DE102018133042A1 - Verfahren und Vorrichtung zur Kalibrierung von Spektrometern - Google Patents

Verfahren und Vorrichtung zur Kalibrierung von Spektrometern Download PDF

Info

Publication number
DE102018133042A1
DE102018133042A1 DE102018133042.1A DE102018133042A DE102018133042A1 DE 102018133042 A1 DE102018133042 A1 DE 102018133042A1 DE 102018133042 A DE102018133042 A DE 102018133042A DE 102018133042 A1 DE102018133042 A1 DE 102018133042A1
Authority
DE
Germany
Prior art keywords
radiation
pixel
spectrometer
pixels
defocusing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE102018133042.1A
Other languages
English (en)
Other versions
DE102018133042B4 (de
Inventor
Heinz-Gerd Joosten
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Spectro Analytical Instruments GmbH and Co KG
Original Assignee
Spectro Analytical Instruments GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Spectro Analytical Instruments GmbH and Co KG filed Critical Spectro Analytical Instruments GmbH and Co KG
Priority to DE102018133042.1A priority Critical patent/DE102018133042B4/de
Priority to US16/707,395 priority patent/US11092490B2/en
Publication of DE102018133042A1 publication Critical patent/DE102018133042A1/de
Application granted granted Critical
Publication of DE102018133042B4 publication Critical patent/DE102018133042B4/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0297Constructional arrangements for removing other types of optical noise or for performing calibration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0208Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using focussing or collimating elements, e.g. lenses or mirrors; performing aberration correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0237Adjustable, e.g. focussing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/18Generating the spectrum; Monochromators using diffraction elements, e.g. grating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2823Imaging spectrometer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J2003/2866Markers; Calibrating of scan
    • G01J2003/2879Calibrating scan, e.g. Fabry Perot interferometer

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

Die Erfindung betrifft ein Verfahren und ein Spektrometer zur wellenlängenabhängigen Messung von Strahlung im Bereich des UV-Lichts und des sichtbaren Lichts, mit einem Eintrittsspalt, einem dispersiven Element und einer Anzahl von Pixel aufweisenden Sensoren, wobei ein Lichtweg innerhalb des Spektrometers von dem Eintrittsspalt zu den Sensoren verläuft und ein abbildendes Element vorgesehen ist, welches die Strahlung auf die Sensoren fokussiert, bei dem ein Mittel zur Defokussierung der Strahlung vorgesehen ist, welches zum Zweck der Kalibrierung aktivierbar ist.

Description

  • Die vorliegende Erfindung betrifft ein Verfahren mit den Merkmalen des Oberbegriffs des Anspruchs 1 sowie eine Vorrichtung mit den Merkmalen des Oberbegriffs des Anspruchs 10.
  • In Spektrometern, die zur Elementanalyse Spektrallinien im Wellenlängenbereich des ultravioletten Lichts bis zum nahen infraroten Licht erfassen, kommen zum Teil Halbleiterdetektoren zum Einsatz, bei denen die lichtempfindlichen Elemente als Pixel zeilenförmig nebeneinander angeordnet sind. Diese Detektoren werden Zeilensensoren genannt. Zeilensensoren sind einem gewissen Verschleiß unterworfen. Werden sie über einem längeren Zeitraum Strahlung ausgesetzt, verlieren sie an Empfindlichkeit. In diesem Zusammenhang spricht man von Einbrenneffekten. Unter Einbrennen soll das Phänomen verstanden werden, dass man im Originalzustand, also bei einem neuen Zeilensensor für eine Strahlungsmenge St ein Signal der Größe IntOriginal erhält. Nach längerer Bestrahlung ändert sich diese Relation, und man erhält für dieselbe Strahlungsmenge St an einem Pixel nur noch ein reduziertes Signal der Größe IntDegrad mit IntDegrad < IntOnginal. Wird ein solches eingebranntes Pixel zur Ermittlung einer Konzentration benutzt, kann das zu einer zu niedrigen Bestimmung des Elementgehaltes führen. In der Spektrometrie ist man deshalb darauf angewiesen, dass das eine bestimmte Lichtmenge, die auf ein Pixel trifft, stets das gleiche elektrische Signal produziert.
  • Der nächstkommende Stand der Technik ist in der Druckschrift DE 10152679 A1 beschrieben. Dort wird zur Kalibration von Sensoren die Beleuchtung mit einer Lichtquelle beliebiger spektraler Zusammensetzung, jedoch mit Emission im Bereich der spektralen Empfindlichkeit der Sensoren als Grundlage für die Korrektur vorgeschlagen. Im Einzelnen wird nach diesem Stand der Technik eine pixelspezifische Empfindlichkeitsfunktion für ein Pixel n bestimmt, indem der Sensor einer Lichtquelle ausgesetzt wird, die alle Pixel mit möglichst gleicher Helligkeit bestrahlt. Es ist allerdings kaum möglich, eine homogene Beleuchtung vom ersten bis zum letzten Pixel zu erzielen. Benachbarte Pixel messen eine sehr ähnliche Lichtmenge. Die Beleuchtung weiter entfernter Pixel kann aber abweichen.
  • Zur Korrektur von Einbrenneffekten eignet sich das Verfahren jedoch nicht.
  • Das hat folgenden Grund:
    • Es ist für Wellenlängen unter 300 nm erforderlich, den Sensor mit einer fluoreszierenden Schicht zu versehen, die den Sensor vor Zerstörung durch UV-Strahlung schützt und durch Konversion der UV-Strahlung in sichtbares Licht die Detektionseffizienz erhöht, denn die üblicherweise verwendeten Sensoren können keine Strahlung unterhalb 300 nm detektieren.
  • Das Einbrennen kann bei derart beschichteten Sensoren entweder die Fluoreszenzschicht oder das Pixel selbst betreffen. Auch eine Beschädigung sowohl der Fluoreszenzschicht als auch des Sensors in variierenden Anteilen ist zu beobachten. Es ist deshalb nicht zielführend, eine Kalibration der Pixelempfindlichkeit für den UV-Bereich mit sichtbarem Licht durchzuführen. Diese Strahlung führt zu keiner Fluoreszenz. Beschädigungen der Fluoreszenzschicht sind nicht zu detektieren. Andererseits eignet sich aber auch eine UV-Strahlungsquelle einer festen Wellenlänge nicht. Um eine zutreffende Korrektur durchführen zu können, muss jedes Pixel Strahlung annähernd der Wellenlänge ausgesetzt werden, die später mit dem betreffenden Pixel gemessen werden soll. Nur in diesem Fall ist es irrelevant, ob Pixel oder Fluoreszenzschicht geschädigt sind.
  • Es ist deshalb Aufgabe der vorliegenden Erfindung, ein Verfahren und eine Vorrichtung zu schaffen, mit der eine verminderte Empfindlichkeit einzelner Pixel erkannt und kompensiert werden kann.
  • Diese Aufgabe wird von einem Verfahren mit den Merkmalen des Anspruchs 1 sowie von einer Vorrichtung mit den Merkmalen des Anspruchs 9 gelöst.
  • Bei dem Verfahren zur Kalibrierung der Empfindlichkeit von Pixeln von pixelbasierten Sensoren in einem Spektrometer sind folgende Schritten vorgesehen:
    1. a) Erzeugen einer Strahlung mit einer Vielzahl von Spektrallinien im Bereich des ultravioletten und sichtbaren Lichts, wobei die Strahlung entlang eines Lichtwegs innerhalb des Spektrometers von einem Eintrittsspalt zu einem dispersiven Element und von dort auf die Sensoren fällt;
    2. b) Defokussieren der Strahlung derart, dass der Fokus in Ausbreitungsrichtung des Lichts in einem Abstand von den Pixeln liegt,
    3. c) Erfassen der Strahlung in einem Bereich von Pixeln links und rechts des zu untersuchenden Pixel p,
    4. d) Berechnen eines Erwartungswertes e des Signals des zu untersuchenden Pixels p aus den Messwerten der benachbarten Pixel in dem Bereich,
    5. e) Vergleichen des Erwartungswertes e mit dem Messwert I für das Pixel p und
    6. f) wenn der Messwert I um mehr als einen Schwellwert dI unter dem Erwartungswert e liegt, Berechnen eines Korrekturfaktors Kp , mit dem bei zukünftigen Messungen der tatsächliche Messwert des Pixels p zur Messwertkorrektur angepasst wird.
    7. g) Aufheben der Defokussierung, wobei die Strahlung auf die Pixel fokussiert wird.
  • Für eine Messung einer Probe nach dem Kalibriervorgang werden folgende Schritte ausgeführt:
    • h) Erfassen der Strahlung, die auf jedes Pixel fällt, und Ermitteln eines Messwerts I für jedes Pixel des Spektrometers,
    • i) Korrektur der Messwerte I eines jeden Pixels durch Anwendung des unter Schritt f) ermittelten Korrekturfaktors Kp , beispielsweise durch Multiplikation mit dem Korrekturfaktor.
  • Mit diesen Schritten kann eine Bestrahlung aller Pixel mit ähnlichen Wellenlängen, wie sie später mit dem betreffenden Pixel zu messen ist, erreicht werden. Es kann außerdem eine Korrektur für jedes einzelne Pixel vorgenommen werden, wenn dies nach dem Messergebnis infolge einer Abweichung vom Erwartungswert erforderlich sein sollte.
  • Eine vorteilhafte Ausführungsform sieht vor, dass für eine gute Mittelwertbildung im Schritt c) links und rechts des zu untersuchenden Pixel p mit Ausnahme der Randbereiche des Sensors die gleiche Anzahl von benachbarten Pixeln ausgewertet wird. Bei einer vollständigen Kalibrierung ist es von Vorteil, wenn die Schritte c) bis f) für jedes Pixel der Sensoren des Spektrometers durchgeführt werden. Die Begriffe „Links“ und „rechts“ beziehen sich hier auf die Ausbreitungsrichtung der Strahlung von dem dispersiven Element zu den Sensoren.
  • Wenn im Schritt d) der Erwartungswert mittels Regressionsrechnung über die Messwerte I der benachbarten Pixel ermittelt wird, wobei der Messwert des Pixel p selbst nicht zur Berechnung herangezogen wird, kann eine besonders genaue Vorhersage des zu erwartenden Messwertes des Pixels getroffen werden. Dabei kann die Regression in einfacher Weise als Ausgleichsgerade durchgeführt werden.
  • Wenn im Schritt f) der Korrekturfaktor für jedes Pixel als Quotient des Erwartungswertes e geteilt durch den Messwert I bestimmt wird, kann der Korrekturfaktor als einfacher Zahlenwert für jedes Pixel ermittelt, gespeichert und zur Korrektur eine realen Messung genutzt werden.
  • Die Defokussierung, die zur Kalibrierung vorgenommen wird, wird wieder rückgängig gemacht, indem die Strahlung wieder auf die Pixel fokussiert wird, nachdem die Schritte a) bis f) für jedes Pixel des Spektrometers durchgeführt wurden. Dann ist das Spektrometer wieder in Messbereitschaft.
  • Wenn die Defokussierung im Schritt b) so durchgeführt wird, dass der Fokuspunkt gemessen in Ausbreitungsrichtung der Strahlung in einem Abstand Df vor oder hinter der lichtempfindlichen Fläche des Sensors liegt wird die Strahlung über ausreichend viele benachbarte Pixel gestreut, ohne dass einzelne Pixel für die Kalibrierung zu schwach beleuchtet werden.
  • Ein Beispiel soll die Dimensionierung der Defokussierung Df zeigen: In der Praxis zeigt sich, dass Proben zur Anpassung verfügbar sind, bei denen der Abstand ausreichend intensiver Spektrallinien in den für eine Einbrennkorrektur relevanten Spektralbereichen 0,3 nm oder weniger beträgt. Geht man weiterhin von den Eckdaten
    • - Abstand Gitter-Fokalkurve 650 mm
    • - Ausleuchtbreite auf dem Gitter 28 mm
    • - Pixelauflösung 14 µm
    aus, muss die Defokussierung Df mindestens so groß sein, dass sich das Signal einer Spektrallinie auf 0,3 nm bzw. 60 Pixel verteilt. 0,3 nm entsprechen 14 µm * 60 = 0,84 mm. Nach dem Strahlensatz der Geometrie muss man sich um die Strecke 0,84*650/28 mm, also um 19,5 mm von der Fokalkurve entfernen, um die gewünschte Linienverbreiterung zu erhalten. Df wird man für das genannte Beispiel also Df >= 19,5 mm wählen.
  • Vorteilhaft wird zur Strahlungserzeugung im Schritt a) eine Probe verwendet, mit der im kurzwelligen UV-Bereich eine besonders linienreiche Strahlung erzeugt werden kann.
  • Weil bei einem Spektrometer zur wellenlängenabhängigen Messung von Strahlung im Bereich des UV-Lichts und des sichtbaren Lichts, mit einem Eintrittsspalt, einem dispersiven Element und einer Anzahl von Pixel aufweisenden Sensoren, wobei ein Lichtweg innerhalb des Spektrometers von dem Eintrittsspalt zu den Sensoren verläuft und ein abbildendes Element vorgesehen ist, welches die Strahlung auf die Sensoren fokussiert, zusätzlich ein Mittel zur Defokussierung der Strahlung vorgesehen ist, welches zum Zweck der Kalibrierung aktivierbar ist, können einzelne Pixel mit geringerer Empfindlichkeit identifiziert werden und für jedes dieser Pixel ein Korrekturfaktor für die Empfindlichkeitskorrektur bei späteren Messungen ermittelt werden.
  • Bevorzugt ist das Mittel zur Defokussierung der Strahlung eine Linse, da bei diesem optischen Element sehr gut reproduzierbare optische Verhältnisse erzielt werden können und der Intensitätsverlust gering ist.
  • Vorzugsweise ist in dem Spektrometer ein Aktuator vorgesehen, der mechanisch mit dem Mittel verbunden ist. Dies kann beispielsweise ein Schwenkantrieb sein, der mit einem Schwenkarm unmittelbar eine Linse trägt.
  • Es ist außerdem vorteilhaft, wenn der Aktuator einen Bewegungsbereich aufweist, der das Mittel von einer ersten Position außerhalb des Lichtwegs in eine zweite Position innerhalb des Lichtwegs verlagerbar macht. Dann kann das Mittel zur Defokussierung während des Messbetriebs im Spektrometer verbleiben und bei Bedarf in den Lichtweg verbracht werden, beispielsweise in Abhängigkeit von einer Steuerung, die den Kalibriervorgang einleitet.
  • Besonders bevorzugt wird die zweite Position zwischen dem Eintrittsspalt und dem dispersiven Element vorgesehen, da dort eine Linse kleinen Durchmessers eingesetzt werden kann. Vorteilhaft ist die Linse eine Zylinderlinse, die die Defokussierung vorwiegend entlang der Fokalkurve bewirkt, während senkrecht zur Fokalkurve die Defokussierung gering bleibt. So wird erreicht, dass die Gesamtintensität der Strahlung auf der Fokalkurve trotz der Defokussierung nicht in unerwünschtem Maße dadurch herabgesetzt wird, dass Strahlung aus der Fokalebene heraus gestreut wird und damit als Signal für die Sensoren nicht mehr nutzbar ist.
  • Der Strahlengang ist besonders einfach und effektiv, wenn das dispersive Element zugleich auch das abbildende Element ist, beispielsweise in Form eines konkaven Beugungsgitters.
  • Wenn das Mittel zur Defokussierung in einem divergenten oder konvergenten Bereich des Lichtwegs eingesetzt wird, kann es auch eine planparallel Platte sein.
  • Der Aktuator ist vorzugsweise ein Schwenkantrieb, wodurch die Anordnung besonders kompakt wird.
  • Bevorzugt ist das Mittel zur Defokussierung so ausgebildet, dass es den Fokus der Strahlung im Bereich der Sensoren um eine Defokussierungsstrecke Df, deren Betrag von Ausleuchtbreite des Gitters, Gitterbrennweite und Gitterstrichzahl abhängt, verschiebt, wenn es in die zweite Position verlagert ist.
  • Nachfolgend wird eine Ausführungsform der Erfindung anhand der Zeichnung näher beschrieben. Es zeigen:
    • 1: eine schematische Darstellung des Lichtwegs in einem erfindungsgemäßen Spektrometer im Messbetrieb, bei dem die Strahlung auf die Sensoren fokussiert ist;
    • 2: den Aufbau aus 1 im Kalibrierbetrieb;
    • 3: ein Spektrum einer beispielhaften Anpassprobe im UV-Bereich;
    • 4: das von den Pixeln erzeugte Signal bei Beaufschlagung mit dem Spektrum aus 3 nach einer Defokussierung; sowie
    • 5: das Signal aus 4 nach Korrektur der reduzierten Empfindlichkeit der beiden als fehlerhaft erkannten Pixel.
  • Den schematischen Aufbau des optischen Systems eines Spektrometers zeigt 1. Eine Quelle erzeugt einfallende Strahlung 1 mit einer Vielzahl von Wellenlängen im Bereich des sichtbaren Lichts und des UV-Lichts. Die relativen Intensitäten der Spektrallinien sind in bekannter Weise ein Maß für die Anteile chemischer Elemente in der Probe. Die Strahlung 1 tritt am Anfang des Lichtwegs durch den Eintrittsspalt 2 und fällt von dort auf ein dispersives Element, meist ein optisches Gitter 3, und wird dort gebeugt. Der Winkel 8 der ausfallenden Strahlung 4 bezüglich des Gitternormals 5 ist von der Wellenlänge der Strahlung und dem Winkel 7 der einfallenden Strahlung (ebenfalls bezüglich des Gitternormals 5) abhängig. Das Spektrum wird auf der Fokalkurve 9 scharf abgebildet, wo die Sensoren 6 angeordnet sind. Hier endet der beschriebene Lichtweg innerhalb des Spektrometers. In 1 ist nur ein ausfallender Strahl abgebildet. Da es sich bei der einfallenden Strahlung aber um ein Gemisch vieler Wellenlängen handelt, hat man es mit vielen verschiedenen Ausfallstrahlen zu tun, wovon nur ein Strahl als Beispiel dargestellt ist. Die ausfallenden Wellenlängen erscheinen als Peaks in den durch die Sensoren 6 aufgenommenen Spektren. Die Sensoren sind auf der Fokalkurve 9 montiert, um möglichst scharfe Peaks, also wellenlängenabhängig gebeugte Bilder des Eintrittsspaltes 2, erfassen zu können.
  • In der 1 ist außerdem eine Vorrichtung dargestellt, die zur Verschiebung der Fokalkurve eingeschaltet werden kann. Durch Defokussierung des Spektrums kann, wie weiter unten erläutert wird, ein annähernd kontinuierliches Signal erzeugt werden.
  • Im Einzelnen umfasst die Vorrichtung einen Aktuator 10, beispielsweise in Form eines Servomotors, auf dessen Abtriebswelle ein Hebelarm 12 befestigt ist, der mit einem optischen Element 11, z. B. mit einer planparallelen Platte aus transparentem Material (Refraktorplatte) oder einer Linse verbunden ist. 1 zeigt die Position des optischen Elements 11 in Ruheposition, also der Position, in der normale Messungen durchgeführt werden.
  • Die 2 zeigt das Spektrometer aus 1, wobei das optische Element in den Lichtweg zwischen dem Eintrittsspalt 2 und dem Gitter 3 verfahren wurde. Zur Vorbereitung der Kalibrierung wird das optische Bauteil 11 durch entsprechende Ansteuerung des Aktuators 10 in den Lichtweg bewegt. Die Bewegungsrichtung zeigt der Pfeil 13 an. 2 zeigt die Endlage des optischen Elements zur Aufnahme eines unscharfen Spektrums. Das optische Element führt dazu, dass das Spektrum nicht mehr auf der Fokalkurve 9 scharf abgebildet wird, sondern davor oder dahinter. Bei Verwendung einer Refraktorplatte für 11 wird z. B. der Lichtweg um eine Strecke s, s = ( n R n U ) * d
    Figure DE102018133042A1_0001
    optisch verlängert. Dabei bezeichnet in Formel 1 nR den Brechungsindex des Refraktormaterials, nu die Brechzahl des umgebenden Medium und d die geometrische Länge des Weges der Strahlung durch den Refraktor. Wegen der Hohlspiegeleigenschaft des Gitters 3 gilt 1 / LE + 1 / LA = 1 / f
    Figure DE102018133042A1_0002
  • Dabei bezeichnet LE die optische Weglänge des einfallenden Strahls 1 zwischen Eintrittspalt und Gitter, LA gibt die Länge der gebeugten Strahlung (z. B. von 4) zwischen Gitter und Sensor an, f bezeichnet die Brennweite des Gitters.
  • Für die oft gewählte Anordnung, dass der Winkel des einfallenden Strahls (7) größer ist als alle ausfallenden Strahlen, ergibt sich LE>=LA. Damit gilt wegen Formel 2, dass die Fokalkurve 9 um eine Strecke s'>=s in Richtung des Gitters 3 verschoben wird. Die Sensoren sehen das Spektrum deshalb unscharf.
  • Es kann vorteilhaft sein, als optisches Element 11 eine Linse einzusetzen. Um mit Refraktoren eine Verschiebung der Fokalkurve von mehreren Millimetern zu erreichen, muss dieser aus relativ starkem Material gefertigt sein, was wegen der damit verbundenen Transmissionsverluste oft unerwünscht ist. Eine Linse leistet die gleiche Verschiebung bei geringerer Materialstärke.
  • Zur Vollspektrenrekalibrierung, wie sie in dem deutschem Patent DE 10152679 beschrieben ist, ist es erforderlich, eine linienreiche Anpassprobe zu messen. 3 zeigt, wie ein solches Spektrum prinzipiell aussieht. Es gibt zahlreiche Linien 16, aber auch Bereiche 17, in denen kein Signal detektiert wird.
  • Das Spektrum dieser Anpassprobe ist so nicht für eine Kalibrierung geeignet, bei der Einbrenneffekte einzelner Pixel korrigiert werden sollen, weil es Bereiche 17 ohne spektrales Signal gibt und dort, wo Spektralinien 16 erscheinen, die Signaländerung von Pixel zu Pixel sehr groß ist und deshalb Ausreißer nicht leicht erkannt werden können.
  • Es kann auch dort zu einem „Einbrennen“ von Pixeln kommen, wo die Anpassprobe keine Linie zeigt. Enthält beispielsweise die Anpassprobe kein Aluminium, werden mit dem Spektrometersystem aber laufend Aluminiumproben gemessen, kann es bei Pixeln, die spezifische Aluminiumlinien messen, zu Einbrenneffekten kommen. Das ist besonders bei den Pixeln der Fall, mit denen die sehr empfindliche Aluminiumlinie 167,1 nm gemessen wird. Das Spektrum der Anpassprobe hilft aber nicht, da dort kein ausreichendes spektrales Signal erscheint.
  • 4 zeigt exemplarisch den Verlauf des Spektrums 18 bei in den Lichtweg verfahrenem optischem Element 11. In diesem Beispiel erhält jedes Pixel p Strahlung aus einem Spektralbereich, der bei nicht in den Lichtweg verfahrenem optischem Element aus einer spektralen Umgebung von etwa 30 Pixeln vor und hinter bzw. rechts und links von dem ausgewählten Pixel p stammt. Moderne hochauflösende Spektrometer benutzen für den Spektralbereich zwischen 120 und 220 nm ca. 20000 Pixel, so dass ein Intervall von 60 Pixeln nur 0,3 nm entspricht.
  • Das heißt z. B. für ein Pixel, das die Wellenlänge 193,00 nm messen soll, dass es bei eingefahrenem Element 11 Strahlung aus einem Intervall 192,85 und 193,15 nm sieht. Diese zur Korrektur zu nutzende Strahlung ist damit sehr ähnlich der zu messenden Wellenlänge von 193,00 nm.
  • Die Korrektur der Empfindlichkeit von geschädigten Pixeln, auch Einbrennkorrektur genannt, kann nun beispielsweise wie folgt durchgeführt werden:
    1. 1. Klappe das optische Bauteil 11, das ein unscharfes Spektrum bewirkt in den einfallenden Lichtweg 1. Diese Position gibt 2 wieder;
    2. 2. Messe eine Probe mit linienreichem Spektrum;
    3. 3. Für alle Pixel p aller Sensoren verfahre wie folgt:
    4. 4. Betrachte ein Intervall von i Pixeln vor bis i Pixel hinter dem zu untersuchenden Pixel p;
    5. 5. Bilde per Regressionsrechnung eine Ausgleichsgerade über diese 2i Pixel, wobei das Pixel p selbst nicht zur Berechnung herangezogen wird (Beispiele für solche Ausgleichsgeraden 20 finden sich in 5);
    6. 6. Vergleiche den durch die Ausgleichsgerade bestimmten Erwartungswert e der zu erwartenden Intensität an der Stelle p mit dem Messwert I beim Pixel p;
    7. 7. Liegt der Messwert I signifikant unter dem Erwartungswert e, so multipliziere bei allen zukünftigen Messungen die von p gemessenen Intensitäten mit dem Faktor e/I;
    8. 8. Nach Berechnung aller Pixel bewege das optische Bauteil 11 wieder in die Ruhelage zurück (die Ruhelage ist in 1 wiedergegeben).
  • Die Einbrennkorrektur nach diesem Verfahren ist auch geeignet, die in der Patentanmeldung DE 10152679 A1 beschriebene Korrektur von Verschmutzungen und nicht perfekter Pixeluniformität vorzunehmen.
  • Bezugszeichenliste
  • 1
    Einfallende Strahlung
    2
    Eintrittsspalt
    3
    Gitter
    4
    Beispiel für ausfallende, durch das Gitter gebeugte Strahlung
    5
    Gitternormale
    6
    Sensoren auf Fokalkurve
    7
    Winkel der einfallenden Strahlung bezüglich des Normals
    8
    Winkel der durch das Gitter gebeugten ausfallenden Strahlung für eine beispielhafte Wellenlänge
    9
    Fokalkurve
    10
    Aktuator, ausgeführt z. B. als Servo- oder Schrittmotor
    11
    Optisches Bauteil (planparallele Glasplatte oder Linse), das eine scharfe Abbildung auf der Fokalkurve 9 verhindert
    12
    Haltearm für optisches Bauteil 11
    13
    Bewegungsrichtung des Haltearms 12 zum Transport des optischen Bauteils 11 in den einfallenden Lichtweg 1
    14
    Y-Achse, gibt Intensitäten wieder
    15
    X-Achse, auf der Pixelnummern aufgetragen sind
    16
    Peaks von Spektrallinien im Spektrum einer Anpassprobe
    17
    Stellen im Spektrum, an denen sich keine Spektrallinien befinden
    18
    Durch Einklappen des optischen Elements 11 unscharf gemachtes Spektrum
    19
    Eingebrannte Pixel, also Pixel mit reduzierter Empfindlichkeit
    20
    Ausgleichsgeraden, per Regression errechnet aus Pixelintensitäten benachbarter Pixel
    21
    Korrigiertes Spektrum
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • DE 10152679 A1 [0003, 0042]
    • DE 10152679 [0036]

Claims (18)

  1. Verfahren zur Kalibrierung der Empfindlichkeit von Pixeln von pixelbasierten Sensoren in einem Spektrometer mit folgenden Schritten: a) Erzeugen einer Strahlung mit einer Vielzahl von Spektrallinien im Bereich des ultravioletten und sichtbaren Lichts, wobei die Strahlung entlang eines Lichtwegs innerhalb des Spektrometers von einem Eintrittsspalt zu einem dispersiven Element und von dort auf die Sensoren fällt, b) Defokussieren der Strahlung derart, dass der Fokus in Ausbreitungsrichtung des Lichts in einem Abstand von den Pixeln liegt, c) Erfassen der Strahlung in einem Bereich von Pixeln vor und hinter einem zu untersuchenden Pixel p, d) Berechnen eines Erwartungswertes des Signals des zu untersuchenden Pixels p aus den Messwerten der benachbarten Pixel in dem Bereich, e) Vergleichen des Erwartungswertes e mit dem Messwert I für das Pixel p und f) wenn der Messwert I um mehr als einen Schwellwert dI unter dem Erwartungswert e liegt, Berechnen eines Korrekturfaktors, mit dem bei zukünftigen Messungen der tatsächliche Messwert des Pixels p zur Messwertkorrektur angepasst wird, g) Aufheben der Defokussierung, wobei die Strahlung auf die Pixel fokussiert wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass nach der Kalibrierung für eine Messung der Elementgehalte einer Probe folgende Schritte durchgeführt werden: h) Erfassen der Strahlung, die auf jedes Pixel fällt, und Ermitteln eines Messwerts I für jedes Pixel des Spektrometers, i) Korrektur der Messwerte I für eines jeden Pixels durch Multiplikation mit dem im Schritt f) ermittelten Korrekturfaktor.
  3. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass im Schritt d) vor und hinter dem zu untersuchenden Pixel p mit Ausnahme der Randbereiche des Sensors die gleiche Anzahl von benachbarten Pixeln ausgewertet wird.
  4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Schritte c) bis f) für jedes Pixel des Spektrometers durchgeführt werden.
  5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass im Schritt d) der Erwartungswert mittels Regressionsrechnung über die Messwerte I der benachbarten Pixel ermittelt wird, wobei der Messwert des Pixel p selbst nicht zur Berechnung herangezogen wird.
  6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass im Schritt f) der Korrekturfaktor für jedes Pixel als Quotient des Erwartungswertes e geteilt durch den Messwert I bestimmt wird.
  7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Defokussierung im Schritt b) so durchgeführt wird, dass der Fokuspunkt gemessen in Ausbreitungsrichtung der Strahlung in einem Abstand von mindestens um eine von der Gitterbrennweite, der Gitterstrichzahl und der Ausleuchtbreite abhängige Strecke D vor oder hinter der lichtempfindlichen Fläche des Sensors liegt.
  8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zur Strahlungserzeugung im Schritt a) eine aluminiumhaltige oder eisenhaltige Probe verwendet wird.
  9. Spektrometer zur wellenlängenabhängigen Messung von Strahlung (1) im Bereich des UV-Lichts und des sichtbaren Lichts, mit einem Eintrittsspalt (2), einem dispersiven Element (3) und einer Anzahl von Pixel aufweisenden Sensoren (6), wobei ein Lichtweg innerhalb des Spektrometers von dem Eintrittsspalt (2) zu den Sensoren (6) verläuft und ein abbildendes Element vorgesehen ist, welches die Strahlung (1) auf die Sensoren (6) fokussiert, dadurch gekennzeichnet, dass ein Mittel zur Defokussierung (11) der Strahlung (1) vorgesehen ist, welches zum Zweck der Kalibrierung aktivierbar ist.
  10. Spektrometer nach Anspruch 9, dadurch gekennzeichnet, dass das Mittel zur Defokussierung der Strahlung eine Linse (11) ist.
  11. Spektrometer nach Anspruch 9, dadurch gekennzeichnet, dass ein Aktuator (10) vorgesehen ist, der mechanisch mit dem Mittel (11) verbunden ist.
  12. Spektrometer nach Anspruch 9, dadurch gekennzeichnet, dass das der Aktuator (10) einen Bewegungsbereich aufweist, der das Mittel (11) von einer ersten Position außerhalb des Lichtwegs in eine zweite Position innerhalb des Lichtwegs verlagerbar macht.
  13. Spektrometer nach Anspruch 9, dadurch gekennzeichnet, dass das die zweite Position zwischen dem Eintrittsspalt (2) und dem dispersiven Element (3) vorgesehen ist.
  14. Spektrometer nach Anspruch 9, dadurch gekennzeichnet, dass das dispersive Element (3) zugleich auch das abbildende Element ist.
  15. Spektrometer nach Anspruch 9, dadurch gekennzeichnet, dass das Mittel eine planparallel Platte ist.
  16. Spektrometer nach Anspruch 9, dadurch gekennzeichnet, dass der Aktuator (10) ein Schwenkantrieb ist.
  17. Spektrometer nach Anspruch 9, dadurch gekennzeichnet, dass das Mittel (11) zur Defokussierung so ausgebildet ist, dass es den Fokus der Strahlung im Bereich der Sensoren (6) um mindestens eine von der Gitterbrennweite, der Gitterstrichzahl und der Ausleuchtbreite abhängige Strecke D verschiebt, wenn es in die zweite Position verlagert ist.
  18. Spektrometer zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 8.
DE102018133042.1A 2018-12-20 2018-12-20 Verfahren und Vorrichtung zur Kalibrierung von Spektrometern Active DE102018133042B4 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE102018133042.1A DE102018133042B4 (de) 2018-12-20 2018-12-20 Verfahren und Vorrichtung zur Kalibrierung von Spektrometern
US16/707,395 US11092490B2 (en) 2018-12-20 2019-12-09 Method and apparatus for calibrating spectrometers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102018133042.1A DE102018133042B4 (de) 2018-12-20 2018-12-20 Verfahren und Vorrichtung zur Kalibrierung von Spektrometern

Publications (2)

Publication Number Publication Date
DE102018133042A1 true DE102018133042A1 (de) 2020-06-25
DE102018133042B4 DE102018133042B4 (de) 2022-01-13

Family

ID=70969549

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102018133042.1A Active DE102018133042B4 (de) 2018-12-20 2018-12-20 Verfahren und Vorrichtung zur Kalibrierung von Spektrometern

Country Status (2)

Country Link
US (1) US11092490B2 (de)
DE (1) DE102018133042B4 (de)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10152679A1 (de) 2001-10-19 2003-04-30 Spectro Analytical Instr Gmbh Verfahren zur Vollautomatischen Übertragung von Kalibrationen optischer Emissionsspektrometern
DE60204212T2 (de) * 2001-02-21 2006-04-27 Qinetiq Ltd. Radiometer
DE102004061178A1 (de) * 2004-12-16 2007-01-25 Spectro Analytical Instruments Gmbh & Co. Kg Spektrometeroptik mit positionierbaren Spalten und Verfahren zur vollautomatischen Übertragung von Kalibrationen zwischen mit solchen Optiken bestückten Spektrometern
US20090028423A1 (en) * 2007-04-18 2009-01-29 Micronic Laser Systems Ab Method and apparatus for mura detection and metrology
WO2013055273A1 (en) * 2011-10-14 2013-04-18 Flir System Ab Method for gain map generation in an ir camera, and an ir camera for implementing gain map generation

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016005386B4 (de) * 2016-05-04 2018-04-05 Spectro Analytical Instruments Gmbh Optomechanisch kompensiertes Spektrometer
US10663345B2 (en) * 2018-08-22 2020-05-26 Paul Bartholomew Raman spectroscopy for minerals identification

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60204212T2 (de) * 2001-02-21 2006-04-27 Qinetiq Ltd. Radiometer
DE10152679A1 (de) 2001-10-19 2003-04-30 Spectro Analytical Instr Gmbh Verfahren zur Vollautomatischen Übertragung von Kalibrationen optischer Emissionsspektrometern
DE102004061178A1 (de) * 2004-12-16 2007-01-25 Spectro Analytical Instruments Gmbh & Co. Kg Spektrometeroptik mit positionierbaren Spalten und Verfahren zur vollautomatischen Übertragung von Kalibrationen zwischen mit solchen Optiken bestückten Spektrometern
US20090028423A1 (en) * 2007-04-18 2009-01-29 Micronic Laser Systems Ab Method and apparatus for mura detection and metrology
WO2013055273A1 (en) * 2011-10-14 2013-04-18 Flir System Ab Method for gain map generation in an ir camera, and an ir camera for implementing gain map generation

Also Published As

Publication number Publication date
DE102018133042B4 (de) 2022-01-13
US20200200605A1 (en) 2020-06-25
US11092490B2 (en) 2021-08-17

Similar Documents

Publication Publication Date Title
EP3891465B1 (de) Optische messeinrichtung
DE102010053323B3 (de) Verfahren zur räumlich aufgelösten Messung von Parametern in einem Querschnitt eines Strahlenbündels energiereicher Strahlung mit hoher Intensität
EP1607738A1 (de) Verfahren und System zur Inspektion eines Wafers
DE3713149A1 (de) Fernmess-spektrophotometer
EP1152236A2 (de) Optische Messanordnung mit einem Ellipsometer
DE102018114860A1 (de) Vorrichtung und Verfahren zur optischen Vermessung eines Messobjekts
EP0168643A2 (de) Gerät zur Wafer-Inspektion
DE19912500A1 (de) Verfahren und Vorrichtung zum Bestimmen von Eigenschaften einer laufenden Materialbahn
DE102018205163A1 (de) Messvorrichtung zur Messung von Reflexionseigenschaften einer Probe im extremen ultravioletten Spektralbereich
DE102017131224A1 (de) Verfahren und Vorrichtung zur Erfassung einer Fokuslage eines Laserstrahls
DE3926349A1 (de) Optische fehlerinspektionsvorrichtung
WO2005069080A2 (de) Vorrichtung und verfahren zur optischen vermessung eines optischen systems, messstrukturträger und mikrolithographie-projektionsbelichtungsanlage
EP2985579A1 (de) Spektrometer mit monochromator und order-sorting-filter
DE3304780C2 (de)
DE10033645A1 (de) Spektralellipsometer mit einer refraktiven Beleuchtungsoptik
EP1507137B1 (de) Verfahren und Vorrichtung zur polarisationsabhängigen und ortsaufgelösten Untersuchung einer Oberfläche oder einer Schicht
DE2602158C3 (de)
WO2001092820A1 (de) Verfahren und vorrichtung zur bestimmung der dicke von transparenten organischen schichten
DE102004045131B4 (de) Korrekturverfahren für die Lichtmengenverteilung in einem Biochip-Leser und Biochip-Leser
EP0878702B1 (de) Verfahren und Vorrichtung zur Messung von Spannungen in Glasscheiben mit Hilfe von Streulicht
DE102007037942A1 (de) Optische Anordnung, Projektionsbelichtungsanlage und Verfahren zum Bestimmen der Dicke einer Kontaminationsschicht
DE102018133042B4 (de) Verfahren und Vorrichtung zur Kalibrierung von Spektrometern
DE102015115615A1 (de) Vorrichtung und Verfahren zur chromatisch-konfokalen Untersuchung einer Probe
DE10244767A1 (de) Verfahren und Vorrichtung zum Bestimmen des Abstands zwischen einer Referenzebene und einer inneren oder äußeren optischen Grenzfläche eines Objekts sowie Verwendung derselben zum Bestimmen eines Oberflächenprofils eines, inbesondere metallischen, Objekts, Autofokus-Modul, Mikroskop und Verfahren zum Autofokussieren eines Mikroskops
EP1726930A1 (de) Gitterspektrometersystem und Verfahren zur Messwerterfassung

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R016 Response to examination communication
R018 Grant decision by examination section/examining division
R020 Patent grant now final