DE102018110824A1 - Verfahren zum Trocknen eines Substrats sowie Lufttrocknermodul zur Durchführung des Verfahrens sowie Trocknersystem - Google Patents

Verfahren zum Trocknen eines Substrats sowie Lufttrocknermodul zur Durchführung des Verfahrens sowie Trocknersystem Download PDF

Info

Publication number
DE102018110824A1
DE102018110824A1 DE102018110824.9A DE102018110824A DE102018110824A1 DE 102018110824 A1 DE102018110824 A1 DE 102018110824A1 DE 102018110824 A DE102018110824 A DE 102018110824A DE 102018110824 A1 DE102018110824 A1 DE 102018110824A1
Authority
DE
Germany
Prior art keywords
substrate
air flow
air
drying
supply air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE102018110824.9A
Other languages
English (en)
Other versions
DE102018110824B4 (de
Inventor
Bernhard Graziel
Michael Tittmann
Jens Büngener
Vincent Krafft
Larisa Von Riewel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heraeus Noblelight GmbH
Original Assignee
Heraeus Noblelight GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heraeus Noblelight GmbH filed Critical Heraeus Noblelight GmbH
Priority to DE102018110824.9A priority Critical patent/DE102018110824B4/de
Priority to PCT/EP2019/060582 priority patent/WO2019211155A1/de
Priority to EP19720116.3A priority patent/EP3788313B1/de
Priority to CN201980029674.5A priority patent/CN112119276B/zh
Priority to US17/050,310 priority patent/US20210080177A1/en
Priority to JP2020561699A priority patent/JP7326335B2/ja
Publication of DE102018110824A1 publication Critical patent/DE102018110824A1/de
Application granted granted Critical
Publication of DE102018110824B4 publication Critical patent/DE102018110824B4/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/28Drying solid materials or objects by processes involving the application of heat by radiation, e.g. from the sun
    • F26B3/283Drying solid materials or objects by processes involving the application of heat by radiation, e.g. from the sun in combination with convection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B13/00Machines and apparatus for drying fabrics, fibres, yarns, or other materials in long lengths, with progressive movement
    • F26B13/10Arrangements for feeding, heating or supporting materials; Controlling movement, tension or position of materials
    • F26B13/101Supporting materials without tension, e.g. on or between foraminous belts
    • F26B13/104Supporting materials without tension, e.g. on or between foraminous belts supported by fluid jets only; Fluid blowing arrangements for flotation dryers, e.g. coanda nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
    • F26B21/004Nozzle assemblies; Air knives; Air distributors; Blow boxes

Abstract

Ein bekanntes Verfahren zum mindestens teilweisen Trocknen eines Substrats umfasst die folgenden Verfahrensschritte: (a) Erzeugung einer auf das Substrat gerichteten Zuluftströmung, die eine Zuluftströmungsrichtung aufweist, die eine Richtungs-Komponente in Transportrichtung oder in Gegenrichtung dazu hat und (b) Erzeugen einer vom Substrat wegführenden Abluftströmung. Um davon ausgehend ein Trocknungsverfahren anzugeben, das reproduzierbar und effektiv ist und insbesondere hinsichtlich Homogenität und Schnelligkeit der Trocknung des Substrats zu einem verbesserten Ergebnis führt, wird vorgeschlagen, dass die Abluftströmung in mehrere Teilströme aufgeteilt wird, indem jeder der Teilströme einem individuellen Ansaugkanal zugeführt wird, und dass im Fall einer Zuluftströmung mit einer Richtungs-Komponente in Richtung der Fortbewegung des Substrats die Zuluftströmung der Abluftströmung räumlich vorgeordnet ist, und im Fall einer Zuluftströmung mit einer Richtungs-Komponente in Gegenrichtung der Fortbewegung des Substrates die Zuluftströmung der Abluftströmung räumlich nachgeordnet ist.

Description

  • Technischer Hintergrund
  • Die Erfindung betrifft ein Verfahren zum mindestens teilweisen Trocknen eines Substrats, umfassend die Verfahrensschritte:
    1. (a) Erzeugung einer auf das Substrat gerichteten Zuluftströmung, die eine Zuluftströmungsrichtung aufweist, die eine Richtungs-Komponente in Transportrichtung oder in Gegenrichtung dazu hat,
    2. (b) Erzeugen einer vom Substrat wegführenden Abluftströmung.
  • Außerdem betrifft die Erfindung ein Lufttrocknermodul zum Trocknen eines in einer Transportrichtung durch einen Trocknungsraum bewegten Substrats, umfassend
    1. (a) eine Zulufteinheit, umfassend eine Zuluft-Düse zur Erzeugung einer auf das Substrat gerichteten Zuluftströmung, die eine Hauptausbreitungsrichtung hat, die mit der Oberfläche des Substrats einen Winkel zwischen 10 und 85 Grad einschließt,
    2. (b) eine Ablufteinheit zum Erzeugen einer vom Substrat aus dem Trocknungsraum wegführenden Abluftströmung,
  • Darüber hinaus geht es bei der Erfindung um ein Infrarot-Trocknersystem zum Trocknen eines in einer Transportrichtung durch einen Prozessraum bewegten Substrats, umfassend ein Infrarot-Trocknermodul, das in Substrat-Transportrichtung gesehen eine Sequenz folgender Komponenten aufweist: eine vordere Lufttauschereinheit, einen mit mehreren parallel zueinander angeordneten Infrarotstrahlern bestückten Bestrahlungsraum, und eine hintere Lufttauschereinheit.
  • Derartige Lufttrocknermodule und Trocknungsverfahren werden beispielsweise für die Trocknung von wasserbasierten Dispersionen, Tinten, Farben, Lacken, Klebern oder anderen lösungsmittelhaltigen Schichten auf Substraten oder zur Trocknung feuchter Materialbahnen aus Flies und anderen textilen Stoffen eingesetzt. Infrarot-Trocknersysteme finden insbesondere Anwendung zur Trocknung von Druckerzeugnissen wie Papier und Pappe und Produkten hieraus.
  • Stand der Technik
  • Zum Bedrucken bogenförmiger oder bahnförmiger Bedruckstoffe aus Papier, Pappe, Folie oder Karton mit Druckfarben sind Offset-Druckmaschinen, lithographische Druckmaschinen, Rotationsdruckmaschinen oder Flexo-Druckmaschinen gebräuchlich. Typische Inhaltsstoffe von Druckfarben und -tinten sind Öle, Harze, Wasser und Bindemittel. Bei lösungsmittelhaltigen und vor Allem wasserhaltigen Druckfarben und Lacken ist ein Trocknen erforderlich, das sowohl auf physikalischen als auch auf chemischen Trocknungsprozessen beruhen kann. Physikalische Trocknungsprozesse umfassen das Verdunsten von Lösungsmitteln (insbesondere von Wasser) und deren Diffusion in den Bedruckstoff. Unter chemischer Trocknung wird die Oxidation beziehungsweise Polymerisation von Druckfarben-Inhaltsstoffen verstanden.
  • Übliche Infrarot-Trocknersysteme weisen neben Infrarotstrahlern weitere Funktionsbausteine wie Kühlung, Zuluft und Abluft auf, die in einem Luftmanagement-System in unterschiedlicher Ausprägung miteinander verknüpft und geregelt werden. So beschreibt beispielsweise die DE 10 2010 046 756 A1 ein Trocknermodul und ein aus mehreren Trocknermodulen zusammengesetztes Trocknersystem für Druckmaschinen zum Bedrucken von Bogen- oder Rollenmaterial.
  • Das Trocknersystem besteht aus mehreren quer zur Transportrichtung angeordneten Infrarot-Trocknermodulen, von denen jedes einen auf den zu trocknenden Bedruckstoff ausgerichteten langgestreckten Infrarotstrahler aufweist, dessen Längsachse senkrecht zur Transportrichtung des Bedruckstoffs verläuft. Mittels eines regelbaren Lüftungssystems wird eine Luftströmung erzeugt, die auf den Infrarotstrahler und auf den Bedruckstoff einwirkt. Der Infrarotstrahler ist innerhalb eines Prozessraums für den Bedruckstoff angeordnet. Die Zuluft wird einem Zuluftsammelraum zugeführt und darin mittels einer Heizeinrichtung erwärmt. Außerdem wird mittels eines Ventilators die vom Infrarotstrahler erwärmte Luft abgeführt, der erwärmten Zuluft hinzugefügt und der Infrarotstrahler dadurch gekühlt.
  • Aus dem Zuluftsammelraum gelangt die erwärmte Zuluft über Gasaustrittsdüsen in Form von Schlitzdüsen in den Prozessraum. Die Gasaustrittsdüsen sind beidseitig des Infrarotstrahlers angeordnet, wobei die in Transportrichtung für den Bedruckstoff vordere Schlitzdüse schräg zur Bedruckstoffebene mit einer Orientierung entgegen der Transportrichtung, und die in Transportrichtung hintere Schlitzdüse ebenfalls schräg zur Bedruckstoffebene mit einer Orientierung in Transportrichtung verlaufen. Der Grad der Schrägstellung der Schlitzdüsen ist motorisch veränderbar.
  • Aus dem Prozessraum wird die mit Feuchtigkeit beladene Zuluft als Abluft über einen Ansaugkanal abgeführt und teilweise einem Wärmetauscher zugeführt, und ein anderer Teil dem Zuluftsammelraum hinzugefügt.
  • Technische Aufgabenstellung
  • Bei dem bekannten Infrarot-Trocknermodul wird das Prozessgas mittels einer eigens dafür vorgesehenen Heizeinrichtung erwärmt. Das erwärmte Prozessgas tritt über die Schlitzdüsen in Richtung auf den Bedruckstoff als erwärmte Luftströmung aus und wirkt dabei auf den zu trocknenden Bedruckstoff lokal und ansonsten mehr oder weniger undefiniert solange ein, bis sie als mit Feuchtigkeit beladene Luft an anderer Stelle wieder abgesaugt wird. Die Effektivität der Trocknungsluft hinsichtlich des Feuchteabtransports von der Substrat-Oberfläche ist daher nicht exakt reproduzierbar.
  • Der Erfindung liegt die Aufgabe zugrunde, ein Trocknungsverfahren anzugeben, das reproduzierbar und effektiv ist und insbesondere hinsichtlich Homogenität und Schnelligkeit der Trocknung des Substrats zu einem verbesserten Ergebnis führt.
  • Außerdem liegt der Erfindung die Aufgabe zugrunde, ein energieeffizientes Lufttrocknermodul und ein Infrarot-Trocknersystem bereitzustellen, die insbesondere für die Trocknung lösungsmittelhaltiger und insbesondere wasserbasierter Dispersionen hinsichtlich Homogenität und Schnelligkeit der Trocknung verbessert sind.
  • Zusammenfassung der Erfindung
  • Hinsichtlich des Verfahrens wird diese Aufgabe ausgehend von einem Verfahren der eingangs genannten Gattung erfindungsgemäß dadurch gelöst, dass die Abluftströmung in mehrere Teilströme aufgeteilt wird, indem jeder der Teilströme einem individuellen Ansaugkanal zugeführt wird, und dass im Fall einer Zuluftströmung mit einer Richtungs-Komponente in Richtung der Fortbewegung des Substrats die Zuluftströmung der Abluftströmung räumlich vorgeordnet ist, und im Fall einer Zuluftströmung mit einer Richtungs-Komponente in Gegenrichtung der Fortbewegung des Substrates die Zuluftströmung der Abluftströmung räumlich nachgeordnet ist.
  • Die Zuluftströmung ist nicht diffus, sondern sie hat eine Hauptausbreitungsrichtung, in der sie je nach Luftdurchsatz und Strömungsgeschwindigkeit auf die Substrat-Oberfläche vordringt und darauf in einem voreingestellten Winkel auftrifft und dort trocknend auf das beschichtete Substrat einwirkt. Einwirken bedeutet hier, dass die Zuluftströmung das Substrat trocknet, beispielsweise indem Lösungsmittel aus der Oberflächenschicht in die Gasphase aufgenommen werden. Vorzugsweise schließt die Hauptausbreitungsrichtung der Zuluftströmung mit der Oberfläche des Substrats einen Winkel zwischen 10 und 85 Grad ein.
  • Jeder auf das Substrat gerichteten Zuluftströmung ist eine vom Substrat wegführende und in mehrere Teilströme unterteilte Abluftströmung räumlich zugeordnet, über die das mit Feuchtigkeit beladene Prozessgas und andere aus dem Substrat austretende gasförmige Komponenten als Abluft aus einem Trocknungsraum abgeführt werden. Die Strömung der Abluft wird durch das Absaugen über einen Ansaugkanal erzeugt.
  • Das erfindungsgemäße Trocknungsverfahren zeichnet sich insbesondere durch die Kombination folgender Aspekte aus:
    1. (i) Mittels der auf die Substrat-Oberfläche gerichteten Zuluftströmung werden die am bewegten Substrat mitgezogenen und hängenden Strömungsgrenzschichten durchbrochen. Insbesondere wird dabei in einem vorgelagerten Heizprozess verdampftes Wasser mit der Zuluftströmung mitgerissen und vom Substrat entfernt. Das Durchbrechen der Strömungsgrenzschichten gelingt am besten, wenn die Zuluftströmungsrichtung eine Hauptausbreitungsrichtung mit einer Richtungs-Komponente in Richtung der Fortbewegung des Substrates oder in Gegenrichtung dazu hat, also schräg zur Substrat-Oberfläche verläuft. Vorzugsweise liegt der zwischen der Hauptausbreitungsrichtung der Zuluftströmung und der Substrat-Oberfläche eingeschlossene Neigungswinkel zwischen 10 und 85 Grad. Dadurch wird eine Störung, Verkleinerung oder sogar Ablösung der fluiddynamischen laminaren Strömungsgrenzschicht und damit einhergehend eine Verbesserung des Stofftransports und insbesondere der Abführung von Feuchtigkeit aus dem Substrat bewirkt. Im Fall einer in schräg in Transportrichtung austretenden Zuluftströmung trifft diese mit einer Auftreffgeschwindigkeit auf das Substrat auf, die um die Bewegungsgeschwindigkeit des Substrats vermindert ist. Im anderen Fall addieren sich die in Transportrichtung weisenden Geschwindigkeitsvektoren von Zuluftströmung und Substrat-Bewegung in der Auftreffgeschwindigkeit.
    2. (ii) Der schräg zur Substrat-Oberfläche verlaufenden Zuluftströmung ist eine Absaugung zugeordnet, die je nach Transportrichtung des Substrats entweder räumlich vor oder nach dem Ort der Zuluftströmung liegt. Die schräg zur Substrat-Oberfläche verlaufende Zuluftströmung weist somit stets in Richtung auf die Abluftströmung. Die räumliche Zuordnung von Zuluftströmung und Abluftströmung bewirkt auf der Substrat-Oberfläche eine Interaktion der jeweiligen Gasströmungen miteinander und gewährleistet, dass die Luft der von der Zuluftströmung aufgerissenen Strömungsgrenzschicht unmittelbar abgesaugt werden kann. Im Fall einer Zuluftströmung mit einer Richtungs-Komponente in Gegenrichtung der Fortbewegung des Substrates ist die Zuluftströmung der Abluftströmung räumlich nachgeordnet. Dadurch und infolge der schräg zur Substrat-Oberfläche verlaufenden Zuluftströmungsrichtung besteht jedoch die Gefahr einer Wirbelbildung. Der Drehsinn des sich dabei bildenden Luftwirbels wird durch die schräge Orientierung der Zuluftströmungsrichtung bestimmt und verläuft im gegebenen Fall im Uhrzeigersinn. Im anderen Fall mit einer Zuluftströmung mit einer Richtungs-Komponente in Richtung der Fortbewegung des Substrates ist die Zuluftströmung der Abluftströmung räumlich vorgeordnet und es besteht die Gefahr einer Wirbelbildung in der Abluftströmung mit einer Drehrichtung entgegen dem Uhrzeigersinn.
    3. (iii) Eine ausgeprägte Wirbelbildung führt zu einer örtlichen Stabilisierung und Bindung der verwirbelten Luft, einhergehend mit austauscharmen, sogenannten toten Zonen, was ein effektives Absaugen erschwert. Die Erfindung sieht daher vor, dass die Abluftströmung in mehrere Teilströme aufgeteilt wird, indem jeder der Teilströme einem individuellen Ansaugkanal zugeführt wird. Es hat sich gezeigt, dass die Wirbelbildung durch eine Aufteilung der Abluftströmung in mehrere Teilströme vermindert werden kann. Ein sich bildender Luftwirbel wird in den Ansaugkanälen kanalisiert und dadurch mindestens teilwiese aufgelöst. Dadurch wird ein effektives und energiesparendes Absaugen ermöglicht und der Luftverbrauch sinkt.
  • Beim erfindungsgemäßen Verfahren wird aufgrund dieser Maßnahmen eine schnelle und effektive Trocknung des Substrats bei gleichzeitig geringem Energieverbrauch erreicht. Zudem ist durch Steuerung der Volumina an Zuluft und Abluft der Grad der Gasverwirbelung beherrschbar und damit auch die Effektivität der Trocknung reproduzierbar einzustellen.
  • Durch die Aufteilung der Abluftströmung wird der Ausbildung austauscharmer Zonen in einem ausgeprägten Abluftströmungs-Wirbels entgegengewirkt. Es hat sich als vorteilhaft erwiesen, wenn die Abluftströmung in mindestens drei Teilströme aufgeteilt wird.
  • An den örtlichen Positionen im Trocknungsraum, an denen die Aufteilung der Abluftströmung geschieht, werden Teilströme aus dem „Abluftströmungs-Wirbel“ abgezweigt. Diese Positionen liegen im bevorzugten Fall dort, wo sich ansonsten der besagte Abluftströmungs-Wirbel in ausgeprägter Weise ausbilden würde.
  • Im Hinblick darauf hat es sich als günstig erwiesen, wenn die Ansaugkanäle jeweils eine einem Trocknungsraum zugewandte Ansaugkanal-Einsaugöffnung haben, wobei sich benachbarte Einsaugöffnungen in ihrer Position und Orientierung im Trocknungsraum unterscheiden. Dadurch werden aus dem „Abluftströmungs-Wirbel“ an unterschiedlichen Positionen und Richtungen Teilströme abgegriffen.
  • Konstruktiv wird dies bevorzugt dadurch bewerkstelligt, dass die Einsaugöffnungen durch in den Trocknungsraum ragende Luftleitbleche begrenzt und definiert werden. Durch die Position und Orientierung der Luftleitbleche werden Ansaugöffnungen definiert und aus dem Abluftströmungs-Wirbel Teilströme abgezweigt und denen eine neue Strömungsrichtung aufgeprägt, die im Folgenden als „Einströmrichtung“ des jeweiligen Teilstroms bezeichnet wird.
  • Jede der Einsaugöffnungen definiert ihre eigene Einströmrichtung, wobei die Einsaugöffnungen vorzugsweise so orientiert sind, dass sich ihre jeweiligen Ansaugrichtungen voneinander unterscheiden. Im Hinblick auf eine effektive Trocknung hat es sich als vorteilhaft erwiesen, wenn mehrere Einsaugöffnungen, besonders bevorzugt alle Einsaugöffnungen, so orientiert sind, dass ihre individuelle Einströmrichtung und die Hauptausbreitungsrichtung der Zuluftströmung nahezu entgegengesetzt verlaufen, also beispielsweise einen Winkel zwischen 0 und 45 Grad einschließen.
  • Bei einer besonders bevorzugten Verfahrensvariante ist vorgesehen, dass die Zuluftströmung aus einer längsschlitzförmigen Düsenöffnung ausströmt und streifenförmig auf das zu trocknende Substrat einwirkt, und dass die Abluftströmung über mehrere schlitzförmige Ansaugkanäle abgeführt wird.
  • Die Trocknungsluft wird hierbei aus einer schlitzförmige Einlassöffnung in den Trocknungsraum in Richtung auf die Substrat-Oberfläche aus. Die schlitzförmige Einlassöffnung ist beispielsweise als durchgehender Spalt ausgeführt oder als Aneinanderreihung einer Vielzahl von Einzelöffnungen. Sie wirkt in einem streifenförmigen Oberflächenbereich auf das zu trocknende Substrat ein. Gegebenenfalls sind auch die Ansaugkanäle schlitzförmig und damit auch die Abluft-Teilströme jeweils bevorzugt streifenförmig ausgebildet und werden durch eine entsprechende Anzahl von schlitzförmigen Ansaugkanälen abgeführt. Somit sind der streifenförmigen Zuluftströmung bevorzugt jeweils mehrere, parallel verlaufende streifenförmige Abluft-Teilströmungen räumlich zugeordnet.
  • Der Trocknungsraum ist zur Substratlaufrichtung hin quer angeordnet und erstreckt sich über die gesamte Breite des darunter bewegten Substrats. So kann die gesamte Breite des Substrates mittels der dynamisch einwirkenden Luft homogen behandelt und getrocknet werden.
  • Eine besonders vorteilhafte Ausführungsform des erfindungsgemäßen Verfahren zeichnet sich dadurch aus, dass mittels einer Prozessgasmengensteuerung das in den Trocknungsraum eingeleitete Gasvolumen Vin kleiner eingestellt wird als das aus dem Trocknungsraum abgesaugte Gasvolumen Vout, wobei vorzugsweise gilt: 1,2 × Vin < Vout < 1,5 × Vin.
  • Anhand von Simulationen konnte gezeigt werden, dass in einem ausgeprägten Luftwirbel innerhalb des Trocknungsraums hohe Strömungsgeschwindigkeiten der Abluftströmung erzeugt würden, die dazu führen können, dass Abluft in nennenswerter Menge über die Eintritts- und Austrittsseite des Substrats austritt, was zu Störungen in der vorgelagerten Prozessstufe beziehungsweise zu Kontaminationen der Umgebung führen kann.
  • Infolge der Aufteilung der Abluftströmung in Teilströme wird die Ausbildung eines ausgeprägten Luftwirbels innerhalb des Trocknungsraums vermieden, wie oben erläutert. Anstatt die Trocknungsluft aus dem Trocknungsraum austreten zu lassen, wird sie bevorzugt in den Trocknungsraum in leichter Tendenz eingesaugt. Die Luftbalance zwischen der Abluftströmung einerseits und den über die Zuluftströmung und an den Substrat-Eintritts- und Austrittsseite in den im Trocknungsraum einströmenden Luftmengen wird vorzugsweise so eingestellt, dass sich ein Volumenverhältnis zwischen 1,2 und 1,5 ergibt. Im Idealfall wird dadurch verhindert, dass keine Trocknungsluft nach Außen aus dem Trocknungsraum entweicht. Das Trocknungsmodul wirkt lufttechnisch nach Außen neutral das heißt, die Umgebung wird durch austretende heiße und mit Feuchte angereicherte Luft nicht kontaminiert; das Modul ist pneumatisch dicht.
  • Hinsichtlich des Lufttrocknermoduls wird die eingangs genannte Aufgabe erfindungsgemäß dadurch gelöst, dass die Ablufteinheit mehrere Ansaugkanäle umfasst, so dass die Abluftströmung in mehrere Teilströme aufgeteilt wird, und dass die Zuluft-Düse eine Düsenöffnung aufweist, die der Ablufteinheit zugewandt ist.
  • Durch die Zuluft-Düse tritt die Zuluftströmung schräg in Richtung auf die Substrat-Oberfläche aus. Die Düsenöffnung der Zuluft-Düse weist somit in Richtung auf die Substrat-Oberfläche und gleichzeitig weist sie in Richtung der Ablufteinheit.
  • Im Trocknungsraum finden das teilweise Trocknen des Substrats und der Luftaustausch zwischen Zuluft und Abluft statt. Ziel ist es, den Trocknungsraum möglichst klein zu halten und ein Austreten von Luft aus dem Trocknungsraum möglichst zu vermeiden
  • Das erfindungsgemäße Trocknungsmodul zeichnet sich insbesondere durch die Kombination folgender Aspekte aus:
    1. (i) Mittels der auf die Substrat-Oberfläche gerichteten Zuluftströmung werden die am bewegten Substrat mitgezogenen und hängenden Strömungsgrenzschichten durchbrochen. Das Durchbrechen der Strömungsgrenzschichten gelingt am besten, wenn die aus der Düse austretende Zuluftströmung eine Hauptausbreitungsrichtung hat, die mit der Substrat-Oberfläche einen Winkel zwischen 10 und 85 Grad einschließt. Durch das effektive Durchbrechen der Strömungsgrenzschichten kann der Trocknungsraum kompakt gehalten werden. So schließt beispielsweise bei einer schlitzförmigen Zuluft-Düse mit einer in Richtung der Zuluftströmung verlaufenden Düsen-Längsachse, die Längsachse mit der Oberfläche des Substrats einen Winkel zwischen 30 und 90 Grad ein.
    2. (ii) Der Zuluftströmung ist eine Ablufteinheit zugeordnet, die je nach Transportrichtung des Substrats entweder räumlich vor oder nach dem Ort der Zuluftströmung liegt. In jedem Fall weist die Düsenöffnung der Zuluft-Düse in Richtung auf die Ablufteinheit (und nicht von der Ablufteinheit weg). Die schräg zur Substrat-Oberfläche ausströmende Zuluftströmung hat somit stets eine Richtungs-Komponente in Richtung der Ablufteinheit. Im Fall einer Zuluftströmung mit einer Richtungs-Komponente in Gegenrichtung der Fortbewegung des Substrates ist das Trocknungsmodul so orientiert, dass die Zulufteinheit der Ablufteinheit räumlich nachgeordnet. Im anderen Fall mit einer Zuluftströmung mit einer Richtungs-Komponente in Richtung der Fortbewegung des Substrates ist das Trocknungsmodul so orientiert, dass die Zulufteinheit der Ablufteinheit räumlich vorgeordnet.
    3. (iii) Um eine ausgeprägte Wirbelbildung und damit eine örtliche Stabilisierung und Bindung der verwirbelten Luft im Trocknungsraum zu erschweren , sieht die Erfindung vor, dass die Ablufteinheit mehrere Ansaugkanäle umfasst, mittels denen die Abluftströmung in mehrere Teilströme, vorzugsweise in mindestens drei Teilströme, aufgeteilt wird, indem jeder der Teilströme einem individuellen Ansaugkanal zugeführt wird.
  • Es hat sich gezeigt, dass die Wirbelbildung durch eine Aufteilung der Abluftströmung in mehrere Teilströme vermindert werden kann. Dadurch wird ein effektives und energiesparendes Absaugen innerhalb eines kleinen Trocknungsraum-Volumen ermöglicht, und der Luftverbrauch sinkt. Das erfindungsgemäße Lufttrocknermodul ist daher für den Einsatz im erfindungsgemäßen Verfahren geeignet.
  • Die Unterteilung der Ablufteinheit in Ansaugkanäle wird konstruktiv bevorzugt dadurch bewerkstelligt, dass in den Trocknungsraum Luftleitbleche ragen, die mindestens einen Teil der Einsaugöffnungen der Absaugkanäle begrenzen und definieren.
  • Durch die Position und Orientierung der Luftleitbleche werden die Teilstrom an unterschiedlichen Stellen im Trocknungsraum abgezweigt. Jede der Ansaugöffnungen ist durch eine individuelle Flächennormale definiert, wobei sich die Richtungen der Flächennormalen voneinander unterscheiden können. Es hat sich bewährt, wenn die jeweilige individuelle Flächennormale mit der Zuluftströmungsrichtung einen Winkel zwischen 90 und 200 Grad einschließt.
  • Das bedeutet, dass die jeweilige Einsaugöffnung so orientiert ist, dass die Einströmrichtung des jeweiligen Teilstroms der Abluftströmung und die Zuluftströmungsrichtung nahezu entgegengesetzt verlaufen.
  • Bei einer besonders bevorzugten Ausführungsform des erfindungsgemäßen Lufttrocknermoduls umfasst dieses einen Luftversorgungskasten, in dem die Zulufteinheit und die Ablufteinheit integriert sind.
  • Im Luftversorgungskasten in diesem Sinne sind beispielsweise die Zulufteinheit, umfassend eine Zuluftkammer mit Zuluftanschluss und die Zuluftdüse, sowie die Ablufteinheit, umfassend eine Absaugkammer mit Abluftanschluss und den Ansaugkanälen so zusammengefasst, dass sie ein eigenständiges Bauelement bilden, das in Anlagen zur Substrat-Prozessierung als Trocknungsmodul einfügbar ist, ohne dass es dafür einer konstruktiven Umgestaltung anderer Anlagenbereiche bedarf. Der Luftversorgungskasten kann außerdem ein Gebläse enthalten, das der Zulufteinheit oder Ablufteinheit zuzuordnen ist. Die seitliche Abmessung des Luftversorgungskastens - in Transportrichtung des Substrats gesehen - beträgt bei bevorzugten Ausführungsformen weniger als 100 mm.
  • Bei einer weiteren vorteilhaften Ausführungsform des erfindungsgemäßen Lufttrocknermoduls ist der Trocknungsraum begrenzt von einer ersten Fläche, in der die Zuluftdüse ausgebildet ist, von einer zweiten Fläche, in der die Ansaugkanäle ausgebildet sind, und von dem Substrat.
  • Der Trocknungsraum ist dabei im Wesentlichen von drei Flächen begrenzt und hat in einem Querschnitt entlang der Substrat-Transportrichtung gesehen in etwa Dreiecksform. Er erleichtert eine Luftzirkulation, bei der die aus der Zuluftdüse ausströmende Zuluft nach dem Kontakt am Substrat unter anfänglicher Ausbildung eines Teil-Wirbels wieder hochsteigen kann, wo sie von den Ansaugkanälen effizient erfasst und abgesaugt werden kann. Beim erfindungsgemäßen Trocknermodul wird aufgrund dieser Maßnahme eine schnelle und effektive Trocknung des Substrats bei gleichzeitig geringem Energieverbrauch erreicht. Angesichts des effizienten Luftmanagements stellt das Luftmodul eine kompakte und in der Maschine platzsparende Trocknereinheit dar. Der Abstand zwischen der Zuluft-Düse und der Oberfläche des Substrats ist vorzugsweise auf weniger als 10 mm einstellbar.
  • Das erfindungsgemäße Trocknermodul kann Bestandteil eines Trocknersystems sein, in dem mehrere gleiche oder unterschiedliche Trocknermodule zusammengefasst sind.
  • Hinsichtlich des Trocknersystems zum Trocknen eines in einer Transportrichtung durch einen Prozessraum bewegten Substrats wird die oben genannte technische Aufgabe erfindungsgemäß dadurch gelöst, dass die vordere und/oder die hintere Lufttauschereinheit mindestens jeweils ein Lufttrocknermodul gemäß der Erfindung enthalten.
  • Das Trocknersystem gemäß der Erfindung ist beispielsweise als Infrarot-Trocknermodul ausgeführt, bei dem der eigentliche Prozessraum eine Bestrahlungskammer umfasst, die mit einem oder mit mehreren Infrarotstrahlern bestückt ist. Der eigentliche Prozessraum, beispielsweise die Bestrahlungskammer, ist von mindestens einem erfindungsgemäßen Lufttrocknermodul begrenzt. Bei einer besonders bevorzugten Ausführungsform ist der eigentliche Prozessraum von mehreren Lufttrocknermodulen gemäß der Erfindung begrenzt, die dabei in Transportrichtung nebeneinander und/oder hintereinander angeordnet sein können. Bevorzugt sind in Transportrichtung drei Lufttrocknermodule hintereinander angeordnet.
  • Bei jedem in Transportrichtung der Prozesskammer nachgeordneten, hinteren Trocknungsmodul ist die Richtung der Luftströmung aus der Düse entgegen der Transportrichtung des Substrates gerichtet. Beim jedem in Transportrichtung der Prozesskammer vorgeordneten, vorderen Trocknungsmodul stimmt die Richtung der Luftströmung aus der Düse mit der Transportrichtung des Substrates überein.
  • Das vordere und das hintere Lufttrocknermodul übernehmen am Eingang und am Ausgang des Trocknersystems zusätzlich zu den Funktionen der Ablösung der Strömungsgrenzschicht und der Trocknung des Substrats die Funktion von Luftvorhängen und dichten somit das Trocknersystem pneumatisch nach außen ab. Das Zusammenwirken der Bestrahlungskammer mit den Lufttrocknermodulen vermindert die Gefahr, dass Verunreinigungen, und insbesondere Wasser, in den Prozessraum eingetragen und aus dem Trocknersystem ausgasen. Dies ermöglicht einen besonders wasserarmen Prozessraum und verbessert und optimiert den Trocknungseffekt.
  • Definitionen
  • „Zuluft“ ist im einfachsten Fall die aus der Atmosphäre entnommene Luft. Sie kann auch synthetisch erzeugte Gase und Gasgemische umfassen, die zur physikalischen Aufnahme von Wasser geeignet sind. Sie kann auch reaktive Substanzen zur chemischen Trocknung des Substrat enthalten. Zur Verbesserung der Trocknungseffizienz ist die Zuluft vorzugsweise auf eine Temperatur im Bereich zwischen 70 und 90 °C vorgewärmt.
  • Über die „Ansaugkänale“ fließt die Abluft aus dem Trocknungsraum ab. Als „Einsaugöffnung“ eines Ansaugkanals wird diejenige von einem Kanalrand begrenzte Fläche verstanden, durch die hindurch die angesaugte Abluft in den Ansaugkanal eintritt. Die Ansaugkanäle können in eine gemeinsame Absaugkammer münden.
  • Die Begriffe „räumlich nachgeordnet“ beziehungsweise „räumlich vorgeordnet“ beziehen sich auf die Anordnung in Transport-Richtung des Substrats gesehen.
  • Eine Zuluftströmung mit einer Richtungs-Komponente in Substrat-Transportrichtung hat eine Hauptausbreitungsrichtung mit einer Richtungs-Komponente in Substrat-Transportrichtung. Dementsprechend ist eine Zuluftströmung mit einer Richtungs-Komponente größer Null entgegen der Substrat-Transportrichtung eine solche, deren Hauptausbreitungsrichtung eine Richtungs-Komponente größer Null entgegen der Substrat-Transportrichtung hat. Die Hauptausbreitungsrichtung ist diejenige Strömungsrichtung der Zuluftströmung (noch unbeeinflusst von den Strömungsverhältnissen im Trocknungsraum) unmittelbar nach dem Eintritt in den Trocknungsraum aufgeprägt wird. Bei der in 2 schematisch gezeigten Ausführungsform ist die Richtung durch die Längsachse 25a der Zuluft-Düse 25 vorgegeben.
  • Ausführungsbeispiele
  • Nachfolgend wird die Erfindung anhand von Ausführungsbeispielen und einer Patentzeichnung näher erläutert. In der Zeichnung zeigt in schematischer Darstellung im Einzelnen:
    • 1 eine Ausführungsform des erfindungsgemäßen Lufttrocknermoduls in einem Querschnitt entlang der Transportrichtung eines zu behandelnden Substrats,
    • 2 einen Ausschnitt des Lufttrocknermoduls mit Einzelheiten zum Strömungsverhalten innerhalb des Trocknungsraums,
    • 3 eine weitere Ausführungsform des erfindungsgemäßen Lufttrocknermoduls in einem Querschnitt entlang der Transportrichtung eines zu behandelnden Substrats, und
    • 4 ein Infrarot-Trocknersystem, ausgerüstet mit Lufttrocknermodulen gemäß der Erfindung in einem Längsschnitt in Bedruckstoff-Transportrichtung.
  • Bei der in 4 schematisch gezeigten Ausführungsform eines Infrarot-Trocknermoduls 1 umschließt ein Gehäuse 2 einen Behandlungsraum (=Prozessraum) für einen Bedruckstoff 3 (=Substrat) mit folgenden Komponenten (in Transportrichtung 5 gesehen): eine vordere Lufttauschereinheit 6 mit einem eigenen Gehäuse 10 und einem zusätzlichen Luftleitblech 6a, eine mit achtzehn Infrarotstrahlern 8 bestückte Infrarot-Bestrahlungskammer 9, deren Längsachsen 8a etwa in Transportrichtung 5 verlaufen und die parallel zueinander angeordnet sind, und eine hintere Lufttauschereinheit 7 mit einem eigenen Gehäuse 10. Die in die Bestrahlungskammer 9 eingezeichneten Richtungspfeile 20 deuten eine auf die Oberfläche des Bedruckstoffs 3 gerichtete Luftströmung, und die Richtungspfeile 21 eine vom Bedruckstoff 3 wegführende Luftströmung, sowie eine Wechselwirkung 22 dieser Luftströmungen miteinander an.
  • In einem Trocknersystem sind beispielsweise mehrere der Trocknermodule 1 in Transportrichtung 5 gesehen paarweise neben- und hintereinander angeordnet. Das jeweils nebeneinander angeordnete Paar der Trocknermodule 1 deckt die maximale Formatbreite einer Druckmaschine ab. Entsprechend der Abmessungen und Farbbelegung des Bedruckstoffs sind die Trocknermodule 1 und die einzelnen Infrarotstrahler getrennt voneinander elektrisch ansteuerbar.
  • Die Lufttauschereinheiten 6; 7 sind mit ihrem jeweils eigenen Gehäuse 10 ausgestattet und in das Gehäuse des Trocknermoduls 1 lösbar eingesetzt. Die Lufttauschereinheiten 6; 7 sind baugleich, jedoch liegt bei der Lufttauschereinheit 6 die Zuluftseite vor der Abluftseite, und bei der Lufttauschereinheit 7 ist es umgekehrt. Am Ausgang des Trocknermoduls 1 sind drei Lufttauschereinheiten 7 zu einer Gruppe zusammengefasst, und die letzte Lufttauschereinheit 7 ist mit einem abschließenden Luftleitblech 7a versehen. Die Lufttauschereinheit 6; 7 bilden gleichzeitig Lufttrocknermodule im Sinne der Erfindung. Sie werden nachfolgend anhand der 1 bis 3 näher erläutert. Sofern in diesen Figuren dieselben Bezugsziffern wie in 4 verwendet sind, so sind damit baugleiche oder äquivalente Bauteile und Bestandteile bezeichnet, wie sie oben anhand der Beschreibung des Infrarot-Trocknermodul 1 erläutert sind.
  • Der in 1 gezeigte Querschnitt eines einzelnen Lufttrocknermoduls 6 umfasst ein zweigeteiltes, kastenförmiges Gehäuse 1010, das auf einem Zuluft-Strang (Zuluftkanal) eine obere Zuluftkammer 13, eine mittlere Zuluftkammer 14 und eine untere Zuluftkammer 15, sowie auf einem Abluft-Strang (Ansaugkanal) eine untere Abluftkammer 16, eine mittlere Abluftkammer 17 und eine obere Abluftkammer 18 umschließt.
  • Die obere Zuluftkammer 13 ist mit einem Gebläse 19 verbunden, mittels dem trockene Zuluft geregelt mit dem Volumen Vin in den Zuluft-Strang eingeleitet wird. Ebenso ist die obere Abluftkammer 18 mit einem (in der Figur nicht dargestellten) Gebläse verbunden, mittels dem die feuchte Abluft mit dem Volumen Vout geregelt aus dem Abluftstrang entfernt wird. Die Prozessgasmengensteuerung für das Trocknungsmodul 6; 7 ist dabei so ausgelegt, dass gilt: 1,2 × Vin < Vout < 1,5 × Vin. Das bedeutet, das Trocknungsmodul 6; 7 ist pneumatisch neutral in dem Sinn, dass es außer über die Absaugung nominal kein anderes Gasvolumen an die Umgebung abgibt. Im Gegenteil, aus der Umgebung wird ein gewisses Volumen an Fremdluft (etwa 20 bis 50% bezogen auf das Zuluft-Volumen) in das Trocknungsmodul eingesaugt. Der Effekt der einströmenden Fremdluft ist in 2 anhand der Strömungspfeile 37 angedeutet.
  • Zwischen oberer und mittlerer Zuluftkammer (13; 14) befindet sich eine vordere Lochplatte 23, und zwischen mittlerer und unterer Zuluftkammer (23; 24) eine hintere Lochplatte 24, wobei die vordere Lochplatte 23 eine erste Anzahl N1 von Zuluft-Durchlassöffnungen aufweist, die einen ersten mittleren Öffnungsquerschnitt A1 haben, und wobei die hintere Lochplatte 24 mit einer zweiten Anzahl N2 von Zuluft-Durchlassöffnungen versehen ist, die über die Lochplatte 24 gleichmäßig verteilt sind, und die einen zweiten mittleren Öffnungsquerschnitt A2 haben, wobei gilt: N2>N1 und A1>A2. Die vordere Lochplatte 23 bewirkt eine gleichmäßige Verteilung des Zuluft-Volumens entlang der hinteren Lochplatte 24, die wiederum dazu dient, die Zuluft gleichmäßig entlang der schlitzförmigen Luftauslass-Düse 25 zu verteilen.
  • Die untere Zuluftkammer 15 ist mit einer schlitzförmigen Luftauslass-Düse 25 verbunden, deren Längsachse 25a mit der Oberfläche des zu trocknenden Substrats (Bedruckstoff 3) einen Winkel α von 30Grad einschließt. Über die schlitzförmige Luftauslass-Düse 25 gelangt ein Zuluftstrom mit einer Hauptausbreitungsrichtung in Richtung der Längsachse 25 auf die Substrat-Oberfläche und wirkt im Trocknungsraum 26 trocknend auf das Substrat (3) ein.
  • Vom Trocknungsraum 26 gelangt die mit Feuchtigkeit beladene Prozessluft in die untere Abluftkammer 16. Zwischen unterer Abluftkammer 16 und mittlerer Abluftkammer 17 befindet sich eine zweite vordere Lochplatte 28, und zwischen mittlerer und oberer Abluftkammer (17; 18) eine zweite hintere Lochplatte 29, wobei die zweite vordere Lochplatte 28 eine erste Anzahl N3 von Abluft-Durchlassöffnungen aufweist, die einen ersten mittleren Öffnungsquerschnitt A3 haben, und wobei die zweite hintere Lochplatte 29 mit einer zweiten Anzahl N4 von Abluft-Durchlassöffnungen versehen ist, die über die Lochplatte 29 gleichmäßig verteilt sind, und die einen zweiten mittleren Öffnungsquerschnitt A4 haben, wobei gilt: N4>N3 und A3>A4. Die Lochung in der zweiten vorderen Lochplatte 28 ist so ausgelegt, dass sich über die Länge der unteren Abluftkammer 16 ein möglichst gleichmäßiger Innendruck einstellt.
  • Mittels der auf die Substrat-Oberfläche gerichteten Zuluftströmung werden die am bewegten Substrat (3) mitgezogenen und hängenden Strömungsgrenzschichten durchbrochen. Dadurch, dass die Zuluftströmungsrichtung eine Richtungs-Komponente in Richtung 5 der Fortbewegung des Substrates (3) oder in Gegenrichtung dazu hat, wird eine Störung, Verkleinerung oder sogar Ablösung der fluiddynamischen laminaren Strömungsgrenzschicht und damit einhergehend eine Verbesserung des Stofftransports und insbesondere der Abführung von Feuchtigkeit aus dem Substrat (3) und dem Trocknungsraum 26 bewirkt.
  • Dafür ist die schräg zum Substrat 3 verlaufende Strömungsrichtung der Zuluft (Hauptausbreitungsrichtung in Richtung der Längsachse 25a) wichtig und außerdem eine Aufteilung der Abluftströmung durch eine Absaugung, die je nach Transportrichtung des Substrats entweder räumlich vor oder nach dem Ort der Zuluftströmung liegt. In jedem Fall weist die schräg zur Substrat-Oberfläche verlaufende Zuluftströmung in Richtung auf die Abluftseite. Der Trocknungsraum 26 hat im dargestellten Querschnitt im Wesentlichen Dreiecksform.
  • 1 zeigt den Fall einer Zuluftströmung mit einer Strömungsrichtungs-Komponente entgegen der Transportrichtung des Substrats 3. Dabei ist die Zuluftströmung der Abluftströmung in der Transportrichtung räumlich nachgeordnet. Infolge des Einströmwinkels α und der gegenüberliegenden Absaugung setzt eine Wirbelbildung der einströmenden und ausströmenden Trocknungsluft ein, was durch den Richtungspfeil 27 angedeutet ist. Der Drehsinn des sich bildenden Luftwirbels 27 verläuft im Uhrzeigersinn Um eine ausgeprägte Wirbelbildung zu verhindern wird die Abluftströmung mit Hilfe von Luftleitblechen 30; 31 in mehrere Teilströme aufgeteilt. Die Luftleitbleche 30; 31 sind im Gegensinn zur Drehrichtung des sich ausbildenden Luftwirbels abgewinkelt und bilden für insgesamt drei Teilströme individuelle Ansaugkanäle 41; 42; 43 aus, wie aus 2 erkennbar.
  • Die Wirbelbildung wird durch die Aufteilung der Abluftströmung in mehrere Teilströme vermindert und ein sich anfänglich bildender Luftwirbel wird in den Ansaugkanälen 41, 42, 43 kanalisiert. Das Strömungsverhalten innerhalb der Trocknungskammer 26 ist schematisch von den Strömungspfeilen 37, 38 und 39 angedeutet, wobei die in den Trocknungsraum 26 einströmende Zuluft mit der Bezugsziffer 38 und die Abluft nach Richtungsumkehr mit der Bezugsziffer 39 bezeichnet werden. Die unabhängig davon einströmende Fremdluft ist mit der Bezugsziffer 37 bezeichnet.
  • Die Kanalisierung der Abluftströmung in den Ansaugkanälen 41, 42, 43 wird durch die abgewinkelten Luftleitbleche 30; 31 bewirkt, die in unterschiedlichen Positionen in den sich anfänglich und teilweise ausbildenden Luftwirbel 27 hineinragen. Sie definieren Einsaugöffnungen 41a, 42a, 43a der Ansaugkanäle 41, 42, 43 (in der Zeichnung durch gestrichelte Linien markiert). Benachbarte Einsaugöffnungen 41a, 42a, 43a unterscheiden sich in ihrer Position und Orientierung im Trocknungsraum 26. Dadurch werden aus dem Abluftströmungs-Wirbel 27 an unterschiedlichen Positionen und Richtungen Teilströme abgegriffen. Jede der Einsaugöffnungen 41a, 42a, 43a ist durch eine individuelle Flächennormale definiert. Die jeweilige Flächennormale gibt in etwa die Einströmrichtung des betreffenden Teilstroms in den Ansaugkanal 41; 42, 43 wieder. Die Richtungen der Flächennormalen und damit die Einströmrichtung unterscheiden voneinander und schließen mit der Zuluftströmungsrichtung (Längsachse 25a) einen Winkel um 180 Grad +/- 30 Grad ein.
  • Die örtlichen Positionen im Trocknungsraum 26, an denen die Aufteilung der Abluftströmung geschieht, liegen dort, wo sich ansonsten der besagte Abluftströmungs-Wirbel 27 in ausgeprägter Weise ausbilden würde. Dieser wird dadurch mindestens teilweise aufgelöst, so dass durch die Aufteilung der Abluftströmung der Ausbildung eines ausgeprägten Abluftströmungs-Wirbels entgegengewirkt, und ein effektives und energiesparendes Absaugen ermöglicht wird. Beim erfindungsgemäßen Verfahren wird aufgrund dieser Maßnahmen eine schnelle und effektive Trocknung des Substrats 3 bei gleichzeitig geringem Energieverbrauch erreicht.
  • 3 zeigt schematisch eine Hintereinander-Anordnung von drei erfindungsgemäßen Lufttrocknermodulen 7 von 1. Diese Anordnung kommt beispielsweise am Ausgang eines Infrarot-Trocknermoduls 1 gemäß 4 zum Einsatz. Dadurch wird erreicht, dass beim Austritt des Bedruckstoffs 3 aus dem Infrarot-Trocknermodul 1 möglichst keine giftigen oder aus anderen Gründen unerwünschten Substanzen in gasförmiger und flüssiger Form den Prozessraum ungefiltert und unkontrolliert verlassen.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • DE 102010046756 A1 [0006]

Claims (18)

  1. Verfahren zum mindestens teilweisen Trocknen eines in Transportrichtung (5) bewegten Substrats (3), umfassend die Verfahrensschritte: (a) Erzeugung einer auf das Substrat (3) gerichteten Zuluftströmung (38), die in eine Zuluftströmungsrichtung aufweist, die eine Richtungs-Komponente in Transportrichtung (5) oder in Gegenrichtung dazu hat, und (b) Erzeugen einer vom Substrat (3) wegführenden Abluftströmung (39), dadurch gekennzeichnet, dass die Abluftströmung (39) in mehrere Teilströme aufgeteilt wird, indem jeder der Teilströme einem individuellen Ansaugkanal (41; 42; 43) zugeführt wird, und dass im Fall einer Zuluftströmung (38) mit einer Richtungskomponente in Substrat-Transportrichtung (5) die Zuluftströmung (38) der Abluftströmung (39) räumlich vorgeordnet ist, und im Fall einer Zuluftströmung (39) mit einer Richtungskomponente entgegen der Transportrichtung (5) die Zuluftströmung (38) der Abluftströmung (39) räumlich nachgeordnet ist.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Abluftströmung (39) in mindestens drei Teilströme aufgeteilt wird.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Ansaugkanäle (41; 42; 43) jeweils eine einem Trocknungsraum (26) zugewandte Ansaugkanal-Einsaugöffnung (41a; 42a; 43a) haben, wobei sich benachbarte Einsaugöffnungen in ihrer Position und Orientierung im Trocknungsraum (26) unterscheiden.
  4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass die Einsaugöffnungen (41a; 42a; 43a) durch in den Trocknungsraum (26) ragende Luftleitbleche (30; 31) begrenzt werden, und jede Einsaugöffnung (41a; 42a; 43a) dem jeweilig einströmenden Teilstrom eine individuelle Einströmrichtung vorgibt, wobei sich die Einströmrichtungen benachbarter Teilströme voneinander unterscheiden.
  5. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass mehrere Einsaugöffnungen (41a; 42a; 43a), besonders bevorzugt alle Einsaugöffnungen (41a; 42a; 43a), so orientiert sind, dass ihre individuellen Einströmrichtungen nahezu entgegengesetzt zu einer Hauptausbreitungsrichtung (25a) der Zuluftströmung (38) verlaufen.
  6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Zuluftströmung aus einer längsschlitzförmigen Düsenöffnung (25) ausströmt und streifenförmig auf das zu trocknende Substrat (3) einwirkt, und dass die Abluftströmung (39) über mehrere schlitzförmige Ansaugkanäle (41; 42; 43) abgeführt wird.
  7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die auf das Substrat (3) gerichtete Zuluftströmung (38) eine Hauptausbreitungsrichtung (25a) hat, die mit der Oberfläche des Substrats (3) einen Winkel zwischen 10 und 85 Grad einschließt.
  8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass mittels einer Prozessgasmengensteuerung das in den Trocknungsraum eingeleitete Gasvolumen Vin kleiner eingestellt wird als das aus dem Trocknungsraum abgesaugte Gasvolumen Vout, wobei vorzugsweise gilt: 1,2 × Vin < Vout < 1,5 × Vin.
  9. Lufttrocknermodul zum Trocknen eines in einer Transportrichtung (5) durch einen Trocknungsraum (26) bewegten Substrats (3), umfassend (a) eine Zulufteinheit (13; 14; 15; 25), umfassend eine Zuluft-Düse (25) zur Erzeugung einer auf das Substrat (3) gerichteten Zuluftströmung (38), die eine Hauptausbreitungsrichtung (25a) hat, die mit der Oberfläche des Substrats (3) einen Winkel zwischen 10 und 85 Grad einschließt, (b) eine Ablufteinheit (16; 17; 18; 41; 42; 43) zum Erzeugen einer vom Substrat (3) aus dem Trocknungsraum (26) wegführenden Abluftströmung (39), dadurch gekennzeichnet, dass die Ablufteinheit (16; 17; 18; 41; 42; 43) mehrere Ansaugkanäle (41; 42; 43) umfasst, so dass die Abluftströmung (39) in mehrere Teilströme aufgeteilt wird, und dass die Zuluft-Düse (25) eine Düsenöffnung aufweist, die der Ablufteinheit (16; 17; 18; 41; 42; 43) zugewandt ist.
  10. Lufttrocknermodul nach Anspruch 9, dadurch gekennzeichnet, dass die Ablufteinheit (16; 17; 18; 41; 42; 43) mindestens drei Ansaugkanäle (41; 42; 43)umfasst.
  11. Lufttrocknermodul nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass die Unterteilung in Ansaugkanäle (41; 42; 43) mittels in den Trocknungsraum (26) ragenden Luftleitblechen (30; 31) erfolgt, die mindestens einen Teil der Einsaugöffnungen (41a; 42a; 43a) der Ansaugkanäle (41; 42; 43) begrenzen und definieren.
  12. Lufttrocknermodul nach einem der Ansprüche 9 bis 11, dadurch gekennzeichnet, mehrere Einsaugöffnungen (41a; 42a; 43a), besonders bevorzugt alle Einsaugöffnungen, so orientiert sind, dass ihre individuellen Einströmrichtungen nahezu entgegengesetzt zu einer Hauptausbreitungsrichtung (25a) der Zuluftströmung (38) verlaufen.
  13. Lufttrocknermodul nach einem der Ansprüche 9 bis 10, dadurch gekennzeichnet, dass es einen Luftversorgungskasten umfasst, in dem die Zulufteinheit und die Ablufteinheit integriert sind.
  14. Lufttrocknermodul nach einem der vorhergehenden Ansprüche 9 bis 13, dadurch gekennzeichnet, dass der Abstand zwischen der Zuluft-Düse (25) und der Oberfläche des Substrats (3) weniger als 10 mm beträgt.
  15. Lufttrocknermodul nach einem der Ansprüche 9 bis 14, dadurch gekennzeichnet, dass der Trocknungsraum (26) begrenzt ist von einer ersten Fläche, in der die Zuluft-Düse (25) ausgebildet ist, von einer zweiten Fläche, in der die Ansaugkanäle (41; 42; 43) ausgebildet sind, und von dem Substrat (3).
  16. Trocknersystem zum Trocknen eines in einer Transportrichtung (5) durch einen Prozessraum (9; 26) bewegten Substrats (3), umfassend ein Infrarot-Trocknermodul (1), das in Substrat-Transportrichtung (5) gesehen eine Sequenz folgender Komponenten aufweist: eine vordere Lufttauschereinheit (6), einen mit mehreren parallel zueinander angeordneten Infrarotstrahlern (8) bestückten Bestrahlungsraum (9), und eine hintere Lufttauschereinheit (7), dadurch gekennzeichnet, dass die vordere und/oder die hintere Lufttauschereinheit jeweils mindestens ein Lufttrocknermodul (6; 7) nach einem der Ansprüche 9 bis 15 enthalten.
  17. Trocknersystem nach Anspruch 16, dadurch gekennzeichnet, dass die hintere und/oder die Lufttauschereinheit mehrere nebeneinander und/oder hintereinander angeordnete Lufttrocknermodule (6; 7) umfasst.
  18. Trocknersystem nach einem der Ansprüche 16 oder 17, dadurch gekennzeichnet, dass mindestens ein Lufttrocknermodul (6) dem Bestrahlungsraum (9) vorgelagert und mindestens ein Lufttrocknermodul (7) dem Bestrahlungsraum (9) nachgelagert ist.
DE102018110824.9A 2018-05-04 2018-05-04 Verfahren zum Trocknen eines Substrats sowie Lufttrocknermodul zur Durchführung des Verfahrens sowie Trocknersystem Active DE102018110824B4 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE102018110824.9A DE102018110824B4 (de) 2018-05-04 2018-05-04 Verfahren zum Trocknen eines Substrats sowie Lufttrocknermodul zur Durchführung des Verfahrens sowie Trocknersystem
PCT/EP2019/060582 WO2019211155A1 (de) 2018-05-04 2019-04-25 Verfahren zum trocknen eines substrats sowie lufttrocknermodul sowie trocknersystem
EP19720116.3A EP3788313B1 (de) 2018-05-04 2019-04-25 Verfahren zum trocknen eines substrats sowie lufttrocknermodul sowie trocknersystem
CN201980029674.5A CN112119276B (zh) 2018-05-04 2019-04-25 用于干燥基材的方法和用于实施该方法的空气干燥器模块以及干燥器系统
US17/050,310 US20210080177A1 (en) 2018-05-04 2019-04-25 Method for drying a substrate and air-drying module and drying system
JP2020561699A JP7326335B2 (ja) 2018-05-04 2019-04-25 基材を乾燥させるための方法、空気乾燥モジュールおよび乾燥システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102018110824.9A DE102018110824B4 (de) 2018-05-04 2018-05-04 Verfahren zum Trocknen eines Substrats sowie Lufttrocknermodul zur Durchführung des Verfahrens sowie Trocknersystem

Publications (2)

Publication Number Publication Date
DE102018110824A1 true DE102018110824A1 (de) 2019-11-07
DE102018110824B4 DE102018110824B4 (de) 2022-02-10

Family

ID=66323861

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102018110824.9A Active DE102018110824B4 (de) 2018-05-04 2018-05-04 Verfahren zum Trocknen eines Substrats sowie Lufttrocknermodul zur Durchführung des Verfahrens sowie Trocknersystem

Country Status (6)

Country Link
US (1) US20210080177A1 (de)
EP (1) EP3788313B1 (de)
JP (1) JP7326335B2 (de)
CN (1) CN112119276B (de)
DE (1) DE102018110824B4 (de)
WO (1) WO2019211155A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112654732A (zh) * 2018-08-17 2021-04-13 株式会社奈瑟斯比 原子层沉积装置及利用其的原子层沉积方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3932672A1 (de) * 2020-07-01 2022-01-05 Bobst Bielefeld GmbH Trockner und druckmaschine
CN114872244A (zh) * 2022-05-12 2022-08-09 佛山市盟思拉伸机械有限公司 溶剂膜处理的烘箱单元与烘箱装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001002643A1 (en) * 1999-06-30 2001-01-11 Metso Paper, Inc. Nozzle arrangement in airborne web-drying and method for improving heat transfer in airborne web-drying
DE102010046756A1 (de) * 2010-09-28 2012-03-29 Eltosch Torsten Schmidt Gmbh Trocknermodul für Druckmaschinen
CA2748263C (en) * 2009-02-09 2014-11-18 Heat Technologies, Inc. Ultrasonic drying system and method
DE102016112122A1 (de) * 2015-12-23 2017-06-29 Qingdao LED optoelectronic technology Co.,LTD LED-Aushärtungseinrichtung für UV-Druckfarben

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2203621C3 (de) * 1972-01-26 1979-05-17 Maschinenfabrik Andritz Ag, Graz (Oesterreich) Vorrichtung zum Trocknen von Materialbahnen
DE2911685C2 (de) * 1979-03-24 1981-03-12 Vits-Maschinenbau Gmbh, 4018 Langenfeld Blaskasten zum schwebenden Führen von Warenbahnen
US5606805A (en) * 1996-04-01 1997-03-04 Meyer; Jens-Uwe Process for drying a coated moving web
FR2790072B1 (fr) * 1999-02-18 2001-05-25 Solaronics Process Dispositif combine de soufflage et d'aspiration a echange energetique integre pour un dispositif de sechage
FI105936B (fi) * 1999-03-18 2000-10-31 Valmet Corp Menetelmä ja laite radan kulun stabiloimiseksi paperikoneessa tai vastaavassa
CN1193204C (zh) * 2000-12-31 2005-03-16 合名会社新兴企业社 用煤作燃料来干燥农产品的设备
ITMI20030273A1 (it) * 2003-02-14 2004-08-15 Percivalle Special Converting S A S Di Percivall Dispositivo e metodo per il trattamento termico di un
JP5810074B2 (ja) * 2012-12-28 2015-11-11 日本碍子株式会社 乾燥装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001002643A1 (en) * 1999-06-30 2001-01-11 Metso Paper, Inc. Nozzle arrangement in airborne web-drying and method for improving heat transfer in airborne web-drying
CA2748263C (en) * 2009-02-09 2014-11-18 Heat Technologies, Inc. Ultrasonic drying system and method
DE102010046756A1 (de) * 2010-09-28 2012-03-29 Eltosch Torsten Schmidt Gmbh Trocknermodul für Druckmaschinen
DE102016112122A1 (de) * 2015-12-23 2017-06-29 Qingdao LED optoelectronic technology Co.,LTD LED-Aushärtungseinrichtung für UV-Druckfarben

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112654732A (zh) * 2018-08-17 2021-04-13 株式会社奈瑟斯比 原子层沉积装置及利用其的原子层沉积方法

Also Published As

Publication number Publication date
JP2021522060A (ja) 2021-08-30
EP3788313A1 (de) 2021-03-10
CN112119276A (zh) 2020-12-22
EP3788313B1 (de) 2024-01-24
CN112119276B (zh) 2023-05-30
DE102018110824B4 (de) 2022-02-10
US20210080177A1 (en) 2021-03-18
JP7326335B2 (ja) 2023-08-15
WO2019211155A1 (de) 2019-11-07

Similar Documents

Publication Publication Date Title
EP0341646B1 (de) Verfahren und Vorrichtung zum Trocknen einer auf einem bewegten Trägermaterial aufgebrachten Flüssigkeitsschicht
EP3788313B1 (de) Verfahren zum trocknen eines substrats sowie lufttrocknermodul sowie trocknersystem
DE4016921C2 (de) Vorrichtung zum Trocknen einer Materialbahn
EP0065783A1 (de) Vorrichtung zum Trocknen von bedruckten Bahnen in eines Druckmaschine
EP3720716B1 (de) Verfahren zum trocknen eines substrats, trocknermodul zur durchführung des verfahrens sowie trocknersystem
DE102011075109A1 (de) Thermoluft-Trocknungseinrichtung mit Abwärmenutzung
DE10152593A1 (de) Einrichtung zur Bedruckstoff- und Druckwerkskühlung mittels gekühlter Blasluft an Bogenrotationsdruckmaschinen
DE2616347A1 (de) Verfahren und vorrichtung zum aufheizen eines trockners und zum thermischen nachverbrennen der abluft des trockners
EP0874205B1 (de) Vorrichtung zur Behandlung von Materialbahnen
DE60015108T2 (de) Verfahren und vorrichtung zur stabilisierung der bahnlauf in einer papiermaschine oder dergleichen
DE3241117A1 (de) Verfahren zur abkuehlung einer in einer druckmaschine bedruckten materialbahn sowie vorrichtung zur durchfuehrung dieses verfahrens
DE2716613C2 (de) Vorrichtung zum Trocknen von bedruckten oder beschichteten Warenbahnen
DE102018002074A1 (de) Trocknungsvorrichtung zum Trocknen von Gipsplatten
DE102018219289B3 (de) Verfahren und Vorrichtung zur Beaufschlagung einer Materialbahn mit einem Gasstrom
DE102009054865B4 (de) Trockner
DE10248249B4 (de) Trockner für eine Materialbahn
DE4441066C2 (de) Verfahren und Vorrichtung zum Kühlen eines Luftstroms
DE202010016342U1 (de) Trocknungseinrichtung
WO2003020522A1 (de) Trocknungssystem zur strahlungstrocknung
DE1962089C2 (de) Mehrfachtogiefianlage
DE19915386A1 (de) Vorrichtung zur Vermeidung des Abschmierens beim Transport einer bedruckten Bahn
DE10062618B4 (de) Durchlauftrockner für Platten oder Bahnen
DE883289C (de) Trocknen des Druckes, insbesondere von Tiefdruckfarbe
DE544614C (de) Gewebe-Spann- und Trockenmaschine mit Querbelueftung
CH190443A (de) Verfahren und Einrichtung zum Trocknen von mit Farbe, insbesondere Tiefdruckfarbe bedruckten endlosen Bahnen oder Bogen, insbesondere aus Papier.

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R083 Amendment of/additions to inventor(s)
R016 Response to examination communication
R018 Grant decision by examination section/examining division
R020 Patent grant now final