DE112007001514T5 - Anriebbeständige gesinterte Cu-Ni-Sn-Legierung auf Kupferbasis und hieraus hergestelltes (Kugel-)Lager - Google Patents

Anriebbeständige gesinterte Cu-Ni-Sn-Legierung auf Kupferbasis und hieraus hergestelltes (Kugel-)Lager Download PDF

Info

Publication number
DE112007001514T5
DE112007001514T5 DE112007001514T DE112007001514T DE112007001514T5 DE 112007001514 T5 DE112007001514 T5 DE 112007001514T5 DE 112007001514 T DE112007001514 T DE 112007001514T DE 112007001514 T DE112007001514 T DE 112007001514T DE 112007001514 T5 DE112007001514 T5 DE 112007001514T5
Authority
DE
Germany
Prior art keywords
mass
phase
alloy
copper
bis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE112007001514T
Other languages
English (en)
Other versions
DE112007001514B4 (de
DE112007001514T8 (de
Inventor
Toshiro Harakawa
Teruo Shimizu
Tsuneo Maruyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diamet Corp
Original Assignee
Mitsubishi Materials PMG Corp
Diamet Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials PMG Corp, Diamet Corp filed Critical Mitsubishi Materials PMG Corp
Publication of DE112007001514T5 publication Critical patent/DE112007001514T5/de
Application granted granted Critical
Publication of DE112007001514T8 publication Critical patent/DE112007001514T8/de
Publication of DE112007001514B4 publication Critical patent/DE112007001514B4/de
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/10Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
    • B22F5/106Tube or ring forms
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0425Copper-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/02Alloys containing less than 50% by weight of each constituent containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • F16C33/121Use of special materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/10Alloys based on copper

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

Gesinterte Cu-Ni-Sn-Legierung auf Kupferbasis, umfassend eine Struktur, worin eine Phase mit einer Zusammensetzung enthaltend Cu(4-x-y)NixSny (worin x: 1,7 bis 2,3, y: 0,2 bis 1,3 ist) in einer Matrix der gesinterten Cu-Ni-Sn-Legierung auf Kupferbasis, die Ni, Sn und Cu enthält, dispergiert ist.

Description

  • TECHNISCHES GEBIET
  • Die vorliegende Erfindung betrifft eine gesinterte Cu-Ni-Sn-Legierung auf Kupferbasis für (Kugel-)Lager, die herausragende Reibungseigenschaften und Verschleißbeständigkeit aufweist, und ein (Kugel-)Lager aus der Legierung.
  • Diese Anmeldung beansprucht die Priorität der japanischen Patentanmeldung Nr. 2006-176255 , angemeldet am 27. Juli 2006, deren Inhalt hierdurch durch Inbezugnahme aufgenommen ist.
  • STAND DER TECHNIK
  • In der Vergangenheit ist eine gesinterte Cu-Ni-Sn-Legierung auf Kupferbasis für (Kugel-)Lager verwendet worden. Da die gesinterte Cu-Ni-Sn-Legierung auf Kupferbasis herausragende Reibungseigenschaften und Verschleißbeständigkeit in einer Hochtemperaturumgebung besitzt, ist die Legierung insbesondere z. B. für ein Lager einer Edelstahl-Kolbenwelle verwendet worden, die das Ventil zur Kontrolle des Abgas-Rückflussstroms einer internen Verbrennungsmaschine vom Typ mit Abgasrückführung betreibt (siehe z. B. Patentdokument 1), oder für innere und äußere Rotoren einer Innen-Zahnradpumpe (siehe z. B. Patentdokument 2), da diese Reibungseigenschaften und Verschleißbeständigkeit sogar in einer Hochtemperaturumgebung besitzen müssen.
  • Darüber hinaus ist es bekannt, ein festes Gleit- bzw. Schmiermittel, wie z. B. Molybdändisulfid, zuzugeben, um so die Gleit- bzw. Schmiereigenschaften zu verbessern, indem der Reibungskoeffizient eines Lagers verringert wird, das aus einer gesinterten Cu-Ni-Sn-Legierung auf Kupferbasis hergestellt ist. Die Menge an Molybdändisulfid, die zur Verbesserung der Gleit- bzw. Schmiereigenschaften einer gesinterten Cu-Ni-Sn-Legierung auf Kupferbasis zugegeben wird, beträgt im allgemeinen 1 bis 5
    • [Patentdokument 1] JP-A-2004-68074
    • [Patentdokument 2] JP-A-2005-314807
  • OFFENBARUNG DER ERFINDUNG
  • [PROBLEM, DAS DIE ERFINDUNG LÖSEN SOLL]
  • Da die vorstehend erwähnte gesinterte Cu-Ni-Sn-Legierung auf Kupferbasis eine relativ große Menge Ni enthält, besitzt die Legierung eine herausragende Festigkeit bzw. Härte, Korrosionsbeständigkeit, Reibungseigenschaften und Verschleißbeständigkeit. Insbesondere in einer Hochtemperaturumgebung besitzt die Legierung herausragende Reibungseigenschaften und Verschleißbeständigkeit. Jedoch muss die Legierung weiter bezüglich der Reibungseigenschaften und der Verschleißbeständigkeit verbessert werden.
  • [MITTEL ZUM LÖSEN DES PROBLEMS]
  • Die Erfinder der Erfindung haben daher Untersuchungen durchgeführt, um die Reibungseigenschaften und Verschleißbeständigkeit der vorstehend erwähnten gesinterten Cu-Ni-Sn-Legierung auf Kupferbasis zu verbessern. Als Ergebnis haben die Erfinder gefunden, dass die Reibungseigenschaften und die Verschleißbeständigkeit verbessert werden können, indem eine Struktur gebildet wird, worin eine Phase mit einer Zusammensetzung, die Cu(4-x-y)NixSny (wobei x: 1,7 bis 2,3, y: 0,2 bis 1,3 ist) enthält, in einer Matrix der gesinterten Cu-Ni-Sn-Legierung auf Kupferbasis dispergiert ist.
  • Die Erfindung wurde auf Grundlage der Ergebnisse der Untersuchung gemacht.
    • (1) Die Erfindung betrifft eine gesinterte Cu-Ni-Sn-Legierung auf Kupferbasis mit herausragenden Reibungseigenschaften und Verschleißbeständigkeit, und die Legierung besitzt eine Struktur, worin eine Phase mit einer Zusammensetzung, die Cu(4-x-y)NixSny (wobei x: 1,7 bis 2,3, y: 0,2 bis 1,3 ist) enthält, in einer Matrix der gesinterten Cu-Ni-Sn-Legierung auf Kupferbasis, die Ni, Sn und Cu enthält, dispergiert ist. Es ist bevorzugt, dass x im Bereich von 1,7 bis 2,2 liegt und y im Bereich von 0,8 bis 1,3 liegt.
  • Die gesinterte Cu-Ni-Sn-Legierung auf Kupferbasis, die Ni, Sn und Cu enthält, entsprechend (1) kann eine gesinterte Cu-Ni-Sn-Legierung auf Kupferbasis sein, die eine Zusammensetzung aufweist, welche 10 bis 40 Massen% Ni, 5 bis 25 Massen% Sn und Rest Cu und unvermeidbare Verunreinigungen, und, falls notwendig, 0,1 bis 0,9 Massen P und/oder 1 bis 10 Massen% C umfasst. Wenn die Zusammensetzung 0,1 bis 0,9 Massen% P und/oder 1 bis 10 Massen% C umfasst, wird/werden eine Phase mit einer Zusammensetzung, die Cu(4-z)Pz (worin z: 0,7 bis 1,3 ist) und/oder eine Graphitphase auf der Matrix der gesinterten Cu-Ni-Sn-Legierung auf Kupferbasis gebildet.
  • Entsprechend weist die Erfindung die folgenden Ausprägungen auf.
    • (2) Eine gesinterte Cu-Ni-Sn-Legierung auf Kupferbasis mit herausragenden Reibungseigenschaften und Verschleißbeständigkeit. Die Legierung besitzt eine Zusammensetzung, die 10 bis 40 Massen% Ni, 5 bis 25 Massen% Sn und einen Rest umfasst, der Cu und unvermeidbare Verunreinigungen enthält, und sie weist eine Struktur auf, worin eine Phase mit einer Zusammensetzung, die Cu(4-x-y)NixSny (worin x: 1,7 bis 2,3, y: 0,2 bis 1,3 ist) enthält, in einer Matrix dispergiert ist.
    • (3) Eine gesinterte Cu-Ni-Sn-Legierung auf Kupferbasis mit herausragenden Reibungseigenschaften und Verschleißbeständigkeit. Die Legierung weist eine Zusammensetzung auf, die 10 bis 40 Massen% Ni, 5 bis 25 Massen% Sn, 0,1 bis 0,9 Massen% P und einen Rest umfasst, der Cu und unvermeidbare Verunreinigungen enthält, und sie weist eine Struktur auf, worin eine Phase mit einer Zusammensetzung, die Cu(4-x-y)NixSny (worin x: 1,7 bis 2,3, y: 0,2 bis 1,3 ist) enthält, und eine Phase mit einer Zusammensetzung, die Cu(4-z)Pz (worin z: 0,7 bis 1,3 ist) enthält, in einer Matrix dispergiert sind.
    • (4) Eine gesinterte Cu-Ni-Sn-Legierung auf Kupferbasis mit herausragenden Reibungseigenschaften und Verschleißbeständigkeit. Die Legierung weist eine Zusammensetzung auf, die 10 bis 40 Massen% Ni, 5 bis 25 Massen% Sn, 1 bis 10 Massen% C und einen Rest umfasst, der Cu und unvermeidbare Verunreinigungen enthält, und sie weist eine Struktur auf, worin eine Phase mit einer Zusammensetzung, die Cu(4-x-y)NixSny (worin x: 1,7 bis 2,3, y: 0,2 bis 1,3 ist) enthält, und eine Graphitphase in einer Matrix dispergiert sind.
    • (5) Eine gesinterte Cu-Ni-Sn-Legierung auf Kupferbasis mit herausragenden Reibungseigenschaften und Verschleißbeständigkeit. Die Legierung weist eine Zusammensetzung auf, die 10 bis 40 Massen% Ni, 5 bis 25 Massen% Sn, 0,1 bis 0,9 Massen% P, 1 bis 10 Massen% C und einen Rest umfasst, der Cu und unvermeidbare Verunreinigungen enthält, und sie weist eine Struktur auf, worin eine Phase mit einer Zusammensetzung, die Cu(4-x-y)NixSny (worin x: 1,7 bis 2,3, y: 0,2 bis 1,3 ist) enthält, eine Phase mit einer Zusammensetzung, die Cu(4-z)Pz (worin z: 0,7 bis 1,3 ist) enthält, und eine Graphitphase in einer Matrix dispergiert sind.
  • Bei den vorstehend beschriebenen Bereichen ist Ni bevorzugt im Bereich von 15 bis 30 Massen%, Sn ist bevorzugt im Bereich von 6 bis 15 Massen% P ist bevorzugt im Bereich von 0,1 bis 0,5 Massen%, C ist bevorzugt im Bereich von 3 bis 9 Massen%, und z ist bevorzugt im Bereich von 0,9 bis 1,2.
  • Die gesinterte Cu-Ni-Sn-Legierung auf Kupferbasis gemäß irgendeinem von (2) bis (5), die Ni, Sn und Cu enthält, kann, falls notwendig, ferner 0,3 bis 6 Massen% Calciumfluorid umfassen. Eine Calciumfluoridphase ist in einer Matrix der gesinterten Cu-Ni-Sn-Legierung auf Kupferbasis, die das Calciumfluorid umfasst, dispergiert. Entsprechend hat die Erfindung die folgenden Ausprägungen.
    • (6) Eine gesinterte Cu-Ni-Sn-Legierung auf Kupferbasis mit herausragenden Reibungseigenschaften und Verschleißbeständigkeit. Die Legierung besitzt eine Zusammensetzung, die 10 bis 40 Massen% Ni, 5 bis 25 Massen% Sn, 0,3 bis 6 Massen% Calciumfluorid und einen Rest umfasst, der Cu und unvermeidbare Verunreinigungen enthält, und sie besitzt eine Struktur, worin eine Phase mit einer Zusammensetzung, die Cu(4-x-y)NixSny (worin x: 1,7 bis 2,3, y: 0,2 bis 1,3 ist) enthält, und eine Calciumfluoridphase in einer Matrix dispergiert sind.
    • (7) Eine gesinterte Cu-Ni-Sn-Legierung auf Kupferbasis mit herausragenden Reibungseigenschaften und Verschleißbeständigkeit. Die Legierung besitzt eine Zusammensetzung, die 10 bis 40 Massen% Ni, 5 bis 25 Massen% Sn, 0,1 bis 0,9 Massen% P, 0,3 bis 6 Massen% Calciumfluorid und einen Rest umfasst, der Cu und unvermeidbare Verunreinigungen enthält, und sie besitzt eine Struktur, worin eine Phase mit einer Zusammensetzung, die Cu(4-x-y)NixSny (worin x: 1,7 bis 2,3, y: 0,2 bis 1,3 ist) enthält, eine Phase mit einer Zusammensetzung, die Cu(4-z)Pz (worin z 0,7 bis 1,3 ist) enthält, und eine Calciumfluoridphase in einer Matrix dispergiert sind.
    • (8) Eine gesinterte Cu-Ni-Sn-Legierung auf Kupferbasis mit herausragenden Reibungseigenschaften und Verschleißbeständigkeit. Die Legierung besitzt eine Zusammensetzung, die 10 bis 40 Massen% Ni, 5 bis 25 Massen% Sn, 1 bis 10 Massen% C, 0,3 bis 6 Massen% Calciumfluorid und einen Rest umfasst, der Cu und unvermeidbare Verunreinigungen enthält, und sie besitzt eine Struktur, worin eine Phase mit einer Zusammensetzung, die Cu(4-x-y)NixSny (worin x: 1,7 bis 2,3, y: 0,2 bis 1,3 ist) enthält, eine Graphitphase und eine Calciumfluoridphase in einer Matrix dispergiert sind.
    • (9) Eine gesinterte Cu-Ni-Sn-Legierung auf Kupferbasis mit herausragenden Reibungseigenschaften und Verschleißbeständigkeit. Die Legierung besitzt eine Zusammensetzung, die 10 bis 40 Massen% Ni, 5 bis 25 Massen% Sn, 0,1 bis 0,9 Massen% P, 1 bis 10 Massen% C, 0,3 bis 6 Massen% Calciumfluorid und einen Rest umfasst, der Cu und unvermeidbare Verunreinigungen enthält, und sie besitzt eine Struktur, worin eine Phase mit einer Zusammensetzung, die Cu(4-x-y)NixSny (worin x: 1,7 bis 2,3, y: 0,2 bis 1,3 ist) enthält, eine Phase mit einer Zusammensetzung, die Cu(4-z)Pz (worin z 0,7 bis 1,3 ist) enthält, eine Graphitphase und eine Calciumfluoridphase in einer Matrix dispergiert sind.
  • Bei den vorstehend beschriebenen Bereichen liegt der Calciumfluoridgehalt bevorzugt im Bereich von 0,5 bis 5 Massen%.
  • Die gesinterte Cu-Ni-Sn-Legierung auf Kupferbasis entsprechend irgendeinem von (2) bis (5), die Ni, Sn und Cu enthält, kann, falls notwendig, ferner 0,3 bis 6 Massen% Molybdändisulfid enthalten. Eine Molybdändisulfidphase ist einer Matrix der gesinterten Cu-Ni-Sn-Legierung auf Kupferbasis, die das Molybdändisulfid enthält, dispergiert.
  • Entsprechend weist die Erfindung die folgenden Ausprägungen auf.
    • (10) Eine gesinterte Cu-Ni-Sn-Legierung auf Kupferbasis mit herausragenden Reibungseigenschaften und Verschleißbeständigkeit. Die Legierung besitzt eine Zusammensetzung, die 10 bis 40 Massen% Ni, 5 bis 25 Massen% Sn, 0,3 bis 6 Massen% Molybdändisulfid und einen Rest umfasst, der Cu und unvermeidbare Verunreinigungen enthält, und sie besitzt eine Struktur, worin eine Phase mit einer Zusammensetzung, die Cu(4-x-y)NixSny (worin x: 1,7 bis 2,3, y: 0,2 bis 1,3 ist) enthält; und eine Molybdändisulfidphase in einer Matrix dispergiert sind.
    • (11) Eine gesinterte Cu-Ni-Sn-Legierung auf Kupferbasis mit herausragenden Reibungseigenschaften und Verschleißbeständigkeit. Die Legierung besitzt eine Zusammensetzung, die 10 bis 40 Massen% Ni, 5 bis 25 Massen% Sn, 0,1 bis 0,9 Massen% P, 0,3 bis 6 Massen% Molybdändisulfid und einen Rest umfasst, der Cu und unvermeidbare Verunreinigungen enthält, und sie besitzt eine Struktur, worin eine Phase mit einer Zusammensetzung, die Cu(4-x-y)NixSny (worin x: 1,7 bis 2,3, y: 0,2 bis 1,3 ist) enthält, eine Phase mit einer Zusammensetzung, die Cu(4-z)Pz (worin z 0,7 bis 1,3 ist) enthält, und eine Molybdändisulfidphase in einer Matrix dispergiert sind.
    • (12) Eine gesinterte Cu-Ni-Sn-Legierung auf Kupferbasis mit herausragenden Reibungseigenschaften und Verschleißbeständigkeit. Die Legierung besitzt eine Zusammensetzung, die 10 bis 40 Massen% Ni, 5 bis 25 Massen% Sn, 1 bis 10 Massen% C, 0,3 bis 6 Massen Molybdändisulfid und einen Rest umfasst, der Cu und unvermeidbare Verunreinigungen enthält, und sie besitzt eine Struktur, worin eine Phase mit einer Zusammensetzung, die Cu(4-x-y)NixSny (worin x: 1,7 bis 2,3, y: 0,2 bis 1,3 ist) enthält, eine Graphitphase und eine Molybdändisulfidphase in einer Matrix dispergiert sind.
    • (13) Eine gesinterte Cu-Ni-Sn-Legierung auf Kupferbasis mit herausragenden Reibungseigenschaften und Verschleißbeständigkeit. Die Legierung besitzt eine Zusammensetzung, die 10 bis 40 Massen% Ni, 5 bis 25 Massen% Sn, 0,1 bis 0,9 Massen% P, 1 bis 10 Massen% C, 0,3 bis 6 Massen% Molybdändisulfid und einen Rest umfasst, der Cu und unvermeidbare Verunreinigungen enthält, und sie besitzt eine Struktur, worin eine Phase mit einer Zusammensetzung, die Cu(4-x-y)NixSny (worin x: 1,7 bis 2,3, y: 0,2 bis 1,3 ist) enthält, eine Phase mit einer Zusammensetzung, die Cu(4-z)Pz (worin z 0,7 bis 1,3 ist) enthält, eine Graphitphase und eine Molybdändisulfidphase in einer Matrix dispergiert sind.
  • Bei den vorstehend beschriebenen Bereichen liegt der Gehalt von Molybdändisulfid bevorzugt im Bereich von 0,5 bis 5 Massen%.
  • Die gesinterte Cu-Ni-Sn-Legierung auf Kupferbasis gemäß irgendeinem von (2) bis (5), die Ni, Sn und Cu enthält, kann ferner, falls notwendig, 0,3 bis 6 Massen% Calciumfluorid und 0,3 bis 6 Massen% Molybdändisulfid enthalten. Eine Calciumfluoridphase und eine Molybdändisulfidphase sind in einer Matrix der gesinterten Cu-Ni-Sn-Legierung auf Kupferbasis, die das Calciumfluorid und das Molybdändisulfid enthält, dispergiert.
  • Entsprechend weist die Erfindung die folgenden Ausprägungen auf.
    • (14) Eine gesinterte Cu-Ni-Sn-Legierung auf Kupferbasis mit herausragenden Reibungseigenschaften und Verschleißbeständigkeit. Die Legierung besitzt eine Zusammensetzung, die 10 bis 40 Massen% Ni, 5 bis 25 Massen% Sn, 0,3 bis 6 Massen% Calciumfluorid, 0,3 bis 6 Massen% Molybdändisulfid und einen Rest umfasst, der Cu und unvermeidbare Verunreinigungen enthält, und sie besitzt eine Struktur, worin eine Phase mit einer Zusammensetzung, die Cu(4-x-y)NixSny (worin x: 1,7 bis 2,3, y: 0,2 bis 1,3 ist) enthält, eine Calciumfluoridphase und eine Molybdändisulfidphase in einer Matrix dispergiert sind.
    • (15) Eine gesinterte Cu-Ni-Sn-Legierung auf Kupferbasis mit herausragenden Reibungseigenschaften und Verschleißbeständigkeit. Die Legierung besitzt eine Zusammensetzung, die 10 bis 40 Massen% Ni, 5 bis 25 Massen% Sn, 0,1 bis 0,9 Massen% P, 0,3 bis 6 Massen% Calciumfluorid, 0,3 bis 6 Massen% Molybdändisulfid und einen Rest umfasst, der Cu und unvermeidbare Verunreinigungen enthält, und sie besitzt eine Struktur, worin eine Phase mit einer Zusammensetzung, die Cu(4-x-y)NixSny (worin x: 1,7 bis 2,3, y: 0,2 bis 1,3 ist) enthält, eine Phase mit einer Zusammensetzung, die Cu(4-z)Pz (worin z 0,7 bis 1,3 ist) enthält, eine Calciumfluoridphase und eine Molybdändisulfidphase in einer Matrix dispergiert sind.
    • (16) Eine gesinterte Cu-Ni-Sn-Legierung auf Kupferbasis mit herausragenden Reibungseigenschaften und Verschleißbeständigkeit. Die Legierung besitzt eine Zusammensetzung, die 10 bis 40 Massen% Ni, 5 bis 25 Massen% Sn, 1 bis 10 Massen% C, 0,3 bis 6 Massen% Calciumfluorid, 0,3 bis 6 Massen% Molybdändisulfid und einen Rest umfasst, der Cu und unvermeidbare Verunreinigungen enthält, und sie weist eine Struktur auf, in der eine Phase mit einer Zusammensetzung, die Cu(4-x-y)NixSny (worin x: 1,7 bis 2,3, y: 0,2 bis 1,3 ist) enthält, eine Graphitphase, eine Calciumfluoridphase und eine Molybdändisulfidphase in einer Matrix dispergiert sind.
    • (17) Eine gesinterte Cu-Ni-Sn-Legierung auf Kupferbasis mit herausragenden Reibungseigenschaften und Verschleißbeständigkeit. Die Legierung besitzt eine Zusammensetzung, die 10 bis 40 Massen% Ni, 5 bis 25 Massen% Sn, 0,1 bis 0,9 Massen% P, 1 bis 10 Massen% C, 0,3 bis 6 Massen% Calciumfluorid, 0,3 bis 6 Massen% Molybdändisulfid und einen Rest umfasst, der Cu und unvermeidbare Verunreinigungen enthält, und sie weist eine Struktur auf, worin eine Phase mit einer Zusammensetzung, die Cu(4-x-y)NixSny (worin x: 1,7 bis 2,3, y: 0,2 bis 1,3 ist) enthält, eine Phase mit einer Zusammensetzung, die Cu(4-z)Pz (worin z 0,7 bis 1,3 ist) enthält, eine Graphitphase, eine Calciumfluoridphase und eine Molybdändisulfidphase in einer Matrix dispergiert sind.
  • Bei den vorstehend beschriebenen Bereichen liegen die Anteile von Calciumfluorid bzw. Molybdänsulfid bevorzugt im Bereich von 0,5 bis 5 Massen%.
  • [WIRKUNGEN DER ERFINDUNG]
  • Die gesinterte Cu-Ni-Sn-Legierung auf Kupferbasis gemäß irgendeinem von (1) bis (17) zeigt herausragende Reibungseigenschaften und Verschleißbeständigkeit. Zusätzlich weist die erfindungsgemäße Legierung verbesserte Reibungseigenschaften und Verschleißbeständigkeit auf, wenn sie für verschiedene elektrische Teile und Maschinenteile, und insbesondere für ölimprägnierte Lager, verwendet wird. Insbesondere, wenn die erfindungsgemäße Legierung für das Lager einer Welle mit hoher Rotationsfrequenz verwendet wird, wird effektiv ein lager mit langer Lebensdauer erhalten.
  • KURZE BESCHREIBUNG DER ZEICHNUNGEN
  • 1 ist ein Musterdiagramm, das eine Struktur einer erfindungsgemäßen gesinterten Cu-Ni-Sn-Legierung auf Kupferbasis zeigt, die herausreichende Reibungsbeständigkeit und Verschleißbeständigkeit besitzt.
  • 2 ist ein Musterdiagramm, das eine Struktur einer erfindungsgemäßen gesinterten Cu-Ni-Sn-Legierung auf Kupferbasis zeigt, die herausreichende Reibungsbeständigkeit und Verschleißbeständigkeit besitzt.
  • 3 ist ein Musterdiagramm, das eine Struktur einer erfindungsgemäßen gesinterten Cu-Ni-Sn-Legierung auf Kupferbasis zeigt, die herausreichende Reibungsbeständigkeit und Verschleißbeständigkeit besitzt.
  • 4 ist ein Musterdiagramm, das eine Struktur einer erfindungsgemäßen gesinterten Cu-Ni-Sn-Legierung auf Kupferbasis zeigt, die herausreichende Reibungsbeständigkeit und Verschleißbeständigkeit besitzt.
  • 5 ist ein Musterdiagramm, das eine Struktur einer erfindungsgemäßen gesinterten Cu-Ni-Sn-Legierung auf Kupferbasis zeigt, die herausreichende Reibungsbeständigkeit und Verschleißbeständigkeit besitzt.
  • 6A ist eine Aufsicht, die ein Beispiel einer Ausführungsform eines Lagers aus der erfindungsgemäßen Legierung gesinterten Cu-Ni-Sn-Legierung auf Kupferbasis zeigt, die herausreichende Reibungsbeständigkeit und Verschleißbeständigkeit besitzt. gesinterten Cu-Ni-Sn-Legierung auf Kupferbasis zeigt, welche herausragende Reibungseigenschaften und Verschleißbeständigkeit besitzt.
  • 6B ist eine Querschnittansicht, die ein Beispiel der Ausführungsform des Lagers aus der erfindungsgemäßen gesinterten Cu-Ni-Sn-Legierung auf Kupferbasis zeigt, welche herausragende Reibungseigenschaften und Verschleißbeständigkeit besitzt.
  • BESTE ART ZUR DURCHFÜHRUNG DER ERFINDUNG
  • Um die gesinterte Cu-Ni-Sn-Legierung auf Kupferbasis gemäß irgendeinem von (1) bis (17) herzustellen, die herausragende Reibungseigenschaften und Verschleißbeständigkeit besitzt, werden die folgenden Ausgangspulver vorbereitet:
    ein Pulver einer Cu-Ni-Legierung mit einer Zusammensetzung, die 5 bis 45 Massen% Ni und Rest Cu und unvermeidbare Verunreinigungen enthält;
    ein Pulver einer Cu-Ni-Sn-Legierung mit einer Zusammensetzung, die 25 bis 60 Massen% Ni, 5 bis 60 Massen Sn und Rest Cu und unvermeidbare Verunreinigungen enthält;
    ein Sn-Pulver;
    ein Pulver einer Cu-P-Legierung mit einer Zusammensetzung, die 8 Massen% P und Rest Cu und unvermeidbare Verunreinigungen enthält;
    ein Graphitpulver;
    ein Calciumfluoridpulver; und
    ein Molybdändisulfidpulver.
  • Diese Pulver werden zugegeben und vermischt, um ein gemischtes Pulver mit der Zusammensetzung gemäß irgendeinem von den obigen (1) bis (17) herzustellen. Das resultierende gemischte Pulver wird verdichtet, um ein verdichtetes Pulver zu erhalten, und das verdichtete Pulver wird bei einer Temperatur, die höher ist als die gewöhnliche Sintertemperatur im Bereich von 700 bis 950°C gesintert.
  • Das erhaltene gesinterte Material wird allmählich mit einer Kühlgeschwindigkeit von 5 bis 10°C/min gekühlt, was langsamer ist als die bekannte Kühlgeschwindigkeit von 15°C/min oder schneller.
  • Auf diese Weise wird eine gesinterte Cu-Ni-Sn-Legierung auf Kupferbasis, die herausragende Reibungseigenschaften und Verschleißbeständigkeit besitzt, erhalten. In der Legierung sind Poren in einer Matrix mit einer Porosität von 5 bis 25% dispergiert und verteilt.
  • Die vorstehende erwähnte Sintertemperatur liegt bevorzugt im Bereich von 900 bis 1.080°C, und stärker bevorzugt im Bereich von 900 bis 980°C.
  • Die 6A und 6B sind eine Aufsicht bzw. eine Querschnittansicht, die Beispiele der Ausführungsform eines Lagers aus einer gesinterten Cu-Ni-Sn-Legierung auf Kupferbasis zeigen, welche herausragende Reibungseigenschaften und Verschleißbeständigkeit besitzt.
  • Als nächstes werden die Gründe beschrieben, warum die Zusammensetzung der erfindungsgemäßen gesinterten Cu-Ni-Sn-Legierung auf Kupferbasis, die herausragende Reibungseigenschaften und Verschleißbeständigkeit besitzt, und x und y für die Phase der Zusammensetzung, die Cu(4-x-y)NixSny (worin x: 1,7 bis 2,3, y: 0,2 bis 1,3 ist) enthält, auf das Obige beschränkt sind.
  • (A) Grund für die Beschränkung der Zusammensetzung
  • (a) Ni
  • Ni ist eine Komponente zur Erhöhung der Stärke/Festigkeit, der Reibungseigenschaften und der Verschleißbeständigkeit in einer Hochtemperaturumgebung. Wenn der Gehalt von Ni jedoch kleiner als 10% ist, kann der gewünschte Effekt nicht erhalten werden, und wenn der Gehalt von Ni größer als 40% ist, erhöht sich der Widerstand zwischen einer Welle und einer Gleitfläche in einer Hochtemperaturumgebung, und somit erhöht sich der Verschleiß rasch. Entsprechend wird der Gehalt von Ni, der in der erfindungsgemäßen gesinterten Cu-Ni-Sn-Legierung auf Kupferbasis enthalten ist, im Bereich von 10 bis 40% eingestellt.
  • (b) Sn
  • Sn ist eine Komponente zum Bilden einer festen Lösung als Matrix mit Cu und Ni, um die Härte/Festigkeit und die Verschleißbeständigkeit eines Lagers zu verbessern. Wenn der Gehalt von Sn jedoch kleiner als 5% ist, kann ein gewünschter Festigkeits-/härteverstärkender Effekt nicht erhalten werden, und wenn der Gehalt von Sn größer als 25% ist, wird der Verschleiß des entsprechenden Materials, wie z. B. einer Edelstahlwelle, rasch größer, und der Verschleiß des Edelstahls wird beschleunigt. Entsprechend wird der Gehalt von Sn im Bereich von 5 bis 25% eingestellt.
  • (c) P
  • P ist eine Komponente zur Verbesserung der Sinterfähigkeit zum Zeitpunkt des Sinterns und zur Verbesserung der Festigkeit/Härte einer Matrix, d. h., der Festigkeit/Härte eines Lagers. Entsprechend wird es wie benötigt zugegeben.
  • Wenn jedoch der Gehalt von P kleiner als 0,1% ist, kann in nicht-bevorzugter Weise eine ausreichende Festigkeit/Härte nicht erreicht werden, weil keine ausreichende Sinterfähigkeit ausgeübt wird. Zusätzlich wird die Festigkeit/Härte einer gesinterten Legierung verringert, wenn der Gehalt von P größer als 0,9% ist, weil die Festigkeit/Härte einer Korngrenz rasch verringert wird. Entsprechend wird der Gehalt von P im Bereich von 0,1 bis 0,9% eingestellt.
  • (d) C
  • C ist eine Komponente, die als freies Graphit existiert, wobei der Hauptteil hiervon in einer Matrix dispergiert und verteilt ist. Zusätzlich ist C eine Komponente zur Verbesserung der gleitenden/schmierenden Eigenschaften eines Lagers und der Verschleißbeständigkeit eines Lagers und einer Edelstahlwelle. Entsprechend wird es wie benötigt zugegeben. Wenn jedoch der Gehalt von C kleiner als 1% ist, ist der Dispersions- und Verteilungsgrad von freiem Graphit unzureichend, und die gewünschten, herausragenden, gleitenden/schmierenden Eigenschaften können nicht sichergestellt werden, und wenn der Gehalt größer als 10% ist, wird die Festigkeit/Härte eines Lagers rasch verringert, und dessen Verschleiß erhöht sich rasch. Entsprechend wird der Gehalt von C im Bereich von 1 bis 10% eingestellt.
  • (e) Calciumfluorid
  • Calciumfluorid dient dazu, die Beständigkeit gegenüber Reibverschweißung signifikant zu erhöhen, und somit wird es wie notwendig zugegeben. Wenn jedoch der Gehalt von Calciumfluorid kleiner als 0,3% ist, kann eine gewünschte Wirkung nicht erhalten werden, und wenn der Gehalt von Calciumfluorid größer als 6% ist, verringern sich die Härte/Festigkeit, die Reibungseigenschaften und die Verschleißbeständigkeit. Entsprechend wird Gehalt von Calciumfluorid im Bereich von 0,3 bis 6% eingestellt.
  • (f) Molybdändisulfid
  • Molybdändisulfid dient dazu, die Beständigkeit gegenüber Reibverschweißung zu erhöhen und somit wird es wie benötigt zugegeben. Wenn jedoch der Gehalt von Molybdändisulfid kleiner als 0,3% ist, kann eine gewünschte Wirkung nicht erhalten werden, und wenn der Gehalt von Molybdändisulfid größer als 6% ist, verringert sich die Festigkeit/Härte, die Reibungseigenschaften und die Verschleißbeständigkeit. Entsprechend wird der Gehalt von Molybdändisulfid im Bereich von 0,3 bis 6% eingestellt.
  • (B) Grund für die Beschränkung der Phase von Cu(4-x-y)NixSny
  • x und y für die Phase Cu(4-x-y)NixSny werden im Bereich von 1,7 bis 2,3 bzw. im Bereich von 0,2 bis 1,3 eingestellt. Eine CuNi2Sn-Phase mit großer Härte wird auf einer Matrix in großem Ausmaß durch Sintern bei einer Temperatur im Bereich von 900 bis 1.080°C, was höher als ein normaler Temperaturbereich ist, und durch allmähliches Abkühlen mit einer Geschwindigkeit, die kleiner ist als eine normale Geschwindigkeit, gebildet. Jedoch wird eine vollständige CuNi2Sn-Phase kaum gebildet, und es wird eine Cu(4-x-y)NixSny-Phase gebildet, worin x im Bereich von 1,7 bis 2,3 ist und y im Bereich von 0,2 bis 1,3 ist. Wenn x und y für eine Cu(4-x-y)NixSny-Phase in diesen Bereichen liegen, werden die Reibungseigenschaften und die Verschleißbeständigkeit der Phase verbessert.
  • [ERSTES BEISPIEL]
  • Die erfindungsgemäße gesinterte Cu-Ni-Sn-Legierung auf Kupferbasis, die Reibungseigenschaften und Verschleißbeständigkeit zeigt, wird unter Bezugnahme auf die Beispiele genau beschrieben. Als Ausgangspulver wurden Pulver mit den folgenden Eigenschaften bereitgestellt:
    ein verdöstes Cu-Ni-Pulver mit einer mittleren Partikelgröße von 150 μm oder kleiner und mit einer Zusammensetzung, enthaltend 15 bis 42,5 Massen% Ni und Rest enthaltend Cu und unvermeidbare Verunreinigungen;
    ein Pulver einer Cu-Ni-Sn-Legierung mit einer mittleren Partikelgröße von 150 μm oder kleiner und mit einer Zusammensetzung, die 25 bis 60 Massen% Ni, 5 bis 60 Massen% Sn und einen Rest, enthaltend Cu und unvermeidbare Verunreinigungen, enthält;
    ein verdöstes Sn-Pulver mit einer mittleren Partikelgröße von 20 μm;
    ein Pulver einer Cu-P-Legierung (eutektische Cu-8,4%ige P-Legierung) mit einer mittleren Partikelgröße von 150 μm oder kleiner;
    ein Graphitpulver mit einer mittleren Partikelgröße von 20 μm;
    ein CaF2-Pulver mit einer mittleren Partikelgröße von 60 μm; und
    ein MoS2-Pulver mit einer mittleren Partikelgröße von 150 μm oder kleiner.
  • Die Ausgangspulver wurden zugegeben, um die in den Tabellen 1 und 2 beschriebenen endgültigen Zusammensetzungen zu erhalten, und hierzu wurde 1% Stearinsäure zugegeben, und dann wurde die Mischung in einem V-förmigen Mischer für 20 Minuten gemischt. Anschließend wurde die Mischung einem Pressen unterzogen, um ein verdichtetes Pulver zu erhalten, und das verdichtete Pulver wurde bei einer vorbestimmten Temperatur im Bereich von 900 und 1.080°C in einer zersetzten Ammoniakatmosphäre gesintert. Als Ergebnis wurden die ringförmigen Teststücke 1 bis 16 der erfindungsgemäßen gesinterten Cu-Ni-Sn-Legierung auf Kupferbasis, die ringförmigen Vergleichsteststücke 1 bis 8 einer gesinterten Cu-Ni-Sn-Legierung auf Kupferbasis und die ringförmigen Teststücke 1 bis 3 einer bekannten gesinterten Cu-Ni-Sn-Legierung auf Kupferbasis hergestellt, die jeweils die in den Tabellen 1 und 2 beschriebenen Zusammensetzungen und Porositäten aufwiesen. Diese besaßen alle die gleiche Größe wie folgt: Außendurchmesser 18 mm × Innendurchmesser 8 mm × Höhe 8 mm.
  • Ein repräsentatives Teststück der erhaltenen ringförmigen Teststücke 1 bis 16 der erfindungsgemäßen gesinterten Cu Ni-Sn-Legierung auf Kupferbasis wurde mit EPMA betrachtet, und die beobachtete Struktur ist in den Musterdiagrammen 1 bis 5 gezeigt. 1 ist ein Musterdiagramm, das eine Struktur einer erfindungsgemäßen gesinterten Cu-Ni-Sn-Legierung auf Kupferbasis 1 zeigt, 2 ist ein Musterdiagramm, das eine Struktur einer erfindungsgemäßen gesinterten Cu-Ni-Sn-Legierung auf Kupferbasis 3 zeigt, 3 ist ein Musterdiagramm, das eine Struktur einer erfindungsgemäßen gesinterten Cu-Ni-Sn-Legierung auf Kupferbasis 4 zeigt, 4 ist ein Musterdiagramm, das eine Struktur einer erfindungsgemäßen gesinterten Cu-Ni-Sn-Legierung auf Kupferbasis 8 zeigt und 5 ist ein Musterdiagramm, das eine Struktur einer erfindungsgemäßen gesinterten Cu-Ni-Sn-Legierung auf Kupferbasis 16 zeigt.
  • Die erhaltenen ringförmigen Teststücke 1 bis 16 der erfindungsgemäßen gesinterten Cu-Ni-Sn-Legierung auf Kupferbasis, die ringförmigen Vergleichsteststücke 1 bis 8 einer gesinterten Cu-Ni-Sn-Legierung auf Kupferbasis und die ringförmigen Teststücke 1 bis 3 einer bekannten gesinterten Cu-Ni-Sn-Legierung auf Kupferbasis wurden in Synthetiköl eingetaucht. Unter Verwendung der ringförmigen Teststücke 1 bis 16 der erfindungsgemäßen gesinterten Cu-Ni-Sn-Legierung auf Kupferbasis, der ringförmigen Vergleichsteststücke 1 bis 8 einer gesinterten Cu-Ni-Sn-Legierung auf Kupferbasis und der ringförmigen Teststücke 1 bis 3 einer bekannten gesinterten Cu-Ni-Sn-Legierung auf Kupferbasis, die in das Synthetiköl eingetaucht worden waren, wurden die nachstehend beschriebenen Tests durchgeführt.
  • Bruchtest:
  • Die ringförmigen Teststücke 1 bis 16 der erfindungsgemäßen gesinterten Cu-Ni-Sn-Legierung auf Kupferbasis, die ringförmigen Vergleichsteststücke 1 bis 8 einer gesinterten Cu-Ni-Sn-Legierung auf Kupferbasis und die ringförmigen Teststücke 1 bis 3 einer bekannten gesinterten Cu-Ni-Sn-Legierung auf Kupferbasis, die in Synthetiköl eingetaucht worden waren, wurden auf 120°C erwärmt, und es wurde eine Belastung auf die erwärmten ringförmigen Teststücke aus deren Radialrichtung ausgeübt. Die Bruchbelastungen (maximales Gewicht) zu dem Zeitpunkt, bei dem die ringförmigen Teststücke brachen, wurden gemessen, und die Festigkeit und Härte von jedem Teststück wurde wie in den Tabellen 1 und 2 bewertet.
  • Test der Verschleißbeständigkeit:
  • Eine Welle aus SUS304, endbehandelt mit 6S, wurde in die ringförmigen Teststücke 1 bis 16 der erfindungsgemäßen gesinterten Cu-Ni-Sn-Legierung auf Kupferbasis, in die ringförmigen Vergleichsteststücke 1 bis 8 einer gesinterten Cu-Ni-Sn-Legierung auf Kupferbasis und in die ringförmigen Teststücke 1 bis 3 einer bekannten gesinterten Cu-Ni-Sn-Legierung auf Kupferbasis, die in Synthetiköl eingetaucht worden waren, eingeführt. Dann wurden die ringförmigen Teststücke auf 120°C erwärmt, während eine Belastung von 0,2 MPa von außerhalb der ringförmigen Teststücke in der Radialrichtung (die Richtung rechtwinklig zur Achsenrichtung der Welle) der ringförmigen Teststücke 1 bis 16 aus der erfindungsgemäßen gesinterten Cu-Ni-Sn-Legierung auf Kupferbasis, der ringförmigen Vergleichsteststücke 1 bis 8 einer gesinterten Cu-Ni-Sn-Legierung auf Kupferbasis und der ringförmigen Teststücke 1 bis 3 einer bekannten gesinterten Cu-Ni-Sn-Legierung auf Kupferbasis ausgeübt wurde. Anschließend wurde die Welle für 30 Minuten mit einer Geschwindigkeit von 50 m/min rotiert. Die maximale Verschleißtiefe am Innendurchmesser von jedem Teststück wurde gemessen, und die Festigkeit/Härte, die Reibungseigenschaften und die Verschleißbeständigkeit von jedem Teststück wurden, wie in den Tabellen 1 und 2 beschrieben bewertet.
  • Test der Beständigkeit gegen Reibverschweißung:
  • Eine Welle aus SUS304, endbehandelt mit 6S, wurde in die ringförmigen Teststücke 1 bis 16 der erfindungsgemäßen gesinterten Cu-Ni-Sn-Legierung auf Kupferbasis, die ringförmigen Vergleichsteststücke 1 bis 8 einer gesinterten Cu-Ni-Sn-Legierung auf Kupferbasis und in die ringförmigen Teststücke 1 bis 3 aus einer bekannten gesinterten Cu-Ni-Sn-Legierung auf Kupferbasis, die in Synthetiköl eingetaucht worden waren, eingeführt. Dann wurden die ringförmigen Teststücke 1 bis 16 der erfindungsgemäßen gesinterten Cu-Ni-Sn-Legierung auf Kupferbasis, die ringförmigen Vergleichsteststücke 1 bis 8 einer gesinterten Cu-Ni-Sn-Legierung auf Kupferbasis und die Teststücke 1 bis 3 aus einer bekannten gesinterten Cu-Ni-Sn-Legierung auf Kupferbasis bei 120°C gehalten, und die Welle wurde für 30 Minuten mit einer Geschwindigkeit von 50 m/min rotiert, während eine Belastung in Radialrichtung (Richtung rechtwinklig zur Achsenrichtung der Welle) der ringförmigen Teststücke ausgeübt wurde. Anschließend wurde die Belastung allmählich erhöht, und es wurde die Belastung zu dem Zeitpunkt gemessen, als sich eine Reibverschweißung bildete. Die Beständigkeit gegenüber Reibverschweißung von jedem Teststück wurde wie in den Tabellen 1 und 2 bestimmt.
  • Figure 00230001
  • Figure 00240001
  • INDUSTRIELLE ANWENDBARKEIT
  • Die gesinterte Cu-Ni-Sn-Legierung auf Kupferbasis gemäß irgendeinem der obigen (1) bis (17) zeigt herausragende Reibungseigenschaften und Verschleißbeständigkeit. Zusätzlich weist die erfindungsgemäße Legierung verbesserte Reibungseigenschaften und Verschleißbeständigkeit auf, wenn sie für verschiedene elektrische Teile und mechanische Teile, und insbesondere für ein ölimprägniertes Lager verwendet wird. Insbesondere wenn die erfindungsgemäße Legierung für ein Lager einer Welle mit hoher Rotationsgeschwindigkeit verwendet wird, wird effektiv ein Lager mit langer Lebensdauer erhalten.
  • ZUSAMMENFASSUNG
  • Eine gesinterte Cu-Ni-Sn-Legierung auf Kupferbasis mit einer Zusammensetzung, die 10 bis 40 Massen% Ni, 5 bis 25 Massen% Sn und einen Rest, enthaltend Cu und unvermeidbare Verunreinigungen, und, falls notwendig, 0,1 bis 0,9 Massen% P, 1 bis 10 Massen% C, 0,3 bis 6 Massen% Calciumfluorid oder 0,3 bis 6 Massen% Molybdändisulfid umfasst. In der Struktur der Legierung ist eine Phase mit einer Zusammensetzung, die Cu(4-x-y)NixSny (worin x: 1,7 bis 2,3, y: 0,2 bis 1,3 ist) enthält, dispergiert.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • - JP 2006-176255 [0002]
    • - JP 2004-68074 A [0004]
    • - JP 2005-314807 A [0004]

Claims (18)

  1. Gesinterte Cu-Ni-Sn-Legierung auf Kupferbasis, umfassend eine Struktur, worin eine Phase mit einer Zusammensetzung enthaltend Cu(4-x-y)NixSny (worin x: 1,7 bis 2,3, y: 0,2 bis 1,3 ist) in einer Matrix der gesinterten Cu-Ni-Sn-Legierung auf Kupferbasis, die Ni, Sn und Cu enthält, dispergiert ist.
  2. Gesinterte Cu-Ni-Sn-Legierung auf Kupferbasis, die eine Zusammensetzung umfasst, welche 10 bis 40 Massen Ni, 5 bis 25 Massen% Sn und einen Rest enthält, der Cu und unvermeidbare Verunreinigungen enthält, und die eine Struktur aufweist, worin eine Phase mit einer Zusammensetzung, die Cu(4-x-y)NixSny (worin x: 1,7 bis 2,3, y: 0,2 bis 1,3 ist) enthält, in einer Matrix dispergiert ist.
  3. Gesinterte Cu-Ni-Sn-Legierung auf Kupferbasis, umfassend eine Zusammensetzung, die 10 bis 40 Massen Ni, 5 bis 25 Massen% Sn, 0,1 bis 0,9 Massen% P und einen Rest enthält, der Cu und unvermeidbare Verunreinigungen enthält, und die eine Struktur aufweist, worin eine Phase mit einer Zusammensetzung, die Cu(4-x-y)NixSny (worin x: 1,7 bis 2,3, y: 0,2 bis 1,3 ist) enthält, und eine Phase mit einer Zusammensetzung, die Cu(4-z)Pz (worin z 0,7 bis 1,3 ist) enthält, in einer Matrix dispergiert sind.
  4. Gesinterte Cu-Ni-Sn-Legierung auf Kupferbasis, umfassend eine Zusammensetzung, die 10 bis 40 Massen Ni, 5 bis 25 Massen% Sn, 1 bis 10 Massen% C und einen Rest enthält, der Cu und unvermeidbare Verunreinigungen enthält, und die eine Struktur aufweist, worin eine Phase mit einer Zusammensetzung, die Cu(4-x-y)NixSny (worin x: 1,7 bis 2,3, y: 0,2 bis 1,3 ist) enthält, und eine Graphitphase in einer Matrix dispergiert ist.
  5. Gesinterte Cu-Ni-Sn-Legierung auf Kupferbasis, umfassend eine Zusammensetzung, die 10 bis 40 Massen% Ni, 5 bis 25 Massen% Sn, 0,1 bis 0,9 Massen% P, 1 bis 10 Massen% C und einen Rest enthält, der Cu und unvermeidbare Verunreinigungen enthält, und die eine Struktur aufweist, worin eine Phase mit einer Zusammensetzung, die Cu(4-x-y)NixSny (worin x: 1,7 bis 2,3, y: 0,2 bis 1,3 ist) enthält, eine Phase mit einer Zusammensetzung, die Cu(4-z)Pz (worin z 0,7 bis 1,3 ist) enthält, und eine Graphitphase in einer Matrix dispergiert sind.
  6. Gesinterte Cu-Ni-Sn-Legierung auf Kupferbasis, umfassend eine Zusammensetzung, die 10 bis 40 Massen% Ni, 5 bis 25. Massen% Sn, 0,3 bis 6 Massen% Calciumfluorid und einen Rest enthält, der Cu und unvermeidbare Verunreinigungen enthält, und die eine Struktur aufweist, worin eine Phase mit einer Zusammensetzung, die Cu(4-x-y)NixSny (worin x: 1,7 bis 2,3, y: 0,2 bis 1,3 ist) enthält, und eine Calciumfluoridphase in einer Matrix dispergiert sind.
  7. Gesinterte Cu-Ni-Sn-Legierung auf Kupferbasis, umfassend eine Zusammensetzung, die 10 bis 40 Massen% Ni, 5 bis 25 Massen% Sn, 0,1 bis 0,9 Massen% P, 0,3 bis 6 Massen% Calciumfluorid und einen Rest enthält, der Cu und unvermeidbare Verunreinigungen enthält, und die eine Struktur aufweist, worin eine Phase mit einer Zusammensetzung, die Cu(4-x-y)NixSny (worin x: 1,7 bis 2,3, y: 0,2 bis 1,3 ist) enthält, eine Phase mit einer Zusammensetzung, die Cu(4-z)Pz (worin z 0,7 bis 1,3 ist) enthält, und eine Calciumfluoridphase in einer Matrix dispergiert sind.
  8. Gesinterte Cu-Ni-Sn-Legierung auf Kupferbasis, umfassend eine Zusammensetzung, die 10 bis 40 Massen% Ni, 5 bis 25 Massen% Sn, 1 bis 10 Massen% C, 0,3 bis 6 Massen% Calciumfluorid und einen Rest enthält, der Cu und unvermeidbare Verunreinigungen enthält, und die eine Struktur aufweist, worin eine Phase mit einer Zusammensetzung, die Cu(4-x-y)NixSny (worin x: 1,7 bis 2,3, y: 0,2 bis 1,3 ist) enthält, eine Graphitphase und eine Calciumfluoridphase in einer Matrix dispergiert sind.
  9. Gesinterte Cu-Ni-Sn-Legierung auf Kupferbasis, umfassend eine Zusammensetzung, die 10 bis 40 Massen% Ni, 5 bis 25 Massen% Sn, 0,1 bis 0,9 Massen% P, 1 bis 10 Massen% C, 0,3 bis 6 Massen% Calciumfluorid und einen Rest enthält, der Cu und unvermeidbare Verunreinigungen enthält, und die eine Struktur aufweist, worin eine Phase mit einer Zusammensetzung, die Cu(4-x-y)NixSny (worin x: 1,7 bis 2,3, y: 0,2 bis 1,3 ist) enthält, eine Phase mit einer Zusammensetzung, die Cu(4-z)Pz (worin z 0,7 bis 1,3 ist) enthält, eine Graphitphase und eine Calciumfluoridphase in einer Matrix dispergiert sind.
  10. Gesinterte Cu-Ni-Sn-Legierung auf Kupferbasis, umfassend eine Zusammensetzung, die 10 bis 40 Massen% Ni, 5 bis 25 Massen% Sn, 0,3 bis 6 Massen% Molybdändisulfid und einen Rest enthält, der Cu und unvermeidbare Verunreinigungen enthält, und die eine Struktur aufweist, worin eine Phase mit einer Zusammensetzung, die Cu(4-x-y)NixSny (worin x: 1,7 bis 2,3, y: 0,2 bis 1,3 ist) enthält, und eine Molybdändisulfidphase in einer Matrix dispergiert sind.
  11. Gesinterte Cu-Ni-Sn-Legierung auf Kupferbasis, umfassend eine Zusammensetzung, die 10 bis 40 Massen% Ni, 5 bis 25 Massen% Sn, 0,1 bis 0,9 Massen% P, 0,3 bis 6 Massen% Molybdändisulfid und einen Rest enthält, der Cu und unvermeidbare Verunreinigungen enthält, und die eine Struktur aufweist, worin eine Phase mit einer Zusammensetzung, die Cu(4-x-y)NixSny (worin x: 1,7 bis 2,3, y: 0,2 bis 1,3 ist) enthält, eine Phase mit einer Zusammensetzung, die Cu(4-z)Pz (worin z 0,7 bis 1,3 ist) enthält, und eine Molybdändisulfidphase in einer Matrix dispergiert sind.
  12. Gesinterte Cu-Ni-Sn-Legierung auf Kupferbasis, umfassend eine Zusammensetzung, die 10 bis 40 Massen% Ni, 5 bis 25 Massen% Sn, 1 bis 10 Massen% C, 0,3 bis 6 Massen% Molybdändisulfid und einen Rest enthält, der Cu und unvermeidbare Verunreinigungen enthält, und die eine Struktur aufweist, worin eine Phase mit einer Zusammensetzung, die Cu(4-x-y)NixSny (worin x: 1,7 bis 2,3, y: 0,2 bis 1,3 ist) enthält, eine Graphitphase und eine Molybdändisulfidphase in einer Matrix dispergiert sind.
  13. Gesinterte Cu-Ni-Sn-Legierung auf Kupferbasis, umfassend eine Zusammensetzung, die 10 bis 40 Massen% Ni, 5 bis 25 Massen% Sn, 0,1 bis 0,9 Massen% P, 1 bis 10 Massen% C, 0,3 bis 6 Massen% Molybdändisulfid und einen Rest enthält, der Cu und unvermeidbare Verunreinigungen enthält, und die eine Struktur aufweist, worin eine Phase mit einer Zusammensetzung, die Cu(4-x-y)NixSny (worin x: 1,7 bis 2,3, y: 0,2 bis 1,3 ist) enthält, eine Phase mit einer Zusammensetzung, die Cu(4-z)Pz (worin z 0,7 bis 1,3 ist) enthält, eine Graphitphase und eine Molybdändisulfidphase in einer Matrix dispergiert sind.
  14. Gesinterte Cu-Ni-Sn-Legierung auf Kupferbasis, umfassend eine Zusammensetzung, die 10 bis 40 Massen Ni, 5 bis 25 Massen% Sn, 0,3 bis 6 Massen% Calciumfluorid, 0,3 bis 6 Massen% Molybdändisulfid und einen Rest enthält, der Cu und unvermeidbare Verunreinigungen enthält, und die eine Struktur aufweist, worin eine Phase mit einer Zusammensetzung, die Cu(4-x-y)NixSny (worin x: 1,7 bis 2,3, y: 0,2 bis 1,3 ist) enthält, eine Calciumfluoridphase und eine Molybdändisulfidphase in einer Matrix dispergiert sind.
  15. Gesinterte Cu-Ni-Sn-Legierung auf Kupferbasis, umfassend eine Zusammensetzung, die 10 bis 40 Massen% Ni, 5 bis 25 Massen% Sn, 0,1 bis 0,9 Massen% P, 0,3 bis 6 Massen% Calciumfluorid, 0,3 bis 6 Massen% Molybdändisulfid und einen Rest enthält, der Cu und unvermeidbare Verunreinigungen enthält, und die eine Struktur aufweist, worin eine Phase mit einer Zusammensetzung, die Cu(4-x-y)NixSny (worin x: 1,7 bis 2,3, y: 0,2 bis 1,3 ist) enthält, eine Phase mit einer Zusammensetzung, die Cu(4-z)Pz (worin z 0,7 bis 1,3 ist) enthält, eine Calciumfluoridphase und eine Molybdändisulfidphase in einer Matrix dispergiert sind.
  16. Gesinterte Cu-Ni-Sn-Legierung auf Kupferbasis, umfassend eine Zusammensetzung, die 10 bis 40 Massen% Ni, 5 bis 25 Massen% Sn, 1 bis 10 Massen% C, 0,3 bis 6 Massen% Calciumfluorid, 0,3 bis 6 Massen% Molybdändisulfid und einen Rest enthält, der Cu und unvermeidbare Verunreinigungen enthält, und die eine Struktur aufweist, worin eine Phase mit einer Zusammensetzung, die Cu(4-x-y)NixSny (worin x: 1,7 bis 2,3, y: 0,2 bis 1,3 ist) enthält, eine Graphitphase, eine Calciumfluoridphase und eine Molybdändisulfidphase in einer Matrix dispergiert sind.
  17. Gesinterte Cu-Ni-Sn-Legierung auf Kupferbasis, umfassend eine Zusammensetzung, die 10 bis 40 Massen Ni, 5 bis 25 Massen% Sn, 0,1 bis 0,9 Massen% P, 1 bis 10 Massen% C, 0,3 bis 6 Massen% Calciumfluorid, 0,3 bis 6 Massen% Molybdändisulfid und einen Rest enthält, der Cu und unvermeidbare Verunreinigungen enthält, und die eine Struktur aufweist, worin eine Phase mit einer Zusammensetzung, die Cu(4-x-y)NixSny (worin x: 1,7 bis 2,3, y: 0,2 bis 1,3 ist) enthält, eine Phase mit einer Zusammensetzung, die Cu(4-z)Pz (worin z 0,7 bis 1,3 ist) enthält, eine Graphitphase, eine Calciumfluoridphase und eine Molybdändisulfidphase in einer Matrix dispergiert sind.
  18. Lager, das hergestellt ist aus einer gesinterten Cu-Ni-Sn-Legierung auf Kupferbasis gemäß irgendeinem von Anspruch 1 bis 17.
DE112007001514.4T 2006-06-27 2007-06-27 Abriebbeständige gesinterte Cu-Ni-Sn-Legierung auf Kupferbasis und hieraus hergestelltes (Kugel-)Lager Expired - Fee Related DE112007001514B4 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006176255A JP5371182B2 (ja) 2006-06-27 2006-06-27 耐摩擦摩耗性に優れたCu−Ni−Sn系銅基焼結合金およびその合金からなる軸受材
JP2006-176255 2006-06-27
PCT/JP2007/062841 WO2008001789A1 (en) 2006-06-27 2007-06-27 Cu-Ni-Sn COPPER BASE SINTERED ALLOY EXCELLENT IN WEAR RESISTANCE AND BEARING MEMBER MADE OF THE ALLOY

Publications (3)

Publication Number Publication Date
DE112007001514T5 true DE112007001514T5 (de) 2009-12-03
DE112007001514T8 DE112007001514T8 (de) 2010-04-22
DE112007001514B4 DE112007001514B4 (de) 2015-11-12

Family

ID=38845553

Family Applications (1)

Application Number Title Priority Date Filing Date
DE112007001514.4T Expired - Fee Related DE112007001514B4 (de) 2006-06-27 2007-06-27 Abriebbeständige gesinterte Cu-Ni-Sn-Legierung auf Kupferbasis und hieraus hergestelltes (Kugel-)Lager

Country Status (5)

Country Link
US (1) US20090311129A1 (de)
JP (1) JP5371182B2 (de)
CN (1) CN101517105A (de)
DE (1) DE112007001514B4 (de)
WO (1) WO2008001789A1 (de)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5684977B2 (ja) * 2009-08-31 2015-03-18 株式会社ダイヤメット Cu基焼結摺動部材
EP2639321B1 (de) * 2010-11-08 2018-02-28 Diamet Corporation Ölhaltiges gesintertes lager auf cu-basis
KR101849809B1 (ko) * 2010-11-10 2018-04-17 가부시키가이샤 다이야멧트 모터식 연료 분사 펌프용 소결 베어링
EP2487269A1 (de) * 2011-02-09 2012-08-15 Kugler Bimetal SA Herstellungsverfahren einer abriebfesten Legierung
JP2013023707A (ja) * 2011-07-18 2013-02-04 Fukuda Metal Foil & Powder Co Ltd 粉末冶金用混合粉末
IN2014DN07929A (de) 2012-03-13 2015-05-01 Ntn Toyo Bearing Co Ltd
CN104736846B (zh) * 2012-10-15 2017-06-06 日立建机株式会社 液压旋转机
CN104060146A (zh) * 2013-03-21 2014-09-24 瑞安市华驰机车部件有限公司 粉末合金刹车片及其制备方法
JP6011805B2 (ja) * 2013-04-22 2016-10-19 日立化成株式会社 焼結含油軸受およびその製造方法
WO2015025576A1 (ja) * 2013-08-20 2015-02-26 日立オートモティブシステムズ株式会社 内燃機関用電動式空気流量制御装置
US9631157B2 (en) * 2013-10-18 2017-04-25 Weatherford Technology Holdings, Llc Cu—Ni—Sn alloy overlay for bearing surfaces on oilfield equipment
CN103757464A (zh) * 2014-01-02 2014-04-30 江苏大学 一种铜基自润滑复合材料及其制备方法
JP6440297B2 (ja) 2014-09-04 2018-12-19 株式会社ダイヤメット Cu基焼結軸受
JP6468766B2 (ja) 2014-09-11 2019-02-13 株式会社ダイヤメット 耐食性、耐熱性、耐摩耗性に優れた焼結摺動材及びその製造方法
EP3424623B1 (de) * 2016-03-04 2023-03-29 Diamet Corporation Cu-basiertes gesintertes gleitmaterial und herstellungsverfahren dafür
JP6817094B2 (ja) * 2016-07-29 2021-01-20 株式会社ダイヤメット 鉄銅基焼結含油軸受及びその製造方法
CN106544542B (zh) * 2016-11-10 2018-10-02 合肥工业大学 一种无铅铜基滑动轴承材料及其制备方法
JP6769007B2 (ja) * 2017-06-29 2020-10-14 株式会社ダイヤメット モータ式燃料ポンプ用焼結軸受及びその製造方法
CN108425085B (zh) * 2018-03-27 2020-12-01 矿冶科技集团有限公司 一种复合型CuNiIn粉末及其制备方法与应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004068074A (ja) 2002-08-06 2004-03-04 Mitsubishi Materials Corp 高温環境下ですぐれた耐摩耗性を示すEGR式内燃機関の再循環排ガス流量制御弁の焼結Cu合金製軸受
JP2005314807A (ja) 2004-03-31 2005-11-10 Mitsubishi Materials Corp 内接式ギヤポンプのインナーロータおよびアウターロータ
JP2006176255A (ja) 2004-12-21 2006-07-06 Murata Mach Ltd 搬送システム

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6043903B2 (ja) * 1979-06-14 1985-10-01 三菱電機株式会社 Cu−Ni−Sn合金の強化法
BR8606279A (pt) * 1985-12-19 1987-10-06 Pfizer Processo para a preparacao de um artigo de liga espinodal a base de cobre distinto e artigo de manufatura
JPS62192549A (ja) * 1986-02-19 1987-08-24 Inoue Japax Res Inc 通電子用銅合金
JPH02125829A (ja) * 1988-08-23 1990-05-14 Komatsu Ltd 青銅系焼結材料
JPH05195117A (ja) * 1992-01-17 1993-08-03 Toyota Motor Corp Cu基焼結合金
GB2281078B (en) * 1993-08-16 1997-08-13 Smith International Rock bit bearing material
JPH08253826A (ja) * 1994-10-19 1996-10-01 Sumitomo Electric Ind Ltd 焼結摩擦材およびそれに用いられる複合銅合金粉末とそれらの製造方法
JPH11256206A (ja) * 1998-03-06 1999-09-21 Mabuchi Motor Co Ltd 小型モータ及びその焼結合金製含油軸受の製造方法
JP2001241445A (ja) * 2000-02-28 2001-09-07 Daido Metal Co Ltd 銅系摺動材料、その製造方法およびすべり軸受
JP4385618B2 (ja) * 2002-08-28 2009-12-16 オイレス工業株式会社 多孔質静圧気体軸受用の軸受素材及びこれを用いた多孔質静圧気体軸受
JP4507766B2 (ja) * 2004-08-27 2010-07-21 株式会社ダイヤメット 高強度を示しかつ高温環境下ですぐれた耐摩耗性を示すEGR式内燃機関の再循環排ガス流量制御弁用焼結Cu合金製軸受

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004068074A (ja) 2002-08-06 2004-03-04 Mitsubishi Materials Corp 高温環境下ですぐれた耐摩耗性を示すEGR式内燃機関の再循環排ガス流量制御弁の焼結Cu合金製軸受
JP2005314807A (ja) 2004-03-31 2005-11-10 Mitsubishi Materials Corp 内接式ギヤポンプのインナーロータおよびアウターロータ
JP2006176255A (ja) 2004-12-21 2006-07-06 Murata Mach Ltd 搬送システム

Also Published As

Publication number Publication date
US20090311129A1 (en) 2009-12-17
JP5371182B2 (ja) 2013-12-18
DE112007001514B4 (de) 2015-11-12
WO2008001789A1 (en) 2008-01-03
JP2008007796A (ja) 2008-01-17
CN101517105A (zh) 2009-08-26
DE112007001514T8 (de) 2010-04-22

Similar Documents

Publication Publication Date Title
DE112007001514T5 (de) Anriebbeständige gesinterte Cu-Ni-Sn-Legierung auf Kupferbasis und hieraus hergestelltes (Kugel-)Lager
DE602005001976T2 (de) Bleifreies Lager für Kraftstoffeinspritzpumpe
DE102012018964B4 (de) Auf Eisen-Basis gesinterter Gleitkörper und Verfahren zu seiner Herstellung
DE2809866C2 (de) Lagerlegierung auf Aluminiumbasis
DE10305808A1 (de) Gleitmaterial
AT412284B (de) Aluminiumknetlegierung
DE102007033902B3 (de) Bleifreier gesinterter Gleitlagerwerkstoff und Sinterpulver zur Herstellung desselben
DE4139021C2 (de) Gleitelement
DD296994A5 (de) Schichtwerkstoff fuer gleitlagerelemente mit antifriktionsschicht aus einem lagerwerkstoff auf aluminiumbasis
DE10213489B4 (de) Sinterlegierungslager auf Kupferbasis und Motorkraftstoffpumpe
DE2201515C3 (de) Verfahren zur Herstellung einer bei hohen Temperaturen verschleißfesten Sinterlegierungen
DE102012204967B4 (de) Kupfer-basiertes Gleitmaterial
JPH02107731A (ja) 耐摩耗性銅系焼結含油軸受材料
DE2406070C3 (de) Gleitdichtung fur Verbrennungsmotoren
DE102004011831B3 (de) Gesinterter Gleitlagerwerkstoff, Gleitlagerverbundwerkstoff sowie dessen Verwendungen
EP1698707B1 (de) Gleitlager mit bleifreier lagermetallschicht auf kupferbasis mit zinn und zink
DE3712108C2 (de) Zusammengebaute Steuerwelle
EP2845917A2 (de) Gleitlagerverbundwerkstoff, der eine Schicht einer Aluminiumlegierung enthält
DE10138058A1 (de) Vollmateriallager und Verfahren zu seiner Herstellung
DE19708197B4 (de) Gesintertes Gleitelement und Verfahren zu dessen Herstellung
DE112013004670T5 (de) Gleitlageranordnung
JP7376998B2 (ja) 摺動部材用合金、摺動部材、内燃機関、及び自動車
DE2145690C3 (de) Bei hoher Temperatur verschleißfeste Legierung auf Kupferbasis
EP0376368B1 (de) Verfahren zur Herstellung von Lagerungen
DE102020114694B4 (de) Harte partikel und gesinterte gleitelemente unter verwendung derselben

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8696 Reprint of erroneous front page
OP8 Request for examination as to paragraph 44 patent law
8127 New person/name/address of the applicant

Owner name: DIAMENT CORP., NIIGATA, JP

8127 New person/name/address of the applicant

Owner name: DIAMET CORP.,, NIIGATA, JP

R016 Response to examination communication
R016 Response to examination communication
R018 Grant decision by examination section/examining division
R020 Patent grant now final
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee