DE102017213919A1 - Notstromversorgungseinrichtung - Google Patents

Notstromversorgungseinrichtung Download PDF

Info

Publication number
DE102017213919A1
DE102017213919A1 DE102017213919.6A DE102017213919A DE102017213919A1 DE 102017213919 A1 DE102017213919 A1 DE 102017213919A1 DE 102017213919 A DE102017213919 A DE 102017213919A DE 102017213919 A1 DE102017213919 A1 DE 102017213919A1
Authority
DE
Germany
Prior art keywords
power supply
energy storage
voltage
emergency power
voltage regulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE102017213919.6A
Other languages
English (en)
Inventor
Evgenij Donis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IMC MESSSYSTEME GmbH
Original Assignee
IMC MESSSYSTEME GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IMC MESSSYSTEME GmbH filed Critical IMC MESSSYSTEME GmbH
Priority to DE102017213919.6A priority Critical patent/DE102017213919A1/de
Publication of DE102017213919A1 publication Critical patent/DE102017213919A1/de
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/263Arrangements for using multiple switchable power supplies, e.g. battery and AC
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/061Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for DC powered loads

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

Die Erfindung bezieht sich auf eine Notstromversorgungseinrichtung mit zumindest einem Anschlusskontakt zum Anschluss an eine externe Energieversorgungsquelle und mit einem Energiespeicher zum Bereitstellen elektrischer Energie im Falle eines Ausfalls der externen Energieversorgungsquelle. Erfindungsgemäß ist vorgesehen, dass die Notstromversorgungseinrichtung zumindest zwei Energiespeicher, eine Umschalteinrichtung und eine Steuereinrichtung umfasst, die Umschalteinrichtung von der Steuereinrichtung in eine erste Schaltstellung, in der die Energiespeicher in eine elektrische Parallelschaltung geschaltet werden, und in eine zweite Schaltstellung, in der die Energiespeicher in eine elektrische Reihenschaltung geschaltet werden, schaltbar ist, und die Steuereinrichtung derart ausgestaltet ist, dass sie bei Anliegen externer Versorgungsspannung der externen Energieversorgungsquelle die Umschalteinrichtung in die erste Schaltstellung schaltet und die Energiespeicher auf eine vorgegebene Sollspannung lädt, im Falle eines Ausfalls der externen Energieversorgungsquelle die Umschalteinrichtung zunächst in der ersten Schaltstellung belässt oder in diese schaltet und an einem Ausgang der Notstromversorgungseinrichtung zunächst mit der elektrischen Parallelschaltung der Energiespeicher Strom zur Verfügung stellt, und zwar solange, bis die Spannung an der Parallelschaltung auf eine vorgegebene Mindestspannung abgefallen ist oder diese unterschreitet, und bei Erreichen oder Unterschreiten der Mindestspannung die Umschalteinrichtung in die zweite Schaltstellung schaltet und an dem Ausgang der Notstromversorgungseinrichtung Strom mit den in Reihe geschalteten Energiespeichern zur Verfügung stellt.

Description

  • Die Erfindung bezieht sich auf Notstromversorgungseinrichtungen mit zumindest einem Anschlusskontakt zum Anschluss an eine externe Energieversorgungsquelle und mit einem Energiespeicher zum Bereitstellen elektrischer Energie im Falle eines Ausfalls der externen Energieversorgungsquelle.
  • Der Erfindung liegt die Aufgabe zugrunde, eine Notstromversorgungseinrichtung anzugeben, die einen möglichst langen Notstrombetrieb ermöglicht.
  • Diese Aufgabe wird erfindungsgemäß durch eine Notstromversorgungseinrichtung mit den Merkmalen gemäß Patentanspruch 1 gelöst. Vorteilhafte Ausgestaltungen der erfindungsgemäßen Notstromversorgungseinrichtung sind in Unteransprüchen angegeben.
  • Danach ist erfindungsgemäß vorgesehen, dass die Notstromversorgungseinrichtung zumindest zwei Energiespeicher, eine Umschalteinrichtung und eine Steuereinrichtung umfasst, die Umschalteinrichtung von der Steuereinrichtung in eine erste Schaltstellung, in der die Energiespeicher in eine elektrische Parallelschaltung geschaltet werden, und in eine zweite Schaltstellung, in der die Energiespeicher in eine elektrische Reihenschaltung geschaltet werden, schaltbar ist, und die Steuereinrichtung derart ausgestaltet ist, dass sie bei Anliegen externer Versorgungsspannung der externen Energieversorgungsquelle die Umschalteinrichtung in die erste Schaltstellung schaltet und die Energiespeicher auf eine vorgegebene Sollspannung lädt, im Falle eines Ausfalls der externen Energieversorgungsquelle die Umschalteinrichtung zunächst in der ersten Schaltstellung belässt oder in diese schaltet und an einem Ausgang der Notstromversorgungseinrichtung zunächst mit der elektrischen Parallelschaltung der Energiespeicher Strom zur Verfügung stellt, und zwar solange, bis die Spannung an der Parallelschaltung auf eine vorgegebene Mindestspannung abgefallen ist oder diese unterschreitet, und bei Erreichen oder Unterschreiten der Mindestspannung die Umschalteinrichtung in die zweite Schaltstellung schaltet und an dem Ausgang der Notstromversorgungseinrichtung Strom mit den in Reihe geschalteten Energiespeichern zur Verfügung stellt.
  • Ein wesentlicher Vorteil der erfindungsgemäßen Notstromversorgungseinrichtung ist darin zu sehen, dass diese zwei oder mehr Energiespeicher aufweist, die ein Speisen von Verbrauchern im Falle eines Ausfalls einer externen Energieversorgungsquelle ermöglichen. Da sich die Energiespeicher während ihres Speisebetriebs entladen und somit deren Ausgangsspannung abfällt, ist erfindungsgemäß vorgesehen, ein Umschalten der Energiespeicher von einer Parallelschaltung in eine Reihenschaltung vorzusehen, wodurch ein Weiterbetrieb der Notstromversorgungseinrichtung auch dann möglich wird, wenn die Einzelspannung der Energiespeicher als solche bzw. für sich allein für einen Weiterbetrieb nicht mehr ausreichen würde. Durch ein in-Reihe-Schalten der Energiespeicher wird es möglich, die Notstromversorgungseinrichtung solange weiter zu betreiben, wie die Summe der Spannungen aller Energiespeicher gemeinsam die erforderliche Mindestausgangsspannung erreicht.
  • Als vorteilhaft wird es angesehen, wenn die Notstromversorgungseinrichtung einen Spannungsregler aufweist. Jeder der Energiespeicher ist vorzugsweise jeweils mittels eines dem Spannungsregler zugewandten Anschlusses mittelbar oder unmittelbar mit dem Spannungsregler verbunden oder verbindbar.
  • Die Notstromversorgungseinrichtung weist vorzugsweise eine interne Ladequelle und eine Messeinrichtung auf, die die Spannung an dem Anschlusskontakt der Notstromversorgungseinrichtung misst.
  • Die Steuereinrichtung ist bevorzugt derart ausgestaltet, dass sie mit der Ladequelle die Energiespeicher auf die vorgegebene Sollspannung lädt oder auf der Sollspannung hält, wenn die Messeinrichtung das Anliegen externer Versorgungsspannung der externen Energieversorgungsquelle anzeigt.
  • Die Ladequelle ist vorzugsweise eine Stromquelle, die bei Anliegen der externen Versorgungsspannung der externen Energieversorgungsquelle unmittelbar oder mittelbar von der externen Energieversorgungsquelle mit Energie versorgt wird.
  • Zwischen die dem Spannungsregler zugewandten Anschlüsse der Energiespeicher und dem Eingangsanschluss des Spannungsreglers ist bevorzugt eine Diode geschaltet, und zwar - von den Energiespeichern aus betrachtet - in Durchlassrichtung. Eine solche Diode schützt die Energiespeicher vor der externen Energieversorgungsquelle bzw. deren Spannung und verhindert ein unmittelbares Laden der Energiespeicher durch die externe Energieversorgungsquelle.
  • Zwischen die dem Spannungsregler zugewandten Anschlüsse der Energiespeicher und einem Ausgangsanschluss der Ladequelle ist vorzugsweise eine Diode geschaltet, und zwar - von den Energiespeichern aus betrachtet - in Sperrrichtung. Eine solche Sperrdiode verhindert ein Entladen der Energiespeicher in Richtung der Ladequelle, wenn die Ladequelle keinen Ladestrom einspeist.
  • Auch ist es von Vorteil, wenn die Steuereinrichtung bei Anliegen der externen Versorgungsspannung der externen Energieversorgungsquelle einen Ausgangsanschluss des Spannungsreglers mit der Ladequelle verbinden und diese mit elektrischer Energie versorgen kann.
  • Bei einer besonders bevorzugten Ausführungsvariante ist vorgesehen, dass der dem Spannungsregler zugewandte Anschluss eines ersten Energiespeichers mit dem Eingangsanschluss des Spannungsreglers verbunden ist oder verbindbar ist und der dem Spannungsregler abgewandte Anschluss eines zweiten Energiespeichers auf Massepotential liegt.
  • Die Umschalteinrichtung weist vorzugsweise einen ersten Umschalter, der den vom Spannungsregler abgewandten Anschluss des ersten Energiespeichers wahlweise mit einer elektrischen Verbindungsleitung oder mit Massepotential verbindet, und einen zweiten Umschalter, der den dem Spannungsregler zugewandten Anschluss des zweiten Energiespeichers wahlweise mit der Verbindungsleitung oder - unmittelbar oder mittelbar - mit dem Eingangsanschluss des Spannungsreglers verbindet, auf.
  • Die Notstromversorgungseinrichtung, insbesondere deren Umschalteinrichtung, weist bevorzugt einen Ein-Aus-Schalter zwischen dem Ausgangsanschluss des Spannungsreglers und einem elektrischen Speiseanschluss der Ladequelle auf.
  • Auch kann die Notstromversorgungseinrichtung, insbesondere deren Umschalteinrichtung, einen Ein-Aus-Schalter zwischen dem Eingangsanschluss des Spannungsreglers und den dem Spannungsregler zugewandten Anschlüssen der Energiespeicher aufweisen. Eine solche Ausführungsvariante kann ein höheres Aufladen der Energiespeicher ermöglichen.
  • Die Erfindung bezieht sich darüber hinaus auf eine elektrische Anordnung mit einer Notstromversorgungseinrichtung, wie sie oben vorgesehen worden ist. Die Notstromversorgungseinrichtung wird vorzugsweise auf dem Gebiet der Datenspeicherung bzw. bei Anordnungen zur Datenspeicherung eingesetzt.
  • Als vorteilhaft wird es demgemäß angesehen, wenn die Anordnung neben der Notstromversorgungseinrichtung einen Datenspeicher und einen Hauptprozessor aufweist, der mit dem Datenspeicher in Verbindung steht und im Betrieb Messdaten von einem Messwertschnittstellenmodul empfangen und diese während seines Betriebs in dem mit dem Hauptprozessor in Verbindung stehenden Datenspeicher abspeichern kann, wobei die Notstromversorgungseinrichtung im Falle eines Ausfalls der zumindest den Hauptprozessor mit Strom versorgenden externen Versorgungsspannungsquelle ersatzweise zumindest den Hauptprozessor mit Strom versorgt.
  • Die Anordnung weist bevorzugt außerdem zumindest ein Messwertaufbereitungsmodul und zumindest ein Messwertschnittstellenmodul, das über einen ersten Datenbus mit dem zumindest einen Messwertaufbereitungsmodul in Verbindung steht und von dem Messwertaufbereitungsmodul über den ersten Datenbus Messdaten erhalten kann, auf. Der Hauptprozessor kann vorzugsweise im Betrieb die Messdaten von dem Messwertschnittstellenmodul über einen zweiten Datenbus empfangen und diese während seines Betriebs in dem mit dem Hauptprozessor in Verbindung stehenden Datenspeicher abspeichern.
  • Auch ist es von Vorteil, wenn an den zweiten Datenbus eine Speicherdirektzugriffskontrolleinheit angeschlossen ist, die dem Messwertschnittstellenmodul einen Speicherdirektzugriff auf den Datenspeicher ermöglicht und dem Messwertschnittstellenmodul erlaubt, die Messdaten ohne Mitwirkung des Betriebssystems des Hauptprozessors in dem Datenspeicher abzuspeichern, und das Messwertschnittstellenmodul derart ausgestaltet ist, dass es bei nicht empfangsbereitem Betriebssystem des Hauptprozessors die Messdaten unter Mitwirkung der Speicherdirektzugriffskontrolleinheit in dem Datenspeicher abspeichert. Ein Vorteil dieser Anordnung ist darin zu sehen, dass ein Abspeichern von Messdaten zügig erfolgen kann, und zwar noch bevor das Betriebssystem des Hauptprozessors betriebsbereit ist. Liegen keine zu verarbeitenden oder abzuspeichernden Messdaten vor, so wird der Hauptprozessor vorzugsweise in einen Energiesparmodus geschaltet oder abgeschaltet und das Betriebssystem wird heruntergefahren. Liegen nun plötzlich wieder zu verarbeitende Messdaten vor, so muss zunächst das Betriebssystem des Hauptprozessors gestartet werden, bevor es mit der Verarbeitung oder dem Speichern der Messdaten in dem Datenspeicher beginnen kann. Daher ist vorgesehen, in Phasen, in denen das Betriebssystem des Hauptprozessors nicht empfangsbereit ist, das Abspeichern der Messdaten in dem Datenspeicher unter Heranziehung der Speicherdirektzugriffskontrolleinheit, also ohne das Betriebssystem, durchzuführen. Ein weiterer Vorteil besteht darin, dass das Messwertschnittstellenmodul mit einem vergleichsweise nur kleinen Speicher (Zwischenspeicher) ausgestattet werden muss, um eine Zwischenspeicherung der Messdaten vor einer Abspeicherung in dem Datenspeicher gewährleisten zu können, da eine Weiterleitung der Messdaten zu dem Datenspeicher aufgrund der Mitwirkung der Speicherdirektzugriffskontrolleinheit auch möglich ist, wenn das Betriebssystem des Hauptprozessors noch nicht arbeitsfähig ist. Mit anderen Worten können nach einem Neustart oder einem Wecken des Hauptprozessors aus einem Energiesparmodus die Messdaten schneller in dem Datenspeicher abgespeichert werden, als dies ohne Mithilfe der Speicherdirektzugriffskontrolleinheit möglich wäre.
  • Die Notstromversorgungseinrichtung ist ausgangsseitig vorzugsweise nicht nur an den Hauptprozessor angeschlossen, sondern auch an den Datenspeicher und die Speicherdirektzugriffskontrolleinheit. Diese Ausgestaltung ermöglicht in vorteilhafter Weise ein Speichern von Daten bei nicht betriebsbereitem Hauptprozessor und gleichzeitigem Ausfall der externen Versorgungsspannungsquelle.
  • Der Datenspeicher ist vorzugsweise ein Halbleiterspeicher in Form eines Random-Access Memory (RAM) bzw. ein Speicher mit wahlfreiem Zugriff, wie er bei Computern als Arbeitsspeicher eingesetzt wird.
  • Die Speicherkapazität des Messwertschnittstellenmoduls ist aus Kostengründen vorzugsweise kleiner, bevorzugt mindestens 10-mal kleiner, als die Speicherkapazität des Datenspeichers.
  • Die Speicherdirektzugriffskontrolleinheit ist vorzugsweise eine selbständige prozessorunabhängige Einheit, die bei ausgeschaltetem Hauptprozessor betriebsfähig ist oder zumindest sein kann. In diesem Falle kann ein Abspeichern der Messdaten in dem Datenspeicher auch bei ausgeschaltetem Hauptprozessor erfolgen. Die Speicherdirektzugriffskontrolleinheit wird bei dieser Variante vorzugsweise durch einen externen DMA-Controller (DMA: direct memory access) gebildet.
  • Vorteilhaft ist es alternativ auch, wenn die Speicherdirektzugriffskontrolleinheit eine prozessoreigene Einheit ist, die nach einem Einschalten des Hauptprozessors zeitlich vor dem Betriebssystem in Betrieb genommen und betriebsbereit wird. In diesem Falle kann ein Abspeichern der Messdaten in dem Datenspeicher erfolgen, sobald die Speicherdirektzugriffskontrolleinheit bzw. die Speicherdirektzugriffskontrollfunktionalität des Hauptprozessors nach einem Einschalten des Hauptprozessors oder einem Wecken des Hauptprozessors aus einem Energiesparmodus gegeben ist. Ist die Speicherdirektzugriffskontrolleinheit eine prozessoreigene Einheit, so wird diese vorzugsweise durch einen prozessoreigenen DMA-Controller gebildet, wie er bei vielen Prozessortypen heutzutage vorgesehen ist.
  • Der Hauptprozessor ist vorzugsweise derart ausgebildet, dass er sich bei fehlendem Messdateneingang über den zweiten Datenbus selbsttätig ausschaltet.
  • Alternativ ist es vorteilhaft, wenn die Anordnung eine Schalteinrichtung aufweist, die bei fehlender Messdatenübertragung über den zweiten Datenbus in Richtung des Hauptprozessors den Hauptprozessor ausschaltet, vorzugsweise selbsttätig oder getriggert durch das zumindest eine Messwertschnittstellenmodul.
  • Das zumindest eine Messwertschnittstellenmodul ist vorzugsweise derart ausgebildet, dass es im Falle einer gewünschten Messdatenübertragung zum Hauptprozessor über den zweiten Datenbus eine Schalteinrichtung aktiviert, die den Hauptprozessor einschaltet, wenn dieser ausgeschaltet ist.
  • Auch ist es vorteilhaft, wenn das Messwertschnittstellenmodul derart ausgebildet ist, dass es sich bei fehlendem Messdateneingang in einen Schlafmodus schaltet, in dem das Messwertschnittstellenmodul ausschließlich den Datenverkehr auf dem ersten Datenbus überwacht. Das Messwertschnittstellenmodul ist bevorzugt außerdem derart ausgebildet, dass es sich von dem Schlafmodus in einen Normalbetriebsmodus schaltet, sobald es einen an das Messwertschnittstellenmodul gerichteten Messdateneingang auf dem ersten Datenbus feststellt.
  • Der Hauptprozessor und der Datenspeicher sind vorzugsweise in einem bzw. in demselben Gehäuse angeordnet.
  • Vorteilhaft ist es im Übrigen auch, wenn das Gehäuse ein quaderförmiges Gehäuse ist mit mindestens einem Verrastungshaken an einer Mantelfläche des Gehäuses im Bereich einer Stirnfläche des Gehäuses und mit einer Verrastungshaken-Aufnahmeeinrichtung in einer der einen Mantelfläche des Gehäuses gegenüberliegenden weiteren Mantelfläche im Bereich der einen Stirnfläche des Gehäuses, einer federnd an einer der einen Stirnfläche des Gehäuses gegenüber liegenden weiteren Stirnfläche gelagerten Arretierungswippe mit einer aus der einen Mantelfläche hervorstehenden Arretierungsnase und mit einer Ausnehmung in der Flucht der Arretierungswippe an der weiteren Mantelfläche des Gehäuses.
  • Die eine und die weitere Mantelfläche weisen vorzugsweise miteinander fluchtende Ausnehmungen zur Aufnahme elektrischer Durchführungen (zum Beispiel in Form von Steckern und Steckerbuchsen) auf.
  • Vorteilhaft ist es insbesondere, wenn die elektrische Durchführung in der einen Mantelfläche von einer aus dieser Mantelfläche hervorstehenden Schutzumrandung umgeben ist und die elektrische Durchführung in der weiteren Mantelfläche in einer der Schutzumrandung entsprechend gestalteten Ausnehmung untergebracht ist.
  • Die elektrischen Durchführungen sind vorzugsweise an den zweiten Datenbus angeschlossen bzw. bilden Datenbusanschlüsse für den zweiten Datenbus.
  • Auch ist es von Vorteil, wenn das zumindest eine Messwertschnittstellenmodul in dem Gehäuse angeordnet ist oder in einem baugleichen oder zumindest schnittstellengleichen zweiten Gehäuse, dessen elektrische Durchführungen mit den elektrischen Durchführungen des den Hauptprozessor und den Datenspeicher beinhaltenden Gehäuses über den zweiten Datenbus verbunden sind.
  • Die Gehäuse weisen vorzugsweise jeweils eine elektrische Durchführung, insbesondere in Form eines Steckers, auf einer Gehäuseseite und eine elektrische Durchführung, insbesondere in Form einer Steckerbuchse, auf der gegenüberliegenden Gehäuseseite auf. Die Durchführungen ermöglichen aufgrund der gegenüberliegenden Anordnung ein kaskadiertes Verbinden mehrerer Gehäuse nebeneinander oder übereinander. Die Durchführungen bilden vorzugsweise die Datenbusschnittstellen für den Anschluss an den zweiten Datenbus.
  • Die Erfindung bezieht sich darüber hinaus auf ein Verfahren zur Notstromversorgung mit einer Notstromversorgungseinrichtung. Erfindungsgemäß ist bezüglich eines solchen Verfahrens vorgesehen, dass die Notstromversorgungseinrichtung zumindest zwei Energiespeicher umfasst, bei Anliegen externer Versorgungsspannung einer externen Energieversorgungsquelle die Energiespeicher parallel geschaltet und jeweils auf eine vorgegebene Sollspannung geladen werden, im Falle eines Ausfalls der externen Energieversorgungsquelle zunächst mit der elektrischen Parallelschaltung der Energiespeicher an einem Ausgang der Notstromversorgungseinrichtung Strom zur Verfügung gestellt wird, und zwar solange, bis die Spannung an der Parallelschaltung auf eine vorgegebene Mindestspannung abgefallen ist oder diese unterschreitet, und bei Erreichen oder Unterschreiten der Mindestspannung die Energiespeicher elektrisch in Reihe geschaltet werden und an dem Ausgang der Notstromversorgungseinrichtung Strom mit den in Reihe geschalteten Energiespeichern zur Verfügung gestellt wird.
  • Bezüglich der Vorteile des erfindungsgemäßen Verfahrens sei auf die obigen Ausführungen im Zusammenhang mit der erfindungsgemäßen Notstromversorgungseinrichtung verwiesen.
  • Die Erfindung wird nachfolgend anhand von Ausführungsbeispielen näher erläutert; dabei zeigen beispielhaft
    • 1 ein Ausführungsbeispiel für eine mit einer Notstromversorgungseinrichtung ausgestattete elektrische Anordnung, bei der ein Messwertschnittstellenmodul und ein Hauptprozessor in zwei separaten, miteinander verbundenen Gehäusen untergebracht sind, wobei eine Speicherdirektzugriffskontrolleinheit durch eine vom Hauptprozessor separate Komponente gebildet ist,
    • 2 ein Gehäuse des Messwertschnittstellenmoduls und/oder des den Hauptprozessor enthaltenden Gehäuses gemäß 1 in einer dreidimensionalen Darstellung mit Blick auf eine Mantelfläche des Gehäuses,
    • 3 das Gehäuse gemäß 2 ebenfalls in einer dreidimensionalen Darstellung, jedoch mit Blick auf die gegenüberliegende Mantelfläche des Gehäuses,
    • 4 das Gehäuse gemäß den 2 bis 3 in einer Explosionsdarstellung,
    • 5 ein Ausführungsbeispiel für eine mit einer Notstromversorgungseinrichtung ausgestattete elektrische Anordnung, bei der ein Messwertschnittstellenmodul und ein Hauptprozessor in zwei separaten, miteinander verbundenen Gehäusen untergebracht sind, wobei eine Speicherdirektzugriffskontrolleinheit durch eine prozessoreigene Einheit gebildet ist,
    • 6 ein Ausführungsbeispiel für eine mit einer Notstromversorgungseinrichtung ausgestattete elektrische Anordnung, bei der sich der Hauptprozessor bei fehlenden Messdaten selbst abschaltet,
    • 7 ein Ausführungsbeispiel für eine mit einer Notstromversorgungseinrichtung ausgestattete elektrische Anordnung, bei der in demjenigen Gehäuse, in dem sich der Hauptprozessor befindet, auch das Messwertschnittstellenmodul angeordnet ist,
    • 8 ein Ausführungsbeispiel für eine elektrische Anordnung, bei der in dem Gehäuse, in dem sich der Hauptprozessor befindet, zumindest ein Messwertschnittstellenmodul angeordnet ist, und zumindest ein Messwertschnittstellenmodul in einem separaten Gehäuse angeordnet ist,
    • 9-10 ein erstes Ausführungsbeispiel für eine erfindungsgemäße Notstromversorgungseinrichtung, die bei den Anordnungen gemäß den 1 bis 8 eingesetzt werden kann, wobei die 9 und 10 unterschiedliche Betriebsphasen zeigen, und
    • 11-13 ein zweites Ausführungsbeispiel für eine erfindungsgemäße Notstromversorgungseinrichtung, die bei den Anordnungen gemäß den 1 bis 8 eingesetzt werden kann, wobei die 11 bis 13 unterschiedliche Betriebsphasen zeigen.
  • In den Figuren werden der Übersicht halber für identische oder vergleichbare Komponenten stets dieselben Bezugszeichen verwendet.
  • Die 1 zeigt ein Messwertaufbereitungsmodul 110, das mittels Submodulen 111 und 112 eingangsseitig Messsignale MS aufbereitet, insbesondere filtert, verstärkt und/oder analog-digital wandelt und ausgangsseitig korrespondierende Messdaten M ausgibt. Die Aufbereitung der Messsignale MS kann durch Verstärker, Filter und/oder Analog-Digital-Wandler erfolgen, die in den Submodulen 111 und 112 angeordnet, jedoch aus Gründen der Übersicht in der 1 nicht gezeigt sind.
  • Bei dem Ausführungsbeispiel gemäß 1 ist das Messwertaufbereitungsmodul 110 an einen ersten Datenbus DB1 angeschlossen, der das Messwertaufbereitungsmodul 110 mit einem Messwertschnittstellenmodul 120 verbindet. Das Messwertschnittstellenmodul 120 erhält über den ersten Datenbus DB1 von dem Messwertaufbereitungsmodul 110 die Messdaten M.
  • Das Messwertschnittstellenmodul 120 weist eine Recheneinrichtung in Form eines Prozessors 121 und einen Speicher 122 auf. Der Speicher 122 ist vorzugsweise ein Halbleiterspeicher in Form eines Random-Access Memory (RAM) bzw. ein Speicher mit wahlfreiem Zugriff, wie er bei Computern als Arbeitsspeicher eingesetzt wird.
  • In der 1 ist außerdem ein Hauptprozessor 130 dargestellt, der im Betrieb die Messdaten M von dem Messwertschnittstellenmodul 120 über einen zweiten Datenbus DB2 empfängt und diese während seines normalen Betriebs in einem mit dem Hauptprozessor 130 in Verbindung stehenden Datenspeicher 140 abspeichert. Der Datenspeicher 140 ist vorzugsweise ein Halbleiterspeicher in Form eines Random-Access Memory (RAM) bzw. ein Speicher mit wahlfreiem Zugriff, wie er bei Computern als Arbeitsspeicher eingesetzt wird.
  • Die Speicherkapazität des Speichers 122 des Messwertschnittstellenmoduls 120 ist aus Kostengründen vorzugsweise kleiner, bevorzugt mindestens 10-mal kleiner, als die Speicherkapazität des Datenspeichers 140. Der Speicher 122 des Messwertschnittstellenmoduls 120 dient - bezüglich der Speicherung der Messdaten M - lediglich als Zwischenspeicher, bevor diese an den Hauptprozessor 130 und den Datenspeicher 140 weitergeleitet werden können.
  • Vorteilhaft ist es mit Blick auf die Vermeidung von Datenverlusten, wenn der Prozessor 121 von einem Schlafmodus möglichst schnell in seinen Normalbetriebsmodus versetzbar ist; vorzugsweise ist der der Prozessor 121 bzw. dessen Firmware derart ausgebildet, dass seine Startzeit vom Schlafmodus in den Normalbetriebsmodus deutlich, mindestens 10-mal, kürzer ist als die Start- bzw. Hochlaufzeit, die der Hauptprozessor 130 nach einem Anschalten oder von einem Energiesparzustand aus bis zum Normalbetrieb, also bis zur Erlangung der Betriebsfähigkeit des Betriebssystems und der Betriebsfähigkeit des das Betriebssystem nutzenden Betriebsprogramms (Applikation) benötigt. In der Phase nach Erreichen des Normalbetriebs des Prozessors 121 und vor Erreichen des Normalbetriebs des Hauptprozessors 130 wird der Prozessor 121 Messdaten M in dem Speicher 122 zwischenspeichern oder selbst in dem Datenspeicher 140 abspeichern, wie weiter unten noch erläutert wird.
  • Bei dem Ausführungsbeispiel gemäß 1 ist an den zweiten Datenbus DB2 eine Speicherdirektzugriffskontrolleinheit 150 in Form eines externen DMA-Controllers angeschlossen, der dem Messwertschnittstellenmodul 120 einen Speicherdirektzugriff auf den Datenspeicher 140 ermöglicht und dem Messwertschnittstellenmodul 120 erlaubt, die Messdaten M ohne Mitwirkung des Betriebssystems des Hauptprozessors 130 in dem Datenspeicher 140 abzuspeichern. Konkret ist das Messwertschnittstellenmodul 120 derart ausgestaltet, dass es bei nicht empfangsbereitem Hauptprozessor 130 - insbesondere bei ausgeschaltetem Hauptprozessor 130 oder nicht betriebsbereitem Betriebssystem des Hauptprozessors 130 - die Messdaten M unter Mitwirkung der Speicherdirektzugriffskontrolleinheit 150 selbsttätig und selbstständig in dem Datenspeicher 140 abspeichert.
  • Bei dem Ausführungsbeispiel gemäß 1 ist die Speicherdirektzugriffskontrolleinheit 150 eine selbstständige prozessorunabhängige Einheit, die bei ausgeschaltetem Hauptprozessor 130 betriebsfähig ist oder zumindest sein kann.
  • Die 1 ist zeigt außerdem eine Schalteinrichtung 160, die bei fehlender Messdatenübertragung über den zweiten Datenbus DB2 in Richtung des Hauptprozessors 130 den Hauptprozessor 130 ausschaltet. Die 1 zeigt in schematischer Darstellung den ausgeschalteten Zustand durch einen geöffneten Schalter.
  • Da die Schalteinrichtung 160 bei dem Ausführungsbeispiel gemäß 1 an den zweiten Datenbus DB2 angeschlossen ist, kann sie den Hauptprozessor 130 selbsttätig abschalten, wenn bzw. sobald keine Messdatenübertragung über den zweiten Datenbus DB2 stattfindet. Alternativ oder zusätzlich kann vorgesehen sein, dass das Messwertschnittstellenmodul 120 mittels eines Steuersignals ST über den zweiten Datenbus DB2 - wie in 1 dargestellt - das Ausschalten des Hauptprozessors 130 durch die Schalteinrichtung 160 triggert oder auslöst, wenn es keine Messdatenübertragung über den zweiten Datenbus DB2 gibt.
  • In entsprechender Weise kann die Schalteinrichtung 160 den Hauptprozessor 130 wieder selbsttätig einschalten, wenn sie eine Messdatenübertragung über den zweiten Datenbus DB2 feststellt. Alternativ oder zusätzlich kann vorgesehen sein, dass das Messwertschnittstellenmodul 120 mittels des Steuersignals ST über den zweiten Datenbus DB2 - wie in 1 dargestellt - das Einschalten des Hauptprozessors 130 durch die Schalteinrichtung 160 triggert oder auslöst, wenn bzw. sobald sie Messdaten über den zweiten Datenbus DB2 an den Hauptprozessor 130 senden und über diesen in dem Datenspeicher 140 abspeichern will.
  • Bei dem Ausführungsbeispiel gemäß 1 ist der Hauptprozessor 130 in einem ersten Gehäuse 200 und das Messwertschnittstellenmodul 120 in einem separaten zweiten Gehäuse 210 untergebracht.
  • Jedes der zwei Gehäuse 200 und 210 weist jeweils zwei Datenbusschnittstellen auf, nämlich eine erste Datenbusschnittstelle DS1 und eine zweite Datenbusschnittstelle DS2, die jeweils an gegenüberliegenden Gehäuseseiten GS1 und GS2 des jeweiligen Gehäuses 200 bzw. 210 angeordnet sind.
  • Die Gehäuse 200 und 210 sind vorzugsweise zumindest hinsichtlich der Anordnung der Datenbusschnittstellen DS1 und DS2 baugleich, so dass die Gehäuse 200 und 210 - wie in der 1 gezeigt - verbunden sowie kaskadiert nebeneinander (oder übereinander) mit weiteren schnittstellengleichen weiteren Gehäusen verbunden werden können, indem jeweils paarweise erste Datenbusschnittstellen DS1 und zweite Datenbusschnittstellen DS2 verbunden, insbesondere ineinander gesteckt, werden.
  • Die Anordnung gemäß 1 wird vorzugsweise wie folgt betrieben:
  • Werden - während des Normalbetriebs der Messwertschnittstellenmoduls 120 und des Hauptprozessors 130 - Messsignale MS verarbeitet und Messdaten M zu dem Messwertschnittstellenmodul 120 übertragen, so wird das Messwertschnittstellenmodul 120 die Messdaten M über den zweiten Datenbus DB2 und die beiden Datenbusschnittstellen DS1 und DS2 (und damit vorzugsweise über den Stecker 19 und die Steckerbuchse 20 gemäß den 2 bis 4) zu dem Hauptprozessor 130 weiterleiten, der wiederum die Messdaten M in dem Datenspeicher 140 abspeichert.
  • Werden über den ersten Datenbus DB1 hingegen keine Messdaten M zu dem Messwertschnittstellenmodul 120 übertragen, so wird das Messwertschnittstellenmodul 120 auch keine Messdaten M über den zweiten Datenbus DB2 zu dem Hauptprozessor 130 weiterleiten. In diesem Falle wird sich das Messwertschnittstellenmodul 120 in einen Schlafmodus schalten, um seinen Energieverbrauch zu reduzieren.
  • Der Hauptprozessor 130 wird sich bei fehlender Datenübertragung zum Zwecke der Energieersparnis selbst in einen Energiesparmodus schalten bzw. abschalten, beispielsweise indem er die Schalteinrichtung 160 mittels eines eigenen Steuersignals ST2 abschaltet (siehe Ausführungsform gemäß 6); alternativ kann er extern abgeschaltet werden, sei es allein durch die Schalteinrichtung 160, falls diese die Messdatenübertragung über den zweiten Datenbus DB2 überwacht und bei fehlender Messdatenübertragung den Hauptprozessor 130 ausschaltet, oder durch das Messwertschnittstellenmodul 120 mittels des Steuersignals ST, das über die beiden Datenbusschnittstellen DS1 und DS2 (und damit vorzugsweise über den Stecker 19 und die Steckerbuchse 20 gemäß den 2 bis 4) zur Schalteinrichtung 160 übertragen wird.
  • Ob das Ausschalten des Hauptprozessors 130 selbsttätig, durch die Schalteinrichtung 160 oder durch das Messwertschnittstellenmodul 120 erfolgen soll, ist prinzipiell beliebig. Bei der Darstellung gemäß 1 wird beispielhaft davon ausgegangen, dass das Ausschalten mittels des Steuersignals ST durch das Messwertschnittstellenmodul 120 ausgelöst wird.
  • Im Falle, dass zusätzlich zu dem Messwertschnittstellenmodul 120 noch weitere Messwertschnittstellenmodule 120a und 120b (siehe 8) an den zweiten Datenbus DB2 angeschlossen sind und jeweils individuell Messdaten M an den Hauptprozessor 130 übertragen, wird es als vorteilhaft angesehen, wenn sich der Hauptprozessor 130 selbsttätig abschaltet oder zentral durch die Schalteinrichtung 160 abgeschaltet wird.
  • Befindet sich das Messwertschnittstellenmodul 120 im Schlafmodus und der Hauptprozessor 130 im ausgeschalteten Zustand und liegen an dem ersten Datenbus DB1 wieder Messdaten M zum Abspeichern in dem Datenspeicher 160 an, so wird dies von dem im Schlafmodus befindlichen Messwertschnittstellenmodul 120 erkannt, da das Messwertschnittstellenmodul 120 auch im Schlafmodus den ersten Datenbus DB1 auf eine Datenübertragung hin überwacht. Das Messwertschnittstellenmodul 120 aktiviert sich und die Firmware des Messwertschnittstellenmoduls 120 wird geladen. Der Normalbetrieb des Messwertschnittstellenmoduls 120 wird im Allgemeinen beispielsweise nach ca. 800 ms erreicht.
  • Anschließend wird das Messwertschnittstellenmodul 120 das Starten des Hauptprozessors 130 auslösen, indem es das Steuersignal ST zum Einschalten des Hauptprozessor 130 an die Schalteinrichtung 160 über die beiden Datenbusschnittstellen DS1 und DS2 (und damit vorzugsweise über den Stecker 19 und die Steckerbuchse 20 gemäß den 2 bis 4) übermittelt. Der Normalbetrieb des Hauptprozessors 130 wird im Allgemeinen nach ca. 4 bis 5 Sekunden erreicht, nachdem das Betriebssystem des Hauptprozessors 130 vollständig in Betrieb gegangen ist.
  • Bis zum Erreichen des Normalbetriebs des Hauptprozessors 130 wird das Messwertschnittstellenmodul 120 die Messdaten M unter Mitwirkung der Speicherdirektzugriffskontrolleinheit 150 unmittelbar in dem Datenspeicher 140 speichern, und zwar über die beiden Datenbusschnittstellen DS1 und DS2 (und damit vorzugsweise über den Stecker 19 und die Steckerbuchse 20 gemäß den 2 bis 4).
  • Sobald sich der Hauptprozessor 130 im Normalbetriebsmodus befindet, erfolgt das Speichern der Messdaten M unter Mitwirkung des Hauptprozessors 130 in dem Datenspeicher 140, wie oben bereits beschrieben.
  • Durch das Mitwirken der Speicherdirektzugriffskontrolleinheit 150 können die Messdaten M also bereits nach Inbetriebnahme des Messwertschnittstellenmoduls 120, also nach ca. 800 ms, in dem Datenspeicher 140 abgespeichert werden, obwohl der Hauptprozessor 130 bzw. dessen Betriebssystems selbst noch nicht betriebsbereit ist.
  • Um einen Weiterbetrieb des Hauptprozessors 130, des Datenspeichers 140 und der Speicherdirektzugriffskontrolleinheit 150 im Falle eines Ausfalls einer externen Versorgungsspannung Uin, die von einer aus Gründen der Übersicht in der 1 nicht gezeigten externen Energieversorgungsquelle zur Verfügung gestellt wird, zu ermöglichen, ist eine Notstromversorgungseinrichtung 500 vorgesehen, die vorzugsweise gemeinsam mit dem Hauptprozessor 130, dem Datenspeicher 140 und der Speicherdirektzugriffskontrolleinheit 150 in Verbindung steht und diese speisen kann. Die Notstromversorgungseinrichtung 500 ist vorzugsweise in demselben Gehäuse 200 untergebracht wie der Hauptprozessor 130, der Datenspeicher 140 und die Speicherdirektzugriffskontrolleinheit 150. Alternativ können die Notstromversorgungseinrichtung 500 oder Teile davon in einem anderen Gehäuse, beispielsweise dem Gehäuse 210, untergebracht sein; in einem solchen Falle erfolgt die elektrische Verbindung der Notstromversorgungseinrichtung 500 mit dem Hauptprozessor 130, dem Datenspeicher 140 und der Speicherdirektzugriffskontrolleinheit 150 und/oder die Verbindung zwischen den Bestandteilen der Notstromversorgungseinrichtung 500 untereinander vorzugsweise über den Stecker 19 und die Steckerbuchse 20 gemäß den 2 bis 4.
  • Ausführungsbeispiele für Notstromversorgungseinrichtungen 500 werden weiter unten im Zusammenhang mit den 9 bis 13 erläutert.
  • Im Zusammenhang mit den 2 bis 4 wird ein Ausführungsbeispiel für ein Gehäuse 1 näher erläutert, das als das erste Gehäuse 200 und/oder das zweite Gehäuse 210 bei der Anordnung gemäß 1 eingesetzt werden kann.
  • Die Gehäuseseite GS1 der Gehäuse 200 und 210 gemäß 1 wird bei dem Gehäuse 1 gemäß den 2 bis 4 dabei durch eine Mantelfläche 2 (vgl. 2 bis 4) des Gehäuses 1 und die gegenüberliegende Gehäuseseite GS2 gemäß 1 durch eine gegenüberliegende Mantelfläche 13 (vgl. 2 bis 4) des Gehäuses 1 gebildet.
  • Das in den 2 bis 4 dargestellte Gehäuse 1 ist quaderförmig und weist - wie insbesondere 2 zeigt - eine Mantelfläche 2 auf, die im Bereich einer Stirnfläche 3 des Gehäuses 1 Verrastungshaken 4 und 5 umfasst. Die Verrastungshaken 4 und 5 stehen etwas aus der Oberfläche 6 der einen Mantelfläche 2 hervor und sind zur Stirnfläche 3 hin mit einer Hinterschneidung 7 versehen.
  • An der der einen Stirnfläche 3 gegenüber liegenden weiteren Stirnfläche 8 des Gehäuses 1 (vgl. auch 3) ist auf einer Drehachse 9 eine Arretierungswippe 10 gelagert, die unter der Wirkung einer der besseren Übersicht halber nicht gezeigten Feder mit einer an ihr vorgesehenen Arretierungsnase 12 gegen eine Ausnehmung 11 an der weiteren Stirnseite 8 gedrückt wird. Die Arretierungsnase 12 liegt also an der einen Mantelfläche 2 den beiden Rasthaken 4 und 5 gegenüber.
  • Das Gehäuse 1 weist auf einer weiteren, der einen Mantelfläche 2 gegenüber liegenden Mantelfläche 13 eine Verrastungshaken-Aufnahmeeinrichtung 14 auf, die aus zwei rechteckförmigen Löchern besteht. Die rechteckförmigen Löcher passen in ihrer Ausgestaltung und Position auf der weiteren Mantelfläche 13 zu den Verrastungshaken 4 und 5 auf der einen Mantelfläche 2. Die rechteckförmigen Löcher weisen somit auch Hinterschneidungen auf, in die die Verrastungshaken 4 und 5 eingreifen, wenn zwei Gehäuse 1 in der dargestellten Ausführung mit ihrer einen Mantelfläche 2 und der weiteren Mantelfläche 13 unter einem spitzen Winkel zusammen gebracht und dann gegeneinander gedrückt werden, wobei die Arretierungsnase 12 der Arretierungswippe 10 des einen Gehäuses hinter einen Arretierungsvorsprung 15 schnappt, der im Zuge der Arretierungswippe 10 an der Stirnseite 8 im Bereich der weiteren Mantelfläche 13 vorgesehen ist.
  • Wie den 2 und 3 ferner zu entnehmen ist, befindet sich in der einen Mantelfläche 2 eine Ausnehmung 16 , die mit einer Schutzumrandung 17 versehen ist. Fluchtend mit der einen Ausnehmung liegt in der weiteren Mantelfläche 13 eine weitere Ausnehmung 18. In der einen Ausnehmung 16 befindet sich eine elektrische Durchführung in Form eines elektrischen Steckers 19 und in der weiteren Ausnehmung 18 eine weitere elektrische Durchführung in Form einer Steckerbuchse 20.
  • Der Stecker 19 weist einen Steckerabschnitt auf und bildet vorzugsweise die erste Datenbusschnittstelle DS1 gemäß 1; und die Steckerbuchse 20 weist einen Buchsenabschnitt auf und bildet vorzugsweise die zweite Datenbusschnittstelle DS2 gemäß 1. Alternativ kann der Stecker 19 als zweite Datenbusschnittstelle DS2 und die Steckerbuchse 19 als erste Datenbusschnittstelle DS1 eingesetzt werden.
  • Wie 4 erkennen lässt, befindet sich innerhalb des Gehäuses 1 vorzugsweise eine Leiterplatte 21 , die beim Zusammenbau des Gehäuses 1 zwischen einem in dieser Figur oberen Gehäuseteil 22 mit der weiteren Mantelfläche 13 und einem unteren Gehäuseteil 23 eingespannt gehalten wird. Die Leiterplatte 21 trägt an ihrer der einen Mantelfläche 2 zugewandten Kante 25 den Stecker 19 und an ihrer der weiteren Mantelfläche 13 zugewandten Kante 26 die Steckerbuchse 20.
  • Beim Zusammenbau des Gehäuses 1 wird vorzugsweise auch eine Gehäuse-Seitenwand 27 miteinbezogen, die ebenso wie die übrigen Gehäuseteile unter Zwischenlegen von nicht gezeigten Dichtungen zu einem nach außen abgedichteten Gehäuse zusammengefügt werden. Die Abdichtung wird im Bereich der Durchführungen dadurch vervollständigt, dass in die Schutzumrandung 17 auch eine nicht gezeigte Dichtung eingelegt ist.
  • Ergänzend ist noch anzumerken, dass sich mindestens zwischen einem Fleck 28 oder einem anderen Fleck 29 ein Gummielement befindet, um ein Klappern des Gehäuses 1 gegen ein weiteres Gehäuse zu verhindern.
  • Das Übertragen der Messdaten M und des Steuersignals ST von dem Messwertschnittstellenmodul 120 zu dem ersten Gehäuse 200 erfolgt über den Stecker 19 und die Steckerbuchse 20, die die beiden Datenbusschnittstellen DS1 und DS2 gemäß 1 bilden.
  • Die 5 zeigt ein Ausführungsbeispiel für eine elektrische Anordnung, die vom Aufbau im Wesentlichen der Anordnung gemäß 1 entspricht.
  • Im Unterschied zu dem Ausführungsbeispiel gemäß 1 ist bei dem Ausführungsbeispiel gemäß 5 vorgesehen, dass die Speicherdirektzugriffskontrolleinheit 150 durch eine prozessoreigene Einheit des Hauptprozessors 130 gebildet ist.
  • Die Speicherdirektzugriffskontrolleinheit 150 ist derart ausgebildet, dass sie nach einem Einschalten des Hauptprozessors 130 zeitlich vor dem Betriebssystem 131 in Betrieb genommen und betriebsbereit wird. Die Speicherdirektzugriffskontrolleinheit 150 kann somit ein Weiterleiten und Abspeichern der Messdaten M im Datenspeicher 140 veranlassen und vornehmen, bevor das Betriebssystem 131 des Hauptprozessors 130 betriebsbereit wird.
  • Integrierte Speicherdirektzugriffskontrolleinheiten wie die Speicherdirektzugriffskontrolleinheit 150 gemäß 5 sind bei vielen Prozessoren heutzutage vorgesehen und werden üblicherweise als prozessoreigene DMA-Controller (DMA: direct memory access) bezeichnet.
  • Die Anordnung gemäß 5 wird vorzugsweise wie folgt betrieben:
  • Wird der Hauptprozessor 130 nach einem Ausschalten wegen fehlender Datenübertragung neu gestartet (z. B. von der Schalteinrichtung 160), so wird das Messwertschnittstellenmodul 120 die Messdaten M zunächst in dem Speicher 122 zwischenspeichern, bis die integrierte Speicherdirektzugriffskontrolleinheit 150 des Hauptprozessors 130 betriebsbereit ist und ein unmittelbares Speichern im Direktzugriffsmodus in dem Datenspeicher 140 erlaubt.
  • Anschließend wird das Messwertschnittstellenmodul 120 bis zum Erreichen der Betriebsbereitschaft des Betriebssystems 131 und dem Erreichen des Normalbetriebs des Hauptprozessors 130 die Messdaten M unter Mitwirkung der Speicherdirektzugriffskontrolleinheit 150 unmittelbar in dem Datenspeicher 140 speichern, und zwar über den zweiten Datenbus DB2 und die beiden Datenbusschnittstellen DS1 und DS2 und damit vorzugsweise über den Stecker 19 und die Steckerbuchse 20 gemäß den 2 bis 4.
  • Sobald das Betriebssystem 131 betriebsbereit ist und sich der Hauptprozessor 130 im Normalbetriebsmodus befindet, erfolgt das Speichern der Messdaten M mittelbar unter Mitwirkung des Betriebssystems 131 in dem Datenspeicher 140.
  • Durch das Mitwirken der integrierten Speicherdirektzugriffskontrolleinheit 150 können die Messdaten M also abgespeichert werden, sobald die integrierte Speicherdirektzugriffskontrolleinheit 150 in Betrieb ist, obwohl das Betriebssystem 131 des Hauptprozessors 130 insgesamt noch nicht betriebsbereit ist.
  • Im Übrigen gelten die Erläuterungen im Zusammenhang mit den 1 bis 4 entsprechend.
  • Die 6 zeigt ein Ausführungsbeispiel für eine elektrische Anordnung, die vom Aufbau im Wesentlichen der Anordnung gemäß 1 entspricht.
  • Im Unterschied zu dem Ausführungsbeispiel gemäß 1 ist bei dem Ausführungsbeispiel gemäß 6 vorgesehen, dass der Hauptprozessor 130 derart ausgebildet bzw. durch ein Betriebsprogramm derart programmiert ist, dass er sich bei fehlendem Messdateneingang über den zweiten Datenbus DB2 mittels eines Steuersignals ST2, das er an die Schalteinrichtung 160 sendet, selbsttätig ausschaltet. Das Wiedereinschalten der Schalteinrichtung 160 und damit des Hauptprozessors 130 erfolgt vorzugsweise durch das Messwertschnittstellenmodul 120 mittels des Steuersignals ST über den zweiten Datenbus DB2 - wie bei dem Ausführungsbeispiel gemäß 1 -, sobald das Messwertschnittstellenmodul 120 Messdaten M über den zweiten Datenbus DB2 an den Hauptprozessor 130 senden und über diesen in dem Datenspeicher 140 abspeichern will. Alternativ kann das Wiedereinschalten durch die Schalteinrichtung 160 veranlasst werden, wenn dieses eine Datenübertragung auf dem zweiten Datenbus DB2 feststellt.
  • Im Übrigen gelten die Erläuterungen im Zusammenhang mit den 1 bis 5 entsprechend.
  • Die 7 zeigt ein Ausführungsbeispiel für eine elektrische Anordnung, bei der in dem Gehäuse 200, in dem sich der Hauptprozessor 130 befindet, auch das Messwertschnittstellenmodul 120 angeordnet ist. Im Übrigen gelten die Erläuterungen im Zusammenhang mit den 1 bis 6 entsprechend.
  • Die 8 zeigt ein Ausführungsbeispiel für eine elektrische Anordnung, die vom Aufbau im Wesentlichen der Anordnung gemäß 1 entspricht. Im Unterschied zu dem Ausführungsbeispiel gemäß 1 ist bei dem Ausführungsbeispiel gemäß 8 vorgesehen, dass in dem ersten Gehäuse 200, in dem sich der Hauptprozessor 130 befindet, zwei Messwertschnittstellenmodule 120a angeordnet sind. In dem zweiten Gehäuse 210, in dem sich das Messwertschnittstellenmodul 120 befindet, ist darüber hinaus ein zweites Messwertschnittstellenmodul 120b angeordnet.
  • Die Messwertschnittstellenmodule 120a und 120b empfangen jeweils Messdaten M' über individuell zugeordnete Datenbusse DB' und übertragen diese über den zweiten Datenbus DB2 zu dem Hauptprozessor 130 bzw. über die Speicherdirektzugriffskontrolleinheit 150 zum Datenspeicher 140, wie dies im Zusammenhang mit der 1 oben erläutert worden ist.
  • Wie bereits oben erwähnt, ist es im Falle weiterer Messwertschnittstellenmodule 120a und 120b vorteilhaft, wenn sich der Hauptprozessor 130 selbsttätig abschaltet oder zentral durch die Schalteinrichtung 160 abgeschaltet wird, falls keine Messdaten M über den zweiten Datenbus DB2 übertragen werden.
  • Die 9 und 10 zeigen ein erstes Ausführungsbeispiel für eine Notstromversorgungseinrichtung 500, die bei den Anordnungen gemäß den 1 bis 8 eingesetzt werden kann. Ein Anschlusskontakt 505 der Notstromversorgungseinrichtung 500 ermöglicht ein Einspeisen der externen Versorgungsspannung Uin.
  • Der Anschlusskontakt 505 steht über eine Diode 510 mit einem Eingangsanschluss E520 eines Spannungsreglers 520 in Verbindung. Über eine weitere Diode 530 sind an den Eingangsanschluss E520 des Spannungsreglers 520 zwei Energiespeicher angeschlossen, nämlich ein erster elektrischer Energiespeicher 540 und ein zweiter elektrischer Energiespeicher 550. Bei den Energiespeichern 540 und 550 kann es sich beispielsweise um Batterien oder Kondensatoren handeln.
  • Die Notstromversorgungseinrichtung 500 weist darüber hinaus eine Umschalteinrichtung 560 und eine Steuereinrichtung 570 auf. Die Umschalteinrichtung 560 wird bei dem Ausführungsbeispiel gemäß den 9 und 10 durch einen ersten Umschalter 561 und einen zweiten Umschalter 562 gebildet.
  • Jeder der beiden Energiespeicher 540 und 550 weist jeweils einen dem Spannungsregler 520 zugewandten Anschluss 541 bzw. 551 sowie einen dem Spannungsregler 520 abgewandten Anschluss 542 bzw. 552 auf.
  • Der dem Spannungsregler 520 zugewandte Anschluss 541 des ersten Energiespeichers 540 ist über die weitere Diode 530 unmittelbar an den Eingangsanschluss E520 des Spannungsreglers 520 angeschlossen; der dem Spannungsregler 520 zugewandte Anschluss 551 des zweiten Energiespeichers 550 steht über den zweiten Umschalter 562 und die weitere Diode 530 mit dem Eingangsanschluss 520 in Verbindung. Während also der Anschluss 541 unabhängig von der Schaltstellung der Umschalteinrichtung 560 stets mit dem Eingangsanschluss E520 des Spannungsreglers 520 verbunden ist, bestimmt die Schaltstellung des zweiten Umschalters 562, ob der Anschluss 551 mit dem Spannungsregler 520 verbunden wird oder nicht.
  • Bezüglich der dem Spannungsregler 520 abgewandten Anschlüsse 542 bzw. 552 der beiden Energiespeicher 540 und 550 ist die Situation invers: So ist der Anschluss 552 des zweiten Energiespeichers 550 stets mit dem Massepotential verbunden, wohingegen der dem Spannungsregler 520 abgewandte Anschluss 542 des ersten Energiespeichers 540 wahlweise mit dem Massepotential oder alternativ mit einer Verbindungsleitung 580 verbunden wird.
  • Zum Aufladen der beiden Energiespeicher 540 und 550 ist die Notstromversorgungseinrichtung 500 mit einer Ladequelle 590 ausgestattet, die über einen Ein-Aus-Schalter 563 mit dem Ausgangsanschluss A520 des Spannungsreglers 520 verbindbar ist. Die Ladequelle 590 steht ausgangsseitig über eine dritte Diode 600 mit den beiden Energiespeichern 540 und 550 in Verbindung und kann über diese dritte Diode 600 einen Ladestrom einspeisen.
  • Die Notstromversorgungseinrichtung 500 ist darüber hinaus mit einer ersten und einer zweiten Messeinrichtung 610 und 620 ausgestattet. Die erste Messeinrichtung 610 dient dazu, die an dem Anschlusskontakt 505 anliegende Spannung zu messen und einen entsprechenden Spannungsmesswert Mu zur Steuereinrichtung 570 zu übertragen. Die Steuereinrichtung 570 hat somit Kenntnis über die Energieversorgungslage seitens der externen Energieversorgungsquelle.
  • Die zweite Messeinrichtung 620 dient dazu, die von den beiden Energiespeichern 540 und 550 an den Eingangsanschluss E520 des Spannungsreglers 520 - von dem Spannungsabfall an der weiteren Diode 530 abgesehen - angelegte Spannung zu messen; der entsprechende Messwert der zweiten Messeinrichtung 620 wird ebenfalls zur Steuereinrichtung 570 übertragen. Eine Verbindungsleitung zwischen der zweiten Messeinrichtung 620 und der Steuereinrichtung 570 ist aus Gründen der Übersicht in den Figuren nicht gezeigt.
  • Die Notstromversorgungseinrichtung 500 gemäß 9 wird vorzugsweise wie folgt betrieben: Im Normalbetrieb, wenn die externe Versorgungsspannung Uin am Anschlusskontakt 505 der Notstromversorgungseinrichtung 500 anliegt, wird die Steuereinrichtung 570 die Umschalteinrichtung 560 in die in der 9 gezeigte erste Schaltstellung schalten, in der die Energiespeicher 540 und 550 in eine elektrische Parallelschaltung geschaltet werden. In der 9 lässt sich erkennen, dass in der ersten Schaltstellung der erste Umschalter 561 den vom Spannungsregler 520 abgewandten Anschluss 542 des ersten Energiespeichers 540 mit Massepotential verbindet und der zweite Umschalter 562 den dem Spannungsregler 520 zugewandten Anschluss 551 des zweiten Energiespeichers 550 mit dem Spannungsregler 520 verbindet. Somit wird der Eingangsanschluss E520 mit der von der Parallelschaltung der beiden Energiespeicher 540 und 550 bereitgestellten Spannung beaufschlagt.
  • Da die externe Versorgungsspannung Uin am Anschlusskontakt 505 anliegt, ist eine Energieversorgung des Spannungsreglers 520 durch die beiden Energiespeicher 540 und 550 nicht notwendig. Um einen Stromfluss von den beiden Energiespeichern 540 und 550 im Falle eines Anliegens der externen Versorgungsspannung Uin in Richtung des Spannungsreglers 520 zu vermeiden, wird die Steuereinrichtung 570 mit der Ladequelle 590 die beiden Energiespeicher 540 und 550 lediglich so weit aufladen, dass die Spannung an den beiden Energiespeichern 540 und 550 maximal so groß ist wie die minimal zu erwartende externe Versorgungsspannung Uin. Liegt die externe Versorgungsspannung beispielsweise in einem Spannungsbereich zwischen 10 V und 50 V, so wird die Steuereinrichtung 570 mittels der Ladequelle 590 die beiden Energiespeicher 540 und 550 vorzugsweise auf maximal 10 V, beispielsweise auf einen Wert von 9 V, aufladen.
  • Sobald die Ladequelle 590 die beiden Energiespeicher 540 und 550 entsprechend aufgeladen hat und die zweite Messeinrichtung 620 die entsprechende Spannung anzeigt, wird die Steuereinrichtung 570 den Ein-Aus-Schalter 563 öffnen, um ein weiteres Aufladen und damit eine weitere Spannungserhöhung der beiden Energiespeicher 540 und 550 zu verhindern.
  • Stellt im weiteren Verlauf des Normalbetriebs, bei dem der Anschlusskontakt 505 weiterhin mit der externen Versorgungsspannung Uin versorgt wird, die Steuereinrichtung 570 anhand des von der zweiten Messeinrichtung 620 erzeugten Messwerts fest, dass sich die Energiespeicher 540 und 550 über ein vorgegebenes Maß hinaus entladen haben, so kann sie den Ein-Aus-Schalter 563 wieder schließen und mittels der Ladequelle 590 ein Nachladen der beiden Energiespeicher 540 und 550 auf die vorgegebene Sollspannung durchführen.
  • Die 10 zeigt die Notstromversorgungseinrichtung 500 für den Fall, dass die externe Versorgungsspannung Uin - beispielsweise aufgrund einer Störung der externen Energieversorgungsquelle - ausgefallen ist. Sobald die externe Versorgungsspannung Uin ausbleibt, wird die von der Parallelschaltung der beiden Energiespeicher 540 und 550 bereitgestellte Spannung über die weitere Diode 530 automatisch am Eingangsanschluss E520 des Spannungsreglers 520 anliegen, weil die weitere Diode in Flussrichtung mit Spannung beaufschlagt wird, so dass der Spannungsregler 520 mit der Ausgangsspannung der Parallelschaltung der Energiespeicher 540 und 550 unterbrechungsfrei weiter betrieben wird.
  • Stellt die Steuereinrichtung 570 anhand des Messwerts Mu der ersten Messeinrichtung 610 fest, dass die externe Versorgungsspannung Uin weggefallen ist, so wird sie das Entladen der beiden Energiespeicher 540 und 550 anhand der an der Parallelschaltung der beiden Energiespeicher 540 und 550 abfallenden Spannung mittels der zweiten Messeinrichtung 620 überwachen. Sobald die Spannung an der Parallelschaltung einen unteren Grenzwert erreicht, der beispielsweise der unteren Arbeitsspannung des Spannungsreglers 520 entspricht, so wird die Steuereinrichtung 570 die Umschalteinrichtung 560 in eine zweite Schaltstellung umschalten, in der die Energiespeicher 540 und 550 in eine elektrische Reihenschaltung geschaltet werden.
  • Die zweite Schaltstellung der Umschalteinrichtung 560 zeigt die 10. Es lässt sich erkennen, dass der erste Umschalter 561 nunmehr den dem Spannungsregler 520 abgewandten Anschluss 542 des ersten Energiespeichers 540 mit der Verbindungsleitung 580 und über diese sowie über den umgeschalteten zweiten Umschalter 562 mit dem Anschluss 551 des zweiten Energiespeichers 550 verbindet. Durch das Umschalten des zweiten Umschalters 562 wird der zweite Energiespeicher 550 von der weiteren Diode 530 abgetrennt.
  • Durch das Umschalten der Umschalteinrichtung 560 bzw. durch das Umschalten der beiden Umschalter 561 und 562 bilden die beiden Energiespeicher 540 und 550 nun eine elektrische Reihenschaltung, so dass die am Eingangsanschluss E520 des Spannungsreglers 520 anliegende Spannung durch die Spannungssumme der Einzelspannungen U1 und U2 der beiden Energiespeicher 540 und 550 gebildet wird.
  • Handelt es sich bei dem Spannungsregler 520 beispielsweise um einen 5V/50V-Spannungsregler, der eine Mindestspannung von 5 V benötigt, so wird das Umschalten der Umschalteinrichtung 560 spätestens dann erfolgen, wenn die beiden Energiespeicher 540 und 550 jeweils diese Mindestspannung von 5 V aufweisen. Mit dem Umschalten der Umschalteinrichtung 560 bzw. mit dem Umschalten auf eine Reihenschaltung erhöht sich die von den beiden Energiespeichern 540 und 550 an den Eingangsanschluss E520 angelegte Spannung auf den doppelten Wert U1+U2, also beispielsweise 10 V, so dass der Spannungsregler 520 weiter betrieben werden kann.
  • Die Energieversorgung seitens der beiden Energiespeicher 540 und 550 wird erst dann unmöglich, wenn die Spannungssumme U1+U2 auf die erforderliche Mindestspannung des Spannungsreglers abgefallen ist.
  • Zusammengefasst ermöglicht das Umschalten der beiden Energiespeicher 540 und 550 von einer Parallelschaltung in eine Serienschaltung eine Verlängerung des Notstrombetriebs der Notstromversorgungseinrichtung 500 im Falle eines Ausfalls der externen Versorgungsspannung Uin. Hierzu ein Beispiel:
  • Unter der Annahme, dass die externe Versorgungsspannung Uin 10 Volt beträgt, die Energiespeicher 530 und 540 auf Uin=10 V aufgeladen sind und es sich bei dem Spannungsregler 520 um einen 5V/50V-Spannungsregler handelt, so kann den Energiespeichern 530 und 540 in der ersten Entladephase bzw. in der Parallelschaltung eine Energie E(P) entnommen werden gemäß: E ( P ) = 2 ( 1 2 C U i n 2 ) 2 ( 1 2 C U m 2 ) = 75 V 2 C
    Figure DE102017213919A1_0001
    wobei Um die Minimalspannung von 5V an dem 5V/50V-Spannungsregler und C die Kapazität der Energiespeicher 530 und 540 bezeichnet.
  • Durch das Umschalten in die Reihenschalung bei 5V kann der Reihenschaltung nun noch weitere Energie E(R) entnommen werden gemäß: E ( R ) = 2 ( 1 2 C U m 2 ) 2 ( 1 2 C ( U m / 2 ) 2 ) = 18,75 V 2 C
    Figure DE102017213919A1_0002
  • Die mögliche Energieentnahme durch das Umschalten von der Parallelschaltung in die Reihenschaltung wird also um 25% erhöht.
  • Bei dem Ausführungsbeispiel gemäß den 9 und 10 ist ein Aufladen der beiden Energiespeicher 540 und 550 begrenzt, und zwar auf die minimal zu erwartende externe Versorgungsspannung Uin. Beträgt die minimal zu erwartende Versorgungsspannung beispielsweise Uin = 10 V, so kann - wie oben erläutert - ein Aufladen der beiden Energiespeicher 540 und 550 auf maximal ca. 10 V erfolgen.
  • Um ein höheres Aufladen der beiden Energiespeicher 540 und 550 zu ermöglichen, ist bei dem Ausführungsbeispiel gemäß den 11 bis 13 ein weiterer Ein-Aus-Schalter 564 vorgesehen, der im Normalbetrieb bei Vorliegen der externen Versorgungsspannung Uin geöffnet ist und somit ein Aufladen der beiden Energiespeicher 540 und 550 auf eine beliebig hohe Spannung ermöglicht. Um eine Überlastung des Spannungsreglers 520 im Falle eines Notbetriebs bzw. einer Energiespeisung seitens der beiden Energiespeicher 540 und 550 zu vermeiden, wird das Aufladen der beiden Energiespeicher 540 und 550 vorzugsweise auf die maximale Eingangsspannung des Spannungsreglers 520 begrenzt. Handelt es sich bei dem Spannungsregler 520 beispielsweise um einen 5V/50V-Spannungsregler, so wird ein Aufladen der beiden Energiespeicher 540 und 550 vorzugsweise auf maximal 50 V erfolgen.
  • Die 11 zeigt den Ladebetrieb der Notstromversorgungseinrichtung 500 bei anliegender externer Versorgungsspannung Uin. Der Ein-Aus-Schalter 563 ist geschlossen und die Ladequelle 590 lädt die Energiespeicher 540 und 550. Stellt die Steuereinrichtung 570 anhand des Messwerts der zweiten Messeinrichtung 620 fest, dass die Energiespeicher 540 und 550 ausreichend aufgeladen sind, so wird sie den Ein-Aus-Schalter 563 wieder öffnen.
  • Der zweite Ein-Aus-Schalter 564 ist während des Normalbetriebs, also bei Vorliegen der externen Versorgungsspannung Uin, geöffnet, damit die beiden Energiespeicher 540 und 550 vom Eingangsanschluss E520 des Spannungsreglers 520 getrennt werden.
  • Die 12 zeigt die erste Phase des Notbetriebs der Notstromversorgungseinrichtung 500 im Falle eines Ausfalls der externen Versorgungsspannung Uin. Sobald die Steuereinrichtung 570 anhand des Messwerts Mu der Messeinrichtung 610 feststellt, dass die externe Versorgungsspannung Uin ausgefallen ist, so wird sie den zweiten Ein-Aus-Schalter 564 schließen und somit eine Energieversorgung des Spannungsreglers 520 durch die Parallelschaltung der beiden Energiespeicher 540 und 550 ermöglichen. Das Speisen des Spannungsreglers 520 erfolgt in der ersten Phase in der ersten Schaltstellung der Umschalteinrichtung 560, in der die beiden Energiespeicher 540 und 550 parallel geschaltet sind.
  • Stellt die Steuereinrichtung 570 anhand der Messwerte der zweiten Messeinrichtung 620 fest, dass die Spannung der beiden Energiespeicher 540 und 550 bzw. die Ausgangsspannung der Parallelschaltung nicht mehr zur Speisung des Spannungsreglers 520 ausreicht, weil die Minimalspannung von 5 V erreicht wird, so wird die Steuereinrichtung 570 die Umschalteinrichtung 560 in die in der 13 gezeigte zweite Schaltstellung umschalten, in der die beiden Energiespeicher 540 und 550 elektrisch in Reihe geschaltet werden. Die Reihenschaltung speist den Eingangsanschluss E520 mit der Spannungssumme U1+U1 der Einzelspannungen der beiden Energiespeicher 540 und 550; diesbezüglich sei auf die obigen Ausführungen im Zusammenhang mit der 10 verwiesen.
  • Die weitere Speisung des Spannungsreglers 520 mittels der in Reihe geschalteten Energiespeicher 540 und 550 ist möglich, solange die an der Reihenschaltung anliegende Ausgangsspannung die Mindestspannung des Spannungsreglers 520 erreicht.
  • Im Zusammenhang mit den 9 bis 13 wurden Ausführungsbeispiele mit zwei Energiespeichern erläutert; selbstverständlich können auch drei oder mehr Energiespeicher eingesetzt werden, die im Normalbetrieb und in der ersten Entladephase zunächst elektrisch parallel geschaltet sind und in einer zweiten nachfolgenden Entladephase elektrisch in Reihe geschaltet werden. Die obigen Dimensionierungsregeln gelten entsprechend.
  • Obwohl die Erfindung im Detail durch bevorzugte Ausführungsbeispiele näher illustriert und beschrieben wurde, so ist die Erfindung nicht durch die offenbarten Beispiele eingeschränkt und andere Variationen können vom Fachmann hieraus abgeleitet werden, ohne den Schutzumfang der Erfindung zu verlassen.
  • Bezugszeichenliste
  • 1
    Gehäuse
    2
    Mantelfläche
    3
    Stirnfläche
    4
    Verrastungshaken
    5
    Verrastungshaken
    6
    Oberfläche
    7
    Hinterschneidung
    8
    Stirnfläche
    9
    Drehachse
    10
    Arretierungswippe
    11
    Ausnehmung
    12
    Arretierungsnase
    13
    Mantelfläche
    14
    Verrastungshaken-Aufnahmeeinrichtung
    15
    Arretierungsvorsprung
    16
    Ausnehmung
    17
    Schutzumrandung
    18
    Ausnehmung
    19
    Stecker
    20
    Steckerbuchse
    21
    Leiterplatte
    22
    Gehäuseteil
    23
    Gehäuseteil
    25
    Kante
    26
    Kante
    27
    Gehäuse-Seitenwand
    28
    Fleck
    29
    Fleck
    110
    Messwertaufbereitungsmodul
    111
    Submodul
    112
    Submodul
    120
    Messwertschnittstellenmodul
    120a
    Messwertschnittstellenmodul
    120b
    Messwertschnittstellenmodul
    121
    Prozessor
    122
    Speicher
    130
    Hauptprozessor
    131
    Betriebssystem
    140
    Datenspeicher
    150
    Speicherdirektzugriffskontrolleinheit
    160
    Schalteinrichtung
    200
    Gehäuse
    210
    Gehäuse
    500
    Notstromversorgungseinrichtung
    505
    Anschlusskontakt
    510
    Diode
    520
    Spannungsregler
    530
    Diode
    540
    Energiespeicher
    541
    Anschluss
    542
    Anschluss
    550
    Energiespeicher
    551
    Anschluss
    552
    Anschluss
    560
    Umschalteinrichtung
    561
    Umschalter
    562
    Umschalter
    563
    Ein-Aus-Schalter
    564
    Ein-Aus-Schalter
    570
    Steuereinrichtung
    580
    Verbindungsleitung
    590
    Ladequelle
    600
    Diode
    610
    Messeinrichtung
    620
    Messeinrichtung
    A520
    AusgangsanschlussDB1 erster Datenbus
    DB2
    zweiter Datenbus
    DB'
    Datenbus
    DS1
    erste Datenbusschnittstelle
    DS2
    zweite Datenbusschnittstelle
    E520
    Eingangsanschluss
    GS1
    Gehäuseseite
    GS1
    Gehäuseseite
    M
    Messdaten
    M'
    Messdaten
    MS
    Messsignale
    Mu
    Spannungsmesswert
    ST
    Steuersignal
    ST2
    Steuersignal
    Uin
    Versorgungsspannung
    U1
    Einzelspannung
    U2
    Einzelspannung

Claims (14)

  1. Notstromversorgungseinrichtung (500) mit zumindest einem Anschlusskontakt zum Anschluss an eine externe Energieversorgungsquelle und mit einem Energiespeicher (540, 550) zum Bereitstellen elektrischer Energie im Falle eines Ausfalls der externen Energieversorgungsquelle, dadurch gekennzeichnet, dass - die Notstromversorgungseinrichtung (500) zumindest zwei Energiespeicher (540, 550), eine Umschalteinrichtung (560) und eine Steuereinrichtung (570) umfasst, - die Umschalteinrichtung (560) von der Steuereinrichtung (570) in eine erste Schaltstellung, in der die Energiespeicher (540, 550) in eine elektrische Parallelschaltung geschaltet werden, und in eine zweite Schaltstellung, in der die Energiespeicher (540, 550) in eine elektrische Reihenschaltung geschaltet werden, schaltbar ist, und - die Steuereinrichtung (570) derart ausgestaltet ist, dass sie - bei Anliegen externer Versorgungsspannung (Uin) der externen Energieversorgungsquelle die Umschalteinrichtung (560) in die erste Schaltstellung schaltet und die Energiespeicher (540, 550) auf eine vorgegebene Sollspannung lädt, - im Falle eines Ausfalls der externen Energieversorgungsquelle die Umschalteinrichtung (560) zunächst in der ersten Schaltstellung belässt oder in diese schaltet und an einem Ausgang der Notstromversorgungseinrichtung (500) zunächst mit der elektrischen Parallelschaltung der Energiespeicher (540, 550) Strom zur Verfügung stellt, und zwar solange, bis die Spannung an der Parallelschaltung auf eine vorgegebene Mindestspannung abgefallen ist oder diese unterschreitet, und - bei Erreichen oder Unterschreiten der Mindestspannung die Umschalteinrichtung (560) in die zweite Schaltstellung schaltet und an dem Ausgang der Notstromversorgungseinrichtung (500) Strom mit den in Reihe geschalteten Energiespeichern (540, 550) zur Verfügung stellt.
  2. Notstromversorgungseinrichtung (500) nach Anspruch 1, dadurch gekennzeichnet, dass - die Notstromversorgungseinrichtung (500) einen Spannungsregler (520) aufweist und - jeder der Energiespeicher (540, 550) unter Bildung der Parallelschaltung jeweils mittels eines dem Spannungsregler (520) zugewandten Anschluss mittelbar oder unmittelbar mit dem Spannungsregler (520) verbunden oder zumindest verbindbar ist.
  3. Notstromversorgungseinrichtung (500) nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass - die Notstromversorgungseinrichtung (500) eine interne Ladequelle (590) und eine Messeinrichtung (610) aufweist, die die Spannung an dem Anschlusskontakt der Notstromversorgungseinrichtung (500) misst, und - die Steuereinrichtung (570) derart ausgestaltet ist, dass sie mit der Ladequelle (590) die Energiespeicher (540, 550) auf die vorgegebene Sollspannung lädt oder auf der Sollspannung hält, wenn die Messeinrichtung (610) das Anliegen externer Versorgungsspannung (Uin) der externen Energieversorgungsquelle anzeigt.
  4. Notstromversorgungseinrichtung (500) nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass die Ladequelle (590) eine Stromquelle ist, die bei Anliegen der externen Versorgungsspannung (Uin) der externen Energieversorgungsquelle unmittelbar oder mittelbar von der externen Energieversorgungsquelle mit Energie versorgt wird.
  5. Notstromversorgungseinrichtung (500) nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass zwischen die dem Spannungsregler (520) zugewandten Anschlüsse der Energiespeicher (540, 550) und den Eingangsanschluss des Spannungsreglers (520) eine Diode (530) geschaltet ist, und zwar - von den Energiespeichern (540, 550) aus betrachtet - in Durchlassrichtung.
  6. Notstromversorgungseinrichtung (500) nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass zwischen die dem Spannungsregler (520) zugewandten Anschlüsse der Energiespeicher (540, 550) und einen Ausgangsanschluss der Ladequelle (590) eine Diode (600) geschaltet ist, und zwar - von den Energiespeichern (540, 550) aus betrachtet - in Sperrrichtung.
  7. Notstromversorgungseinrichtung (500) nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass die Steuereinrichtung (570) bei Anliegen der externen Versorgungsspannung (Uin) der externen Energieversorgungsquelle einen Ausgangsanschluss des Spannungsreglers (520) mit der Ladequelle (590) verbinden und diese mit elektrischer Energie versorgen kann.
  8. Notstromversorgungseinrichtung (500) nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass der dem Spannungsregler (520) zugewandte Anschluss eines ersten Energiespeichers mit dem Eingangsanschluss des Spannungsreglers (520) verbunden ist oder verbindbar ist, der dem Spannungsregler (520) abgewandte Anschluss eines zweiten Energiespeichers auf Massepotential liegt und die Umschalteinrichtung (560) aufweist - einen ersten Umschalter, der den vom Spannungsregler (520) abgewandten Anschluss des ersten Energiespeichers wahlweise mit einer elektrischen Verbindungsleitung (580) oder mit Massepotential verbindet, und - einen zweiten Umschalter, der den dem Spannungsregler (520) zugewandten Anschluss des zweiten Energiespeichers wahlweise mit der Verbindungsleitung (580) oder - unmittelbar oder mittelbar - mit dem Eingangsanschluss des Spannungsreglers (520) verbindet.
  9. Notstromversorgungseinrichtung (500) nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass die Umschalteinrichtung (560) einen Ein-Aus-Schalter (564) zwischen dem Eingangsanschluss des Spannungsreglers (520) und den dem Spannungsregler (520) zugewandten Anschlüssen der Energiespeicher (540, 550) aufweist.
  10. Notstromversorgungseinrichtung (500) nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass die Umschalteinrichtung (560) einen Ein-Aus-Schalter (563) zwischen dem Ausgangsanschluss des Spannungsreglers (520) und einem elektrischen Speiseanschluss der Ladequelle (590) aufweist.
  11. Elektrische Anordnung mit einer Notstromversorgungseinrichtung (500) nach einem der voranstehenden Ansprüche, einem Datenspeicher (140) und einem Hauptprozessor (130), der mit dem Datenspeicher (140) in Verbindung steht und im Betrieb Messdaten (M) von einem Messwertschnittstellenmodul (120) empfangen und diese während seines Betriebs in dem mit dem Hauptprozessor (130) in Verbindung stehenden Datenspeicher (140) abspeichern kann, wobei die Notstromversorgungseinrichtung (500) im Falle eines Ausfalls der zumindest den Hauptprozessor mit Strom versorgenden externen Versorgungsspannungsquelle ersatzweise zumindest den Hauptprozessor mit Strom versorgt.
  12. Elektrische Anordnung nach Anspruch 11, dadurch gekennzeichnet, dass die Anordnung aufweist - zumindest ein Messwertaufbereitungsmodul (110), - zumindest ein Messwertschnittstellenmodul (120), das über einen ersten Datenbus (DB1) mit dem zumindest einen Messwertaufbereitungsmodul (110) in Verbindung steht und von dem Messwertaufbereitungsmodul (110) über den ersten Datenbus (DB1) Messdaten (M) erhalten kann, - wobei der Hauptprozessor (130) im Betrieb die Messdaten (M) von dem Messwertschnittstellenmodul (120) über einen zweiten Datenbus (DB2) empfangen und diese während seines Betriebs in dem mit dem Hauptprozessor (130) in Verbindung stehenden Datenspeicher (140) abspeichern kann,
  13. Elektrische Anordnung nach Anspruch 12, dadurch gekennzeichnet, dass - an den zweiten Datenbus (DB2) eine Speicherdirektzugriffskontrolleinheit (150) angeschlossen ist, die dem Messwertschnittstellenmodul (120) einen Speicherdirektzugriff auf den Datenspeicher (140) ermöglicht und dem Messwertschnittstellenmodul (120) erlaubt, die Messdaten (M) ohne Mitwirkung des Betriebssystems (131) des Hauptprozessors (130) in dem Datenspeicher (140) abzuspeichern, und - das Messwertschnittstellenmodul (120) derart ausgestaltet ist, dass es bei nicht empfangsbereitem Betriebssystem (131) des Hauptprozessors (130) die Messdaten (M) unter Mitwirkung der Speicherdirektzugriffskontrolleinheit (150) in dem Datenspeicher (140) abspeichert.
  14. Verfahren zur Notstromversorgung mit einer Notstromversorgungseinrichtung (500) dadurch gekennzeichnet, dass - die Notstromversorgungseinrichtung (500) zumindest zwei Energiespeicher (540, 550) umfasst, - bei Anliegen externer Versorgungsspannung (Uin) einer externen Energieversorgungsquelle die Energiespeicher (540, 550) parallel geschaltet und jeweils auf eine vorgegebene Sollspannung geladen werden, - im Falle eines Ausfall der externen Energieversorgungsquelle zunächst mit der elektrischen Parallelschaltung der Energiespeicher (540, 550) an einem Ausgang der Notstromversorgungseinrichtung (500) Strom zur Verfügung gestellt wird, und zwar solange, bis die Spannung an der Parallelschaltung auf eine vorgegebene Mindestspannung abgefallen ist oder diese unterschreitet, und - bei Erreichen oder Unterschreiten der Mindestspannung die Energiespeicher (540, 550) elektrisch in Reihe geschaltet werden und an dem Ausgang der Notstromversorgungseinrichtung (500) Strom mit den in Reihe geschalteten Energiespeichern (540, 550) zur Verfügung gestellt wird.
DE102017213919.6A 2017-08-10 2017-08-10 Notstromversorgungseinrichtung Pending DE102017213919A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE102017213919.6A DE102017213919A1 (de) 2017-08-10 2017-08-10 Notstromversorgungseinrichtung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102017213919.6A DE102017213919A1 (de) 2017-08-10 2017-08-10 Notstromversorgungseinrichtung

Publications (1)

Publication Number Publication Date
DE102017213919A1 true DE102017213919A1 (de) 2019-02-14

Family

ID=65084530

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102017213919.6A Pending DE102017213919A1 (de) 2017-08-10 2017-08-10 Notstromversorgungseinrichtung

Country Status (1)

Country Link
DE (1) DE102017213919A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113574766A (zh) * 2019-03-25 2021-10-29 瓦尔达微电池有限责任公司 用于供电的模块化设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4226530A1 (de) * 1992-08-11 1994-02-17 Scharf Friedrich Dr Ing Energieversorgungsschaltung
US20120025614A1 (en) * 2010-07-28 2012-02-02 Pasi Taimela Uninterruptible Power Supply Apparatus and Methods Using Reconfigurable Energy Storage Networks
WO2012074743A2 (en) * 2010-11-15 2012-06-07 Ietip, Llc Energy-efficient uniterruptible electrical distribution systems and methods
DE202015004979U1 (de) * 2015-07-04 2015-08-20 Imc Messsysteme Gmbh Quaderförmiges Gehäuse
US9448608B1 (en) * 2013-04-17 2016-09-20 Amazon Technologies, Inc. Switchable backup battery for layered datacenter components

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4226530A1 (de) * 1992-08-11 1994-02-17 Scharf Friedrich Dr Ing Energieversorgungsschaltung
US20120025614A1 (en) * 2010-07-28 2012-02-02 Pasi Taimela Uninterruptible Power Supply Apparatus and Methods Using Reconfigurable Energy Storage Networks
WO2012074743A2 (en) * 2010-11-15 2012-06-07 Ietip, Llc Energy-efficient uniterruptible electrical distribution systems and methods
US9448608B1 (en) * 2013-04-17 2016-09-20 Amazon Technologies, Inc. Switchable backup battery for layered datacenter components
DE202015004979U1 (de) * 2015-07-04 2015-08-20 Imc Messsysteme Gmbh Quaderförmiges Gehäuse

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113574766A (zh) * 2019-03-25 2021-10-29 瓦尔达微电池有限责任公司 用于供电的模块化设备

Similar Documents

Publication Publication Date Title
DE69434460T2 (de) Stromversorgungsgeräte für tragbare elektrische Geräte
DE102016123131A1 (de) Batterieverwaltungssystem eines Fahrzeugs
DE10357754A1 (de) System und Verfahren zur gemeinschaftlichen Verwendung von Leistung für batteriebetriebene Steuerungs- und Anwendungsmodule
EP2181480B2 (de) Akku- bzw. batteriepack
DE112010002427T5 (de) System und Verfahren für elnen Batteriepackausgangsschütz
EP1129396B1 (de) Vorrichtung und verfahren zur stromversorgung von rechner-zusatzgeräten über das bussystem des rechners
DE112012007029T5 (de) Energieversorgungs-Handhabungssystem und Energieversorgungs-Handhabungsverfahren
DE102010046429B4 (de) Programmierbare Steuerung
DE102006042657A1 (de) Stromversorgungsschaltung für ein Verkehrsmittel
DE112014004323T5 (de) Systemeinheit zur Batteriesteuerung
DE102009003585A1 (de) Dockstation und diagnostisches Ultraschallgerät
DE102013220609A1 (de) Energieversorgungssystem für ein Bordnetz eines Fahrzeugs
EP2989513B1 (de) Verfahren und vorrichtung zur energieversorgung eines feldgerätes bei der inbetriebnahme
DE202015103503U1 (de) Echtzeit-Korrekturschaltung für ein Elektronikgerät mit einer Mehrzahl von CPUs
DE102017213919A1 (de) Notstromversorgungseinrichtung
DE69823138T2 (de) Elektrische Trennung und automatischer Wiederanschluss von Batterieüberwachungsschaltungen
DE102017127081B4 (de) Verfahren zum Schwarzstart einer Energieversorgungseinrichtung, bidirektionaler Wechselrichter und Energieversorgungseinrichtung mit einem bidirektionalen Wechselrichter
DE202023100114U1 (de) Gleichstrom-Gleichstrom-Wandler und Gleichstrom-Abgabevorrichtung
DE102017200759A1 (de) Elektrische Anordnung
DE60003581T2 (de) Unterbrechungsfreie stromversorgung (usv) mit einer kontrollvorrichtung zum laden einer batterie und verfahren zum laden
DE202006020124U1 (de) Mehrfachsteckdose
DE10125048A1 (de) Unterbrechungsfreie Stromversorgungseinrichtung für einen Computer
DE102015110658A1 (de) Eine in einem gerät verwendete schaltstromversorgung mit eigenschaften eines hohen spitzenstroms
DE102018126359A1 (de) Elektrowerkzeug
DE602005006380T2 (de) Unterspannungsunterdrückungsschaltung

Legal Events

Date Code Title Description
R012 Request for examination validly filed