DE102017127372A1 - Anodenkopf für Röntgenstrahlenerzeuger - Google Patents

Anodenkopf für Röntgenstrahlenerzeuger Download PDF

Info

Publication number
DE102017127372A1
DE102017127372A1 DE102017127372.7A DE102017127372A DE102017127372A1 DE 102017127372 A1 DE102017127372 A1 DE 102017127372A1 DE 102017127372 A DE102017127372 A DE 102017127372A DE 102017127372 A1 DE102017127372 A1 DE 102017127372A1
Authority
DE
Germany
Prior art keywords
anode
anode head
pinhole
head
ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE102017127372.7A
Other languages
English (en)
Inventor
Jörg Bermuth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Smiths Heimann GmbH
Original Assignee
Smiths Heimann GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Smiths Heimann GmbH filed Critical Smiths Heimann GmbH
Priority to DE102017127372.7A priority Critical patent/DE102017127372A1/de
Priority to US16/766,002 priority patent/US11361932B2/en
Priority to EP18807942.0A priority patent/EP3714477A1/de
Priority to PCT/EP2018/082054 priority patent/WO2019101784A1/de
Publication of DE102017127372A1 publication Critical patent/DE102017127372A1/de
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/16Vessels; Containers; Shields associated therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/16Vessels
    • H01J2235/165Shielding arrangements
    • H01J2235/168Shielding arrangements against charged particles

Abstract

Anodenkopf (113) für eine Anode (108) einer Röntgenstrahlenerzeugungsvorrichtung (100), wobei die Anodenkopf (113) aus einem Röntgenstrahlen dämpfenden Material besteht und eine erste Öffnung (114) mit einem ersten Durchmesser (D1) für einen Primärelektronenstrahl (PES) besitzt, wobei eine Lochblende (116) aus einem Sekundärelektronen absorbierenden Material und mit einer zweiten Öffnung (116), welche konzentrisch zur ersten Öffnung (114) angeordnet ist und einen zweiten Durchmesser (D2) aufweist, der kleiner als der erste Durchmesser (D1) ist. Röntgenstrahlenerzeugungsvorrichtung (100) mit einem solchen Anodenkopf (113). Röntgeninspektionsanlage mit einer solchen Röntgenstrahlenerzeugungsvorrichtung (100). Umrüstverfahren für eine Röntgeninspektionsanlage (200) enthaltend eine Röntgenstrahlenerzeugungsvorrichtung (1) mit einem Anodenkopf (13) ohne Lochblende (115), wobei die vorhandene Röntgenstrahlenerzeugungsvorrichtung (1) durch eine Röntgenstrahlenerzeugungsvorrichtung (100) mit einem Anodenkopf (113) mit Lochblende (115) ausgetauscht wird.

Description

  • Anodenkopf für Röntgenstrahlenerzeuger
  • Die vorliegende Erfindung betrifft allgemein den Schutz vor ionisierender Strahlung, wie beispielsweise vor mittels Röntgenröhren erzeugter Röntgenstrahlung. Im Besonderen betrifft die Erfindung eine Strahlenschutzvorrichtung in Form eines verbesserten Anodenkopf für die Anode einer Röntgenstrahlenerzeugungsvorrichtung, beispielsweise einer Röntgenröhre.
  • Hintergrund der Erfindung
  • Die folgende einleitende Beschreibung dient lediglich zum besseren Verständnis der Erfindung und soll keines Falls als zugestandener Stand der Technik verstanden werden, wenn es nicht ausdrücklich als solcher gekennzeichnet ist.
  • Röntgenröhren sowie deren Verwendung in einem Röntgenuntersuchungs- oder Röntgenprüfgerät sind beispielsweise aus der EP 2 393 103 B1 bekannt.
  • 1 zeigt einen vereinfachten Schnitt durch eine bekannte Röntgenröhre. Der Röntgenröhre 1 weist ein Gehäuse 2 aus Keramik auf, das aus einem Röhrenkörper 3 mit einem ringförmigem Querschnitt, einem Deckel 4 und einem Boden 5 besteht. Im Röhrenkörper 3 befindet sich ein Austrittsbereich 6 für die erzeugten Röntgenstrahlen RS. Im gezeigten Beispiel ist der Austrittsbereich in Form einer dort verdünnt ausgeführten Gehäusewandung ausgeführt; bei einem Gehäuse in Form einer Glasröhren ist der Austrittsbereich üblicherweise durch einen Glaszylinder gleicher Dicke gebildet. In dem Gehäuse 2 sind die an sich bekannten Baugruppen zur Erzeugung von Röntgenstrahlen angeordnet. Das sind im Wesentlichen eine Kathode 7 und eine Anode 8 sowie elektrische Zuleitungen 9 für die Kathode 7 und eine elektrisch leitende Durchführung 10 der Anode 8, die gasdicht im Boden 5 beziehungsweise im Deckel 4 befestigt sind. Die Anode 8 besitzt einen Anodenkörper 11, der ein Target 12 aus einem Material mit hoher Dichte und hohem Schmelzpunkt, beispielsweise Wolfram, umgibt. Der Anodenkörper 11 umgibt das Target 12, um Wärme möglichst schnell an einen Kühler abzuleiten. Da Wolfram ein schlechter Wärmeleiter ist, wird für den Anodenkörper 11 üblicherweise Kupfer verwendet. Das Target 12 dient als Ziel für einen von der Kathode 7 ausgehenden Primärelektronenstrahl PES, der am sogenannten Brennfleck auf das Target 12 trifft.
  • Der Anodenkörper 11 ist weiter mit einem Anodenkopf 13 versehen, in dem sich eine erste Öffnung 14 für den Primärelektronenstrahl PES und eine Austrittsöffnung 15 für an dem Target 12 entstehende Röntgenstrahlung RS befinden. Der Anodenkopf 13 dient in erster Linie zur Feldformung und zum Einstellen der Größe des Brennflecks auf dem Target 12. Aus diesem Grund wird der Anodenkopf 13 üblicherweise aus Kupfer, das elektrisch gut leitfähig ist, hergestellt. Die Austrittsöffnung 15 ist so beschaffen, dass gewünschte Nutzstrahlung nicht abgeschirmt wird. Des Weiteren fängt der Anodenkopf 13 am Target erzeugte Sekundärelektronen ab.
  • Wie in der 2, die im Wesentlichen ein Ausschnitt der 1 ist, dargestellt, werden durch den Beschuss mit den Primärelektronen und auch durch die erzeugte Röntgenstrahlung aus dem Target 12 und dem Anodenkopf 13 Sekundärelektronen herausgelöst. In der 2 sind simulierte Flugbahnen von Sekundärelektronen veranschaulicht. Die Sekundärelektronen können den Anodenkopf 13 durch die erste Öffnung 14 verlassen, werden durch das vorhandene elektrische Feld zwischen der Kathode 7 und Anode 8 außerhalb des Anodenkopfs 13 zurück in Richtung Anode 8 gelenkt und erzeugen beim Auftreffen auf den Anodenkopf 13 wiederum Röntgenstrahlung und/oder Sekundärelektronen. Diese Röntgenstrahlung und die Sekundärelektronen sind ungerichtet und können angrenzende Komponenten belasten und zu unerwünschten statischen Aufladung benachbarter nicht oder schlecht leitender Materialien, wie beispielsweise Glas, Keramik etc., führen. Es wird vermutet, dass die zusätzlich außerhalb des Anodenkopfs erzeugte Röntgenstrahlung zu einer verkürzten Lebensdauer der damit höher belasteten Komponenten führen kann. Jedenfalls bedingt diese Röntgenstrahlung einen erhöhten Aufwand bei der Abschirmung der gesamten Röntgenröhre, beispielsweise mit Blei.
  • Offenbarung der Erfindung
  • Eine Aufgabe der vorliegenden Erfindung ist es, die bekannte Röntgenstrahlungserzeugungsvorrichtung zu verbessern, sodass einige oder alle der im Zusammenhang mit den Sekundärelektronen geschilderten Probleme beseitigt oder zumindest reduziert werden können.
  • Die Aufgabe wird mit den Merkmalen der unabhängigen Ansprüche gelöst. Weitere Ausführungsbeispiele und vorteilhafte Weiterbildungen sind in den sich jeweils anschließenden Unteransprüchen definiert. Dabei gelten Merkmale und Details, die im Zusammenhang mit dem erfindungsgemäßen Anodenkopf, einer erfindungsgemäßen Röntgenstrahlenerzeugungsvorrichtung sowie einer damit ausgerüsteten Röntgeninspektionsanlage selbstverständlich auch im Zusammenhang mit dem erfindungsgemäßen Umrüstverfahren, und jeweils umgekehrt. Daher wird bezüglich der Offenbarung der einzelnen Aspekte wechselseitig Bezug genommen.
  • Der Kerngedanke der Erfindung liegt darin, den an sich bekannten Anodenkopf für eine Anode einer Röntgenstrahlenerzeugungseinrichtung zu verbessern, indem in die erste Öffnung im Anodenkopf für den Primärelektronenstrahl eine Lochblende, bevorzugt aus einem Material mit hohem spezifischen Widerstand (z.B. einem Isolator, wie einer Keramik), eingefügt wird. Die Lochblende verringert den Querschnitt der Öffnung im Anodenkopf ohne die zur Formung des elektrischen Feldes im Bereich des Targets notwendige Geometrie des elektrisch leitfähigen Teils des Anodenkopfs zu beeinflussen. Ein Großteil der entstehenden Sekundärelektronen wird von der Lochblende eingefangen. Der Durchmesser des Lochs in der Lochblende ist so dimensioniert, dass der Primärelektronenstrahl oder der Brennfleck auf dem Target am Anodenkörper nicht beeinträchtigt werden. Bevorzugt ist die Lochblende zusätzlich mit einer leitfähigen Schicht beschichtet und/oder mit einem oder mehreren Materialien dotiert, die es ermöglichen, eine ausreichende/geeignete (Oberflächen-)Leitfähigkeit einzustellen, sodass sich keine Ladungsnestern auf der Lochblende bilden können.
  • Die Lösung des Problems erforderte zahlreiche technische Überlegungen. Das erfindungsgemäß gelöste Problem konnte nicht einfach mittels einer Verkleinerung (des Durchmessers) der ersten Öffnung 14 im bekannten Anodenkopf 13 der 1 gelöst werden, da dies Formung des elektrischen Feldes im Bereich des Targets 12 und letztlich die Größe des Brennflecks auf dem Target 12 verändert hätte. Ebenso war es nicht möglich, einfach den gesamten Anodenkopf 13 aus einem Material mit einem hohen spezifischen Widerstand zu fertigen, da dann aufgrund der fehlenden Leitfähigkeit des Anodenkopfs ebenfalls die Feldformung verändert sein würde. Ein solcher Anodenkopf 13 aus einem Material mit schlechter Leitfähigkeit würde sich durch den Beschuss mit Sekundärelektronen bis zu einer bestimmten Ladungsmenge aufladen, durch Überschlag zur Anode 8 entladen, und sich anschließend wieder aufladen usw. Dieser oszillierende Vorgang würde eine unerwünschte Oszillation der Größe des Brennflecks auf dem Target 12 verursachen.
  • Die Erfindung zeichnet sich durch eine leichte und kostengünstige Umsetzbarkeit aus, bietet die Möglichkeit die erforderliche Schirmung der gesamten Röntgenstrahlenerzeugungsvorrichtung entsprechend reduzieren zu können, lässt eine längere Lebensdauer der ganzen Anordnung aufgrund geringerer Belastung durch außerhalb des Anodenkopfs erzeugter Röntgenstrahlung erwarten, um nicht abschließend einige Vorteile zu nennen.
  • Ein erster Aspekt der Erfindung betrifft einen Anodenkopf für eine Anode mit einem Target einer Röntgenstrahlenerzeugungsvorrichtung. Der Anodenkopf besteht aus einem elektrisch leitfähigen Material und weist eine erste Öffnung mit einem ersten Durchmesser zum Durchlassen eines auf das Target gerichteten Primärelektronenstrahls auf.
  • Erfindungsgemäß ist an oder in den Anodenkopf eine Lochblende aus einem Sekundärelektronen absorbierenden Material gefügt. D.h., das Material für die Lochblende ist so gewählt und/oder die Lochblende ist so dimensioniert, dass die Lochblende Sekundärelektronen, die im Bereich des Targets erzeugt werden, ab- und einfangen kann.
  • Die Lochblende besitzt erfindungsgemäß eine zweite Öffnung, die konzentrisch zur ersten Öffnung angeordnet ist und einen zweiten Durchmesser aufweist, der kleiner als der erste Durchmesser ist. Die Lochblende ist im Anodenkopf bevorzugt so angeordnet, dass der auf das Target gerichtete Primärelektronenstrahl zum Target (bevorzugt orthogonal und zentral) durch die erste und die zweite Öffnung hindurch verläuft. Für den Durchmesser der ersten Öffnung können keine absoluten oder relativen Werte oder Wertebereiche angegeben werde, da der Durchmesser der ersten Öffnung im Wesentlichen vom konkreten Design eines Anodenkopfs abhängt. Auch ist der Durchmesser selbst für einen konkreten Anodenkopf nur in gewissen Grenzen skalierbar; grundsätzlich kann der Zusammenhang berechnet werden, in der Praxis werden die Werte üblicherweise mittels Simulationen empirisch bestimmt.
  • Der erfindungsgemäße Anodenkopf dient weiterhin dazu, das elektrische Feld im Bereich des Anodenkopfes zu formen, um einen gewünschten Brennfleck (bevorzugt eine Brennfleckgröße auf dem Target) einzustellen und zusätzlich dazu die im Bereich des Targets erzeugten Sekundärelektronen abzufangen und abzuleiten.
  • Bevorzugt sind die erste und die zweite Öffnung kreisförmig ausgeführt. Die erste Öffnung kann beispielsweise als Durchgangsbohrung in der vom Target abgewandten Stirnseite des Anodenkopfs ausgeführt sein. Die zweite Öffnung kann abhängig von der Materialauswahl für die Lochblende bereits bei der Herstellung in die Lochblende integriert werden oder ebenfalls als Durchgangsbohrung ausgeführt werden.
  • Die erste Öffnung des Anodenkopfs befindet sich in der bestimmungsgemäßen Kombination mit einer Anode über dem auf dem Anodenkörper angeordneten Brennfleck. Üblicherweise ist in dem Bereich, in dem auf dem Anodenkörper der Brennfleck liegt, in den Anodenkörper, der beispielsweise, wie eingangs erläutert, aus Kupfer bestehen kann, ein Target-Material eingearbeitet. Im Betrieb verläuft der Primärelektronenstrahl, der in bekannter Weise von einer beheizten Kathode und einer zwischen der Kathode und der Anode angelegten Hochspannung erzeugt wird, durch die erste Öffnung und erzeugt im Inneren des Anodenkopfs auf dem Target im Anodenkörper den Brennfleck. Am Brennfleck werden durch die Primärelektronen Röntgenstrahlen, deren Spektrum im Wesentlichen aus der Bremsstrahlung der Primärelektronen und der für das Target- und/oder Anodenmaterial charakteristischen Strahlung besteht, erzeugt.
  • Als Target-Material wird bevorzugt Wolfram oder einer Wolframlegierung verwendet. Grundsätzlich kann auch eines oder eine Legierung aus einem oder mehreren der folgenden Materialien für das Target verwendet werden: Kupfer, Molybdän, Rhodium, Palladium, Silber, Cadmium, Hafnium, Tantal, Wolfram, Rhenium, Osmium, Iridium, Platin, Gold, Quecksilber, Thallium, Blei oder Bismut.
  • Bevorzugt weist der Anodenkopf weiter eine Austrittsöffnung für einen Teil der erzeugten Röntgenstrahlung auf. Das Target im Anodenkopf ist üblicherweise gegenüber dem Primärelektronenstrahl so angeordnet, dass erzeugte Röntgenstrahlung in einem Vorzugsbereich von der Oberfläche des Targets ausgeht. Die Austrittsöffnung im Anodenkopf ist bevorzugt so im Vorzugbereich angeordnet, dass Röntgenstrahlen in einer Vorzugsrichtung aus der Austrittsöffnung unbeeinflusst austreten können, die in Einbaulage auf einen Austrittsbereich des Gehäuses einer Röntgenstrahlenerzeugungsvorrichtung ausgerichtet ist. Der Anodenkopf kann so gleichzeitig als Kollimator dienen. Das heißt, die Austrittsöffnung formt bereits den Strahlenfächer für die Nutzstrahlung.
  • Da bei Röntgenröhren mit höherer Leistung auch im Bereich der Austrittsöffnung Sekundärelektronen erzeugt werden, können diese ebenfalls bei Bedarf bereits dort abgeschirmt werden, ohne die Röntgenstrahlung besonders aufzuhärten, indem je nach Anwendung Plättchen aus Beryllium oder Folien aus Titan oder Kupfer in der Austrittsöffnung angeordnet werden. Damit kann verhindert werden, dass z.B. bei einem Gehäuse aus Glas auf dem Glas im Austrittsbereich die Ladungsdichte zu groß wird und es zu Durchschlägen durch das Glas und somit zur Zerstörung der Röntgenröhre kommt.
  • Der Anodenkopf kann grundsätzlich aus Kupfer, welches ein sowohl gut Wärme leitendes als auch elektrisch leitfähiges Material ist, bestehen.
  • Der Anodenkopf kann bevorzugt dazu eingerichtet sein, nicht auf die Austrittsöffnung im Anodenkopf gerichtete Röntgenstrahlung möglichst nahe am Entstehungsort (dem Target) abzuschirmen, um so Gewicht bei der äußeren Abschirmung der gesamten Anordnung einzusparen zu können. Zu diesem Zweck besteht der Anodenkopf bevorzugt aus einem Element mit hoher Ordnungszahl, bevorzugt einem Schwermetall oder einer Legierung mit hoher Dichte. Beispielsweise kann der Anodenkopf aus Wolfram, Tantal oder einer Legierung eines oder beider Materialien hergestellt sein. In einer bevorzugten Ausführung kommt eine Wolfram-Kupfer-Legierung zur Anwendung.
  • Die Lochblende besteht bevorzugt aus einem Material mit einem hohen spezifischen Widerstand. Besonders bevorzugt kann die Lochblende aus einer Keramik gefertigt sein. Beispielsweise kann die Lochblende aus einer Oxidkeramik, bevorzugt aus einer Aluminiumoxidkeramik bestehen. Beispielsweise eignen sich Aluminiumoxid, Aluminiumnitrid, Zirkonoxid, Siliziumkarbid, um ohne Anspruch auf Vollständigkeit einige Beispiele zu nennen. Grundsätzlich sind auch andere Materialien geeignet. Einzige Voraussetzung ist, dass eine ausreichend geringe Leitfähigkeit eingestellt werden kann; zu diesem Zweck sollte ein grundsätzlich nicht leitfähiges Material beschichtbar und/oder dotierbar sein.
  • Die Lochblende kann vollständig, d.h. insgesamt, oder wenigstens in einem Scheibenabschnitt in Form einer Lochscheibe ausgeführt und in einer entsprechenden Ausnehmung in dem Anodenkopf (wegen der orthogonalen Ausrichtung der verschiedenen Öffnungen zum Primärelektronenstrahl bevorzugt spaltfrei) eingefügt sein. Die entsprechende Ausnehmung für die Lochblende am Anodenkopf kann sich an der in Einbaulage der Anode zugewandten Seite des Anodenkopfs oder an der in Einbaulage der Anode abgewandten Seite des Anodenkopfs befinden.
  • Die Lochblende kann vollständig, d.h. insgesamt, oder wenigstens in einem Zylinderabschnitt in Form eines Hohlzylinders ausgeführt sein. Der Hohlzylinder hat bevorzugt einen Außendurchmesser, der so entsprechend dem ersten Durchmesser dimensioniert ist, dass der Hohlzylinder in Einbaulage in die erste Öffnung des Anodenkopfs (wegen der orthogonalen Ausrichtung der verschiedenen Öffnungen zum Primärelektronenstrahl bevorzugt spaltfrei) eingefügt ist.
  • Die Lochblende kann vollständig oder wenigstens in einem Kappenabschnitt in Form einer Kappe für den Anodenkopf ausgeführt sein, die an der in Einbaulage der Anode abgewandten Seite des Anodenkopfs angefügt ist.
  • Die vorstehenden Ausführungsmöglichkeiten für die Lochblende können beliebig kombiniert werden. Die Lochblende kann aus verschiedenen Abschnitten zusammengesetzt oder monolithisch ausgebildet sein. Dabei ist lediglich zu berücksichtigen, dass bei einer monolithischen Ausführung mit mindestens zwei verschiedenen Abschnitten, die Lochblende in eine entsprechend komplementär ausgebildete erste Öffnung im Anodenkopf einfügbar sein muss. Wichtig ist im Wesentlichen, dass die erste und die zweite(n) Öffnungen zu einander konzentrisch und orthogonal zum Primärelektronenstrahl angeordnet sind.
  • Bevorzugt ist die elektrische Leitfähigkeit, insbesondere die Oberflächenleitfähigkeit, der Lochblende durch eine Beschichtung mit einem elektrisch leitfähigen Material und/oder durch eine Dotierung des Grundmaterials der Lochblende so eingestellt, dass sich die Lochblende im Betrieb durch eingefangene Sekundärelektronen nicht elektrische auflädt. Damit kann vorteilhaft die Bildung von Ladungsnestern auf der Lochbtende vermieden werden. Beispielsweise (ohne die Anwendung andere Keramiken auszuschließen) zur Veranschaulichung des Prinzips kann die elektrische Leitfähigkeit von Siliziumkarbid durch Art des Dotierungsmaterials (beispielsweise Bor und/oder Aluminium) und Menge der Dotierung in einem großen Bereich variieren.
  • Die Materialdicke der Lochblende, die sich in bestimmungsgemäßer Einbaulage in Richtung des Primärelektronenstrahls bestimmt, und/oder der zweite Durchmesser der zweiten Öffnung sind bevorzugt so ausgelegt, dass ein vorbestimmter Anteil der im Betrieb an dem Anodenkopf und/oder Target entstehenden Sekundärelektronen von der Lochblende eingefangen werden. Grundsätzlich sollte die Materialdicke der Blende so sein, dass die Sekundärelektronen gestoppt werden. Das hängt im Wesentlichen von der Energie der Sekundärelektronen und dem Material der Lochblende ab.
  • Die Lochblende ist bevorzugt mit dem Anodenkopf elektrisch leitend verbunden. Die Lochblende kann mit dem Anodenkopf z.B. durch ein Aktivlotverfahren, verbunden sein. Alternativ oder zusätzlich sind auch andere leitfähige Verbindungen, wie beispielsweise Klemmen, grundsätzlich möglich.
  • Bevorzugt wird der zweite Durchmesser der zweiten Öffnung so eingestellt, dass die Größe des Brennflecks des Primärelektronenstrahls auf dem Target gegenüber einem ansonsten identischen Anodenkopf, der jedoch die erfindungsgemäße Lochblende nicht aufweist, unverändert ist.
  • Die Anode kann eine Festanode (Stehanode) oder Drehanode sein. D.h., auch wenn die Erfindung hier am Beispiel einer Stehanode erläutert wird, lassen sich die Prinzipien der Erfindung ohne weiteres auf eine Anordnung mit Drehanode entsprechend übertragen.
  • Ein zweiter Aspekt der Erfindung betrifft eine Röntgenstrahlenerzeugungsvorrichtung, insbesondere eine Röntgenröhre, mit einer Anordnung aus einer Kathode und einer Anode, die einen Anodenkopf nach einer der vorstehend erläuterten Ausführungen gemäße dem ersten Aspekt der Erfindung aufweist.
  • Ein dritter Aspekt der Erfindung betrifft eine Röntgeninspektionsanlage, die eine Röntgenstrahlenerzeugungsvorrichtung gemäß dem zweiten Aspekt der Erfindung aufweist.
  • Ein vierter Aspekt der Erfindung betrifft ein Umrüstverfahren für eine Röntgeninspektionsanlage enthaltend eine erste Röntgenstrahlenerzeugungsvorrichtung mit einer Anordnung aus einer Kathode und einer Anode, die einen Anodenkopf ohne erfindungsgemäße Lochblende zur Schirmung von Sekundärelektronen aufweist, wobei das Verfahren die Schritte aufweist:
    • (S1) Ausbauen der ersten Röntgenstrahlenerzeugungsvorrichtung; und
    • (S2) Einbauen einer Röntgenstrahlenerzeugungsvorrichtung gemäß dem zweiten Aspekt der Erfindung.
  • Figurenliste
  • Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung, in der unter Bezugnahme auf Zeichnungen Ausführungsbeispiele der Erfindung im Einzelnen beschrieben sind. Dabei können die in den Ansprüchen und in der Beschreibung erwähnten Merkmale jeweils einzeln für sich oder in beliebiger Kombination erfindungswesentlich sein. Ebenso können die vorstehend genannten und die hier weiter ausführten Merkmale je für sich oder zu mehreren in beliebigen Kombinationen Verwendung finden. Funktionsähnliche oder identische Bauteile oder Komponenten sind teilweise mit gleichen Bezugszeichen versehen. Die in der Beschreibung der Ausführungsbeispiele verwendeten Begriffe „links“, „rechts“, „oben“ und „unten“ beziehen sich auf die Zeichnungen in einer Ausrichtung mit normal lesbarer Figurenbezeichnung oder normal lesbaren Bezugszeichen. Die gezeigten und beschriebenen Ausführungsformen sind nicht als abschließend zu verstehen, sondern haben beispielhaften Charakter zur Erläuterung der Erfindung. Die detaillierte Beschreibung dient der Information des Fachmanns, daher werden bei der Beschreibung bekannte Strukturen und Verfahren nicht im Detail gezeigt oder erläutert, um das Verständnis der vorliegenden Beschreibung nicht zu erschweren.
    • 1 zeigt eine herkömmliche Röntgenstrahlenerzeugungsvorrichtung mit einem bekannten Anodenkopf.
    • 2 zeigt Flugbahnen simulierter Sekundärelektronen an dem Anodenkopf ohne die erfindungsgemäße Blende in der 1.
    • 3 zeigt eine Röntgenstrahlenerzeugungsvorrichtung mit einem Ausführungsbeispiel einem erfindungsgemäßen Anodenkopf.
    • 4 zeigt Flugbahnen simulierter Sekundärelektronen an dem erfindungsgemäßen Anodenkopf in der 3.
    • 5A-5C zeigt nicht abschließend verschiedene Ausführungsbeispiele für den erfindungsgemäßen Anodenkopf.
    • 6 zeigt einen schematischen Querschnitt einer Seitenansicht eine beispielhafte Röntgeninspektionsanlage mit einer Röntgenstrahlenerzeugungsvorrichtung, wie sie beispielsweise in der 3 gezeigt ist.
    • 7 zeigt ein Blockdiagramm eines erfindungsgemäßen Umrüstverfahrens.
  • 3 zeigt im Vergleich zur 1 ein Ausführungsbeispiel eines erfindungsgemäß verbesserten Anodenkopfs 113 für eine Anode 108 einer Röntgenstrahlenerzeugungsvorrichtung 100. Der Anodenkopf 113 besteht zunächst aus einem elektrisch leitfähigen Material, beispielsweise Kupfer, und besitzt eine erste Öffnung 114 mit einem ersten Durchmesser D1 für einen Primärelektronenstrahl PES.
  • Zusätzlich zum Anodenkopf 13 der 1 ist die Anodenkopf 113 mit einer Lochblende 116 ausgestattet, die eine zweite Öffnung 117 besitzt, die konzentrisch zur ersten Öffnung 114 im Anodenkopf 113 angeordnet ist und einen zweiten Durchmesser D2 aufweist. Der zweite Durchmesser D2 ist kleiner als der erste Durchmesser D1. Die Lochblende 116 verkleinert den Querschnitt der ersten Öffnung 114 und hindert damit einen Großteil der am Anodenkörper 111 und/oder Target 112 im Betrieb entstehenden Sekundärelektronen den Anodenkopf 113 durch die erste Öffnung 114 zu verlassen. Die führt zu einer entsprechenden Reduktion der am Anodenkopf 13 der 1 auftretenden ungerichteten Röntgenstrahlung.
  • Wie bei der 1 ist die erste Öffnung 114 in bestimmungsgemäßer Kombination mit dem Anodenkörper 111 über dem auf dem vom Anodenkörper 111 ummantelten Target 112 angeordneten Brennfleck angeordnet, sodass der Primärelektronenstrahl PES, der in bekannter Weise von der beheizten Kathode 107 und der zwischen der Kathode 107 und der Anode 108 angelegten Hochspannung erzeugt wird, durch die erste Öffnung 114 verlaufen und auf das Target 112 treffen kann, um die gewünschte Röntgenstrahlung RS zu erzeugen.
  • Im Anodenkopf 113 befindet sich wie in der 1 eine Austrittsöffnung 115 für die erzeugte Röntgenstrahlung RS. Der Anodenkopf 113 erfüllt mit der Austrittsöffnung 115 eine Kollimator-Funktion, indem nur solcher Röntgenstrahlung den Anodenkopf 113 unbeeinflusst verlässt, die auf den Austrittsbereich 106 im Gehäuse 102 der Röntgenstrahlenerzeugungsvorrichtung 100 gerichtet sind.
  • Für eine optimale Schirmwirkung ist der Anodenkopf 113 aus einem Element mit hoher Ordnungszahl, bevorzugt aus einem Schwermetall oder einer Schwermetalllegierung, beispielsweise aus Wolfram, Tantal, oder einer Legierung aus einem oder beiden dieser Materialien hergestellt.
  • Um den Primärelektronenstrahl PES nicht zu beeinflussen, ist die Lochblende 116 aus einem Material mit einem hohen spezifischen Widerstand hergestellt. Im Ausführungsbeispiel besteht die Lochblende 116 aus einer Oxidkeramik, nämlich einer Aluminiumoxidkeramik.
  • In der 3 ist die Lochblende 116 monolithisch in Form einer Lochscheibe ausgeführt und in einer zugehörigen Ausnehmung im Anodenkopf 113 eingefügt, die sich in Einbaulage an der der Anode 108 zugewandten Seite des Anodenkopfs 113 befindet. Mit anderen Worten befindet sich die Lochblende 113 auf der Innenseite der ersten Öffnung 114 des Anodenkopfs 113. Die Lochlende 116 muss nicht monolithisch ausgeführt sein, sondern kann auch aus mehreren Abschnitten zusammengesetzt sein.
  • Die Oberflächenleitfähigkeit der Lochblende 116 ist im Ausführungsbeispiel durch eine Dotierung des Grundmaterials, d.h. der Aluminiumoxidkeramik, der Lochblende 116 so eingestellt, dass sich die Lochblende 116 im Betrieb durch eingefangene Sekundärelektronen nicht elektrische aufladen kann. Damit wird die Bildung von Ladungsnestern auf der Lochblende 116 und eine entsprechende unerwünschte Auswirkung auf den Primärelektronenstrahl PES vermieden.
  • Alternativ oder zusätzlich kann die gewünschte Oberflächenleitfähigkeit der Lochblende 116 auch durch eine Beschichtung mit einem elektrisch leitfähigen Material eingestellt werden.
  • Die Materialdicke MD der Lochblende 116, die sich in Richtung des Primärelektronenstrahls PES misst, und der zweite Durchmesser D2 der zweiten Öffnung 117 sind so ausgelegt, dass im Vergleich zum Anodenkopf 13 ohne Lochblende 116 (1) ein vorbestimmter Anteil der im Betrieb an dem Anodenkörper 111 und/oder Target 112 entstehenden Sekundärelektronen von der Lochblende 116 eingefangen werden oder am Verlassen des Anodenkopfs 113 gehindert werden.
  • Der zweite Durchmesser D2 der zweiten Öffnung 116 der Lochblende 116 ist weiter so eingestellt, dass die Größe des Brennflecks des Primärelektronenstrahls PES auf dem Target 112 gegenüber dem Anodenkopf 13 ohne Lochblende 116 (1) unverändert ist.
  • Die Lochblende 116 ist mit dem Anodenkopf 113 durch Löten elektrisch leitend und dauerhaft verbunden. Als Lötverfahren wurde ein Aktivlotverfahren verwendet. Alternativ oder ergänzend kann die Lochblende 116 auch mechanisch und elektrisch leitend durch Klemmen am Anodenkopf 113 befestigt werden.
  • Im Ausführungsbeispiel der 3 ist die Anode 108 eine Festanode (Stehanode). Grundsätzlich können die hier vorgeschlagenen Prinzipien der Erfindung ohne weiteres auf eine Anordnung mit einer Drehanode übertragen werden.
  • 4 zeigt die Flugbahnen simulierter Sekundärelektronen am erfindungsgemäßen Anodenkopf 113 der in der 3 gezeigten Röntgenstrahlenerzeugungsvorrichtung 100. In der 4 ist gut zu erkennen, dass von den in der aus Anodenkopf 113, Lochblende 116 und Anodenkörper 111 gebildeten Kammer K vorhandenen Sekundärelektronen im Vergleich zur Situation in der 2 nur noch wenige den Anodenkopf 113 durch die erste Öffnung 114 den Anodenkopf 113 verlassen können, da sie von der Lochblende 116 mit der kleineren zweiten Öffnung 117 ab- und eingefangen werden. Da die Lochblende 116 eine vorbestimmte Oberflächenleitfähigkeit besitzt, können die eingefangenen Sekundärelektronen über den elektrisch leitfähigen Anodenkopf 113 zur Anode 108 abfließen.
  • 5A-5C zeigen nicht abschließend weitere mögliche Ausführungsbeispiele für einen erfindungsgemäßen Anodenkopf.
  • In der 5A ist die Lochblende 116 im Vergleich zur Ausführung in der 3 in Form eines Hohlzylinders mit einem Außendurchmesser, der dem ersten Durchmesser D1 der ersten Öffnung 114 entspricht, ausgeführt und in die erste Öffnung 114 des Anodenkopfs 113 passgenau eingefügt und mit dem Anodenkopf 113 mechanisch (z.B. durch Klemmen) und/oder durch Aktivlöten verbunden. Die für das Abfangen von Sekundärelektronen effektive Materialdicke MD der Lochblende 116 entspricht damit der Materialdicke der Stirnfläche des Anodenkopfs 113.
  • In der 5B ist die Lochblenden 116 eine Kombination der Ausführungen der 3 und 5A, d.h. die Lochblende 116 weist jeweils einen Scheibenabschnitt S, der die Form einer Lochscheibe (vgl. 3) aufweist, auf und einen Zylinderabschnitt Z, der die Form eines Hohlzylinders (vgl. 5A) aufweist, auf. Im Gesamtquerschnitt hat die Lochblende 116 damit die Form eines großen Buchstabens „T“, wobei das „T“ in der 5B auf dem Kopf steht. Die Lochblende 116 ist in der 5B von Innen in die zugehörige Ausnehmung am Anodenkopf 113 eingefügt. Der Zylinderabschnitt Z ist in die ohnehin vorhandene erste Öffnung 114 des Anodenkopfs 113 eingepasst und der Scheibenabschnitt S ist in die ohnehin vorhandene Ausnehmung für den Anodenkörper 111 von Innen her den Anodenkopf 113 passgenau eingefügt und mit dem Anodenkopf 113 mechanisch (z.B. durch Klemmen) und/oder durch Aktivlöten verbunden. Die für das Abfangen von Sekundärelektronen effektive Materialdicke MD der Lochblende 116 entspricht damit der Materialdicke der Stirnfläche des Anodenkopfs 113 und zusätzlich der Materialdicke des Scheibenabschnitts S der Lochblende 116.
  • In der 5C ist die Lochblende 116 in Form einer Kappe ausgeführt, die an der in Einbaulage der Anode 108 abgewandten Seite des Anodenkopfs 113, also Außen an der Stirnseite des Anodenkopfs 113 angefügt ist und mit dem Anodenkopf 113 mechanisch (z.B. durch Klemmen) und/oder durch Aktivlöten verbunden. Die für das Abfangen von Sekundärelektronen effektive Materialdicke MD der Lochblende 116 entspricht damit der Materialdicke der Stirnseite der Lochblende 116.
  • 6 zeigt einen schematischen Querschnitt einer Seitenansicht eine beispielhaften Röntgeninspektionsanlage 200 mit einer Röntgenstrahlenerzeugungsvorrichtung 100, wie sie beispielsweise in der 3 gezeigt ist. Röntgeninspektionsanlage 200 weist zwei Strahlenschutzvorhänge 201, 203, die jeweils an einem Zugang und einem Ausgang eines Strahlentunnels 202 der Röntgeninspektionsanlage 200 angeordnet sind. Zwischen den beiden Strahlenschutzvorhänge 201, 203 befindet sich innerhalb des Strahlentunnels 202 ein Strahlungsbereich 205. Im Strahlungsbereich 205 sind wenigstens eine Röntgenstrahlenerzeugungsvorrichtung 100 und wenigstens eine darauf ausgerichtete Detektoranordnung 207 angeordnet. Zum Transport eines Inspektionsobjekts, beispielsweise eines Gepäckstückes 211, in und durch den Strahlentunnel 202 dient eine Fördereinrichtung 209. Die Funktionsweise der Röntgeninspektionsanlage 200 ist an sich bekannt und muss hier nicht erläutert werden.
  • 7 zeigt ein Blockdiagramm ein Umrüstverfahren für eine Röntgeninspektionsanlage, die eine ersten Röntgenstrahlenerzeugungsvorrichtung 1, wie sie beispielsweise in der 1 gezeigt ist und die einen Anodenkopf 13 ohne die erfindungsgemäße Lochblende 116 zur Schirmung von Sekundärelektronen aufweist. Das Umrüstverfahren weist wenigstens die folgenden Schritte auf. Einen ersten Schritt S1 mit Ausbauen der ersten Röntgenstrahlenerzeugungsvorrichtung 1. Einen zweiten Schritt S2 mit Einbauen einer Röntgenstrahlenerzeugungsvorrichtung 100, wie sie beispielsweise in der 3 gezeigt ist. Damit können bestehende Röntgeninspektionsanlagen durch einen einfachen Austausch die hier beschriebenen Vorteile der Erfindung erlangen.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • EP 2393103 B1 [0003]

Claims (15)

  1. Anodenkopf (113) für eine Anode (108) mit einem Target (112) einer Röntgenstrahlenerzeugungsvorrichtung (100), wobei der Anodenkopf (113) aus einem elektrisch leitfähigem Material besteht und eine erste Öffnung (114) mit einem ersten Durchmesser (D1) für einen auf das Target (112) gerichteten Primärelektronenstrahl (PES) besitzt, gekennzeichnet durch eine Lochblende (116) mit einer zweiten Öffnung (117), welche konzentrisch zu der ersten Öffnung (114) angeordnet ist und einen zweiten Durchmesser (D2) aufweist, der kleiner als der erste Durchmesser (D1) ist.
  2. Anodenkopf (113) nach Anspruch 1 oder2, wobei der Anodenkopf (113) aus Kupfer oder einem elektrisch leitfähigem Element mit hoher Ordnungszahl, bevorzugt aus einem Schwermetall oder einer Schwermetalllegierung besteht.
  3. Anodenkopf (113) nach Anspruch 2, wobei der Anodenkopf (113) aus Wolfram oder Tantal oder einer Legierung aus Kupfer mit Wolfram oder Tantal besteht.
  4. Anodenkopf (113) nach einem der Ansprüche 1-3, wobei die Lochblende (116) aus einem Material mit einen hohen spezifischen Widerstand, bevorzugt aus einer Keramik, besonders bevorzugt aus einer Oxidkeramik, beispielsweise aus einer Aluminiumoxidkeramik besteht.
  5. Anodenkopf (113) nach einem der Ansprüche 1-4, wobei die Lochblende (116) vollständig oder wenigstens in einem Scheibenabschnitt in Form einer Lochscheibe ausgeführt ist und in einer zugehörigen Ausnehmung in den Anodenkopf (113) eingefügt ist, wobei sich die Ausnehmung an der in Einbaulage der Anode (108) zugewandten Seite des Anodenkopfs (113) oder an der in Einbaulage der Anode (108) abgewandten Seite des Anodenkopfs (113) befindet.
  6. Anodenkopf (113) nach einem der Ansprüche 1-5, wobei die Lochblende (116) vollständig oder in einem Zylinderabschnitt in Form eines Hohlzylinders mit einem Außendurchmesser gleich dem ersten Durchmesser (D1) ausgeführt ist und in der ersten Öffnung (114) des Anodenkopfs (113) angeordnet ist.
  7. Anodenkopf (113) nach einem der Ansprüche 1-6, wobei die Lochblende (116) vollständig oder in einem Kappenabschnitt in Form einer Kappe ausgeführt ist, die an der in Einbaulage der Anode (108) abgewandten Seite des Anodenkopfs (113) angefügt ist.
  8. Anodenkopf (113) nach einem der Ansprüche 1-7, wobei die elektrische Leitfähigkeit, bevorzugt die Oberflächenleitfähigkeit, der Lochblende (116) durch eine Beschichtung mit einem elektrisch leitfähigem Material und/oder durch eine Dotierung des Grundmaterials der Lochblende (116) so eingestellt ist, dass sich die Lochblende (116) im Betrieb durch eingefangene Sekundärelektronen nicht elektrische auflädt, insbesondere die Bildung von Ladungsnestern auf der Lochblende (116) vermieden wird.
  9. Anodenkopf (113) nach einem der Ansprüche 1-8, wobei die Materialdicke der Lochblende (116) in Richtung des Primärelektronenstrahls (PES) und/oder der zweite Durchmesser (D2) so ausgelegt sind, dass ein vorbestimmter Anteil der im Betrieb an dem Target (112) oder dem Anodenkopf (113) entstehenden Sekundärelektronen von der Lochblende (115) eingefangen werden.
  10. Anodenkopf (113) nach einem der Ansprüche 1-9, wobei die Lochblende (116) mit dem Anodenkopf (113) elektrisch leitend verbunden ist, bevorzugt mit dem Anodenkopf (113) durch ein Aktivlotverfahren und/oder mechanisch durch Klemmen, verbunden ist.
  11. Anodenkopf (113) nach einem der Ansprüche 1-10, wobei der zweite Durchmesser (D2) der zweiten Öffnung (116) so eingestellt ist, dass die Größe des Brennflecks des Primärelektronenstrahls (PES) auf dem Target (112) gegenüber einem Anodenkopf (13) ohne Lochblende (115) unverändert ist.
  12. Anodenkopf (113) nach einem der Ansprüche 1-10, wobei die Anode (108) eine Festanode oder eine Drehanode ist.
  13. Röntgenstrahlenerzeugungsvorrichtung (100), insbesondere Röntgenröhre, mit einer Anordnung aus einer Kathode (107) und einer Anode (108), die einen Anodenkopf (113) nach einem der Ansprüche 1-12 aufweist.
  14. Röntgeninspektionsanlage (200) mit einer Röntgenstrahlenerzeugungsvorrichtung (100) nach Anspruch 13.
  15. Umrüstverfahren für eine Röntgeninspektionsanlage enthaltend einer ersten Röntgenstrahlenerzeugungsvorrichtung (1) mit einer Anordnung aus einer Kathode (7) und einer Anode (8), die einen Anodenkopf (13) ohne Lochblende (116) zur Schirmung von Sekundärelektronen aufweist, wobei das Verfahren die Schritte aufweise: (S1) Ausbauen der ersten Röntgenstrahlenerzeugungsvorrichtung (1); und (S2) Einbauen einer Röntgenstrahlenerzeugungsvorrichtung (100) nach Anspruch 13.
DE102017127372.7A 2017-11-21 2017-11-21 Anodenkopf für Röntgenstrahlenerzeuger Pending DE102017127372A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE102017127372.7A DE102017127372A1 (de) 2017-11-21 2017-11-21 Anodenkopf für Röntgenstrahlenerzeuger
US16/766,002 US11361932B2 (en) 2017-11-21 2018-11-21 Anode head for X-ray beam generators
EP18807942.0A EP3714477A1 (de) 2017-11-21 2018-11-21 Anodenkopf für röntgenstrahlenerzeuger
PCT/EP2018/082054 WO2019101784A1 (de) 2017-11-21 2018-11-21 Anodenkopf für röntgenstrahlenerzeuger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102017127372.7A DE102017127372A1 (de) 2017-11-21 2017-11-21 Anodenkopf für Röntgenstrahlenerzeuger

Publications (1)

Publication Number Publication Date
DE102017127372A1 true DE102017127372A1 (de) 2019-05-23

Family

ID=64456973

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102017127372.7A Pending DE102017127372A1 (de) 2017-11-21 2017-11-21 Anodenkopf für Röntgenstrahlenerzeuger

Country Status (4)

Country Link
US (1) US11361932B2 (de)
EP (1) EP3714477A1 (de)
DE (1) DE102017127372A1 (de)
WO (1) WO2019101784A1 (de)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE707943C (de) * 1932-06-27 1941-07-08 C H F Mueller Akt Ges Gluehkathodenentladungsroehre, insbesondere Roentgenroehre, mit zylindrischem Mittelteil
GB762375A (en) * 1953-10-27 1956-11-28 Vickers Electrical Co Ltd Improvements relating to x-ray generators
DE1779915U (de) * 1956-06-20 1958-12-24 Licentia Gmbh Anode fuer roentgenroehren.
DE1860224U (de) * 1961-12-22 1962-10-18 C H F Mueller G M B H Roentgenroehre mit einer stabfoermigen hohlanode.
DE2047751A1 (de) * 1970-09-29 1972-03-30 Siemens Ag Röntgenröhre
DE102006062454A1 (de) * 2006-12-28 2008-07-03 Comet Gmbh Mikrofocus-Röntgenröhre
US7466799B2 (en) * 2003-04-09 2008-12-16 Varian Medical Systems, Inc. X-ray tube having an internal radiation shield
US20100278309A1 (en) * 2007-12-19 2010-11-04 Koninklijke Philips Electronics N.V. Scattered electron collector
EP2393103A2 (de) 2008-01-29 2011-12-07 Smiths Heimann GmbH Röntgenstrahlerzeuger sowie dessen Verwendung in einem Röntgenuntersuchungs- oder Röntgenprüfgerät
US20120257721A1 (en) * 2010-03-26 2012-10-11 Xl Co., Ltd. X-ray tube having non-evaporable getter
US20140369469A1 (en) * 2011-08-31 2014-12-18 Canon Kabushiki Kaisha X-ray generation apparatus and x-ray radiographic apparatus

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2948822A (en) 1959-01-22 1960-08-09 Mario Ghia X-ray tubes
FR2333344A1 (fr) 1975-11-28 1977-06-24 Radiologie Cie Gle Tube radiogene a cathode chaude avec anode en bout et appareil comportant un tel tube
DE3139899A1 (de) 1981-10-07 1983-04-21 Schöfer, Hans, Dipl.-Phys., 8011 Zorneding Roentgenroehre zur erzeugung sehr hoher dosen in kleinen volumen
FR2589028B1 (fr) 1985-10-18 1987-11-20 Thomson Cgr Generateur de rayons x
US4870671A (en) 1988-10-25 1989-09-26 X-Ray Technologies, Inc. Multitarget x-ray tube
DE4406958B4 (de) 1994-03-03 2004-07-22 Smiths Heimann Gmbh Scanner zur Erfassung unzulässiger Gegenstände in Prüfobjekten
DE19513291C2 (de) * 1995-04-07 1998-11-12 Siemens Ag Röntgenröhre
DE19802668B4 (de) 1998-01-24 2013-10-17 Smiths Heimann Gmbh Röntgenstrahlungserzeuger
US8385506B2 (en) * 2010-02-02 2013-02-26 General Electric Company X-ray cathode and method of manufacture thereof
US10453643B2 (en) * 2016-03-30 2019-10-22 Moxtek, Inc. Shielded, transmission-target, x-ray tube

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE707943C (de) * 1932-06-27 1941-07-08 C H F Mueller Akt Ges Gluehkathodenentladungsroehre, insbesondere Roentgenroehre, mit zylindrischem Mittelteil
GB762375A (en) * 1953-10-27 1956-11-28 Vickers Electrical Co Ltd Improvements relating to x-ray generators
DE1779915U (de) * 1956-06-20 1958-12-24 Licentia Gmbh Anode fuer roentgenroehren.
DE1860224U (de) * 1961-12-22 1962-10-18 C H F Mueller G M B H Roentgenroehre mit einer stabfoermigen hohlanode.
DE2047751A1 (de) * 1970-09-29 1972-03-30 Siemens Ag Röntgenröhre
US7466799B2 (en) * 2003-04-09 2008-12-16 Varian Medical Systems, Inc. X-ray tube having an internal radiation shield
DE102006062454A1 (de) * 2006-12-28 2008-07-03 Comet Gmbh Mikrofocus-Röntgenröhre
US20100278309A1 (en) * 2007-12-19 2010-11-04 Koninklijke Philips Electronics N.V. Scattered electron collector
EP2393103A2 (de) 2008-01-29 2011-12-07 Smiths Heimann GmbH Röntgenstrahlerzeuger sowie dessen Verwendung in einem Röntgenuntersuchungs- oder Röntgenprüfgerät
US20120257721A1 (en) * 2010-03-26 2012-10-11 Xl Co., Ltd. X-ray tube having non-evaporable getter
US20140369469A1 (en) * 2011-08-31 2014-12-18 Canon Kabushiki Kaisha X-ray generation apparatus and x-ray radiographic apparatus

Also Published As

Publication number Publication date
US20200365362A1 (en) 2020-11-19
US11361932B2 (en) 2022-06-14
WO2019101784A1 (de) 2019-05-31
EP3714477A1 (de) 2020-09-30

Similar Documents

Publication Publication Date Title
EP1714298B1 (de) Modulare röntgenröhre und verfahren zu ihrer herstellung
DE69814574T2 (de) Einrichtung zur Vermeidung einer Überhitzung des Fensters einer Röntgenröhre
DE4430622C2 (de) Kathodensystem für eine Röntgenröhre
DE19536247A1 (de) Röntgenröhre
DE19513291C2 (de) Röntgenröhre
DE19544203A1 (de) Röntgenröhre, insbesondere Mikrofokusröntgenröhre
EP0021441B1 (de) Elektronenbeschleuniger zur Röntgenstrahlentherapie
EP2393103B1 (de) Röntgenstrahlerzeuger sowie dessen Verwendung in einem Röntgenuntersuchungs- oder Röntgenprüfgerät
DE102011075453A1 (de) Röntgenröhre und Verfahren zum Betrieb einer Röntgenröhre
EP0063840B1 (de) Hochspannungs-Vakuumröhre, insbesondere Röntgenröhre
DE3514700A1 (de) Roentgenroehre
DE102017127372A1 (de) Anodenkopf für Röntgenstrahlenerzeuger
DE112019001870T5 (de) Röntgengenerator
DE3438987A1 (de) Auger-elektronenspektrometer mit hoher aufloesung
DE2030747C3 (de) Beschleunigungsrohr für einen Ladungsträgerstrahl
DE102018112054B4 (de) Röntgenröhre mit Kollimator und Kollimatorvorrichtung für geschlossene Röntgenröhre
DE2523360A1 (de) Gasentladungselektronenstrahlerzeugungssystem zum erzeugen eines elektronenstrahls mit hilfe einer glimmentladung
DE2436622C2 (de) Bildwandler- oder Bildverstärkerröhre
DE4429910B4 (de) Röntgenröhre mit Abschirmteil
DE2304906C2 (de) Feldemissions-Strahlerzeugungssystem
DE112019006988T5 (de) Elektronenquelle und mit einem Strahl geladener Teilchen arbeitende Vorrichtung
DE202021103476U1 (de) Modulare Kathodeneinrichtung mit einem Schachtblech
DE2819114C3 (de) Ionenimplantationsanordnung mit Steuerung des Auffangscheiben-Oberflächenpotentials
DE102009008046A1 (de) Röntgenröhre mit einer Einfangvorrichtung für rückgestreute Elektronen und Verfahren zum Betreiben einer derartigen Röntgenröhre
DE745240C (de) Einrichtung zur Erzeugung eines Strahles von positiven Ionen oder von Elektronen

Legal Events

Date Code Title Description
R163 Identified publications notified