeschlossen, welche auf die Rückkopplungskanäle 157, 158 (Fig. 6) ausgerichtet sind. Ein axial in Verlängerung der Antriebsdüse 167 vorgesehener Wechselwirkungsbereich 183 steht mit den Steuerdüsen 171, 173 in Verbindung. Der sich nach unten erweiternde Wechselwirkungsbereich steht mit zwei Empfängerkanälen 185, 187 in Verbindung, die jeweils an Rückkopplungskanäle 193, 195 sowie an sich beiderseits eines Spaltungsteils 192 erstreckende Diffusorkanäle 189, 191 angeschlossen sind. Die Rückkopplungskanäle 193, 195 sind an Bohrungen 197, 199 angeschlossen, die ihrerseits mit den Rückkopplungskanälen 159, 160 in F i g. 6 in Verbindung stehen. Die Diffusorkanäle 189, 191 erstrecken sich durch den Körper 165 bis zu ihren Auslaßöffnungen 201, 203 (Fig. 6) am unteren Ende des Körperteils 139.
Der Flüssigkeitsoszillator muß so ausgelegt sein, daß er auf die an ihm angelegte akustische Belastung anspricht und innerhalb eines großen Bereiches von Zuführungsdrücken bei der Resonanzfrequenz des Systems schwingt.
Die in der Oszillatoreinheit 161 erzeugten elastischen Schwingungen werden der die Bohrkrone stromab von den Bohrkronendüsen umgebenden Flüssigkeit mit Hilfe des Ankopplungsgerätes B übertragen, das den zuvor erwähnten Kopplungseinsatz 137 mit einem radial verlaufenden Flansch 205 und einer zentralen Axialbohrung 207 enthält. Entsprechend F i g. 5-A und 6 besteht zwischen dem Flansch 205 und der radial gerichteten Schulter 211 des unteren Abschnittes 133 des Gerätes ein ringförmiger Hohlraum 209. Zwei Bohrungen 213, 125 erstrecken sich axial durch den Flansch 205. Paßeinrichtungen, beispielsweise ein Bauteil 206 auf dem Einsatz 137 und eine entsprechende Öffnung 208 in dem Körperteil 139 des Oszillators, sorgen für die Ausfluchtung der Bohrungen 213, 125 mit den Auslaßöffnungen 201, 203. Die Bohrung 213 steht mit einem Rohr 217 in Verbindung, das sich durch den Hohlraum 209 erstreckt und an einen Kanal 219 angeschlossen ist, der durch den Wandungsbereich 221 des unteren Abschnittes 133 bis in den äußeren Hohlraum 222 geführt ist, der die Bohrkrone 224 umgibt. Die Bohrung 215 steht mit einem anderen Rohr 223 (F i g. 6) in Verbindung, das über eine bestimmte Entfernung in den Hohlraum 209 hineinragt. Ein Kanal 225 erstreckt sich durch den Wandungsbereich 221 des Unterteils 133, um den inneren Hohlraum 209 mit dem die Bohrkrone 234 umgebenden Hohlraum 222 zu verbinden. In der soweit beschriebenen Vorrichtung können verschiedene Dichtungen, z.B. ein Dichtring 226, vorgesehen sein, um sicherzustellen, daß die Flüssigkeit ihren Weg nur durch die dafür bestimmten Öffnungen, Kanäle und Hohlräume nimmt.
Voraussetzung für ein gut wirkendes Kopplungsgerät ist das Vorhandensein einer hohen ß-Zahl. Die Ö-Zahl eines Systems wird zuweilen definiert zu 2 π mal der maximal gespeicherten Energie, geteilt durch die pro Periode vernichtende Energie. Ein System mit einem hohen Q-Wert kann als Äquivalent zu der stabilisierenden Wirkung eines Schwungrades in einer mechanischen Anordnung angesehen werden. Ein hoher Q-Wert ist demnach erwünscht, um ein stabiles Betriebsverhalten des gesamten Systems zu erreichen und sicherzustellen, daß der Flüssigkeitsoszillator in einem großen Bereich zugeführter Drücke mit der im voraus festgelegten Frequenz des Systems arbeitet. Das Kopplungsgerät nach F i g. 5-A und 6 genügt dieser Anforderung.
Um die günstigste Betriebsweise bei Geräten dieser Art zu erzielen, sollte die Impedanz der Bohrkronendüse der Impedanz des akustischen Kreises angepaßt sein. Für diese Anpassung ist ein gewisses Maß praktischer Versuche notwendig, da die Oszillatorimpedanzen schwer genau zu berechnen sind. Beispiele für erfolgreich erprobte Abmessungen der einzelnen Bauteile sind weiter unten angegeben.
Tm Betrieb wird das Gerät nach F i g. 5 bis 8 in einen Bohrstrang oberha-h einer Bohrkrone eingebaut und in das Bohrloch abgelassen, das mit dem
13 14
Gerät und den anderen Bohrstrangteilen einen Ring- strahl »zurückgeschaltet« und heftet sich dann an raum zur Rückströmung der Spülflüssigkeit an die die Wandung 194 an, womit eine Periode vervoll-Erdoberfläche bildet. Die sich durch das Gerät er- ständigt ist. Auf diese Weise wird ein Schwingungsstreckende Axialbohrung 121, zu der auch die Axial- Vorgang erzeugt, und die Zeitdauer zwischen dem bohrung 141 des Schwingungsgenerators und die 5 Beginn des Einströmens der Flüssigkeit in den Rück-Axialbohrung 207 des Kopplungselementes 137 ge- kopplungskanal 193 oder 195 bis zu dem Zeitpunkt, hört, bildet einen Durchgang für die Flüssigkeit von in dem die Strömung in der Steuerdüse 171 oder 173 der Spülpumpe 87 in F i g. 4 an der Oberfläche des ihren Umschaltwert erreicht, wird durch die geome-Bohrloches bis zu den Düsen der Bohrkrone. Wie irische Ausbildung der Rückkopplungsschleife bebeim herkömmlichen Rotary-Bohrverfahren strömt io stimmt.
die Spülflüssigkeit durch die Axialbohrung 121 und Die Rückkopplungsschleife kann verschieden aus-
die Düsen der Bohrkrone, um von dort das ge- gebildet sein, wobei einige solcher Möglichkeiten
schnittene Bohrklein aus der Bohrlochsohle heraus- in der bereits erwähnten Veröffentlichung »The
zuspülen und an die Erdoberfläche zu bringen. Proceedings of the Fluid Amplification Symposium«,
Ein Anteil der durch die Axialbohrung 141 des 15 Harry Diamond Laboratories, beschrieben sind. Schwingungsgenerators strömenden Flüssigkeit wird Innerhalb jeder halben Schwingungsperiode fließt der über die Anschlußbohrung 163 in die Flüssigkeit- Hauptanteil der die Empfängerkanäle 185 oder 187 Oszillatoreinheit 161 abgezweigt. Aus der Antriebs- beaufschlagenden Strömung entweder in den Diffusordüse 167 tritt ein Düsenstrahl mit hoher Geschwin- kanal 189 oder 191 und von dort zum Auslaß 201 digkeit aus und strömt abwechselnd in die Emp- 20 oder 203 des Körperteiles 139 des Schwingungsfängerkanäle 185 und 187. Dieser abwechselnde generators A. Die Auslaßöffnungen 201, 203 stehen Strömungsvorgang resultiert aus der Mitkopplungs- mit den Bohrungen 215,213 des Kopplungsgerätes B wirkung der Rückkopplungskanäle 193,195 (F i g. 7), in Verbindung, bei dem es sich ebenfalls um eine der Querbohrungen 159, 160 (Fig. 6), der in den Vorrichtung handelt, deren Wirkungsweise durch ein Axialbohrungen 143, 145 gebildeten Hohlräume, der 25 Strömungsmedium bestimmt wird.
Querbohrungen 157, 158, der Anschlußöffnungen Im Betrieb des Kopplungsgerätes B nach F i g. 5-A 179, 181 und der Steuerdüsen 171, 173. Der aus der und 6 wird mit der Austrittsströmung aus der Antriebsdüse 167 austretende Düsenstrahl reißt die Oszillatoreinheit 161 die Flüssigkeit beaufschlagt, die umgebende Flüssigkeit innerhalb des Wechselwir- sich in dem Hohlraum rund um die Bohrkrone und kungsbereiches 183 mit und hat das Bestreben, den 30 unterhalb der Bohrkronendüse befindet, und zwar Druck in diesem Bereich zu verringern. Der Düsen- · unter Einschaltung eines akustischen Kreises, der strahl trifft auf den Strahlspaltungsteil 192 (Fig. 7), folgenden drei Bedingungen genügen muß: (1) ge- und auf Grund der dabei auftretenden Turbulenz naue Anpassung der Ausgangsimpedanz des Flüssiggelangt ein größerer Flüssigkeitsanteil auf die eine keitsoszillators 161 an den Energieverlust in den Seite des Spaltungsteiles als auf die andere Seite, 35 Bohrkronendüsen, (2) wirksame Phasenumkehr der beispielsweise in den Empfängerkanal 187. Da sich elastischen Schwingungen in einem der Ausgangsdie Wandung 194 des Wechselwirkungsbereiches in zweige des Oszillators 161 und (3) das Vorhandenunmittelbarer Nähe befindet, behindert diese das sein eines Systems mit einer hohen ß-Zahl.
Mitreißen der Flüssigkeit, so daß der Strahl den Die Ausgangsströmung aus dem Diffusorkanal Druck in der Nähe der Wandung 194 wirksamer 40 191 beaufschlagt die Bohrung 213, das Rohr 217 erniedrigt als in der Nähe der gegenüberliegenden und den Kanal 219, die zusammen mit der darin ent-Wandung 196 des Wechselwirkungsbereiches. Auf haltenen Flüssigkeit eine akustische Inertanz (mit-Grund des dadurch im Wechselwirkungsbereich ent- schwingende Masse) bilden. Der Kanal 219 steht mit stehenden Druckunterschiedes quer zum Düsenstrahl der Flüssigkeit in dem Hohlraum 222 rund um die nähert sich dieser der Wandung 194, so daß der 45 Bohrkrone in Verbindung, so daß der Hohlraum 222 Druck in deren Nähe weiter verringert und der als akustischer Federungswiderstand aufzufassen ist. Druckunterschied quer zu dem aus der Düse 167 Die Ausgangsströmung aus dem Diffusorkanal 189 austretenden Strahl weiter erhöht wird. Die zuvor beaufschlagt die Bohrung 215 sowie das Rohr 223, beschriebenen Vorgänge wirken regenerativ, so daß die zusammen eine weitere akustische Inertanz bilfast sämtliche aus der Düse 167 austretende Flüssig- 50 den. Das Rohr 223 endet innerhalb des Ringraums keit an die Wandung 194 herangezogen wird und in 209, der einen weiteren akustischen Federwiderstand den Empfängerkanal 187 einströmt. Ein Anteil von bildet. Der Kanal 225 bildet eine akustische Inertanz der dorthin gelangenden Flüssigkeit fließt in den · und verbindet den Hohlraum 209 mit dem die Bohr-Rückkopplungskanal 195 und kehrt dann nach "' krone umgebenden Hohlraum 222. Durch geeignete Durchströmen der Rückkopplungsschleife zur Steuer- 55 Bemessung sämtlicher akustisch wirkender Baudüse 173 um. Sobald die Strömung in der Steuer- elemente innerhalb dieses Ankopplungskreises düse 173 einen bestimmten Wert erreicht, wird die können die vorgenannten drei Forderungen erfüllt aus der Antriebsdüse 167 austretende und bis jetzt werden. Die Ausgangsschwingungen des Schwinin den Empfängerkanal 187 gerichtete Strömung gungsgenerators erhalten auf diese Weise die geabgelenkt oder »umgeschaltet« und heftet sich im 60 eignete Phasenbeziehung, um für das erfindungs-Wechselwirkungsbereich 183 an . die Wandung gemäße Verfahren wirksam verwendet werden zu 196 an. können.
In gleicher Weise strömt nunmehr die den Emp- Um in dem Ringraum (Bohrloch/Gestänge) nach
fängerkanal 185 beaufschlagende Flüssigkeit in den oben hin einen zu großen Energieverlust bzw. eine zu
Rückkopplungskanal 193 und kehrt über die ange- 65 hohe Dämpfung zu vermeiden, wird der Helmholtz-
schlossene Rückkopplungsschleife zur Steuerdüse Resonator D als ein Seitenzweig mit Einlaßöffnungen
171 um. Sobald die Strömung in der Steuerdüse 171 benutzt, die sich eine viertel Wellenlänge über dem
einen bestimmten Wert erreicht, wird der Düsen- obersten Ende des Hohlraums 222 befinden. Damit
wird die akustische Impedanz in dem Ringraum in Richtung nach oben sehr hoch und ein merklicher Energieverlust vermieden. Der Helmholtz-Resonator D wird gebildet durch die akustische Inertanz der Kanäle 131 und durch den akustischen Federungswiderstand des Ringraumes 126. Die körperlichen Abmessungen dieser Bauteile müssen zur Gewährleistung von Resonanz bei der Betriebsfrequenz justiert werden.
Die Kanäle 119 und der Hohlraum 113 bilden einen weiteren Helmholtz-Resonator C, der als ein von der Axialbohrung 121 ausgehender Seitenzweig vorgesehen ist. Der Eintritt in die Kanäle 119 befindet sich eine halbe Wellenlänge oberhalb der Bohrkronendüsen. Auf diese Weise wird der Druck stromauf von der Bohrkronendüse konstant gehalten, obwohl sich die Durchströmung der Düsen in größerem Umfang ändert. Der Helmholtz-Resonator C ist ebenfalls auf die Betriebsfrequenz des Oszillators abgestimmt.
In F i g. 4 ist ein Stoßdämpfer 68 angedeutet. Der Stoßdämpfer wird in den Bohrstrang vorzugsweise eine halbe Wellenlänge oberhalb der Bohrkrone eingebaut, wobei die Wellenlänge diejenige der elastischen Schwingungen in dem Bohrstrang bei der Betriebsfrequenz ist. Der Stoßdämpfer befindet sich somit an der Stelle eines Schwingungsbauches, um die Impedanz an der Bohrkrone in Richtung auf die Schwerstangen sehr niedrig zu halten, damit die Bohrkrone durch die periodischen Druckminderungen in dem Flüssigkeitsvolumen innerhalb des die Bohrkrone umgebenden Hohlraumes 222 in die Formation hineingezogen werden kann. Wenn kein Stoßdämpfer verwendet wird und die Bohrstrangteile sehr starr ausgeführt sind, wird die Größe der zyklischen Änderungen der Bohrkronenbelastung verringert, jedoch bleibt die Erhöhung der Bohrgeschwindigkeit dennoch wegen der periodischen Verringerung des Druckes und Ansteigens der Strahlaustrittsgeschwindigkeit erhalten.
Nachfolgend ist ein Beispiel für die Abmessungen eines Gerätes nach F i g. 5 bis 8 bei Anwendung in / Bohrlöchern von 20 cm Durchmesser und bei einer Frequenz von 100 Hz angegeben.
Ein Schwingungsgenerator A wurde über die An-Schlußöffnung 163 mit 303 l/min Bohrflüssigkeit bei einem Druck von 127 kg/cm2 mit Bezug auf den Durchschnittsdruck an der Bohrlochsohle beaufschlagt. Die Antriebsdüse 167 der Oszillatoreinheit 161 besaß eine Breite von 0,305 cm und eine Tiefe von 1,02 cm, so daß das Verhältnis von Tiefe zu Breite 3,33 beträgt. Die verschiedenen Kanäle in der Oszillatoreinheit waren soweit nicht anders angegeben, im Querschnitt quadratisch oder rechteckförmig ausgeführt. Der Spaltungsteil 192 befand sich 12,5 Düsenbreiten unterhalb des Ausgangs der Antriebsdüse 167. Die Steuerdüsen 171,, 173 hatten jeweils eine Breite von 0,25 cm und eine Tiefe von 1,02 cm. Die Wandungen 194, 196 des Wechselwirkungsbereiches und der Spaltungsteil 192 schlossen jeweils Winkel von 15° ein. Die Rücksetz-Entfernung »a« (Fig. 7) betrug 0,0114 cm und der Eintritt in die Diffusorkanäle 189, 191 hatte jeweils eine Breite von 0,508 cm und eine Tiefe von 1,02 cm. Die Diffusorkanäle besaßen eine Länge mit konstantem Querschnitt von sechs Eintrittsbreiten entsprechend Fig. 7, um die Strömung vor Eintreten in den divergierenden Diffusorbereich zu beruhigen, von denen jeder einen Winkel von 10° einschloß. Die Anschlußöffnung 163 hatte einen Durchmesser von 2,54 cm. Während die Anschlußöffnungen 179, 181 und die Rückkopplungsöffnungen 197, 199 Durchmesser von 0,8 cm aufwiesen.
Die zentral angeordnete axiale Bohrung 141 des Körperabschnittes 139 des Schwingungsgenerators A kann einen Durchmesser von 5,08 cm aufweisen. Die Bohrungen 157, 159, 158 und 160 der Rückkopplungsschleifen besaßen Durchmesser von 0,8 cm und Längen von 5,08 cm. Die Durchmesser und Längen der durch die Axialbohrungen 143, 145 und Stopfen 153 und 155 gebildeten Hohlräume ließen sich zur Regelung der Betriebsfrequenz der Oszillatoreinheit verändern. Zum Betrieb bei einer Frequenz von 100 Hz betrug der Durchmesser der Axialbohrungen 143, 145 3,81 cm, während die Tiefe der durch die Bohrungen und die Stopfen 153, 155 gebildeten Hohlräume jeweils 22,86 cm betrug.
Fertigungsangaben für das Kopplungsgerät B ergeben sich eher aus akustischen Werten für die Elemente, die zur Ankopplung des Schwingungsgenerators A an die Bohrflüssigkeit in dem die Bohrkrone umgebenden Hohlraum verwendet werden, als durch körperliche Abmessungen der verschiedenen Öffnungen und Kammern. Die körperlichen Abmessungen der Kanäle und die Volumina der akustischen Elemente lassen sich durch folgende Formeln berechnen:
■(1) Akustische Inertanz (mitschwingende Masse):
tu, Po'1
worin
Po= Dichte (kg/m3),
Z= Kanalquerschnitt (m2).
5 = Kanallänge (m),
(2) Akustischer Federwiderstand:
c_ v
Pq-C'
worin
V = Flüssigkeitsvolumen im Hohlraum (m3),
Po = Dichte (kg/m3),
c = Schallgeschwindigkeit im Medium (m/5).
Der Inertanzwert der zusammenwirkenden Elemente: Auslaßbohrung 203, Bohrung 213, Rohr 217 und Kanal 219 betrug 75,7 · 103 kg · sec2/m5 und die Inertanz der kombinierten Elemente: Auslaßbohrung 3101, Bohrung 215 und Rohr 223 betrug 85,14 · 103kg · sec2/m5. Der Federwiderstand des ringförmigen Hohlraums 209 betrug 6,55 · 10-um5/kg. Der Federwiderstand der Bohrflüssigkeit in einem Hohlraum 222, der eine Bohrkrone von 20 cm Durchmesser umgibt, betrug 5,4 · 10-" m5/kg. Die Induktanz des Kanals 225, der den Hohlraum 209 mit dem Hohlraum 222 verbindet, betrug 98 · 103 kg · sec2/m5.
Wie oben erwähnt, wird die Impedanz in dem Ringraum, von dem die Bohrkrone umgebenden Hohlraum nach oben gesehen, vorzugsweise durch Verwendung eines Helmholtz-Resonators D großgehalten. Die Mündung des Kanals 131 dieses Resonators befand sich eine viertel Wellenlänge (3,81 m) von dem untersten Ende des Ringes (d. h. von dem oberen Ende des Hohlraums 222) entfernt. Die Inertanz der Kanäle 131
17 18
(10 Stück unter gleichen Abständen angeordnet am umkehr von 180° sowohl des Druckes als auch der Umfang) betrug 20,6 · 103 kg · sec2/m5, und der Strömung erreicht. Dies führt zu einer kombinierten Federwiderstand des Hohlraums 126 betrug 12,2 · Ausgangsimpedanz von Verzögerungsleitung und Os-10~u m5/kg. Der Helmholtz-Resonator C, welcher zillator von einem Viertel des für den Oszillator allein mit der in der Axialbohrung 121 des Gerätes strö- 5 geltenden Wertes. Die charakteristische Impedanz der menden Flüssigkeit verbunden ist, besitzt einen oder einen eine halbe Wellenlänge langen Verzögerungsmehrere Kanäle 119 mit einer kombinierten Inertanz leitung 323 sollte so ausgelegt sein, daß in der Leivon 20,6 ■ 103 kg · sec2/m5. Die Mündungen der tung keine extrem hohen Drücke oder keine überKanäle 119 lagen eine halbe Wellenlänge (7,62 m) mäßigen Reibungsverluste auftreten. Im Fall des Vorvon den Düsen der Bohrkrone entfernt. Der Feder- io handenseins extrem hoher Drücke müßten die Rohrwiderstand des Hohlraums 113 betrug 12,2 · 10~n wandungen äußerst dick ausgeführt sein.
m5/kg. Nachfolgend sind aus einem Ausführungsbeispiel Die Impedanz der Düsen der Bohrkrone betrug Bemessungswerte für die Herstellung der verschiede-154,8 kg · sec/m5; dies ist ein typischer Impedanz- nen Bauteile eines Ankopplungsgerätes nach Fig. 9 wert für normale Bohrkronendüsen in Erdbohrungen 15 angegeben:
von 20 cm Durchmesser. Die Impedanz der Bohr- Die kombinierte Inertanz von Bohrung 311 im
kronendüsen läßt sich durch die folgende Beziehung Flanschteil 315 und zugeordnetem Diffusorkanal des
berechnen: Impedanz=^, wobei P = der durch- Oszillators betrug 311 · 103 kg · sec^ Die Inertanz
r Q der Bohrung 313 und des zugeordneten Diffusor-
schnittliche Druckabfall an der Düse in kg/m2 und 20 kanals lag auf dem gleichen Wert. Die Länge der
Q = die durchschnittliche Durchströmungsmenge der Verzögerungsleitung oder des Rohres 331, gemessen
Düse in m3/sec ist. längs seiner Mittelachse, betrug 7,62 m, was der hal-
Die Oszillatoreinheit 161 war zur Erhöhung der ben Wellenlänge einer mit 100 Hz in der Bohrflüssig-
Abnutzungsfestigkeit aus Wolframkarbid gefertigt, keit verlaufenden Schallwelle entspricht. Der kombi-
das durch andere Materialien ersetzt werden kann. 25 nierte Federungswiderstand des Hohlraums 323 und
Die Ausgangsleitungen des Schwingungserregers des die Bohrkrone umgebenden Hohlraumes betrug oder Oszillators sind an die Bohrungen 311 und 313 2,44 · 10~u m3/kg. Wie oben erläutert, waren die eines Flanschteiles 315 angeschlossen, der an das Kanäle 329 im unteren Flanschteil 325 ausreichend obere Ende eines rohrförmigen Gehäuses 317 einge- groß und zahlreich, so daß sie so gut wie keine Inersetzt ist. Durch den Flansch 315 erstreckt sich eine 30 tanz enthalten. Die Impedanz der Düsen in der Bohraxiale Flüssigkeitsleitung 319, die im Anschluß an · krone dieses Ankopplungsgerätes betrug 318 · 106 kg den Flansch durch ein den Hohlraum 323 des Ge- · sec/m5, und der Wirkanteil der Ausgangsimpedanz häuses 317 durchlaufendes Rohr 321 sowie durch des Flüssigkeitsoszillators zusammen mit der eine eine Bohrung in einem unteren Flanschteil 325 ge- halbe Wellenlänge langen Verzögerungsleitung eines bildet und von dort bis an die nicht dargestellte Bohr- 35 Schenkels betrug 43 kg · sec/m5. Der für die Endkrone weitergeführt ist. Der untere Flanschteil 325 oder Lastimpedanz der Bohrkronendüse angegebene enthält mehrere am Umfang verteilte Kanäle 329 Wert ist kennzeichnend für Bohrvorgänge, bei denen größeren Querschnittes, welche den Hohlraum 323 die zur Zeit üblichen Hochdruckspülpumpen zur Vermit dem die Bohrkrone umgebenden Hohlraum ver- fügung stehen. Dieses Ankopplungsgerät mit der eine binden. . 40 halbe Wellenlänge langen Phasenumkehrstufe hat sich
Die Bohrung 311 steht direkt mit dem Hohlraum zum Ankoppeln von Schwingungserregern mit einer 323 in Verbindung, während die Bohrung 313 an ein eine halbe Wellenlänge langen Verzögerungsleitung in wendelförmig gebogenes Rohr 331 angeschlossen ist, einem Schenkel an die in dem Hohlraum rund um die das als Verzögerungsleitung wirkt und mit seinem Bohrkrone befindliche Bohrflüssigkeit als nützlich eranderen Ende in den Hohlraum 323 mündet. Das 45 wiesen, deren Ausgangsimpedanzen niedriger liegen Wendelrohr 331 mißt von der Unterseite des Flan- als die in den Düsen der Bohrkrone entstehende Lastsches 315 bis zu seinem Mündungsende eine halbe impedanz. Wenn dieses Gerät zum Ankoppeln von Wellenlänge bei der Betriebsfrequenz des Schwin- Schwingungserregern benutzt wird, die eine eine halbe gungserregers. Wellenlänge lange Verzögerungsleitung in einem
Im Betrieb des Ankopplungsgerätes nach F i g. 9 5° Schenkel sowie höhere Ausgangsimpedanzen als die laufen die elastischen Schwingungen der in einem Lastimpedanz der Bohrkronendüsen aufweisen, so Diffusorkanal des Oszillators enthaltenen Spül- oder wird ein geringerer Wirkungsgrad erzielt. Ist die Aus-Bohrflüssigkeit durch die Bohrung 311 in den Hohl- gangsimpedanz des Erregers und der Verzögerungsraum 323. Die Inertanz (mitschwingende Masse) der "leitung nur etwas niedriger als die Impedanz der zueinander parallelen Bohrungen 311 und 313 mit 55 Bohrkronendüsen, können die Abmessungen der den kombinierten Federungswiderständen des Hohl- akustisch wirkenden Elemente bei einer Betriebsweise raumes 323 und des die Bohrkrone umgebenden mit 100 Hz zu Schwierigkeiten Anlaß geben. In diesen Hohlraumes sind so bemessen, daß die Impedanz der Fällen wird es zweckmäßig sein, die Betriebsfrequenz Düsen an der Bohrkrone auf die Ausgangsimpedanz des Erregers so zu verändern, daß sich die Bedes Schwingungserregers abgestimmt ist. Die Bohrung 60 messungsschwierigkeiten umgehen lassen. Falls sich 313 besitzt die gleichen Abmessungen und daher auch kein Kompromiß zwischen Abmessungen und Bedie gleiche Inertanz wie die Bohrung 311. Das eine triebsfrequenz finden läßt, wird man zweckmäßigerhalbe Wellenlänge lange gewundene Rohr 331 wirkt weise Ankopplungsgeräte der in Fig. 5 bis 8 angeals Phasenschieber oder Phasenumkehrstufe, so daß gebenen Art benutzen. Bei dem Ankopplungsgerät die über die Bohrung 311 und über das Ausgangsende 65 nach F i g. 9 sind nicht genügend Freiheitsgrade zur des Rohres 331 in den Hohlraum 323 eintretende Anpassung der Ausgangsimpedanz des Erregers und Flüssigkeitsströmungen in Phase liegen. Mit dieser der Verzögerungsleitung an die Lastimpedanz und zur Anordnung wird in einem Schenkel eine Phasen- gleichzeitigen Festlegung der Q-Zahl des Systems vor-
handen. Da jedoch ein Helmholtz-Resonator an die Flüssigkeit in dem Ringraum und ein weiterer an die Flüssigkeit in der Axialbohrung des Bohrstrangs angeschlossen ist, sind Verstellmöglichkeiten verfügbar, um die Q-Zahl des ganzen Systems auf einen wünschenswerten Pegel zu bringen.
Falls die körperliche Bemessung der Bauteile des Ankopplungsgerätes nach F i g. 9 schwierig werden sollte oder falls es erwünscht ist, ein Ankopplungsgerät mit einer hohen Q-Zahl zu besitzen und die Impedanz genau aufeinander abzustimmen, so können gewisse Abänderungen in der Anordnung nach F i g. 9 zweckmäßig sein. Beispielsweise können die. Kanäle 329 so bemessen werden, daß sie eine merkbare Inertanz erhalten und das Ankopplungsgerät in eine sogenannte π-Anordnung zur Impedanz-Anpassung umwandeln. Indem zwischen dem Hohlraum 323 und die die Bohrkrone umgebende Flüssigkeit eine merkbare Inertanz eingefügt wird, bleiben beide Hohlräume wirksam voneinander getrennt und lassen sich einzeln jeweils als ein besonderer Federwiderstand ansehen. Bei einer π-Anordnung sind Bemessungsschwierigkeiten weitgehend vermieden, und die Q-Zahl des Gerätes läßt sich unabhängig von dem Verhältnis Lastimpedanz zu Erregerimpedanz einrichten.
In folgendem sind Beispiele von Bemessungswerten akustischer Bauelemente in der zuvor beschriebenen abgeänderten Anordnung des Kupplungsgerätes nach F i g. 9 angegeben.
Die Inertanz der Bohrung 311 und des zugeordneten Diffusorkanais kann 108 · 103 kg ■ sec2/m5 betragen, ebenso beträgt dann die Inertanz der Bohrung 313 und des zugeordneten Diffusorkanais 108 · 10s kg ■ sec2/m5. Die Länge des Phasenumkehrrohres 331 beträgt 7,62 m und der Federwiderstand des Hohlraums323 7,3 · 1O-11 m5/kg. Die Inertanz der Kanäle 329 beträgt 81 · 103 kg ■ sec2/m5 'ind der Federwiderstand der Bohrflüssigkeit in der Umgebung der Bohrkrone 5,04 · 1O-11 ms/kg. Diese Werte der Bauelemente führen zu einer Lastimpedanz von 154,8 • 10° kg · sec/m5 und zu einer Erregerausgangsimpedanz (Wirkanteil) von 86 · 106 kg · sec/m5.
Fig. 10 zeigt einen anderen Erreger341 für elastische Schwingungen, der auch als hydroakustischer Wandler bezeichnet werden kann, dessen Prinzip etwa dem Vorschlag gemäß USA.-Patentschrift 30 04 512 (Bouyoucos et al) entspricht. Zur Verwendung bei dem erfindungsgemäßen Bohrverfahren waren jedoch an dem bekannten Gerät Verbesserungen vorzunehmen. Darüber hinaus ist ein Ankopplungsgerät erforderlich, aim Druckänderungen direkt in der Bohrlochsohle zu erzeugen.
Das Gerät341 nach Fig. 10 besteht aus einem Rohrkörper 343 mit einem Innengewinde 345 am oberen Ende, das mit einer Schwerstange oder einem anderen Teil des Bohrgestänges verschraubt wird, sowie mit einem unteren Gewinde 347 zur Verbindung mit einem Bohrmeißel. Außen auf den Rohrkörper 343 ist eine Hülse 349 bei 351 aufgeschraubt, so daß zwischen beiden Bauteilen Ringspalte 353, 355 und 357 entstehen. Die Hülse 349 kann mit dem Rohrkörper 341 auch aus einem Stück geformt sein, jedoch ist dadurch die Herstellung und die Wartung erschwert. In dem Ringspalt 355 befindet sich ein frei verschiebbares Ringventil 359, das weder an dem Rohrkörper 343 noch an der Hülse 349 befestigt ist.
Die oberhalb und unterhalb des Ventils befindlichen Spaltabschnitte 353 und 357 sind etwas breiter als das Ventil, wobei ein geringes Spiel C zwischen dem Ventil 359 und der Hülse 349 vorgesehen ist. Ein gleiches Spiel besteht zwischen dem Ventil 359 und dem Hohlkörper 343. Von beiden Enden des Ventils 359 stehen mehrere Füße 361 ab, die ebenfalls einen Abstand C von der Hülse 349 und vom Hohlkörper 343 aufweisen. Demzufolge besteht weder in dem dargestellten statischen Zustand noch im nachfolgenden beschriebenen Betriebszustand des Gerätes zwischen den einzelnen Bauteilen eine Berührung.
Die Hülse 349 ist mit einer radial gerichteten Auslaßöffnung 363 versehen, die mit einer ähnlichen Öffnung 365 im Ventil 359 ausgerichtet ist, wenn sich dieses in seiner mittleren Stellung befindet. Am unteren Ende 'ist die Hülse 349 ohne Unterstützung und umgibt einen Resonator 367 derart, daß beide Teile sich zueinander frei bewegen können, wobei als einzige Hinderung ein gegen Leckverluste vorgesehener Dichtungsring 369 vorhanden ist. Der Resonator 367 besitzt eine axiale Länge entsprechend einer halben Wellenlänge der von dem hydroakustischen Wandler erzeugten Schallwelle und ist mit dem Rohrkörper 343 an seiner Mitte 371 so verschraubt, daß die oberen und unteren Abschnitte jeweils eine viertel Wellenlänge lang sind. Oberhalb und unterhalb des befestigten Mittelteils 371 bestehen zwischen dem Hohlkörper und der Hülse 349 Abstände bzw. Zwischenräume 375 und 373. Die mittlere Befestigungsstelle des Resonators 373 bildet einen Verschiebungsknoten, und sowohl das obere Ende 377 als auch das untere Ende 379 bilden einen Verschiebungs-Wellenbauch (Druckknoten).
Der Rohrkörper 343 enthält eine Durchgangsbohrung 381 mit wenigstens einem, vorzugsweise mehreren zweischenkligen Rohren 383. Entsprechend Fig. 10 enthält jedes Rohr 383 einen gerade verlaufenden senkrechten Schenkel 385 sowie einen senkrechten offenen Schenkel 387, wobei letzterer in der '.
Nähe seiner Längsmitte in Enden 389 und 391 ausläuft, die in Kanäle 393 und 395 eingeführt sind, welche sich quer durch die Wandung des Rohrkörpers 343 erstrecken und in die Ringräume 357 bzw. 353 beiderseits des Ventils 359 münden. Am oberen Ende jedes Rohres 383 sind die beiden Schenkel 385 und 387 miteinander verbunden und mit einer öffnung 397 versehen, durch die Spülschlamm aus der Durchgangsbohrung 381 eindringt, während die unteren Enden der Rohre ohne eine derartige öffnung miteinander verbunden sind. An Stelle der Rohre 383 könnten auch im Innern des Hohlkörpers 343 Bohrungen vorgesehen sein.
"'Im Betrieb wird der Schwingungserzeuger 341 oberhalb der Bohrkrone 69 entsprechend F i g. 4 in den Bohrstrang eingesetzt. Über Drehtisch 71 und Mitnehmerstange 73 wird der Bohrstrang zusammen mit der Bohrkrone in Drehung versetzt. Die Spülpumpe 87 drückt die Bohrflüssigkeit durch den Bohrstrang an die Bohrlochsohle und von dort wieder zurück zur Erdoberfläche.
Der Spülschlamm innerhalb des Bohrstranges bzw. in der Durchgangsbohrung 381 des Schwingungserzeugers 341 nach Fig. 10 steht unter einem höheren Druck als die Bohrflüssigkeit außerhalb des Gerätes.
Demzufolge fli'St Spülflüssigkeit durch die öffnungen 397, durch die Rohre 383, durch die radial verlaufenden Öffnungen 393 und 395 des Rohrkörpers 343 in die Ringräume 357 und 35c und damit auch in den
Spalt 355 rund um das Ventil 359 und von dort aus den Öffnungen 365 und 363 in den nach oben strömenden Spülschlamm.
Der Abfluß der Spülflüssigkeit von innen nach außen wird ausgenutzt, um das Ventil 353 in Schwingungen zu versetzen, wie dies in den USA.-Patentschriften 27 93 804, 28 59 726 und insbesondere 30 04512 erläutert ist. Die schnelle Längsbewegung des Ventils 359 erzeugt elastische Schwingungen in den oberhalb und unterhalb liegenden Ringräumen 353 und 357. Der Resonator 367 wirkt als Ankopplungsgerät, das die akustischen Wellen in die Bohrflüssigkeit überträgt und durch deren Schwingungen innerhalb des Ringraums 353 angeregt wird. Da die Länge des Resonators 367 gleich dem halben Wert einer Wellenlänge der im Ringraum 353 mit bestimmter Frequenz erzeugten elastischen Schwingungen ist, entsteht dort eine stehende Welle. Das untere Ende 379 des Resonators schwingt daher in Längsrichtung und erzeugt Druckänderungen großer Amplitude, die durch den Spülschlamm bis zur Bohrlochsohle laufen.
Die Frequenz, bei der das Ventil 359 schwingt, ist eine Funktion der Kompressibilität der Spülflüssigkeit in den Ringräumen 353 und 357 sowie der Masse des Ventils 359. Da die Kompressibilität der Spülflüssigkeit im wesentlichen konstant ist, obwohl deren Zusammensetzung in weiten Grenzen schwankt, kann die Frequenz auf einfache Weise durch Änderung der Masse des Ventils 359 beeinflußt werden.
In Fig. 10 und 13 ist eine Anzahl von an beiden Enden des Ventils 359 vorstehender Füße 361 dargestellt. Die Aufgabe dieser Füße besteht darin, das Ventil so zu stabilisieren, daß eine mechanische Berührung zwischen Ventil 359, Hülse 349 und Rohrkörper 343 unterbleibt und dadurch die Lebensdauer des Ventils 359 erhöht wird. Um den Druck des Flüssigkeitsfilmes rund um das Ventil zu erhöhen, läßt man das Ventil in bekannter Weise um seine Längsachse kreisen. Zu diesem Zweck wird die Spülflüssigkeit aus den Kanälen 393 und 395 sowie aus den Rohrenden 389 und 391 nicht radial sondern entsprechend Fig. 12 quer in die Ringräume 357 und 353 abgegeben. Da die ausströmende Flüssigkeit mit einer Umfangskraft auf die Füße 361 auftrifft, wird das Ventil 359 in Drehbewegung versetzt.
Der Einbau eines einzigen Rohres 383 ist unzweckmäßig, weil dadurch auf die Enden des Ventils 359 ungleichförmige Kräfte einwirken, die zu einer Wobbel-Bewegung des Ventils führen und die Wahrscheinlichkeit der unerwünschten mechanischen Berührung erhöhen. Zum Ausgleich des Druckes sind mehrere gleichmäßige über den Umfang des Hohlkörpers 385 verteilte Rohre 383 vorgesehen.
Fig. 14 und 15 zeigen ein den Vorschlägen nach USA.-Patentschriften 3111931 (Bodine) und 30 16 066 (Warren) ähnlich gestaltetes Ausführungsbeispiel eines Erregergerätes für elastische Schwingungen. Auch diesem Gerät fehlen Kolbenventile und andere bewegliche Teile, die sich festfressen und dadurch zu einem Betriebsausfall führen könnten. Bei' diesem Schwingungserreger 401 dient ein Ringraum 403 rund um den Körper des Erregerunterteils 405 als Primär-(Helmholtz)-Resonator, der einen in seiner Längsmitte 409 mit dem Körper des Unterteils 405 in Verbindung stehenden, jedoch sonst in Längsrichtung frei schwingfähigen Sekundär-Resonator 407 antreibt. Die Gesamtlänge des Resonators entspricht einer halben Wellenlänge der Betriebsfrequenz, wobei die Strecken zwischen dem »Empfängerende« 411 und der Längsmitte 409 sowie zwischen der Längsmitte 409 und dem »Übertragungsende« 413 jeweils eine halbe Wellenlänge lang ist. Eine Hülse 415 ist an ihrem oberen Ende mit dem Unterteil 405 verschraubt, um den Ringraum 403 nach außen abzuschließen, und an ihrem unteren Ende mit dem Sekundär-Resonator 407 an dessen Längsmitte verschraubt ist. Ein Dichtungsring 417 verhindert Leck-Verluste zwischen dem Resonator 407 und dem Unterteil 405, die im übrigen jedoch in Axialrichtung frei relativ zueinander beweglich sind. An das untere Ende des Unterteils 405 ist eine Bohrkrone 419 angeschraubt, so daß das untere Ende 413 des Resonators 407 die Schwingungen direkt auf die Spülflüssigkeit in der Umgebung des Bohrmeißels überträgt.
In eine Öffnung im oberen Ende des Unterteils 405 ist ein Verbindungsstück 421 eingeschraubt, das eine bei 425 zur Bildung einer Düse verengte Mittelbohrung 423 enthält. Hinter der Verengung divergieren die Kanalwände an der Stelle 427 und teilen sich schließlich in eine zentrale Mittelbohrung 429 und eine diagonal verlaufende in den Resonator-Ringraum 403 mündende Bohrung 431. In dem oberen Ende der Mittelbohrung 429 ist ein kurzes Rohr 433 befestigt, dessen oberes leicht verjüngtes Ende 435 sich auf einer Seite von der Achse des erweiterten Kanals 427 befindet.
Die pulsierende Beaufschlagung der Mittelbohrung
. 429 und der Diagonalbohrung 431 wird durch Rückführungskanäle 437 und 439 gesteuert, von denen der erste sich von einem in der Mittelbohrung 429 mündenden Winkelstück 441 aus durch eine Querbohrung 443, durch eine axial gerichtete Bohrung 445 und eine obere oder rückwärtige Querbohrung 447 erstreckt, die mit der Ebene ihrer Öffnung annähernd parallel zur Achse der Vorrichtung endet. In gleicher Weise besteht der Rückführungskanal 39 aus einem Winkelstück 449, dessen Öffnung sich in der Diagonalbohrung 431 befindet, die aus einer vorderen Querbohrung 451, einer axial gerichteten Bohrung 453 und aus einer oberen oder rückwärtigen Querbohrung 455, deren Öffnung annähernd parallel und diametral gegenüber derjenigen der Bohrung 447 angeordnet ist. Die in den Unterteil 405 eingearbeiteten Bohrungen 443, 445, 447, 451, 453 und 455 sind nach außen durch Stopfen 457 und 459 verschlossen. Länge und Querschnitt der Rückführungskanäle 437 und' 439 sind akustisch so aufeinander abgestimmt, daß eine bestimmte Verzögerung entsteht zwischen dem Zeitpunkt, in dem eine Druckwelle in das Winkelstück 441 (oder 459) eindringt und dem Zeitpunkt, wenn sie
-· an dem offenen Ende der Querbohrung 447 (oder
455) ankommt. Diese Verzögerung ist auf die Dichte der Spülflüssigkeit so abgestimmt, daß der Druckanstieg im Hohlraum 403 seinen Maximalwert erreichen kann, worauf dann ein Druckanstieg am Ausgangsende der Querbohrung 455 den Flüssigkeitsstrom von dem Diagonalkanal 431 in die Mittelbohrung 429 ablenkt. Während der nächsten halben Periode der Resonanzfrequenz des Hohlraums 403 strömt die Flüssigkeit in der Mittelbohrung 429 abwärts. Ein gleicher Verzug im Rückführungskanal 437 verzögert die Bildung einer Druckwelle an der Ausgangsöffnung der Querbohrung 447. Wenn ein Druckanstieg an dieser Stelle auftritt, wird die Flüssigkeitsströmung in den Diagonalkanal 431 zu-
rückgeschaltet bzw. dorthin abgelenkt. Die im Schwingungserreger 401 abwärts strömende Flüssigkeit wird somit bei jeder halben Periode der Resonanzfrequenz des Hohlraums 403 zwischen den Bohrungen 429 und 431 umgeschaltet.
Die vorbeschriebenen Ablenk- oder Schaltvorgänge führen zur Erzeugung von elastischen Schwingungen hoher Amplitude am oberen Ende 411 des Resonators 407. Die Impedanz des Sekundär-Resonators 407 muß dazu an die am oberen und unteren Ende vorhandenen Berührungsmedien angepaßt sein, um einen wirksamen Energieübergang von dem mit der schwingenden Masse benachbarten Ende 411 in das von der Flüssigkeit umgebene Ende 413 zu ermöglichen.
Für den Fachmann auf dem Gebiet der akustischen Schwingungen liegt es im Bedarfsfall nahe, den Resonator 407 und benachbarte Bauteile so zu verändern, daß der untere Teil des Bohrloches, der die Bohrkrone 419 umgibt und das untere Ende des Resonators einen zweiten Helmholtz-Resonator bilden, um die Resonanz des Systems zu verbessern und die Amplitude oder die mit der Spülflüssigkeit auf die Bohrlochsohle übertragenen Druckschwankungen auf einen Höchstwert zu bringen.
Die im Betrieb des Erfmdungsgegenstarides üblichen Frequenzen liegen zwischen 30 und 1000 Hz. Die jeweils zweckmäßige Amplitude hängt in durchlässigen Formationen stark von dem Druckdifferential am Filterkuchen ab. Die Amplitude soll vorzugsweise dieses Druckdifferential zu dem Zeitpunkt dem Wert Null annähern, wenn der sich ändernde Druck seinen Minimalwert durchläuft. Bei undurchlässigem Gestein hängt die zweckmäßige Amplitude in gewissem Umfang von dem Druck der Spülflüssigkeitssäule an der Bohrlochsohle ab: Druckänderungen zwischen 70 kg/cm2 oberhalb und unterhalb des hydrostatischen Mitteldruckes sind mehr als ausreichend, um eine erhebliche Steigerung der Bohrgeschwindigkeit in durchlässigem Gestein zu erzielen.
Die vorliegende Erfindung bringt einen beträchtlichen Fortschritt insofern mit sich, als die mit sonst üblichen Bohrgeräten erzielten Bohrgeschwindigkeiten erheblich gesteigert werden. Die erhöhten Bohrgeschwindigkeiten werden erreicht durch periodisches Verringern des Druckes an der Bohrlochsohle, durch periodisches Erhöhen der aus den Düsen der Bohrkrone austretenden Strahlgeschwindigkeit und durch periodisches Erhöhen der auf der Bohrkrone ruhenden Last, indem ein Schwingungserreger an die Spülflüssigkeit innerhalb des die Bohrkrone umgebenden Hohlraumes angekoppelt wird. Bei Verwendung von
ίο Bohrmeißeln mit Düsen werden die elastischen Schwingungen der Spülflüssigkeit stromab von den Düsen angekoppelt, damit nicht die hohe Impedanz der Düsen die Schwingungsübertragung beeinträchtigt. Um die elastischen Schwingungen möglichst wirksam in die im Hohlraum rund um die Bohrkrone befindliche Spülflüssigkeit einzuleiten und akustisch von den Bdhrstranggliedern weitgehend zu isolieren, bewähren sich die vorgeschlagenen Ankopplungsgeräte erfolgreich. Auf Grund des Fehlens bevveglieher mechanischer Bauteile wird die Unanfälligkeit und die lange Lebensdauer der Ankopplungsgeräte erhöht. Bei Flüssigkeitsankopplungsgeräten bestehen nur geringe Gefahren der Materialermüdungserscheinungen, während sich die Impedanz des Schwingungserregers auf einfache Weise an die Lastimpedanz der Düsen anpassen läßt, um einen guten Energieübergang zu erreichen.
Die Kombination von Schwingungserreger, Ankopplungsgerät und der Helmholtz-Resonatoren begrenzt den durch die Flüssigkeit in dem Bohrstrang •und in dem Ringraum nach oben gerichteten Energieverlust. Die Verwendung eines Stoßdämpfers oberhalb des Schwingungserregers begrenzt darüber hinaus den Energieverlust durch das Metall des Bohrstranges nach oben und bietet die Möglichkeit, daß die Bohrkrone leichter periodisch in die Erdformation hineingezogen wird.
Die Erfindung ist nicht auf die Anwendung bestimmter Gerätebauarten beschränkt. Vorteile sind auch dann zu erwarten, wenn andere Schwingungserreger, z. B. elektroakustische Wandler, eingesetzt werden.
Hierzu 7 Blatt Zeichnungen

Claims (14)

Patentansprüche:
1. Verfahren zur Durchführung von Erdbohrungen unter Verwendung von periodischen Druckänderungen in der Spülflüssigkeit, bei dem eine am unteren Ende des Bohrstranges sitzende Bohrkrone zur Ausübung einer auf die zu durchbohrende Erdformation an der Bohrlochsohle wirkenden Kraft belastet wird und bei dem von der Erdoberfläche aus der Bohrstrang mit der Bohrkrone in Drehung versetzt und Spülflüssigkeit zwischen der Bohrlochsohle und der Erdoberfläche umgewälzt wird und bei dem die Druckänderungen im Bereich der Bohrkrone erzeugt werden, dadurch gekennzeichnet, daß der Druck der die Bohrkrone umgebenden Spülflüssigkeit periodischen Schwankungen um seinen Durchschnittswert unterworfen wird, wobei der Bohrstrang von dem die Druckschwankungen erzeugenden Vorrichtungen schwingungsfähig isoliert bleibt.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Frequenz der Druckänderungen zwischen 30 und 1000 Hz liegt.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß die Amplitude der Druckänderungen etwa gleich dem an der Bohrlochsohle herrschenden hydrostatischen Druck ist.
4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Druckänderungen durch einen von der durch den Bohrstrang abwärts strömenden Flüssigkeit angetriebenen Schwingungserreger erzeugt werden und ein sonares Ankopplungsgerät mit der durch den Erreger strömenden sowie mit der die Bohrkrone umgebenden Spülflüssigkeit in Verbindung steht.
5. Vorrichtung zur Erzeugung und Übertragung elastischer Schwingungen auf eine im Bereich einer Bohrkrone befindliche Spülflüssigkeit bei Erdbohningen, zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 4, gekennzeichnet durch einen an einem Bohrstrangglied (67) befestigten Schwingungserreger (A) für elastische Schwingungen und durch ein ebenfalls an einem Bohrstrangglied befestigbares und an den Schwingungserreger (A) angeschlossenes sonares Ankopplungsgerät (B), das mit der Spülflüssigkeit in dem Hohlraum (222) schwingungsmäßig gekoppelt und gegen den Bohrstrang (67) schwingungsmäßig isoliert ist.
6. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, daß die Frequenz des Schwingungserregers (A; 341) zwischen 30 und 1000 Hz beträgt.
7. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, daß die Amplitude der elastischen Schwingungen dem an der Bohrlochsohle herrschenden hydrostatischen Druck etwa gleich ist.
8. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, daß der Schwingungserreger (A, 161) eine mit Spülflüssigkeit und bistabil arbeitende Bauart mit zwei Ausgahgsschenkeln (189, 191, 201, 203) aufweist, und daß das Ankopplungsgerät (B) eine den einen Ausgangsschenkel (203) mit dem Umfang des Gerätes verbindende Strömungsleitung (213, 219) zur Übertragung der elastischen Schwingungen auf die Spülflüssigkeit
in dem die Bohrkrone (224) umgebenden Hohlraum (222) aufweist sowie eine zweite gleichfalls in den die Bohrkrone umgebenden Hohlraum (222) mündende Strömungsleitung (225), die an den anderen Ausgangsschenkel (201) des Schwingungserregers (161) angeschlossenen und mit die Phasenlage der ankommenden Schwingungen umkehrenden sonaren Bauelementen (223,, 209) versehen ist. '■■■■■'■■.
9. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, daß die eine Strömungsleitung (219) eine Inertanz und die andere Strömungsleitung (223, 209, 225) eine aus Inertanz und Federwiderstand bestehende Anordnung , bildet, welche die Phasenlage der die darin befindliche Spülflüssigkeit durchlaufenden elastischen Schwingungen in der Weise umkehrt, daß die Schwingungen beider Strömungsleitungen (219,225) aufeinander abgestimmt sind. "
10. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, daß die eine Strömungsleitung (311, 323) eine Inertanzanordnung und die andere Strömungsleitung (313, ,331) eine halbe Wellenlänge lange Verzögerungsleitung (331) ist.
11. Vorrichtung nach.Anspruch 8, dadurch gekennzeichnet, daß ein auf . die Frequenz des Schwingungserregers (A) abgestimmter und mit der Vorrichtung verbundener Resonator (D) mit seinem Eingang etwa eine viertel Wellenlänge der erzeugten Welle oder ein ungerades Vielfaches dieses Wertes oberhalb des die Bohrkrone (224)
■ umgebenden Hohlraumes angeordnet ist und mit der darin befindlichen Spülflüssigkeit in Verbindung steht.
12. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, daß der Eingang eines auf die Frequenz des Schwingungserregers (A) abgestimmten und mit der Vorrichtung verbundenen Resonators (C) an die Axialbohrung (121) in dem Bohrstrang angeschlossen und etwa eine halbe Wellenlänge oder ein Mehrfaches dieses Wertes oberhalb der Bohrkronendüsen angeordnet ist.
13. Vorrichtung nach ■ Anspruch 11, dadurch gekennzeichnet, daß der Eingang eines zweiten auf die Frequenz des Schwingungserregers (A) abgestimmten und mit der Vorrichtung verbundenen Resonators (C) an die Axialbohrung in dem Bohrstrang angeschlossen und etwa eine halbe Wellenlänge oder um ein Mehrfaches dieses. Wertes oberhalb der Bohrkrone (224). angeprd-; net ist.
14. Vorrichtung nach einem der Ansprüche 5, 11, 12 oder 13, dadurch gekennzeichnet, daß ein Stoßdämpfer etwa eine.halbe. Wellenlänge der erzeugten Welle oder ein Mehrfaches von diesem Wert oberhalb der Bohrkrone in den Bohrstrang eingebaut ist. " '·
DE1533607A 1966-05-25 1967-05-20 Erdbohrverfahren und Vorrichtung zur Durchfuhrung dieses Verfahrens Expired DE1533607C3 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US552788A US3405770A (en) 1966-05-25 1966-05-25 Drilling method and apparatus employing pressure variations in a drilling fluid

Publications (3)

Publication Number Publication Date
DE1533607A1 DE1533607A1 (de) 1970-04-30
DE1533607B2 true DE1533607B2 (de) 1975-04-10
DE1533607C3 DE1533607C3 (de) 1975-11-27

Family

ID=24206807

Family Applications (1)

Application Number Title Priority Date Filing Date
DE1533607A Expired DE1533607C3 (de) 1966-05-25 1967-05-20 Erdbohrverfahren und Vorrichtung zur Durchfuhrung dieses Verfahrens

Country Status (4)

Country Link
US (1) US3405770A (de)
AT (1) AT271348B (de)
BE (1) BE705733A (de)
DE (1) DE1533607C3 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992017678A1 (en) * 1991-04-05 1992-10-15 Galina Alexeevna Pokrovskaya Method of hole drilling

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3603410A (en) * 1968-12-05 1971-09-07 Mobil Oil Corp Method and apparatus for cavitational drilling utilizing periodically reduced hydrostatic pressure
US3507341A (en) * 1969-06-24 1970-04-21 Ion Basgan Process and system for rotary drilling with drilling fluid imposed sonic vibrations
US3640355A (en) * 1970-06-04 1972-02-08 Maurice P Lebourg Drill bit
US4071097A (en) * 1973-01-11 1978-01-31 Koolaj Es Foldgazbanyaszati Ipari Kutato Laboratorium Process and apparatus for supersonic drilling in underground rocky strata
US3860902A (en) * 1973-02-14 1975-01-14 Hughes Tool Co Logging method and system
US3850135A (en) * 1973-02-14 1974-11-26 Hughes Tool Co Acoustical vibration generation control apparatus
US3876016A (en) * 1973-06-25 1975-04-08 Hughes Tool Co Method and system for determining the position of an acoustic generator in a borehole
FR2352943A1 (fr) * 1976-05-26 1977-12-23 Bvs Procede de forage de roches et dispositif pour la mise en oeuvre de ce procede
US4474251A (en) * 1980-12-12 1984-10-02 Hydronautics, Incorporated Enhancing liquid jet erosion
US4630689A (en) * 1985-03-04 1986-12-23 Hughes Tool Company-Usa Downhole pressure fluctuating tool
GB8719782D0 (en) * 1987-08-21 1987-09-30 Shell Int Research Pressure variations in drilling fluids
US4775016A (en) * 1987-09-29 1988-10-04 Hughes Tool Company - Usa Downhole pressure fluctuating feedback system
FR2655372A1 (fr) * 1989-12-01 1991-06-07 Total Petroles Systeme d'irrigation d'un outil rotatif, notamment d'un outil de forage, au moyen d'un fluide distribue par un oscillateur fluidique.
US5950736A (en) * 1997-09-26 1999-09-14 Apti Inc. Method and apparatus for improving drilling efficiency by application of a traveling wave to drilling fluid
US6247533B1 (en) 1998-03-09 2001-06-19 Seismic Recovery, Llc Utilization of energy from flowing fluids
US6059031A (en) * 1998-03-09 2000-05-09 Oil & Gas Consultants International, Inc. Utilization of energy from flowing fluids
US6550534B2 (en) 1998-03-09 2003-04-22 Seismic Recovery, Llc Utilization of energy from flowing fluids
US7404416B2 (en) * 2004-03-25 2008-07-29 Halliburton Energy Services, Inc. Apparatus and method for creating pulsating fluid flow, and method of manufacture for the apparatus
US6976507B1 (en) 2005-02-08 2005-12-20 Halliburton Energy Services, Inc. Apparatus for creating pulsating fluid flow
SE528649C8 (sv) * 2005-05-23 2007-02-27 Atlas Copco Rock Drills Ab Impulsgenerator, hydrauliskt impulsverktyg och förfarande för att alstra impulser
SE530571C2 (sv) * 2006-11-16 2008-07-08 Atlas Copco Rock Drills Ab Bergborrningsförfarande och bergborrningsmaskin
US8844651B2 (en) 2011-07-21 2014-09-30 Halliburton Energy Services, Inc. Three dimensional fluidic jet control
US10156097B2 (en) * 2013-06-09 2018-12-18 Smith International, Inc. Downhole tool for increasing a wellbore diameter
US10370959B2 (en) * 2014-08-20 2019-08-06 Halliburton Energy Services, Inc. Flow sensing in subterranean wells
CA2950100C (en) * 2014-08-20 2019-02-12 Halliburton Energy Services, Inc. Opto-acoustic flowmeter for use in subterranean wells
US9995126B1 (en) * 2015-09-22 2018-06-12 Geodrilling Technologies, Inc. Low-frequency pulsing sonic and hydraulic mining system

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2946565A (en) * 1953-06-16 1960-07-26 Jersey Prod Res Co Combination drilling and testing process
US2672322A (en) * 1953-12-14 1954-03-16 Jr Albert G Bodine Sonic earth boring drill
US2859726A (en) * 1954-06-24 1958-11-11 John V Bouyoncos Acoustic-vibration coupler
US2951682A (en) * 1956-08-24 1960-09-06 Jersey Prod Res Co Gas drilling apparatus
US3004512A (en) * 1958-07-08 1961-10-17 John V Bouyoucos Acoustic-vibration generator and valve
US3094176A (en) * 1959-07-31 1963-06-18 Socony Mobil Oil Co Inc Percussion drill
US3111931A (en) * 1960-03-31 1963-11-26 Albert G Bodine Oscillatory fluid stream driven sonic generator with elastic autoresonator
US3163240A (en) * 1960-09-21 1964-12-29 Albert G Bodine Sonic earth boring drill with elastic fluid resonator
US3216514A (en) * 1962-02-23 1965-11-09 Nelson Norman A Rotary drilling apparatus
US3185227A (en) * 1962-03-02 1965-05-25 Nelson Norman A Well drilling apparatus
US3251424A (en) * 1962-06-18 1966-05-17 Socony Mobil Oil Co Inc Acoustic drilling method and apparatus
US3346058A (en) * 1964-05-29 1967-10-10 Gen Dynamics Corp Acoustic apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992017678A1 (en) * 1991-04-05 1992-10-15 Galina Alexeevna Pokrovskaya Method of hole drilling

Also Published As

Publication number Publication date
AT271348B (de) 1969-05-27
US3405770A (en) 1968-10-15
DE1533607C3 (de) 1975-11-27
DE1533607A1 (de) 1970-04-30
BE705733A (de) 1968-03-01

Similar Documents

Publication Publication Date Title
DE1533607C3 (de) Erdbohrverfahren und Vorrichtung zur Durchfuhrung dieses Verfahrens
DE2854461A1 (de) Ringbohrhammer
DE69010008T2 (de) Konverter.
DE2021888A1 (de) Stossvorrichtung
DE1634267A1 (de) Verfahren und Vorrichtung zum Eintreiben langgestreckter Koerper in koerniges Medium in deren Laengsrichtung
DE3738420C2 (de)
DE19626591C1 (de) Verfahren zum Niederbringen von Bohrungen im Erdreich unter Austrag des Bohrgutes nach dem Lufthebeverfahren und Bohrwerkzeug zur Anwendung des Verfahrens
DE2824441A1 (de) Erdbohrer
DE2011475C3 (de) Verfahren zum Spülen eines Bohrlochs mittels eines Schaumspülmittels
DE2541439A1 (de) Strahlpumpe
DE2541795C2 (de) Vorrichtung zum Tiefbohren
EP1728564A1 (de) Schwingungserzeuger mit einem zwischen Druckkammern verschiebbar gelagerten Arbeitskolben
DE69304486T2 (de) Verbesserte Bodenbearbeitungsvorrichtung mit rotierenden Strahlen
DE1951292A1 (de) Vorrichtung zum Einrammen und/oder Ausziehen von Pfaehlen
DE1558977C3 (de) Gesteinsbohrverfahren und Vorrichtung zur Durchführung des Verfahrens
DE950181C (de) Stossbohrantrieb fuer Tiefbohrer
DE2301194C3 (de) Vorrichtung zum Bohren von Erdformationen
DE19850183A1 (de) Schlagbohrkopf
DE3905416A1 (de) Verfahren und vorrichtung zur umsetzung von rohrwellen in koerperwellen, zur seismischen exploration
DE3106662C2 (de)
DE1533585C (de) Aufbrechverfahren zur Erdöl oder Erdgasgewinnung
DE723903C (de) Verfahren zur Verdichtung natuerlicher oder kuenstlicher, wassergesaettigter, loser Bodenmassen
DE904765C (de) Erdbohrvorrichtung
AT279366B (de) Pumpeinrichtung für Tiefbrunnen
DE2107805B2 (de) Bohrwerkzeug, insbesondere fuer tiefbohrungen

Legal Events

Date Code Title Description
C3 Grant after two publication steps (3rd publication)
E77 Valid patent as to the heymanns-index 1977
8339 Ceased/non-payment of the annual fee