DE10347133A1 - Abgasnachbehandlungssysteme - Google Patents

Abgasnachbehandlungssysteme Download PDF

Info

Publication number
DE10347133A1
DE10347133A1 DE10347133A DE10347133A DE10347133A1 DE 10347133 A1 DE10347133 A1 DE 10347133A1 DE 10347133 A DE10347133 A DE 10347133A DE 10347133 A DE10347133 A DE 10347133A DE 10347133 A1 DE10347133 A1 DE 10347133A1
Authority
DE
Germany
Prior art keywords
reductant
temperature
filter
catalyst
particle filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE10347133A
Other languages
English (en)
Other versions
DE10347133B4 (de
Inventor
Robert Henry Franklin Hammerle
Christine Kay Westland Lambert
Paul M. Canton Laing
Paul Joseph Oak Park Tennison
William Charles Farmingtion Hills Ruona
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ford Global Technologies LLC
Original Assignee
Ford Global Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ford Global Technologies LLC filed Critical Ford Global Technologies LLC
Publication of DE10347133A1 publication Critical patent/DE10347133A1/de
Application granted granted Critical
Publication of DE10347133B4 publication Critical patent/DE10347133B4/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/30Arrangements for supply of additional air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0093Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are of the same type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/025Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust
    • F01N3/0253Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust adding fuel to exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/105General auxiliary catalysts, e.g. upstream or downstream of the main catalyst
    • F01N3/106Auxiliary oxidation catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • F01N3/208Control of selective catalytic reduction [SCR], e.g. dosing of reducing agent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/146Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
    • F02D41/1461Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases emitted by the engine
    • F02D41/1462Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases emitted by the engine with determination means using an estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/16Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being an electric heater, i.e. a resistance heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2430/00Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
    • F01N2430/08Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by modifying ignition or injection timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/18Ammonia
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/03Adding substances to exhaust gases the substance being hydrocarbons, e.g. engine fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/08Adding substances to exhaust gases with prior mixing of the substances with a gas, e.g. air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/10Adding substances to exhaust gases the substance being heated, e.g. by heating tank or supply line of the added substance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/10Adding substances to exhaust gases the substance being heated, e.g. by heating tank or supply line of the added substance
    • F01N2610/107Adding substances to exhaust gases the substance being heated, e.g. by heating tank or supply line of the added substance using glow plug heating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/024Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/029Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a particulate filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
    • F02M69/08Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel characterised by the fuel being carried by compressed air into main stream of combustion-air
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

Es werden ein System und ein Verfahren für effektive NO¶x¶- und Partikelmaterial-Steuerung in einem Diesel- oder sonstigen Innenverbrennungsmagermotoren vorgestellt. Das System umfaßt einen harnstoffbasierten SCR-Katalysator mit einem stromauf desselben angeschlossenen Oxidationskatalysator und einem stromab vom SCR-Katalysator angeschlossenen Partikelfilter. Das Verfahren zur Partikelfiltergenerierung lehrt die Steuerung von Betriebsbedingungen, um die Partikelfiltertemperatur in einen Bereich zu bringen, bei dem eine exotherme Reaktion zwischen Kohlenwasserstoffen und Sauerstoff eintritt. Nachdem dies erreicht wurde, werden zusätzliche Kohlenwasserstoffe in das in den Partikelfilter eintretende Abgas eingespritzt, wo sie verbrennen und die resultierende Exotherme den Filter regeneriert. Dieses Verfahren erreicht eine wirksame Beherrschung von Partikelmaterial und beseitigt gleichzeitig das Risiko einer thermischen Beschädigung der stromab gelegenen Vorrichtungen und minimiert den durch die Regenerierung entstehenden Kraftstoffmehrverbrauch.

Description

  • Gebiet der Erfindung
  • Die vorliegende Erfindung bezieht sich auf ein Abgasreinigungssystem für Diesel- und sonstige Fahrzeuge mit Magermotoren und insbesondere auf eine im Hinblick auf verbesserte Abgasreinigung konstruierte neuartige Systemkonfiguration.
  • Hintergrund und Zusammenfassung der Erfindung
  • Die aktuellen Abgasvorschriften erfordern in den Abgassystemen von Kraftfahrzeugen die Verwendung von Katalysatoren, um Kohlenmonoxid (CO), Kohlenwasserstoffe (HC) und Stickoxide (NOx), die während des Motorbetriebes entstehen, in keinen Bestimmungen unterliegende Abgase umzuwandeln. Mit Diesel- oder sonstigen Magermotoren ausgerüstete Fahrzeuge bieten den Vorteil verbesserter Kraftstoffökonomie, jedoch ist in solchen Systemen die Beherrschung von NOx-Emissionen aufgrund des hohen Anteils von Sauerstoff im Abgas schwierig. In diesem Zusammenhang sind Katalysatoren für selektive katalytische Reduktion (SRC-Katalysatoren), bei denen NOx durch aktives Einspritzen eines Reduktants, wie z.B. Harnstoff, in die in den Katalysator eintretende Abgasmischung kontinuierlich entfernt wird, für die Erreichung hoher NOx-Umwandlungswirkungsgrade bekannt. In Zukunft werden wegen stringenteren Abgasvorschriften die meisten Dieselfahrzeuge auch einen Partikelfilter aufweisen müssen, um Partikelmaterial (PM) zurückzuhalten und zu verbrennen.
  • Ein typisches Magermotor-Abgasnachbehandlungssystem wird in WO 99/39809 beschrieben und umfaßt einen Oxidationskatalysator für das Oxidieren von NO, CO und HC in der Motorabgasmischung, auf den stromab ein Partikelfilter folgt.
  • Der Partikelfilter speichert Partikelmaterial, wie z.B. Ruß, und erfordert eine periodische Regenerierung bei hohen Temperaturen. Stromab vom Partikelfilter ist ein SCR-Katalysator angeordnet.
  • Die Erfinder haben einige Nachteile bei der Vorgehensweise nach dem Stand der Technik erkannt. Da der SCR-Katalysator bei dieser Konfiguration am weitesten entfernt von dem Motor liegt, gibt es eine beträchtliche Verzögerung beim Erreichen von Light-oft-Temperaturen, womit der NOx-Umwandlungswirkungsgrad des Systems schädlich beeinflußt wird. Da des weiteren der Partikelfilter bei hohen Temperaturen regeneriert werden muß, müssen zusätzliche Kühlmittel eingesetzt werden, um das aus dem Partikelfilter austretende heiße Abgas zu kühlen, um irreversiblen thermischen Schaden am SCR-Katalysator zu verhindern. Noch ein weiterer Nachteil des Systems nach dem Stand der Technik liegt darin, daß nicht das gesamte Ammoniak im SCR-Katalysator genutzt werden kann und es demzufolge möglicherweise in die Atmosphäre austritt.
  • Erfindungsgemäß wird ein System vorgestellt, das eine wirksame Beherrschung von NOx- und Partikelmaterial-Emissionen bei einem Magermotor, wie z.B. einem Dieselmotor, erreicht und gleichzeitig die Nachteile des Standes der Technik überwindet. Das System umfaßt einen Oxidationskatalysator, einen Katalysator für die selektive katalytische Reduktion (SCR-Katalysator), der stromab von dem genannten Oxidationskatalysator angeschlossen ist, und einen stromab von dem genannten SCR-Katalysator angeschlossenen Partikelfilter. Diese Anordnung der Abgassystemkomponenten ergibt einen verbesserten NOx-Umwandlungswirkungsgrad, reduzierte Emissionen von Ammoniak im Auspuffendrohr und minimiert den auf der Partikelfilterregenerierung beruhenden Kraftstoffverbrauchsnachteil.
  • Bei einer Ausführungsform der vorliegenden Erfindung ist der Partikelfilter ein katalysierter Partikelfilter, welcher einen Washcoat aus Edelmetall, wie z.B. Platin, enthält.
  • Bei einer weiteren Ausführungsform der vorliegenden Erfindung ist ein Ammoniak-Reinigungskatalysator zwischen dem SCR-Katalysator und dem Partikelfilter angeordnet, um selektiv etwaiges Ammoniak, das aus dem SCR-Katalysator austritt, in Stickstoff umzuwandeln.
  • Nach noch einer weiteren Ausführungsform der vorliegenden Erfindung ist ein zweiter Oxidationskatalysator zwischen dem SCR-Katalysator und dem Partikelfilter angeordnet, um zusätzliche Hitze für die PM-Verbrennung im Partikelfilter zu erzeugen.
  • Ein Vorteil der vorliegenden Erfindung liegt darin, daß ein verbesserter NOx Umwandlungswirkungsgrad dadurch erreicht wird, daß der SCR-Katalysator im Vergleich zu Systemen nach dem Stand der Technik weiter stromauf angeordnet wird, da es dadurch zu einer schnelleren Erwärmung des SCR-Katalysators und zu höheren Betriebstemperaturen desselben kommt.
  • Ein weiterer Vorteil der vorliegenden Erfindung liegt darin, daß das Plazieren des Partikelfilters so weit stromab wie möglich das Risiko des thermischen Schadens bei anderen Abgasreinigungssystemkomponenten während der Filterregenerierung beseitigt.
  • Noch ein Vorteil der vorliegenden Erfindung liegt darin, daß Ammoniak, das aus dem SCR-Katalysator austritt, im Partikelfilter oxidiert wird, wodurch es zu geminderten Abgaben von Ammoniak im Auspuffendrohr kommt.
  • Weitere erfindungswesentliche Merkmale gehen aus der nachfolgenden Beschreibung hervor, in der mit Bezug auf die Zeichnungen Ausführungsbeispiele erläutert werden. In den Zeichnungen zeigen:
  • 1A und 1B schematische Diagramme eines Motors, bei dem die Erfindung vorteilhaft eingesetzt wird;
  • 2a2c schematische Diagramme beispielhafter Ausführungsformen eines Abgasreinigungssystems nach der vorliegenden Erfindung;
  • 3 ein Diagramm eines beispielhaften Reduktantzuführsystems nach der vorliegenden Erfindung;
  • 4 eine beispielhafte Routine für die Regelung der Temperatur eines Heizelements eines in den 3A3C beschriebenen Reduktantzuführsystems;
  • 5 und 6 die Beschreibung einer beispielhaften Routine und einer Veränderungskurve zur Bestimmung einer der Abgasnachbehandlungsvorrichtung einzuspritzenden Reduktantmenge nach der vorliegenden Erfindung;
  • 7 eine beispielhafte Routine für die Regenerierung des SCR-Katalysators nach der vorliegenden Erfindung; und
  • 8 eine beispielhafte Routine für die Partikelfilterregenerierung nach der vorliegenden Erfindung.
  • Beschreibung bevorzugter Ausführungsbeispiele
  • Ein Innenverbrennungsmotor 10, welcher eine Mehrzahl von Zylindern aufweist, von denen ein Zylinder in 1 gezeigt wird, wird von einem elektronischen Motorsteuergerät 12 gesteuert. Der Motor 10 weist einen Verbrennungsraum 30 und Zylinderwände 32 mit darin angeordneten und mit der Kurbelwelle 40 verbundenem Kolben 36 auf. Der Verbrennungsraum 30 steht über jeweilige Einlaßventile 52 und Auslaßventile 54 mit einem Ansaugkrümmer 44 und einem Auspuffkrümmer 48 in Verbindung. Der Ansaugkrümmer 44 wird weiter so dargestellt, daß damit ein Kraftstoffinjektor 80 verbunden ist, um proportional zur impulsbreite eines Signals FPW aus dem Steuergerät 12 Kraftstoff zuzuführen. Sowohl durch die das Signal FPW geregelte Kraftstoffmenge als auch der Einspritzzeitpunkt können angepaßt werden. Kraftstoff wird dem Kraftstoffinjektor 80 durch ein (nicht gezeigtes) Kraftstoffsystem zugeführt, welches einen Kraftstofftank, eine Kraftstoffpumpe und ein (nicht gezeigtes) Kraftstoffverteilerrohr aufweist.
  • Das Steuergerät 12 wird in 1A als ein an sich bekannter Mikrocomputer dargestellt, welcher aufweist: eine Mikroprozessoreinheit 102, Eingangs/Ausgangsanschlüsse 104, einen nicht löschbaren Festwertspeicher 106, einen Direktzugriffsspeicher 108 und einen herkömmlichen Datenbus. Das Steuergerät 12 erhält zusätzlich zu den vorstehend erörterten Signalen verschiedene Signale aus den mit dem Motor 10 verbundenen Sensoren, einschließlich: Motorkühlmitteltemperatur (ECT) durch den mit dem Kühlmantel 114 verbundenen Temperatursensor 112, eine Messung des Krümmerdrucks (MAP) durch den mit dem Ansaugkrümmer 44 verbundenen Drucksensor 116, eine Messung (AT) der Krümmertemperatur durch den Temperatursensor 117; ein Motordrehzahlsignal (RPM) durch den mit der Kurbelwelle 40 verbundenen Motordrehzahlsensor 118.
  • Ein Abgasreinigungssystem 20, das mit einem Auspuffkrümmer 48 verbunden ist, und mehrere beispielhafte Ausführungsformen des Systems nach der vorliegenden Erfindung werden unter besonderer Bezugnahme auf die 2A bis 2C beschrieben.
  • Unter Bezugnahme auf 1B wird nun ein alternatives Ausführungsbeispiel gezeigt, bei dem der Motor 10 ein Motor mit Direkteinspritzung ist, wobei der Injektor 80 so angeordnet ist, daß er Kraftstoff direkt in den Zylinder 30 einspritzt.
  • Es wird auf 2A Bezug genommen. Das Abgasreinigungssystem 20 weist einen harnstoffbasierten Katalysator für selektive katalytische Reduktion (SCR-Katalysator) auf, bei dem stromauf desselben ein Oxidationskatalysator 13 und stromab desselben ein Partikelfilter 15 angeschlossen ist. Der SCR-Katalysator ist vorzugsweise eine Basismetall-/Zeolit-Formulierung mit optimalem NOx-Umwandlungswirkungsgrad im Bereich von 200 bis 500°C. Ein Reduktant, wie z.B. wäßriger Harnstoff, ist in einem (nicht gezeigten) Vorratsbehälter untergebracht und wird einem (nachstehend unter besonderer Bezugnahme auf die 3A bis 3C beschriebenen) stromauf vom SCR-Katalysator 14 mit dem Aus puffkrümmer 48 verbundenen Reduktantzuführsystem 16 zugeführt. Das Reduktant wird über eine Pumpe durch ein Steuerventil dosiert, wobei sowohl die Pumpe als auch das Ventil durch das Steuergerät 12 gesteuert werden. Luft und Reduktant werden in das Reduktantzuführsystem eingespritzt und durch das erhitzte Element verdampft, wobei der daraus resultierende Dampf in die in den SCR-Katalysator eintretende Abgasmischung eingeleitet wird. Alternativ können beliebige andere dem Fachmann bekannte Mittel herangezogen werden, um einer Abgasnachbehandlungsvorrichtung Reduktant zuzuführen.
  • NOx-Sensoren NOx1 (17) stromauf und NOx2 (18) stromab vom SCR-Katalysator sind in dem Weg des in den SCR-Katalysator eintretenden und diesen verlassenden Abgases angeschlossen. Die Werte dieser Sensoren werden vom Steuergerät 12 ausgelesen und können dazu verwendet werden, den NOx-Umwandlungswirkungsgrad des SCR-Katalysators zu bestimmen. Alternativ kann der NOx1-Sensor 17 wegbleiben, und die Menge an NOx in der in den SCR-Katalysator eintretenden Abgasmischung kann auf der Grundlage von Motordrehzahl, Motorlast, Abgastemperatur oder eines beliebigen anderen Parametern geschätzt werden, von dem der Fachmann weiß, daß er die NOx-Erzeugung des Motors beeinflußt.
  • Der Oxidationskatalysator 13 ist ein Edelmetallkatalysator, vorzugsweise ein Platin enthaltender Katalysator, für die schnelle Umwandlung von Kohlenwasserstoffen (HC), Kohlenmonoxid (CO) und Stickstoffdioxid (NO) im Motorabgas. Der Oxidationskatalysator wird auch dazu verwendet, Hitze für das rasche Erwärmen des SCR-Katalysator 14 zu liefern, was dadurch bewirkt wird, daß die HC-Konzentration des in den Oxidationskatalysator eintretenden Abgases erhöht wird, wobei eine Exotherme geschaffen wird, wenn das zusätzliche HC über den Oxidationskatalysator reduziert wird. Dies kann beispielsweise durch Einspritzung in den Zylinder entweder während des Arbeitshubs und/oder des Auspuffhubs des Motors (bei einem Motor mit Direkteinspritzung) oder mit einer beliebigen Anzahl sonstiger Alternativen bewirkt werden, wie z.B. Verzögerung des Einspritzzeitpunkts, Erhöhung der Abgasrückführung und der Ansaugdrosselung oder beliebige sonstige Mittel, von denen der Fachmann weiß, daß sie die HC-Konzentration im Abgas erhöhen. Alternativ können Kohlenwasserstoffe direkt in den in den Oxidationskatalysator eintretenden Abgasstrom unter Verwendung von dem Fachmann bekannten Mitteln eingespritzt werden. Bei einer bevorzugten Ausführungsform kann ein Reduktantzuführsystem, wie z.B. das unter besonderer Bezugnahme auf die 3A bis 3C beschriebene System, dazu verwendet werden, dem Oxidationskatalysator HC aus dem Kraftstofftank oder einem Vorratsbehälter zuzuführen, um zusätzliche Hitze für das Erwärmen des SCR-Katalysators zu erzeugen.
  • Der Partikelfilter (PF) 15 ist stromab vom SCR-Katalysator angeschlossen und wird dazu verwendet, Partikelmaterial (Ruß) zurückzuhalten, das während des Fahrzyklus des Fahrzeuges erzeugt wird. Der Partikelfilter kann aus einer Mehrzahl von Materialien hergestellt werden, hierin eingeschlossen Cordierit, Siliziumcarbid und sonstige Hochtemperatur-Oxid-Keramik-Materialien. Wenn die Rußansammlung einen vorbestimmten Wert erreicht hat, wird die Regenerierung des Filters notwendig. Die Filterregenerierung wird dadurch bewirkt, daß der Filter auf eine Temperatur erhitzt wird, bei der Rußpartikel mit einer im Vergleich zur Ablagerung neuer Rußpartikel höheren Geschwindigkeit verbrannt werden, beispielsweise 400 bis 600°C. Die Erfinder haben erkannt, daß die Verwendung von motorseitigen Mitteln zur Erhöhung der Partikelfiltertemperatur auf die Regenerierungstemperatur möglicherweise zu Schäden an dem bei der Systemkonfiguration nach der vorliegenden Erfindung stromauf gelegenen SCR-Katalysator führen kann. Entsprechend haben die Erfinder erkannt, daß der Filter durch zusätzliche Kohlenwasserstoffeinspritzung stromab vom SCR-Katalysator regeneriert werden könnte. Bei einer bevorzugten Ausführungsform wird ein Reduktantzuführsystem, wie es unter besonderer Bezugnahme auf die 3A bis 3C beschrieben wird, zwischen dem SCR-Katalysator und dem Partikelfilter mit dem Abgaskrümmer verbunden, um eine verdampfte Mischung von Kohlenwasserstoff und Luft in den Partikelfilter einzuleiten, wodurch Regenerierungstemperaturen erreicht werden. Ein beispielhaftes Verfahren für die Partikelfilterregenerierung nach der vorliegenden Erfindung wird nachstehend unter besonderer Bezugnahme auf 5 beschrieben. Bei einer bevorzugten Ausführungsform kann der Partikelfilter ein katalysierter Partikelfilter sein, welcher einen Washcoat aus Edelmetall enthält, wie z.B. Platin, um die Rußverbrennungstemperatur abzusenken und um des weiteren Kohlenwasserstoffe und Kohlenmonoxid zu Kohlendioxid und Wasser zu oxidieren.
  • Dementsprechend kann nach der vorliegenden Erfindung eine verbesserte Abgasreinigung dadurch erreicht werden, daß stromauf von einem harnstoffbasierten SCR-Katalysator ein Oxidationskatalysator und stromab vom SCR-Katalysator ein Partikelfilter angeordnet werden. Diese Systemkonfiguration stellt ein rasches Erwärmen des SCR-Katalysators über eine Exotherme sicher, der durch den stromauf gelegenen Oxidationskatalysator und die höhere Abgastemperatur während des Betriebs des Fahrzeuges mit geringer Last geschaffen wird. Da darüber hinaus der Partikelfilter stromab vom SCR-Katalysator angeordnet ist, gibt es keine Gefahr der thermischen Beschädigung des SCR-Katalysators während der Filterregenerierung, und demzufolge sind getrennte Kühlmittel nicht erforderlich. Darüber hinaus mindert der Partikelfilter die Abgabe von Ammoniak in die Atmosphäre, indem Ammoniak, das möglicherweise aus dem SCR-Katalysator austritt, oxidiert wird.
  • 2B zeigt eine alternative Ausführungsform eines Abgasreinigungssystems nach der vorliegenden Erfindung, wobei ein zusätzlicher Oxidationskatalysator 19 stromauf vom Partikelfilter plaziert wird, um die Rußverbrennungstemperaturen abzusenken. Der Oxidationskatalysator kann ein getrennter Katalysator sein, oder er kann mit dem Partikelfilter integriert werden, idem er auf den (nicht gezeigten) Partikelfiltereingang durch Washcoating aufgebracht wird. Dieses Washcoating reduziert die Gesamtgröße des Systems und verbessert sein thermisches Management.
  • 2C zeigt noch eine weitere alternative Ausführungsform der vorliegenden Erfindung, bei der ein Ammoniakreinigungskatalysator 20 zwischen dem SCR-Katalysator und dem Partikelfilter angeordnet ist. Der Ammoniakreinigungskatalysator wandelt selektiv einen Teil des Ammoniaks, der möglicherweise aus dem SCR-Katalysator austritt, in Stickstoff um. Dies erhöht den Gesamt-NOX- Umwandlungswirkungsgrad des Systems, da verhindert wird, daß der Partikelfilter ausgetretenes Ammoniak in NOx umwandelt.
  • Das Diagramm der 3A stellt allgemein ein Beispiel einer Ausführungsform eines Reduktantzuführsystems nach der vorliegenden Erfindung dar. Das Reduktant kann direkt aus dem Kraftstofftank oder aus einer getrennten Vorratseinheit zugeführt werden. Das System kann dazu verwendet werden, wäßrigen Harnstoff dem SCR-Katalysator zuzuführen, um die NOx-Reduktion zu erleichtern. Zusätzlich kann das Reduktantzuführsystem dazu verwendet werden, zusätzliche Kohlenwasserstoffe zuzuführen, um den Partikelfilter zu regenerieren. Das System weist eine Verdampfereinheit 21 auf, welche ein längliches Heizelement 22 umschließt. In diesem Beispiel ist das Heizelement ein elektrisch beheiztes zylinderförmiges Heizelement. Alternativ könnte das Heizelement rechteckig geformt sein, um seine Oberflächenkontaktfläche mit der eingespritzten Reduktant- und Luftmischung zu vergrößern.
  • Bei noch einem weiteren (nicht gezeigten) alternativen Ausführungsbeispiel könnte, wenn das Reduktantzuführsystem dazu verwendet wird, dem SCR-Katalysator wäßrigen Harnstoff zuzuführen, eine hydrolysierende Katalysatorbeschichtung zur Verdampfereinheit hinzugefügt werden, wie z.B. eine Beschichtung auf der Innenfläche des Heizelementgehäuses, oder eine katalytische Kappe an dem Punkt, an dem die verdampfte Reduktant- und Luftmischung in den Auspuffkrümmer eintritt. Die große Nähe des hydrolysierenden Katalysators dient dazu, die Gesamtproduktion von NH3 zu erhöhen, indem HNCO in NH3 umgewandelt wird. Wenn alternativ das System dazu verwendet wird, Kohlenwasserstoffe für die Partikelfilterregenerierung zuzuführen, kann eine oxidierende katalytische Beschichtung hinzugefügt werden, um die CO-Erzeugung zu erleichtern. Das Steuergerät 12 regelt die Temperatur des Heizelements durch Lieferung eines PWM-Signals mit verschiedenen Einschaltzyklen. Der Einschaltzyklus des PWM-Steuersignals an das Heizelement wird aufgrund einer abgespeicherten Tabelle basierend auf Betriebsbedingungen festgelegt, um die gewünschte Heizelementtemperatur für ein optimales Verdampfen/Zerlegen des eingespritzten Reduktants zu erreichen. Die Mischeinheit 23 weist einen Reduktanteinlaß und einen Lufteinlaß sowie einen Auslaß 24 auf, der mit der Verdampfereinheit verbunden ist und über den eine Mischung aus Reduktant und Luft in das Gehäuse eingespritzt wird und anschließend mit der Oberfläche des Heizelements 22 in Kontakt kommt.
  • Bei einem (nicht gezeigten) alternativen Ausführungsbeispiel können sowohl Luft als auch Reduktant durch einen einzelnen Einlaß eingespritzt werden. Die Luftpumpe 25 liefert Druckluft an die Mischeinheit 23, wodurch eine Mischung von Reduktant und Luft geschaffen wird. Der Auslaß 24 ist so ausgebildet, daß er die Reduktant- und Luftmischung zu mehr als einer Fläche an der Oberfläche des Heizelements führt. Das Steuergerät 12 kann abhängig von Betriebsbedingungen, wie z.B. Motordrehzahl, Motorlast, Abgastemperatur usw., wahlweise die Einspritzung der Mischung in diese Bereiche aktivieren und deaktivieren. Beispielsweise kann es, wenn die erforderliche Reduktantmenge groß ist, wie z.B. bei Zuständen hoher Last, notwendig sein, die Zuführung der Reduktant- und Luftmischung zu mehr als einem Bereich auf der Oberfläche des Heizelements zu aktivieren. Alternativ kann der Auslaß 24 so konfiguriert sein, daß er die Reduktant- und Luftmischung zu einem bestimmten Bereich auf der Oberfläche des (nicht gezeigten) Heizelements führt.
  • 3B zeigt eine alternative Konstruktion des Heizelementgehäuses. Wie in der Zeichnung zu sehen ist, wird das Heizelement von einem Zuführrohr umschlossen, dessen Innendurchmesser groß genug ist, um das Heizelement aufzunehmen. Das Zuführrohr weist einen engen, in dasselbe gebohrten Kanal auf, der als Durchlaß für die Luft- und Reduktantmischung dient. Die Luft- und Reduktantmischung wird in den engen Kanal eingespritzt und wird durch die durch das eingeschlossene Heizelement gelieferte Hitze rasch verdampft, ohne in direkten Kontakt mit seiner Oberfläche zu kommen. Bei dieser Ausführungsform wird die Lebensdauer des Heizelements weiter verbessert, da die Reduktant- und Luftmischung niemals in direkten Kontakt mit seiner Oberfläche kommt, und somit treten Lack- und Rußablagerungen nicht auf. Das Zuführrohr weist an seinem Ende eine oder mehrere Öffnungen auf, durch die die verdampfte Reduktant- und Luftmischung in den Auspuffkrümmer eintritt.
  • 3C zeigt ein alternatives Ausführungsbeispiel des in 3B gezeigten Heizelementgehäuses, bei dem ein poröser oxidierender katalytischer Einsatz am Kopf des Zuführrohrs angeordnet wird, und eine oder mehrere Öffnungen werden in das Zuführrohr längs seiner Länge gebohrt und mit porösem katalytischen Material verschlossen.
  • Wie für den Fachmann leicht erkennbar ist, können die anhand der 4 bis 5 und 7 bis 8 beschriebenen Routinen eine oder mehrere einer beliebigen Anzahl von Verarbeitungsstrategien darstellen, wie z.B. ereignisgetriebene, unterbrechungsgetriebene, Multi-Tasking-, Multi-Threading- und ähnliche Strategien. Entsprechend können verschiedene dargestellte Schritte oder Funktionen in der dargestellten Abfolge oder parallel ausgeführt oder in einigen Fällen weggelassen werden. Analog muß die Reihenfolge der Verarbeitung nicht unbedingt eingehalten werden, um die Ziele, Merkmale und Vorteile der Erfindung zu erreichen, diese werden lediglich für Zwecke der Erläuterung und Beschreibung geliefert. Obwohl dies nicht ausdrücklich dargestellt wurde, wird der Fachmann erkennen, daß einer oder mehrere der dargestellten Schritte oder Funktionen abhängig von der besonderen jeweils genutzten Strategie mehrfach ausgeführt werden können.
  • Unter Bezugnahme auf 4 wird nunmehr eine beispielhafte Routine für die Regelung der Temperatur des Heizelements des Reduktantzuführsystems nach der vorliegenden Erfindung beschrieben. Zunächst wird im Schritt 100 die gewünschte Heizelementtemperatur Tdes bestimmt. Diese Bestimmung beruht darauf, weiche Funktion das Reduktantverdampfersystem ausführt, beispielsweise ob die in die Verdampfereinheit eingespritzte Reduktant- und Luftmischung verdampft oder verbrannt werden muß. Als nächstes geht die Routine weiter zum Schritt 200, bei dem Betriebsbedingungen, von denen bekannt ist, daß sie eine Auswirkung auf die Heizelementtemperatur haben, wie z.B. die Abgastemperatur, bewertet werden. Die Abgastemperatur kann aufgrund eines im Auspuffkrümmer angeordneten Temperatursensors festgestellt oder aufgrund von Parametern, wie Motordrehzahl, Motorlast, Motortemperatur, Zündzeitpunkt usw. geschätzt werden. Als nächstes wird im Schritt 300 aufgrund von Betriebsbedingungen, wie z.B. im vorliegenden Beispiel der Abgastemperatur, und aufgrund eines abgespeicherten, durch Versuche erarbeiteten Temperaturkennfelds ein optimaler Einschaltzyklus zur Erreichung der gewünschten Heizelementtemperatur für das Heizelement bestimmt. Die Routine geht dann zum Schritt 400 weiter, bei dem der Einschaltzyklus des Heizelementsteuersignals so eingestellt wird, daß die gewünschte Heizelementtemperatur erreicht wird. Die Routine ist dann abgeschlossen.
  • Durch Erzeugen eines Kennfeldes der Heizelementtemperatur aufgrund von Betriebsbedingungen, wie z.B. der Abgastemperatur, oder eines beliebigen Parameters, von dem bekannt ist, daß er die Temperatur des erhitzten Elements beeinflußt, ist es dementsprechend möglich, die Temperatur des Heizelements dynamisch zu regeln, um eine optimale Abgabe von Reduktant- und Luftmischung zu erreichen und gleichzeitig den Stromverbrauch zu minimieren sowie eine Überhitzung des Heizelements zu verhindern. Mit anderen Worten ist es möglich, die Hitze, die von dem durch das Reduktantzuführsystem strömenden Abgas geliefert wird, zu nutzen, wenn die Temperatur des Heizelements geregelt wird. Beispielsweise führt eine höhere Abgastemperatur zu geringem Strombedarf, während eine niedrigere Abgastemperatur zu höherem Strombedarf führt. Es ist auch möglich, die Stromzufuhr vollständig abzustellen, wenn die Abgastemperatur hoch genug ist, um das Heizelement bei der gewünschten Temperatur zu halten, wie z.B. in einem Zustand mit hoher Motorlast. Wenn das Reduktantzuführsystem dazu verwendet wird, den Partikelfilter zu regenerieren, ist es alternativ möglich, die Temperatur des Heizelements so anzupassen, daß bewirkt wird, daß die eintretende Mischung von Kohlenwasserstoff und Luft verbrennt, um den Filter rasch auf hohe Temperaturen zu erhitzen.
  • Unter Bezugnahme auf 5 wird nunmehr eine beispielhafte Routine der Regelung der Einspritzung eines Reduktants in den SCR-Katalysator unter Verwendung eines Reduktantzuführsystems, wie in den 3A bis 3C beschrieben, vorgestellt. Zunächst wird im Schritt 500 die Menge an NOx in der in die Vorrichtung eintretenden Abgasmischung NOxfg auf der Grundlage von Motorbetriebsbedingungen geschätzt. Diese Bedingungen können Motordrehzahl, Motorlast, Abgastemperaturen, Temperaturen der Abgasnachbehandlungsvorrichtung, Einspritzzeitpunkt, Motortemperatur und sonstige Parameter umfassen, von denen der Fach mann weiß, daß sie geeignet sind, die Menge des durch die Verbrennungsdrücke produzierten NOx anzuzeigen. Alternativ kann ein NOx-Sensor dazu verwendet werden, die Menge an NOx in der Abgasmischung zu messen. Als nächstes wird im Schritt 600 die Reduktanteinspritzmenge RAinj_1 bei konstanten Bedingungen auf der Grundlage folgender Gleichung berechnet:
    Figure 00130001
    worin RAfg die Menge an Reduktant im Motorzuführgas ist, die auf der Grundlage von Motorbetriebsbedingungen bestimmt werden kann. Diese anfängliche Reduktantmenge RAinj_1 wird bei konstanten Bedingungen evaluiert und ergibt eine Basisreduktantmenge, welche für jeden Motordrehzahl- und Motorlastpunkt einzuspritzen ist. Die Menge wird kalibriert, um ein bestimmtes Zuführgas/NOx-Verhältnis Rdes zu erreichen. Das Verhältnis wird typischerweise als Ergebnis einer Abwägung zwischen NOx-Umwandlung und Kraftstoffverbrauchsnachteil aufgrund der Reduktanteinspritzung bestimmt, und in diesem Beispiel wird es auf ungefähr 10 eingestellt. Anschließend wird im Schritt 700 die Basis-Reduktanteinspritzmenge RAinj_1 bei konstanten Bedingungen modifiziert, um Motorbetriebsbedingungen, wie Motorkühlmitteltemperatur Tc, Abgastemperatur Teg, EGR-Ventilstellung EGRpos, Beginn der Einspritzung SOI und sonstige Parameter, zu berücksichtigen: RAinj_2 = RAinj_1·f1(Tc)·f2(Teg)·f3(SOI)·f4(EGRpos)
  • Die Routine geht dann weiter zum Schritt 800, wo die momentane Veränderung der Gaspedalstellung wie folgt berechnet wird:
    Figure 00130002

    worin Ts die Samplingrate ist und pps(t) die Gaspedalstellung beim Zeitpunkt t angibt. Als nächstes wird im Schritt 900 ein Tiefpaßfilter angewandt, um Störeinflüsse zu dämpfen: pps_diff_lp(t) = (1 – kf)·pps_diff_lp(t – 1)+ kf·pps_diff(t – 1) worin kf die Rate der Filterung regelt. Die Routine geht dann weiter zum Schritt 1000, wo die Reduktantmenge weiter modifiziert wird, um transientes Motorverhalten zu berücksichtigen, wie dies durch die Veränderungen bei der Gaspedalstellung dargestellt wurde: RAinj_3 = RAinj_2·f5(pps_diff_lp) worin die Funktion f5 gebildet wird, um ein verstärktes Einspritzen von Reduktant während des Niedertretens des Gaspedals und ein vermindertes Einspritzen von Reduktant während des Loslassens des Gaspedals zu erlauben. Bei einem alternativen Ausführungsbeispiel können anstelle der Gaspedalstellung die Motordrehzahl oder der Kraftstoffbedarfssensor oder jeder andere Parameter, von dem der Fachmann weiß, daß er geeignet ist, eine Messung des transienten Motorverhaltens zu liefern, verwendet werden, um RAinj_3 zu erhalten.
  • Als nächstes wird im Schritt 1100 die gewünschte Temperatur des Heizelements wie unter besonderer Bezugnahme auf 4 beschrieben angepaßt, um dadurch eine optimale Temperatur für die Reduktant- und Luftmischungsverdampfung zu erreichen. Die Routine geht dann weiter zum Schritt 1200, bei dem RAinj_3 und Luft dem Reduktantzuführsystem zugeführt werden. Bei einer alternativen Ausführungsform könnten die Bereiche an der Oberfläche des Heizelements, in die eine Reduktant- und Luftmischung eingespritzt wird, aufgrund eines abgespeicherten Kennfeldes für die Werte des abzugebenden Reduktants ausgewählt werden, wobei dies auf Parametern beruht, wie der Menge des zuzuführenden Reduktants, Motorlast, Drehzahl, Abgastemperatur, Katalysatortemperatur, Drosselklappenstellung usw. Beispielsweise kann es bei hohen Motorlasten wünschenswert sein, die Reduktant- und Luftmischung schneller einzuspritzen als bei niedrigen Motorlasten, und demzufolge wird in diesem Fall die Zuführung zu mehreren Bereichen aktiviert. Die Routine ist damit beendet. Ein Beispiel von f5 wird mit besonderer Bezugnahme auf 6 gezeigt.
  • Demzufolge sollte erfindungsgemäß für die Erreichung eines verbesserten Wirkungsgrades des SCR-Katalysators die einzuspritzende Reduktantmenge angepaßt werden, um Änderungen bei der Menge an NOx im Motorabgas zu berücksichtigen, die durch transientes Verhalten des Motors verursacht werden. Dies wird durch kontinuierliches Überwachen der Motorparameter, die es ermöglichen, eine Messung des transienten Motorverhaltens, wie z.B. ein Gaspedalstellungssensor, zu liefern, und Anpassen der einzuspritzenden Reduktantmenge als Funktion von gefilterten momentanen Änderungen bei diesen Parametern ergänzt werden. Da die NOx-Produktion typischerweise beim Niedertreten des Gaspedals erhöht und beim Loslassen des Gaspedals gemindert wird, würde das Ergebnis eines solchen Betriebes in ersterem Fall die Erhöhung der Basiseinspritzmenge und in letzterem Fall die Verminderung der Basiseinspritzmenge sein. Des weiteren stellt die Verwendung einer Reduktantzuführeinheit eine schnelle Systemreaktion, einen effizienteren Systembetrieb, bessere Abgasreinigung und verbessertes Kraftstoffverbrauchsverhalten sicher.
  • Unter Bezugnahme auf 7 wird nun eine beispielhafte Routine für die SCR-Katalysator-Regenerierung nach der vorliegenden Erfindung beschrieben. Zunächst wird im Schritt 1300 der NOx-Umwandlungswirkungsgrad des Katalysators entsprechend der folgenden Gleichung geschätzt.
  • Figure 00150001
  • Als nächstes wird im Schritt 1400 ηNOx mit einem Basisumwandlungswirkungsgrad ηbase verglichen, um festzustellen, ob die SCR-Katalysatorleistung nachgelassen hat. Bei einer alternativen Ausführungsform kann die Entscheidung über die SCR-Regenerierung auf der Grundlage der Anzahl der gefahrenen Kilometer, der An zahl von Kaltstarts oder einer geschätzten Gesamtmenge von HC im dem SCR-Katalysator seit der letzten Regenerierung zugeführten Gas erfolgen, womit das Erfordernis von NOx-Sensoren stromauf und stromab des SCR-Katalysators entfällt. Lautet die Antwort im Schritt 1400 NEIN, ist die Katalysatorleistung nicht beeinträchtigt, und die Routine endet. Lautet die Antwort im Schritt 1400 JA, d.h. die Katalysatorleistung ist beeinträchtigt, geht die Routine weiter um Schritt 1500, bei dem die Temperatur des SCR-Katalysators über eine Regenerierungstemperatur Treg erhöht wird. Die Regenerierungstemperatur kann auf den Siedepunkt von Kohlenwasserstoffen oder auf die Temperatur gesetzt werden, bei der Ruß durch Reagieren mit NOx oder Sauerstoff in der in den SCR-Katalysator eintretenden Abgasmischung oxidiert wird. Die Erhöhung der Temperatur kann beispielsweise durch Schaffen einer exothermen Reaktion im Oxidationskatalysator durch Einspritzen einer vorbestimmten Menge von Kohlenwasserstoffen oder durch motorbezogene Maßnahmen, wie z.B. Verstellung des Zündzeitpunktes nach spät, Erhöhung der Abgasrückführung, Schließen einer Ansaugdrosselklappe, oder mittels eines elektrischen Heizgerätes erreicht werden. Die Gesamtmenge an Reduktant und die Dauer der Einspritzung, welche erforderlich sind, um die Katalysatortemperatur auf die gewünschte Temperatur zu erhöhen und während einer ausreichenden Zeitdauer bei der genannten Temperatur zu halten, um die Regenerierung abzuschließen, kann aufgrund eines abgespeicherten Kennfeldes bestimmt werden, das auf Motorbetriebsbedingungen, wie z.B. Motordrehzahl, Motorlast, Katalysatortemperatur, Abgastemperatur, Kühlmitteltemperatur oder einem beliebigen anderen Faktor beruht, von dem der Fachmann weiß, daß er die Menge von Kohlenwasserstoffen beeinflußt, welche erforderlich ist, die gewünschte exotherme Reaktion für eine gewünschte Zeitdauer zu schaffen. Während die SCR-Regenerierung läuft, wird die Menge von Reduktant, die während des normalen Betriebs in den SCR-Katalysator eingespritzt wird, angepaßt, da bei den Regenerierungstemperaturen weniger Ablagerung von Ammoniak im SCR-Katalysator entsteht. Nachdem die Regenerierung abgeschlossen ist, geht die Routine weiter zum Schritt 1600, bei dem der SCR-Katalysator auf einen normalen Temperaturbereich beispielsweise durch Absenken oder Unterbrechen der Kohlenwasserstoffeinspritzung in den Oxidationskatalysator oder durch Veränderung von Motorparametern, wie z.B. Verstellung des Zündzeitpunktes nach früh, abgekühlt wird.
  • Als nächstes wird im Schritt 1700 die Menge des in den SCR-Katalysator eingespritzten Reduktants angepaßt, um das Ammoniak aufzufüllen, das von den SCR-Katalysatorspeicherorten aufgrund der Regenerierung freigesetzt wurde. Motorbetriebsbedingungen, wie z.B. Drehzahl, Last, Katalysatortemperatur, Luftmassendurchsatz usw., werden evaluiert, um eine Zusatzmenge von Ammoniak zu ermitteln, die in den SCR-Katalysator über die anfängliche Menge von Ammoniak einzuspritzen ist, welche erforderlich ist, im SCR-Katalysator NOx kontinuierlich zu reduzieren. Bei einem alternativen Ausführungsbeispiel kann die Ammoniak-Einspritzmenge kontinuierlich als Funktion der SCR-Katalysatortemperatur angepaßt werden, so daß bei Regenerierungstemperaturen weniger oder kein Ammoniak eingespritzt wird und die Menge der Einspritzung progressiv in dem Maße zunimmt, wie die Temperatur des Katalysators im Anschluß an die Regenerierung abfällt. Auf diese Weise stellt die kontinuierliche Einspritzung in dem Maße, wie Kohlenwasserstoff und Ruß durch den Regenerierungsprozeß aus den SCR-Katalysatorspeicherorten desorbiert werden, Ammoniakeinlagerung an den betreffenden Speicherorten sicher, womit der NOx-Umwandlungswirkungsgrad des SCR-Katalysators optimiert wird. Die Änderungen bei der Ammoniak-Einspritzmenge werden durch die Katalysatorchemie ebenso geregelt wie durch Motorbetriebsparameter, und können aufgrund einer kalibrierbaren Tabelle bestimmt werden.
  • Demzufolge ist es erfindungsgemäß möglich, den NOx-Umwandlungswirkungsgrad eines SCR-Katalysators durch Entfernen von eingelagerten Verunreinigungen, wie z.B. Kohlenwasserstoffen und Ruß, aus seinen Speicherorten zu verbessern. Dies kann durch einen Regenerierungsprozeß erreicht werden, bei dem die Temperatur während einer ausreichenden Zeitdauer innerhalb eines vorbestimmten Temperaturbereiches gehalten wird, um absorbierte Kohlenwasserstoffe abzulösen und Rußablagerungen zu beseitigen. Des weiteren verbessert eine Übereinspritzung von Ammoniak zur Auffüllung von eingelagertem Ammoniak, das während des Regenerierungsprozesses aus dem Katalysator freigesetzt wurde, den NOx-Umwandlungswirkungsgrad des SCR-Katalysators weiter.
  • Unter Bezugnahme auf 8 wird nun ein Beispiel eines Verfahrens für die Regenerierung eines Partikelfilters nach der vorliegenden Erfindung beschrieben. Da bei der bevorzugten Systemkonfiguration der Partikelfilter stromab vom SCR-Katalysator angeordnet ist, ist das Regenerieren des Filters durch Anheben der Abgastemperatur auf der stromauf gelegenen Seite auf die Regenerierungstemperatur durch zusätzliche Kohlenwasserstoffeinspritzung in den Oxidationskatalysator nicht wünschenswert, da dies thermische Schäden am SCR-Katalysator verursachen kann. Die Erfinder haben demzufolge ein neues Verfahren für die Regenerierung eines stromab vom SCR-Katalysator angeordneten Partikelfilters entwikkelt, bei dem die Partikelfiltertemperatur auf eine Temperatur erhöht wird, bei der Kohlenwasserstoffe exotherm mit Sauerstoff im Abgas reagieren, und es werden anschließend zusätzliche Kohlenwasserstoffe in den Partikelfilter stromab vom SCR-Katalysator eingespritzt. Die daraus entstehende Exotherme regeneriert den Filter, ohne thermische Schäden am SCR-Katalysator zu verursachen.
  • Zunächst wird im Schritt 1800 die Gesamtpartikelmenge spa, die im Partikelfilter abgelagert ist, ermittelt. Bei einer bevorzugten Ausführungsform wird diese Menge ständig aktualisiert und basiert auf der aktuell abgespeicherten Partikelmenge und der Inkrementmenge von Partikeln, die pro vorbestimmte Samplingzeit während des Verbrennungsprozesses erzeugt wird, was auf der Grundlage von Motorbetriebsbedingungen, wie z.B. Kraftstoffeinspritzmenge und Motordrehzahl, bestimmt wird. Als nächstes geht die Routine weiter zum Schritt 1900, bei dem die Partikelfiltertemperatur Tf geschätzt wird. Bei einer bevorzugten Ausführungsform wird diese Temperatur unter Verwendung von charakteristischen vorbestimmten abgespeicherten Kennfeldern und basierend auf Motorbetriebsbedingungen geschätzt. Die Motorbetriebsparameter umfassen Motordrehzahl, Kraftstoffeinspritzmenge, Kraftstoffeinspritzzeitpunkt und Motortemperatur. Jedes andere dem Fachmann bekannte Verfahren für die Schätzung einer Temperatur einer Abgasreinigungsvorrichtung kann in Verbindung mit der vorliegenden Erfindung vorteilhaft genutzt werden.
  • Als nächstes erfolgt im Schritt 2000 eine Feststellung, ob der Partikelfilter regeneriert werden sollte. Insbesondere ist Regenerierung angezeigt, wenn die eingela gerte Partikelmenge (spa) größer ist als ein maximaler Grenzwert S2 oder wenn die Partikelfiltertemperatur Tf größer ist als der Temperaturgrenzwert T1 und spa größer ist als der Grenzbetrag S1. Damit nutzt die vorliegende Erfindung den Vorteil höherer Partikelfiltertemperaturen, die möglicherweise unter bestimmten Fahrbedingungen angetroffen werden, indem eingelagerte Partikel zu diesem Zeitpunkt auch dann ausgespült werden, wenn der Gesamtwert spa unterhalb des maximalen Grenzwertes S2 liegt. Somit wird das Kraftstoffverbrauchsverhalten dadurch verbessert, daß opportunistisch der Partikelfilter regeneriert wird, weil in diesem Fall weniger Energie erforderlich ist, um die Filtertemperatur auf die Regenerierungstemperatur zu erhöhen. Wenn die Antwort im Schritt 2000 NEIN lautet, endet die Routine. Lautet die Antwort im Schritt 2000 JA, d.h. eine Partikelfilterregenerierung ist angezeigt, geht die Routine weiter zum Schritt 2100, bei dem eine Feststellung erfolgt, ob Tf größer ist als Te x, welches die Temperatur ist, über der Kohlenwasserstoffe exothermisch mit Sauerstoff im Abgas reagieren. Lautet die Antwort im Schritt 2100 JA, geht die Routine weiter zum Schritt 2200, bei dem eine verdampfte Mischung aus Kohlenwasserstoff und Luft in das in den Partikelfilter eintretende Abgas über das Reduktantzuführsystem, wie unter besonderer Bezugnahme auf die 3A bis 3C oben beschrieben, eingespritzt wird. Alternativ können beliebige andere dem Fachmann bekannte Mittel verwendet werden, um der Abgasnachbehandlungsvorrichtung Reduktant zuzuführen. Die daraus resultierende Exotherme bewirkt dann, daß die Temperatur des Partikelfilters auf die Regenerierungstemperatur erhöht wird. Die Menge der Kohlenwasserstoffeinspritzung und die Länge der Einspritzzeitdauer, welche erforderlich ist, um die Filterregenerierung zum Abschluß zu bringen, wird vorzugsweise basierend auf Betriebsbedingungen, wie z.B. dem Wert spa, der Filtertemperatur, der Motordrehzahl, der Kraftstoffeinspritzmengen usw., bestimmt. Wenn die Filterregenerierung abgeschlossen ist, endet die Routine. Lautet die Antwort im Schritt 2100 NEIN, geht die Routine weiter zum Schritt 2300, bei dem die Partikelfiltertemperatur über Tex erhöht wird, indem die Temperatur des Abgases stromab vom Partikelfilter erhöht wird, beispielsweise durch Schaffen einer exothermen Reaktion im Oxidationskatalysator 13 durch zusätzliche Kohlenwasserstoffeinspritzung oder durch motorbezogene Maßnahmen, wie z.B. Verstellung des Einspritzzeitpunktes nach spät, Erhöhung der Abgasrückführung oder Schließen einer höhung der Abgasrückführung oder Schließen einer Ansaugdrosselklappe. Die Routine durchläuft dann zyklisch den Schritt 2100 solange, bis Tex erreicht wird.
  • So ist es nach der vorliegenden Erfindung möglich, den Partikelfilter dadurch zu regenerieren, daß zunächst die Temperatur des stromaufseitigen Abgases erhöht wird, um die Temperatur des Partikelfilters auf eine Temperatur zu erhöhen, über der Kohlenwasserstoffe exotherm mit Sauerstoff im Abgas reagieren, und anschließend durch Erreichen von Regenerierungstemperaturen durch zusätzliche Einspritzung von Kohlenwasserstoffen in den Filter. Bei einer alternativen Ausführungsform kann die Temperatur des Heizelements des Reduktantzuführsystems so angepaßt werden, daß die eintretende Mischung von Kohlenwasserstoff und Luft innerhalb des Reduktantzuführsystems verbrennt, womit bewirkt wird, daß der Filter Regenerierungstemperaturen erreicht.
  • Damit ist die Beschreibung der Erfindung abgeschlossen. Ihre Lektüre durch den Fachmann führt zur Entdeckung zahlreicher Änderungen und Modifizierungen, ohne Geist und Rahmen der Erfindung zu verlassen. Demzufolge ist beabsichtigt, daß der Rahmen der Erfindung durch die nachstehenden Patentansprüche definiert wird.

Claims (20)

  1. Abgasnachbehandlungssystem für den Auspuff eines Innenverbrennungsmotors, welches System dadurch gekennzeichnet ist, daß es umfaßt: einen Oxidationskatalysator, einen stromab von dem genannten Oxidationskatalysator angeschlossenen Katalysator für selektive katalytische Reduktion (SCR-Katalysator), einen stromab von dem genannten SCR-Katalysator angeschlossenen Partikelfilter und ein Steuergerät für den Betrieb in einem ersten Modus, bei dem eine Partikelfiltertemperatur geringer ist als eine SCR-Katalysatortemperatur, wobei das genannte Steuergerät des weiteren in einem zweiten Modus arbeitet, bei dem die genannte Partikelfiltertemperatur höher ist als die genannte SCR-Katalysatortemperatur.
  2. Abgasnachbehandlungssystem für den Auspuff eines Innenverbrennungsmotors, welches System dadurch gekennzeichnet ist, daß es umfaßt: einen Oxidationskatalysator, einen stromab von dem genannten Oxidationskatalysator angeschlossenen Katalysator für selektive katalytische Reduktion (SCR-Katalysator), einen stromab von dem genannten SCR-Katalysator angeschlossenen Partikelfilter und ein Steuergerät für das Betreiben des genannten Filters in einem ersten Temperaturbereich, wobei das genannte Steuergerät anschließend den genannten Filter in einem zweiten Temperaturbereich betreibt.
  3. System nach Anspruch 2, dadurch gekennzeichnet, daß der genannte erste Temperaturbereich ein Temperaturbereich ist, bei dem eine exotherme Reaktion zwischen Kohlenwasserstoff und Sauerstoff auftritt.
  4. System nach Anspruch 2, dadurch gekennzeichnet, daß der genannte zweite Temperaturbereich ein Temperaturbereich ist, bei dem der genannte Partikelfilter regeneriert wird.
  5. System nach Anspruch 3, dadurch gekennzeichnet, daß der Innenverbrennungsmotor ein Dieselmotor ist.
  6. Abgasnachbehandlungssystem für den Auspuff eines Innenverbrennungsmotors, welches System dadurch gekennzeichnet ist, daß es umfaßt: einen Oxidationskatalysator, einen stromab von dem genannten Oxidationskatalysator angeschlossenen Katalysator für selektive katalytische Reduktion (SCR-Katalysator), einen stromab von dem genannten SCR-Katalysator angeschlossenen Partikelfilter und ein Steuergerät für das Betreiben des genannten Filters in einem ersten Temperaturbereich durch Einspritzen einer ersten Reduktantmenge in eine Abgasmischung stromauf von dem genannten Oxidationkatalysator, wobei das genannte Steuergerät anschließend den genannten Filter in einem zweiten Temperaturbereich durch Einspritzen einer zweiten Reduktantmenge in den genannten Filter betreibt.
  7. System nach Anspruch 6, dadurch gekennzeichnet, daß das genannte Reduktant Kohlenwasserstoff ist.
  8. System nach Anspruch 6, dadurch gekennzeichnet, daß der Innenverbrennungsmotor ein Dieselmotor ist.
  9. Abgasnachbehandlungssystem für den Auspuff eines Innenverbrennungsmotors, welches System dadurch gekennzeichnet ist, daß es umfaßt: einen SCR-Katalysator, ein stromab von dem genannten SCR-Katalysator angeschlossenes Reduktantzuführsystem, einen stromab von dem genannten Reduktantzuführsystem angeschlossenen Partikelfilter und ein Steuergerät für die Lieferung einer Anzeige einer Betriebsbedingung, und als Reaktion auf die genannte Anzeige Bewirken, daß das genannte Reduktantzuführsystem Reduktant in den genannten Partikelfilter einspritzt.
  10. System nach Anspruch 9, dadurch gekennzeichnet, daß der Innenverbrennungsmotor ein Dieselmotor ist.
  11. System nach Anspruch 9, dadurch gekennzeichnet, daß das genannte Reduktant Kohlenwasserstoff ist.
  12. System nach Anspruch 9, dadurch gekennzeichnet, daß das genannte Steuergerät die genannte Anzeige liefert, wenn eine Temperatur des genannten Partikelfilters in einem Temperaturbereich befindlich ist, bei dem eine exotherme Reaktion zwischen Kohlenwasserstoff und Sauerstoff auftritt.
  13. Verfahren für die Regenerierung eines stromab von einem SCR-Katalysator angeschlossenen Partikelfilters, wobei der SCR-Katalysator stromab eines Oxidationskatalysators angeschlossen ist, welches Verfahren dadurch gekennzeichnet ist, daß es umfaßt: Lieferung einer Anzeige, daß die Regenerierung des Partikelfilter angezeigt ist, als Reaktion auf die genannte Anzeige Anpassen einer Reduktantmenge in der in den Oxidationskatalysator eintretenden Abgasmischung, um einen ersten Partikelfilterbetriebsbereich zu liefern, und Anpassen einer Menge des genannten Reduktants in einer in den Partikelfilter eintretenden Abgasmischung, um einen zweiten Partikelfilterbetriebsbereich zu liefern.
  14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, daß das genannte Reduktant Kohlenwasserstoff ist.
  15. Verfahren nach Anspruch 14, dadurch gekennzeichnet, daß die genannte Menge des genannten Reduktants in der genannten in den Oxidationskatalysator eintretenden Abgasmischung durch Anpassung von Motorbetriebsbedingungen angepaßt wird.
  16. Verfahren nach Anspruch 15, dadurch gekennzeichnet, daß die genannten Motorbetriebsbedingungen den Einspritzzeitpunkt umfassen.
  17. Verfahren nach Anspruch 13, dadurch gekennzeichnet, daß der genannte erste Partikelfilterbetriebsbereich ein Partikelfiltertemperaturbereich ist, bei dem eine exotherme Reaktion zwischen Kohlenwasserstoff und Sauerstoff möglich ist.
  18. Verfahren nach Anspruch 17, dadurch gekennzeichnet, daß der genannte zweite Partikelfilterbetriebsbereich ein Temperaturbereich ist, bei dem eine Filterregenerierung auftritt.
  19. Abgasnachbehandlungssystem für den Auspuff eines Innenverbrennungsmotors, welches System dadurch gekennzeichnet ist, daß es umfaßt: einen SCR-Katalysator, ein Reduktantzuführsystem, welches mindestens ein Heizelement aufweist, wobei das genannte Reduktantzuführsystem stromab von dem genannten SCR-Katalysator angeschlossen ist, einen stromab von dem genannten Reduktantzuführsystem angeschlossenen Partikelfilter und ein Steuergerät für die Lieferung einer Anzeige, daß eine Filterregenerierung angezeigt ist, und als Reaktion auf die genannte Anzeige Erhöhen einer Temperatur des genannten Partikelfilters über eine Regenerierungstemperatur hinaus durch Einspritzen einer vorbestimmten Menge von Reduktant und Luft in das genannte Reduktantzuführsystem und Anpassen einer Heizelementtemperatur in der Weise, daß eine Mischung des genannten Reduktants und der genannten Luft im Inneren des genannten Reduktantzuführsystems verbrennt.
  20. System nach Anspruch 19, dadurch gekennzeichnet, daß das genannte Reduktant Kohlenwasserstoff ist.
DE10347133A 2002-11-21 2003-10-10 Abgasnachbehandlungssysteme Expired - Lifetime DE10347133B4 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US301043 2002-11-21
US10/301,043 US6823663B2 (en) 2002-11-21 2002-11-21 Exhaust gas aftertreatment systems
US10/301,043 2002-11-21

Publications (2)

Publication Number Publication Date
DE10347133A1 true DE10347133A1 (de) 2004-06-17
DE10347133B4 DE10347133B4 (de) 2006-05-24

Family

ID=32324456

Family Applications (1)

Application Number Title Priority Date Filing Date
DE10347133A Expired - Lifetime DE10347133B4 (de) 2002-11-21 2003-10-10 Abgasnachbehandlungssysteme

Country Status (2)

Country Link
US (1) US6823663B2 (de)
DE (1) DE10347133B4 (de)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005015479A1 (de) * 2005-04-05 2006-10-12 Daimlerchrysler Ag Vorrichtung und Verfahren zur Abgasnachbehandlung eines Verbrennungsmotors
DE102005035555A1 (de) * 2005-07-29 2007-02-01 Emitec Gesellschaft Für Emissionstechnologie Mbh Verfahren zur Verminderung der Stickoxid- und Partikelemissionen einer Verbrennungskraftmaschine und entsprechende Abgasnachbehanldungseinheit
WO2007101597A1 (de) * 2006-03-03 2007-09-13 Daimler Ag Abgasnachbehandlungssystem und verfahren zur abgasreinigung
DE102007056202A1 (de) * 2007-11-22 2009-05-28 Audi Ag Abgasnachbehandlungseinrichtung für eine Brennkraftmaschine und Verfahren zur Nachbehandlung von Abgasen einer Brennkraftmaschine
DE102008039112A1 (de) * 2008-08-21 2010-02-25 Deutz Ag Abgasnachbehandlungssystem
DE102011111590A1 (de) * 2011-08-25 2013-02-28 Volkswagen Aktiengesellschaft Abgasbehandlungseinrichtung, Verfahren zur Aufbereitung von Abgas und Kraftfahrzeug
DE10361220B4 (de) * 2003-12-24 2015-01-08 Volkswagen Ag Verfahren zum Regenerieren eines Partikelfilters
DE102011111256B4 (de) * 2010-09-09 2017-11-23 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Verbesserte Fahrzeugbeschleunigung bei einem Luftdrosselungsmodus
DE102004031321C5 (de) * 2004-06-29 2020-06-25 Robert Bosch Gmbh Verfahren zum Dosieren eines Brennstoffs in einen Abgaskanal einer Brennkraftmaschine und Vorrichtung zur Durchführung des Verfahrens
DE102019134441A1 (de) * 2019-12-16 2021-06-17 Volkswagen Ag Abgasnachbehandlungssystem sowie Verfahren zur Abgasnachbehandlung eines Verbrennungsmotors
DE102020101069A1 (de) 2020-01-17 2021-07-22 Volkswagen Aktiengesellschaft Abgasnachbehandlungssystem sowie Verfahren zur Abgasnachbehandlung eines Verbrennungsmotors
DE102020209156A1 (de) 2020-07-21 2022-01-27 Vitesco Technologies GmbH Abgasstrang für einen Wasserstoffverbrennungsmotor und Verfahren zum Betreiben eines Abgasstrangs eines Wasserstoffverbrennungsmotors

Families Citing this family (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020007629A1 (en) * 2000-07-21 2002-01-24 Toyota Jidosha Kabushiki Kaisha Device for purifying the exhaust gas of an internal combustion engine
JP3858752B2 (ja) * 2002-04-25 2006-12-20 トヨタ自動車株式会社 内燃機関の排気浄化装置
DE10254764A1 (de) * 2002-11-22 2004-06-03 Emitec Gesellschaft Für Emissionstechnologie Mbh Abgasanlage
EP1435458B1 (de) * 2002-12-23 2008-10-15 Grundfos NoNox a/s Dosierpumpenaggregat
EP1594594B1 (de) * 2003-02-12 2012-05-23 Delphi Technologies, Inc. Vorrichtung zur verminderung von stickoxiden
EP1517028B1 (de) * 2003-09-17 2011-04-06 Nissan Motor Co., Ltd. Vorrichtung zur Steuerung der Regeneration eines Diesel-Partikelfilters
US7188469B2 (en) * 2003-12-29 2007-03-13 Delphi Technologies, Inc. Exhaust system and methods of reducing contaminants in an exhaust stream
JP2006022729A (ja) * 2004-07-08 2006-01-26 Hino Motors Ltd 排気浄化装置の制御方法
JP2006029239A (ja) * 2004-07-16 2006-02-02 Toyota Motor Corp 排気浄化フィルタ過熱防止装置
WO2006010277A2 (en) * 2004-07-29 2006-02-02 Nxtgen Emission Controls Inc. Integrated system for reducing fuel consumption and emissions in an internal combustion engine
DE102004046640B4 (de) * 2004-09-25 2013-07-11 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine und Vorrichtung zur Durchführung des Verfahrens
US7146802B2 (en) * 2004-10-07 2006-12-12 General Motors Corporation Reducing NOx emissions with a staged catalyst
FR2879254B1 (fr) * 2004-12-14 2007-01-26 Renault Sas Protection du catalyseur d'oxydation place en amont de filtre a particules pour moteur diesel par limitation de carburant injecte
US7441403B2 (en) * 2004-12-20 2008-10-28 Detroit Diesel Corporation Method and system for determining temperature set points in systems having particulate filters with regeneration capabilities
US7210286B2 (en) * 2004-12-20 2007-05-01 Detroit Diesel Corporation Method and system for controlling fuel included within exhaust gases to facilitate regeneration of a particulate filter
US7461504B2 (en) * 2004-12-21 2008-12-09 Detroit Diesel Corporation Method and system for controlling temperatures of exhaust gases emitted from internal combustion engine to facilitate regeneration of a particulate filter
US20060130465A1 (en) * 2004-12-22 2006-06-22 Detroit Diesel Corporation Method and system for controlling exhaust gases emitted from an internal combustion engine
US7434388B2 (en) 2004-12-22 2008-10-14 Detroit Diesel Corporation Method and system for regeneration of a particulate filter
US7076945B2 (en) 2004-12-22 2006-07-18 Detroit Diesel Corporation Method and system for controlling temperatures of exhaust gases emitted from an internal combustion engine to facilitate regeneration of a particulate filter
JP4434061B2 (ja) * 2005-04-08 2010-03-17 トヨタ自動車株式会社 内燃機関の排気浄化装置
US7418816B2 (en) * 2005-09-01 2008-09-02 Ford Global Technologies, Llc Exhaust gas aftertreatment systems
US20070137181A1 (en) * 2005-12-16 2007-06-21 Devesh Upadhyay Exhaust gas aftertreatment systems
US20070175205A1 (en) * 2006-01-31 2007-08-02 Caterpillar Inc. System for selective homogeneous charge compression ignition
US20070178025A1 (en) * 2006-01-31 2007-08-02 Opris Cornelius N Exhaust treatment system
JP4432917B2 (ja) * 2006-03-06 2010-03-17 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP4458070B2 (ja) * 2006-06-22 2010-04-28 トヨタ自動車株式会社 内燃機関の排気浄化装置
US7614215B2 (en) * 2006-09-18 2009-11-10 Cummins Filtration Ip, Inc. Exhaust treatment packaging apparatus, system, and method
US8109077B2 (en) * 2006-10-11 2012-02-07 Tenneco Automotive Operating Company Inc. Dual injector system for diesel emissions control
US7805931B2 (en) * 2006-10-30 2010-10-05 Perkins Engines Company Limited Self-sustaining oxy-exothermal filter regeneration system
US8800268B2 (en) * 2006-12-01 2014-08-12 Basf Corporation Zone coated filter, emission treatment systems and methods
US20080127638A1 (en) * 2006-12-01 2008-06-05 Marius Vaarkamp Emission Treatment Systems and Methods
US7810316B2 (en) * 2006-12-29 2010-10-12 Cummins Filtration Ip, Inc Apparatus, system, and method for exhaust aftertreatment efficiency enhancement
TW200827536A (en) * 2006-12-29 2008-07-01 Sentec E & E Co Ltd Exhaust decontamination device of a motorcycle engine
US7673446B2 (en) * 2007-01-29 2010-03-09 Caterpillar Inc. Dual path exhaust emission control system
JP5363345B2 (ja) 2007-02-21 2013-12-11 ボルボ ラストバグナー アーベー 排気後処理システムを制御するための制御方法と排気後処理システム
US20080202096A1 (en) * 2007-02-28 2008-08-28 Caterpillar Inc. Particulate regeneration and engine control system
US8006482B2 (en) * 2007-03-02 2011-08-30 Caterpillar Inc. Method of purging fluid injector by heating
US8171724B2 (en) * 2007-05-02 2012-05-08 Ford Global Technologies, Llc Vehicle-based strategy for removing urea deposits from an SCR catalyst
DE102007024081A1 (de) 2007-05-22 2008-11-27 Emitec Gesellschaft Für Emissionstechnologie Mbh Verfahren und Vorrichtung zum Verdampfen eines Fluides
US20080295499A1 (en) * 2007-05-31 2008-12-04 James Joshua Driscoll Exhaust system utilizing a low-temperature oxidation catalyst
US7958721B2 (en) * 2007-06-29 2011-06-14 Caterpillar Inc. Regeneration system having integral purge and ignition device
FR2919339A1 (fr) * 2007-07-24 2009-01-30 Peugeot Citroen Automobiles Sa Ligne d'echappement de gaz equipee de systemes de depollution pour moteur a combustion interne de vehicule automobile fonctionnant en melange pauvre.
US20090035194A1 (en) * 2007-07-31 2009-02-05 Caterpillar Inc. Exhaust treatment system with an oxidation device for NO2 control
US7799289B2 (en) * 2007-07-31 2010-09-21 Caterpillar Inc Exhaust treatment system with NO2 control
US8166751B2 (en) * 2007-07-31 2012-05-01 Caterpillar Inc. Particulate filter
JP4910932B2 (ja) * 2007-08-01 2012-04-04 トヨタ自動車株式会社 内燃機関の排気浄化装置
US7966812B2 (en) * 2007-08-29 2011-06-28 Ford Global Technologies, Llc Multi-stage regeneration of particulate filter
US20090113880A1 (en) * 2007-11-01 2009-05-07 Clausen Michael D Diesel engine
US20090199537A1 (en) * 2008-02-11 2009-08-13 Detroit Diesel Corporation Methods to protect selective catalyst reducer aftertreatment devices during uncontrolled diesel particulate filter regeneration
US7832200B2 (en) * 2008-04-23 2010-11-16 Caterpillar Inc Exhaust system implementing feedforward and feedback control
KR100980875B1 (ko) 2008-05-14 2010-09-10 현대자동차주식회사 디젤 차량의 후처리 장치 및 재생방법
GB0811144D0 (en) * 2008-06-18 2008-07-23 Parker Hannifin U K Ltd A liquid drain system
US8490388B2 (en) * 2008-08-28 2013-07-23 Michael Parmentier System and method for outlet temperature control of an oxidation catalyst
WO2010050857A1 (en) * 2008-10-31 2010-05-06 Volvo Lastvagnar Ab Method and apparatus for cold starting an internal combustion engine
US8448424B2 (en) * 2009-01-16 2013-05-28 Ford Global Technologies, Llc. Emission control system with an integrated particulate filter and selective catalytic reduction unit
DE102009011516A1 (de) * 2009-03-06 2010-09-16 Kautex Textron Gmbh & Co. Kg Betriebsflüssigkeitsbehälter
DE102009022882A1 (de) * 2009-05-27 2010-12-02 Bayerische Motoren Werke Aktiengesellschaft Sensor zum Erfassen der Menge eines Reduktionsmittels und der Menge eines Schadstoffs in einem Abgas
US8904760B2 (en) * 2009-06-17 2014-12-09 GM Global Technology Operations LLC Exhaust gas treatment system including an HC-SCR and two-way catalyst and method of using the same
US8635855B2 (en) * 2009-06-17 2014-01-28 GM Global Technology Operations LLC Exhaust gas treatment system including a lean NOx trap and two-way catalyst and method of using the same
US8240136B2 (en) * 2009-07-29 2012-08-14 Ford Global Technologies, Llc SCR catalyst heating control
US20110064632A1 (en) * 2009-09-14 2011-03-17 Ford Global Technologies, Llc Staged Catalyst System and Method of Using the Same
DE102010013696A1 (de) 2010-04-01 2011-10-06 Emitec Gesellschaft Für Emissionstechnologie Mbh Verfahren zum Betrieb einer Abgashandlungsvorrichtung
EP2375854B1 (de) * 2010-04-06 2015-12-02 Plastic Omnium Advanced Innovation and Research Heizvorrichtung für einen Fahrzeugflüssigkeitstank, Kraftfahrzeug damit und Verfahren zum Heizen des Fahrzeugflüssigkeitstanks
JP5449009B2 (ja) * 2010-04-28 2014-03-19 日野自動車株式会社 排気浄化装置
US20130095013A1 (en) 2010-06-24 2013-04-18 N.E. Chemcat Corporation Exhaust gas purification catalyst apparatus using selective reduction catalyst, exhaust gas purification method, and diesel automobile mounted with exhaust gas purification catalyst apparatus
US8434298B2 (en) * 2010-07-01 2013-05-07 International Engine Intellectual Property Company, Llc Method for injecting ammonia into an exhaust gas stream
FR2964045B1 (fr) * 2010-08-26 2012-08-31 Lab Sa Procede de regeneration d'un catalyseur de denitrification et installation de mise en oeuvre correspondante
US8800265B2 (en) 2010-09-22 2014-08-12 GM Global Technology Operations LLC Exhaust gas treatment system for an internal combustion engine
US8516800B2 (en) * 2010-12-22 2013-08-27 Caterpillar Inc. System and method for introducing a reductant agent
US9371763B2 (en) * 2011-03-21 2016-06-21 GM Global Technology Operations LLC Method of operating an exhaust gas treatment system to prevent quenching during regeneration
JP5937067B2 (ja) 2011-04-28 2016-06-22 エヌ・イーケムキャット株式会社 排気ガス浄化装置
WO2013158063A1 (en) * 2012-04-16 2013-10-24 International Engine Intellectual Property Company, Llc Optimization of ammonia dosing during regeneration
US8862370B2 (en) * 2012-08-02 2014-10-14 Ford Global Technologies, Llc NOx control during engine idle-stop operations
US8864875B2 (en) * 2012-11-13 2014-10-21 GM Global Technology Operations LLC Regeneration of a particulate filter based on a particulate matter oxidation rate
US9114363B2 (en) * 2013-03-15 2015-08-25 General Electric Company Aftertreatment system for simultaneous emissions control in stationary rich burn engines
US9108157B2 (en) * 2014-01-14 2015-08-18 Tenneco Automotive Operating Company Inc. Exhaust treatment device insulation detection system
US10260392B2 (en) 2014-02-28 2019-04-16 Scania Cv Ab Method and system for controlling nitrogen oxide emissions from a combustion engine
US9616384B2 (en) 2014-06-11 2017-04-11 Basf Se Base metal catalyst
SE539803C2 (en) 2015-06-05 2017-12-05 Scania Cv Ab A method and a system for determining a composition of a gas mix in a vehicle
SE539134C2 (sv) 2015-08-27 2017-04-11 Scania Cv Ab Avgasbehandlingssystem och förfarande för behandling av en avgasström
SE539130C2 (sv) 2015-08-27 2017-04-11 Scania Cv Ab Förfarande och avgasbehandlingssystem för behandling av en avgasström
SE539131C2 (sv) 2015-08-27 2017-04-11 Scania Cv Ab Förfarande och avgasbehandlingssystem för behandling av en avgasström
SE539133C2 (sv) 2015-08-27 2017-04-11 Scania Cv Ab Avgasbehandlingssystem och förfarande för behandling av en avgasström
EP3341596B1 (de) 2015-08-27 2021-07-28 Scania CV AB Verfahren und abgasbehandlungssystem zur behandlung eines abgasstroms
SE539129C2 (en) 2015-08-27 2017-04-11 Scania Cv Ab Process and system for processing a single stream combustion exhaust stream
DE102017206425A1 (de) * 2017-04-13 2018-10-18 Continental Automotive Gmbh Abgassystem
DE102018100834A1 (de) 2018-01-16 2019-07-18 Umicore Ag & Co. Kg Verfahren zur Herstellung eines SCR-Katalysators
DE102018100833A1 (de) 2018-01-16 2019-07-18 Umicore Ag & Co. Kg Verfahren zur Herstellung eines SCR-Katalysators
DE102018123586A1 (de) * 2018-09-25 2020-03-26 Volkswagen Aktiengesellschaft Vorrichtung und Verfahren zur Abgasnachbehandlung eines Verbrennungsmotors
DE102019006499A1 (de) * 2019-09-16 2021-03-18 Albonair Gmbh Beheizte Einpritzdüse
US11421572B2 (en) 2020-01-09 2022-08-23 Cummins Inc. Exhaust gas aftertreatment system with a selective catalytic reduction catalyst member upstream of a particulate filter

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4436415A1 (de) 1994-10-12 1996-04-18 Bosch Gmbh Robert Einrichtung zum Nachbehandeln von Abgasen einer selbstzündenden Brennkraftmaschine
DE19625447B4 (de) 1996-06-26 2006-06-08 Robert Bosch Gmbh Rohrverdampfer für Zusatzkraftstoff ins Abgas
JPH1024219A (ja) 1996-07-11 1998-01-27 Mitsubishi Heavy Ind Ltd 排ガス脱硝方法
US5711147A (en) 1996-08-19 1998-01-27 The Regents Of The University Of California Plasma-assisted catalytic reduction system
US6038854A (en) 1996-08-19 2000-03-21 The Regents Of The University Of California Plasma regenerated particulate trap and NOx reduction system
GB9621215D0 (en) 1996-10-11 1996-11-27 Johnson Matthey Plc Emission control
US5985222A (en) 1996-11-01 1999-11-16 Noxtech, Inc. Apparatus and method for reducing NOx from exhaust gases produced by industrial processes
US5809775A (en) 1997-04-02 1998-09-22 Clean Diesel Technologies, Inc. Reducing NOx emissions from an engine by selective catalytic reduction utilizing solid reagents
US5924280A (en) 1997-04-04 1999-07-20 Clean Diesel Technologies, Inc. Reducing NOx emissions from an engine while maximizing fuel economy
DE19782282T1 (de) 1997-07-10 2000-09-21 Sk Corp Selektive katalytische Reduktion zur Entfernung von Stickoxiden und zugehöriger Katalysatorkörper
US6003305A (en) 1997-09-02 1999-12-21 Thermatrix, Inc. Method of reducing internal combustion engine emissions, and system for same
FR2770418B1 (fr) 1997-11-04 1999-12-03 Grande Paroisse Sa Procede pour l'elimination dans le gaz des oxydes d'azote nox par reduction catalytique selective (scr) a l'ammoniac sur catalyseurs zeolitiques ne provoquant pas la formation de protoxyde d'azote
JP3237611B2 (ja) 1997-11-11 2001-12-10 トヨタ自動車株式会社 内燃機関の排気浄化装置
GB9802504D0 (en) 1998-02-06 1998-04-01 Johnson Matthey Plc Improvements in emission control
DE19819579C1 (de) 1998-04-30 1999-09-30 Siemens Ag Verfahren und Vorrichtung zur Abgasnachbehandlung für eine mit einem SCR-Katalysator ausgestattete Brennkraftmaschine
US6299847B1 (en) 1998-07-07 2001-10-09 Durr Environmental Ammonia catalytic abatement apparatus and method
US6125629A (en) 1998-11-13 2000-10-03 Engelhard Corporation Staged reductant injection for improved NOx reduction
US6182443B1 (en) 1999-02-09 2001-02-06 Ford Global Technologies, Inc. Method for converting exhaust gases from a diesel engine using nitrogen oxide absorbent
JP3607976B2 (ja) 1999-03-29 2005-01-05 トヨタ自動車株式会社 内燃機関の排気浄化装置
US6293096B1 (en) * 1999-06-23 2001-09-25 Southwest Research Institute Multiple stage aftertreatment system
US6305160B1 (en) 1999-07-12 2001-10-23 Ford Global Technologies, Inc. Emission control system
US6266955B1 (en) 1999-08-20 2001-07-31 Caterpillar Inc. Diagnostic system for an emissions control on an engine
US6314722B1 (en) 1999-10-06 2001-11-13 Matros Technologies, Inc. Method and apparatus for emission control
US6269633B1 (en) 2000-03-08 2001-08-07 Ford Global Technologies, Inc. Emission control system
DE10023439A1 (de) * 2000-05-12 2001-11-22 Dmc2 Degussa Metals Catalysts Verfahren zur Entfernung von Stickoxiden und Rußpartikeln aus dem mageren Abgas eines Verbrennungsmotors und Abgasreinigungssystem hierfür
US6813884B2 (en) * 2002-01-29 2004-11-09 Ford Global Technologies, Llc Method of treating diesel exhaust gases
US6915629B2 (en) * 2002-03-07 2005-07-12 General Motors Corporation After-treatment system and method for reducing emissions in diesel engine exhaust

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10361220B4 (de) * 2003-12-24 2015-01-08 Volkswagen Ag Verfahren zum Regenerieren eines Partikelfilters
DE102004031321C5 (de) * 2004-06-29 2020-06-25 Robert Bosch Gmbh Verfahren zum Dosieren eines Brennstoffs in einen Abgaskanal einer Brennkraftmaschine und Vorrichtung zur Durchführung des Verfahrens
DE102005015479A1 (de) * 2005-04-05 2006-10-12 Daimlerchrysler Ag Vorrichtung und Verfahren zur Abgasnachbehandlung eines Verbrennungsmotors
DE102005035555A1 (de) * 2005-07-29 2007-02-01 Emitec Gesellschaft Für Emissionstechnologie Mbh Verfahren zur Verminderung der Stickoxid- und Partikelemissionen einer Verbrennungskraftmaschine und entsprechende Abgasnachbehanldungseinheit
WO2007101597A1 (de) * 2006-03-03 2007-09-13 Daimler Ag Abgasnachbehandlungssystem und verfahren zur abgasreinigung
DE102007056202A1 (de) * 2007-11-22 2009-05-28 Audi Ag Abgasnachbehandlungseinrichtung für eine Brennkraftmaschine und Verfahren zur Nachbehandlung von Abgasen einer Brennkraftmaschine
DE102008039112A1 (de) * 2008-08-21 2010-02-25 Deutz Ag Abgasnachbehandlungssystem
US8372364B2 (en) 2008-08-21 2013-02-12 Deutz Aktiengesellschaft Exhaust gas aftertreatment system
DE102011111256B4 (de) * 2010-09-09 2017-11-23 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Verbesserte Fahrzeugbeschleunigung bei einem Luftdrosselungsmodus
US9562454B2 (en) 2011-08-25 2017-02-07 Volkswagen Aktiengesellschaft Exhaust gas treatment device, method for processing exhaust gas, and motor vehicle
EP3181850B1 (de) 2011-08-25 2019-10-09 Volkswagen Aktiengesellschaft Abgasbehandlungseinrichtung, verfahren zur aufbereitung von abgas und kraftfahrzeug
DE102011111590A1 (de) * 2011-08-25 2013-02-28 Volkswagen Aktiengesellschaft Abgasbehandlungseinrichtung, Verfahren zur Aufbereitung von Abgas und Kraftfahrzeug
DE102019134441A1 (de) * 2019-12-16 2021-06-17 Volkswagen Ag Abgasnachbehandlungssystem sowie Verfahren zur Abgasnachbehandlung eines Verbrennungsmotors
DE102020101069A1 (de) 2020-01-17 2021-07-22 Volkswagen Aktiengesellschaft Abgasnachbehandlungssystem sowie Verfahren zur Abgasnachbehandlung eines Verbrennungsmotors
DE102020209156A1 (de) 2020-07-21 2022-01-27 Vitesco Technologies GmbH Abgasstrang für einen Wasserstoffverbrennungsmotor und Verfahren zum Betreiben eines Abgasstrangs eines Wasserstoffverbrennungsmotors

Also Published As

Publication number Publication date
US6823663B2 (en) 2004-11-30
US20040098979A1 (en) 2004-05-27
DE10347133B4 (de) 2006-05-24

Similar Documents

Publication Publication Date Title
DE10347133B4 (de) Abgasnachbehandlungssysteme
DE10348799B4 (de) Abgasnachbehandlungssysteme
DE10349126B4 (de) Verfahren und Vorrichtung zur Steuerung eines SCR-Katalysators
DE102007060623B4 (de) Entstickung von Dieselmotorenabgasen unter Verwendung eines temperierten Vorkatalysators zur bedarfsgerechten NO2-Bereitstellung
DE10348800B4 (de) Diesel-Abgasnachbehandlungssysteme
DE10346315B4 (de) Diesel-Abgasnachbehandlungssysteme
DE102008018063B4 (de) Fahrzeugbasierte Strategie zum Entfernen von Harnstoffablagerungen aus einem SCR-Katalysator
EP3150814B1 (de) Verfahren zum betreiben eines abgasnachbehandlungssystems
DE60314360T2 (de) Emissionssteuerungssystem zur Erhöhung der Leistungfähigkeit einer selektiven katalytischen Reduktion
DE102010023819B4 (de) Abgasbehandlungssystem für einen Dieselmotor Verfahren zu dessen Verwendung und Dieselmotor- und Abgasbehandlungssystem
DE102008050169B4 (de) Anlage, Verfahren und Vorrichtung zum Steuern zu hoher Abgastemperaturen
EP1579109A1 (de) Abgasnachbehandlungseinrichtung und -verfahren
EP3660287B1 (de) Abgasnachbehandlungssystem sowie verfahren zur abgasnachbehandlung eines verbrennungsmotors
DE102008031402A1 (de) Mehrstufige Partikelfilter-Regeneration
DE102012006448B4 (de) Verfahren zur Anwendung in Verbindung mit einer Abgasnachbehandlungsanlage
DE102010022940A1 (de) Vorrichtung und Verfahren zum Regenerieren eines Abgasfilters
DE102013106323A1 (de) System und Verfahren zum Verbessern des Betriebs eines SCR
DE112009001034T5 (de) Passive ammoniak-selektive katalytische Reduktion für NOx-Steuerung in Verbrennungsmotoren
DE102006053485A1 (de) Verfahren zum Betreiben eines Reagenzmittel-Dosierventils und Vorrichtung zur Durchführung des Verfahrens
DE112009001032T5 (de) Passive ammoniak-selektive katalytische Reduktion für NOx-Steuerung in Verbrennungsmotoren
DE102006007122A1 (de) Verfahren zum Betreiben eines Verbrennungsmotors und einer daran angeschlossenen Abgasnachbehandlungseinrichtung
EP3486444B1 (de) Verfahren zur abgasnachbehandlung eines verbrennungsmotors
WO2010089038A1 (de) Verfahren zum betreiben einer brennkraftmaschine mit einer abgasreinigungsanlage
DE10346715B4 (de) Diesel-Abgasnachbehandlungssysteme
DE102009035304B4 (de) System zur Reinigung von Abgas

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8364 No opposition during term of opposition
8320 Willingness to grant licences declared (paragraph 23)
R071 Expiry of right