DE102016205963B4 - Rolle und Filament für 3D-Druck und 3D-Druckverfahren - Google Patents

Rolle und Filament für 3D-Druck und 3D-Druckverfahren Download PDF

Info

Publication number
DE102016205963B4
DE102016205963B4 DE102016205963.7A DE102016205963A DE102016205963B4 DE 102016205963 B4 DE102016205963 B4 DE 102016205963B4 DE 102016205963 A DE102016205963 A DE 102016205963A DE 102016205963 B4 DE102016205963 B4 DE 102016205963B4
Authority
DE
Germany
Prior art keywords
monomer unit
filament
printing
roll
mole percent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
DE102016205963.7A
Other languages
English (en)
Other versions
DE102016205963A1 (de
Inventor
Guerino G. Sacripante
Ke Zhou
Tasnim Abukar
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xerox Corp
Original Assignee
Xerox Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xerox Corp filed Critical Xerox Corp
Publication of DE102016205963A1 publication Critical patent/DE102016205963A1/de
Application granted granted Critical
Publication of DE102016205963B4 publication Critical patent/DE102016205963B4/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/44Polyester-amides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/118Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyamides (AREA)

Abstract

Eine Rolle oder Filament zur Verwendung für den 3D-Druck, wobei die Rolle oder Filament aus einem Polyesteramid geformt ist, das Folgendes umfasst:ca. 1 bis ca. 30 Mol-% einer Diamin-Monomer-Einheit;eine Diol-Monomer-Einheit; undeine Terephthalat-Monomer-Einheit, welche ein depolymerisiertes Ethylen-Terephthalat ist, welches aus einem recycelten Polyethylen-Terephthalat abgeleitet ist;wobei das Polyesteramid eine Glasübergangstemperatur (Tg) in einem Bereich von ca. 50°C bis ca. 95°C aufweist.

Description

  • Diese Offenlegung betrifft den 3D-Druck. Insbesondere betrifft diese Offenlegung neue Materialien für den 3D-Druck, die auf Polyesteramid-Verbindungen basieren.
  • Fused Deposition Modeling (FDM-Verfahren, Schmelzschichtung) ist eine relativ häufige Art und Weise, die für den 3D-Druck verwendet wird. Dieser Modus hat den Vorteil, einer der preiswertesten und am leichtesten zugänglichen für 3D-Drucker zu sein, vor allem bei industriellen Prototyen und für den privaten Hobby-Anwender. Beim FDM-Prozess wird ein thermoplastisches Material zunächst zu einem Filament extrudiert, dann liefert der Filamentdraht Material in eine beheizte Düse. Dann wird geschmolzenes thermoplastisches Filament aus der Düse extrudiert und Material in Schichten aufgetragen.
  • Obwohl verschiedene Materialien mit einzigartigen Spezifikationen verfügbar sind, zum Beispiel Polymilchsäure (PLA) und Poly-Acrylnitril-Butadien-Styrol (ABS), besteht ständig Bedarf an neuen Polymeren und Polymerkombinationen, um eine breitere Auswahl von Spezifikationen und Eigenschaften zu bieten, um auf verschiedene nachgelagerte Anwendungen des entstandenen Druckobjekts abzustellen. Neben der Suche nach neuen Materialien mit wünschenswerten physikalischen Eigenschaftsmerkmalen besteht auch ein Bedarf für die Entwicklung umweltfreundlicher und unkritischer Materialien. ABS zum Beispiel generiert unter der Düse Drucktemperaturen von über 200 °C und setzt dabei toxische Restmonomere wie Styrol und Acrylnitril frei. Bei einigen FDM 3D-Druckanwendungen wurden Nylon-6- und Nylon-12-Polyamidharze verwendet, aber diese Polyamide sind nicht nachhaltig.
  • DE 691 03 552 T2 betrifft Copolyesteramide auf der Basis von Einheiten, die von Terephthalsäure und deren Derivaten, von einem oder mehreren Polyolen und von einem oder mehreren Diaminen stammen.
  • J.L.R. Williams, T. M. Laakso, and L. E. Contois, „Preparation of Regularly Alternating Polyesteramides“, JOURNAL OF POLYMER SCIENCE, 61, 1962, 353-359 offenbart den Zusammenhang zwischen der Art der eingesetzten Diamine bzw. Diole, d.h. die Kettenlänge zwischen den Amino- bzw. Hydroxylgruppen, und den resultierenden physikalischen Eigenschaften der erhaltenen Polyesteramide.
  • DE 601 11 437 T2 betrifft ein Verfahren zur Herstellung eines modifizierten thermoplastischen Polyesters durch Reaktion eines Polyesters mit einer stickstoffhaltigen Verbindung.
  • WO 2015/019212 A1 offenbart eine Druckerkassette zur Verwendung in einem dreidimensionalen Druckersystem, wobei die Druckerkassette eine Spule enthält, die ein polymeres Material trägt, wobei das polymere Material aus einer thermoplastischen Zusammensetzung gebildet ist, die eine kontinuierliche Phase enthält, die ein Matrixpolymer umfasst, und wobei ferner ein Mikroeinschlussadditiv und Nanoeinschlussadditiv in der kontinuierlichen Phase in Form von diskreten Domänen dispergiert sind.
  • US 2014/0134534 A1 betrifft einen Toner, der nachhaltige Materialien oder Reagenzien enthält, wie z. B. depolymerisierten recycelten Kunststoff und Materialien auf biologischer Basis.
  • US 2010/0152309 A1 offenbart eine Eetrudierte Polymerzusammensetzung, die Polyethylenterephthalat enthält, das in einer Menge von etwa 25 bis etwa 100 Gew.-% als Ablagerung von Nach-Gebrauchs-Polyethylenterephthalat vorhanden ist, wobei der Rest neues Polyethylenterephthalat ist.
  • US 2002/0113331 A1 betrifft ein schichtadditives Herstellungsverfahren, das die Extrusion und Ablagerung einer speziellen Klasse von Materialzusammensetzungen zur Bildung eines dreidimensionalen (3-D) Objekts im Wesentlichen Punkt für Punkt und Schicht für Schicht umfasst. Insbesondere enthält diese Materialzusammensetzung ein reaktives Vorpolymer, das dazu beiträgt, die Materialzusammensetzung in einer Extrusionsvorrichtung in einen fließfähigen Zustand zu bringen.
  • WO 2013/147950 A1 betrifft biologisch abbaubare aliphatisch-aromatische Copolyester, deren Kombinationen mit anderen Polymeren und Verfahren zur Herstellung der Copolyester und Zusammensetzungen.
  • In einigen Aspekten betreffen Ausführungsformen in diesem Schriftstück eine Rolle oder Filament für den Einsatz im 3D-Druck, wobei die Rolle oder Filament aus einem Polyesteramid geformt ist bestehend aus ca. 1 bis ca. 30 Mol-% einer Diamin-Monomer-Einheit, einer Diol-Monomer-Einheit und einer Terephthalat-Monomer-Einheit, welche ein depolymerisiertes Ethylen-Terephthalat ist, welches aus einem recycelten Polyethylen-Terephthalat abgeleitet ist, wobei das Polyesteramid eine Glasübergangstemperatur (Tg) im Bereich von ca. 50°C bis ca. 95°C aufweist.
  • In einigen Aspekten betreffen Ausführungsformen in diesem Schriftstück Verfahren zur Herstellung eines Polyesteramids, bestehend aus der Copolymerisierung eines Gemischs - im Beisein eines Katalysators - bestehend aus einer Diamin-Monomer-Einheit, einer Diol-Monomer-Einheit, und einem depolymerisierten Polyethylen-Terephthalat, wobei die Copolymerisierung bei einer Temperatur im Bereich von ca. 150°C bis ca. 220°C durchgeführt wird und das Verfahren das Entfernen jeglicher überschüssigen Diol-Monomer-Einheit unter vermindertem Druck umfasst.
  • In einigen Aspekten betreffen Ausführungsformen in diesem Schriftstück Verfahren zum 3D-Druck, die die Bereitstellung einer Rolle oder Filiaments für den Einsatz im 3D-Druck umfassen, wobei die Rolle oder Filament aus einem Polyesteramid geformt ist bestehend aus ca. 10 Mol-% bis ca. 30 Mol-% einer Diamin-Monomer-Einheit, ca. 10 Mol-% bis ca. 40 Mol-% einer Diol-Monomer-Einheit, und ca. 45 Mol-% bis ca. 55 Mol-% einer Terephthalat-Monomer-Einheit, welche ein depolymerisiertes Ethylen-Terephthalat ist, welches aus einem recycelten Polyethylen-Terephthalat abgeleitet ist, wobei das Verfahren zudem das Extrudieren des Polyesteramids zur Herstellung eines Filaments und die Bereitstellung des Filaments an eine beheizte Düse umfasst, um das Polyesteramid auf ein Substrat zur Bildung eines 3D-Objekts auf dem Substrat aufzubringen.
  • Ausführungsformen in diesem Schriftstück bieten nachhaltige Polyesteramid-Harze für den Einsatz in der 3D-Drucktechnologie. Die Polyesteramide sind preiswert und können primär aus Oligomeren synthetisiert werden, die aus recyceltem Kunststoff und Bio-Monomeren gewonnen werden, einschließlich Diolen, wie zum Beispiel 1.4-Butandiol und geringe Mengen von Diaminen, wie zum Beispiel 1.6-Hexandiamin. Die daraus resultierenden Polyesteramide können zu über 80% aus nachhaltigen Monomeren abgeleitet werden und bieten eine bessere Reißdehnung und eine überlegene Dauerfestigkeit.
    Figure DE102016205963B4_0001
  • In Ausführungsformen können die Polyesteramide hergestellt werden durch Depolymerisierung von Plastikflaschen aus Polyethylen-Terephthalat und unterschiedliche Mengen Diol und Diamin. Ein besonders stabiles Ausgangsmaterial für die in diesem Schriftstück offengelegten Polyesteramide ist ein im Handel erhältliches depolymerisiertes Produkt (Polylite, Reichhold Corporation) aus recycelten Plastikflaschen aus Polyethylen-Terephthalat (PET), einem Oligomer mit einem Molekulargewicht von etwa 800. Indem man zum Beispiel das Verhältnis von PET zu einer Reihe von Monomeren, zum Beispiel 1.4-Butandiol und 1.6-Hexandiamin, variiert, erhält man zahlreiche Polyesteramide. Diese Materialien zeigen jeweils eine Vielfalt an physikalischen charakteristischen Merkmalen und stellen dennoch umweltfreundliche Produkte dar. Diese und andere Vorteile sind für den Fachkundigen offensichtlich.
  • In Ausführungsformen gibt es Polyesteramid für den Einsatz im 3D-Druck, bestehend aus ca. 1 Mol-% bis ca. 30 Mol-% einer Diamin-Monomer-Einheit, einer Diol-Monomer-Einheit und einer Terephthalat-Monomer-Einheit. Polyesteramid weist eine Glasübergangstemperatur (Tg) von ca. 45°C bis ca. 100°C auf. In Ausführungsformen enthält Polyesteramid ca. 10 bis ca. 25 Mol-% einer Diamin-Monomer-Einheit.
  • Insbesondere sind die in diesem Schriftstück offengelegten Polyesteramide besonders gut für den 3D-Druck durch FDM-Prozesse geeignet. In Ausführungsformen kann der Zahlendurchschnitt des Molekulargewichts der Polyesteramide zwischen ca. 5.000 und ca. 100.000 Gramm/Mol oder zwischen ca. 10.000 und ca. 200.000 Gramm/Mol liegen. In Ausführungsformen liegt das Gewichtsmittel des Molekulargewichts der Polyesteramide zwischen ca. 10.000 Gramm/Mol und ca. 500.000 Gramm/Mol oder zwischen ca. 20.000 Gramm/Mol und ca. 200.000 Gramm/Mol. Dank bestimmter physikalischer Eigenschaften sind die Polyesteramide für den Einsatz im 3D-Druck geeignet; diese umfassen einen Erweichungspunkt zwischen ca. 150°C und ca. 250 C, oder zwischen ca. 150°C und ca. 230°C; einen Erstarrungspunkt zwischen ca. 10°C und ca. 100°C, zwischen ca. 20°C und ca. 75°C, oder zwischen ca. 25°C und ca. 60°C; eine Viskosität zwischen ca. 200 Centipoise und ca. 10.000 Centipoise bei 100°C bis ca. 200°C ; einen Youngschen Modul von ca. 0,5 bis ca. 5 Gigapascal oder von ca. 0,5 bis ca. 2 Gigapascal; eine Streckgrenze von ca. 10 bis ca. 100 Megapascal oder von ca. 10 bis ca. 60 Megapascal; eine Tg von ca. 50°C bis ca. 100°C oder von ca. 60°C bis ca. 90°C.
  • Der Erweichungspunkt (Ts) des Polyesteramids kann mittels einer Vorrichtung bestehend aus Becher und Kugel, erhältlich von Mettler-Toledo als Messvorrichtung FP90 für den Erweichungspunkt unter Anwendung des Standard-Testverfahrens (ASTM) D-6090 gemessen werden. Die Messung kann mittels einer 0,50-Gramm-Probe durchgeführt werden, die mit einer Geschwindigkeit von 1°C / min. ausgehend von 100°C erwärmt wird.
  • Die Glasübergangstemperatur (Tg) und der Schmelzpunkt (Tm) des nachhaltigen Harzes können mit Hilfe des dynamischen Differenzkalorimeters Q1000 von TA Instruments im Bereich zwischen 0 und 150°C bei einer Erwärmungsgeschwindigkeit von 10°C pro Minute unter Stickstoffstrom aufgezeichnet werden. Die Schmelz- und die Glasübergangstemperatur können während des zweiten Erwärmungslaufes erfasst und als Ausgangspunkt aufgezeichnet werden.
  • Der Youngsche Modul und die Streckgrenze können mittels des mechanischen Testsystems 3300, erhältlich bei Instron, durch das ASTM-638D-Verfahren und unter Verwendung des nachhaltigen Harzfilaments mit einem Durchmesser von ca. 2 mm gemessen werden.
  • In Ausführungsformen ist die Diamin-Monomer-Einheit ein C2 bis C12-Diamin, zum Beispiel ein C6-Diamin, z. B. 1.6-Hexandiamin. In Ausführungsformen ist das Diamin ein aliphatisches Diamin mit 2 bis 12 Kohlenstoffatomen. In Ausführungsformen ist das Diamin 1.3-Propandiamin, oder 1.4-Butandiamin, oder 1.5-Pentandiamin, oder 1.6-Hexandiamin oder 1.7-Heptandiamin oder 1.8-Octandiamin, oder 1.9-Nonandiamin oder 1.10-Decandiamin oder 1.11-Undecandiamin oder 1.12-Dodecandiamin.
  • In Ausführungsformen sind die beiden Amine des Diamins unsubstituiert mit Stickstoff, d. h. die beiden Amine sind -NH2-Gruppen. In Ausführungsformen sind die beiden Amine des Diamins unabhängig unsubstitutiert (-NH2) oder monosubstitutiert (-NHR). Falls monosubstituiert, kann R eine C1-C4 niedrige Alkyl-Gruppe enthalten. In Ausführungsformen kann die Kohlenstoffkette des Diamins optional bei einem beliebigen Kohlenstoffatom substituiert sein. Eine derartige optionale Substitution kann Halogen C1-C4-Alkyl, C1-C4-Alkoxy und Kombinationen davon enthalten.
  • In Ausführungsformen ist die Diol-Monomer-Einheit ein C2 bis C6-Diol, zum Beispiel ein C4-Diol, z. B. 1.4-Butandiol. In Ausführungsformen ist die Diol-Monomer-Einheit ein aliphatisches Diol mit 2 bis 6 Kohlenstoffatomen. In Ausführungsformen ist die Diol-Monomer-Einheit 1.2-Ethandiol (Ethylenglycol), oder 1.3-Propandiol, oder 1.4-Butandiol oder 1.5-Pentandiol oder 1.6-Hexandiol. In Ausführungsformen kann die Diol-Monomer-Einheit wahlweise biobasiert sein, zum Beispiel 1.4-Butandiol (BDO). In Ausführungsformen kann die Kohlenstoffkette des Diols optional bei einem beliebigen Kohlenstoffatom substituiert sein. Eine derartige optionale Substitution kann Halogen C1-C4-Alkyl, C1-C4-Alkoxy und Kombinationen davon enthalten.
  • In Ausführungsformen liegt die Diolmonomer-Einheit in einer Menge von ca. 5 Mol-% bis ca. 45 Mol-% oder von ca. 10 Mol-% bis ca. 40 Mol-% des Polymers vor.
  • In Ausführungsformen ist die Terephthalat-Gruppe als Bis-Ester zur Herstellung von Polyesteramid vorgesehen. Die Terephthalat-Gruppe kann zum Beispiel Bis-Methyl-Ester, d. h. Dimethyl-Terephthalat sein. Andere Bis-Ester können Diethylterephthalat. Dioctylterephthalat und dergleichen umfassen. Das bedeutet, dass jeder C1-C8 Alkyl-Diester aus Terephthalsäure als Ausgangsmaterial verwendet werden kann, um Zugang zu den in diesem Schriftstück offengelegten Polyesteramiden zu erhalten. In Ausführungsformen wird die Terephthalat-Gruppe aus recyceltem Kunststoff bezogen, zum Beispiel aus Polyethylen-Terephthalat (PET). Bei der Verwendung von recyceltem PET kann der Kunststoff teilweise oder vollständig depolymerisiert sein. In besonderen Ausführungsformen kann PET bis zu einem effektiven Molekulargewicht-Gewichtsmittel von ca. 800 oder in einem Bereich von ca. 600 bis ca. 1.000 depolymerisiert sein. In Ausführungsformen kann der aromatische Ring der Terephthalat-Gruppe optional bei einem beliebigen Kohlenstoffatom substituiert sein. Eine derartige optionale Substitution kann Halogen C1-C4-Alkyl, C1-C4-Alkoxy und Kombinationen davon enthalten.
  • In Ausführungsformen hat das Polyesteramid eine Streckgrenze von ca. 10 bis ca. 100 Megapascal, oder von ca. 10 bis ca. 60 Megapascal.
  • In Ausführungsformen hat das Polyesteramid eine Streckdehnung in einem Bereich von ca. 1 Prozent bis ca. 10 Prozent, oder von ca. 5 Prozent bis ca. 8 Prozent.
  • In Ausführungsformen hat das Polyesteramid einen Youngschen Modul in einem Bereich von ca. 0,5 Gigapascal bis ca. 5 Gigapascal, oder von ca. 0,5 bis ca. 2 Gigapascal.
  • In Ausführungsformen hat das Polyesteramid eine Bruchdehnung in einem Bereich von ca. 10 Prozent bis ca. 100 Prozent, oder von ca. 10 Prozent bis ca. 60 Prozent.
  • In Ausführungsformen hat das Polyesteramid eine Bruchspannung im Bereich von ca. 10 bis ca. 100 Megapascal, oder von ca. 10 bis ca. 60 Megapascal.
  • In Ausführungsformen liegt das Polyesteramid in einer Form vor, die für die Integration in ein 3D-Druckgerät geeignet ist. So kann das Polyesteramid zum Beispiel als aufgespultes Filament oder in Granulatform vorliegen.
  • In Ausführungsformen gibt es Verfahren zur Herstellung eines Polyesteramids, bestehend aus der Copolymerisierung einer Mischung - im Beisein eines Katalysators - bestehend aus einer Diamin-Monomer-Einheit, einer Diol-Monomer-Einheit und einem depolymerisierten Polyethylen-Terephthalat, wobei die Copolymerisierung bei einer Temperatur im Bereich von ca. 150°C bis ca. 220°C durchgeführt wird und das Verfahren das Entfernen von jeglicher überschüssigen Diol-Monomer-Einheit bei reduziertem Druck umfasst.
  • In Ausführungsformen basiert der Katalysator auf Zinn. Derartige Katalysatoren können auf den Oxidationszuständen Zinn (II) oder Zinn (IV) basieren. In Ausführungsformen basiert der Zinnkatalysator auf Mono- oder Dialkyl-Zinn. Monoalkyl-Zinne können weiterhin Oxid- und / oder Hydroxid-Gruppen beim Zinnatom enthalten. In Ausführungsformen umfasst der Zinnkatalysator ein Gemisch aus Monobutylzinnoxid, Monobutylzinnhydroxidoxid und Butyl-Zinnsäure, im Handel erhältlich als FASCAT® 4100. Weitere Zinnkatalysatoren, die in der Umesterungs-Chemie verwendet werden, sind in der Fachwelt bestens bekannt und können ebenso verwendet werden, um die in diesem Schriftstück genannten Polyesteramide herzustellen, zum Beispiel Octabutyltetrathiocyanatstannoxan.
  • In Ausführungsformen liegt die Diamin-Monomer-Einheit in einem Bereich von ca. 5 Mol-% bis ca. 40 Mol-% oder von ca. 10 Mol-% bis ca. 30 Mol-% des Gemisches vor.
  • In Ausführungsformen liegt die Diol-Monomer-Einheit in einem Bereich von ca. 5 Mol-% bis ca. 40 Mol-% oder von ca. 10 Mol-% bis ca. 40 Mol-% des Gemisches vor.
  • In Ausführungsformen können die genauen Mengen der Diol-Monomer-Einheit und der Diamin-Monomer-Einheit variiert werden, um eine Soll-Tg zu erreichen. Für die Verwendung in konventionellen FDM-Anwendungen mit 3D-Druckern kann die Soll-Tg in einem Bereich zwischen ca. 50°C und ca. 100°C, oder zwischen ca. 60°C und ca. 90°C liegen. Die Auswahl einer bestimmten Tg kann auf einem bestimmten Messgerät, einer nachgelagerten Anwendung, der Kompatibilität mit anderen Materialien, die in gemischten 3D-Druckmaterialien verwendet werden, wie zum Beispiel gemischte organische Materialien, gemischte organische / anorganische Materialien, usw., beruhen. Weitere Betrachtungen für die Auswahl einer Soll-Tg sind für Fachleute verständlich.
  • In Ausführungsformen liegt das depolymerisierte Polyethylen-Terephthalat in einem Bereich von ca. 45 Mol-% bis ca. 55 Mol-% oder von ca. 48 Mol-% bis ca. 52 Mol-% des Gemisches vor.
  • In Ausführungsformen wird das depolymerisierte Polyethylen-Terephthalat aus einem recycelten Material abgeleitet.
  • In Ausführungsformen wird das Polyesteramid in eine Rolle oder in Granulat zur Verwendung im 3D-Druck umgewandelt.
  • In Ausführungsformen gibt es Verfahren zum 3D-Druck, die die Bereitstellung eines Polyesteramids zum Einsatz in 3D-Druckern umfassen, bestehend aus ca. 1 Mol-% bis ca. 30 Mol-% oder ca. 10 Mol-% bis ca. 30 Mol-% einer Diamin-Monomer-Einheit, einer Diol-Monomer-Einheit und einer Terephthalat-Monomer-Einheit, wobei das Verfahren zudem das Extrudieren des Polyesteramids zur Herstellung eines Filaments und die Bereitstellung des Filaments an eine beheizte Düse umfasst, um das Polyesteramid auf ein Substrat zur Bildung eines Objekts auf dem Substrat aufzubringen.
  • In Ausführungsformen liegt die Diol-Einheit in einem Bereich von ca. 5 Mol-% bis ca. 45 Mol-% oder von ca. 10 Mol-% bis ca. 40 Mol-% des Polymers vor.
  • In Ausführungsformen liegt das Terephthalat in einem Bereich von ca. 45 Mol-% bis ca. 55 Mol-% oder von ca. 48 Mol-% bis ca. 52 Mol-% vor.
  • Beim 3D-Druck mit den in diesem Schriftstück offengelegten Polyesteramiden kann ein Stützmaterial verwendet werden. Dieses Material ist allgemein abnehmbar und dient als temporäre Unterstützung bei der Erstellung komplexer dreidimensionaler Objekte. Geeignete Stützmaterialien sind in der Fachwelt bestens bekannt, wie zum Beispiel in der US 8.460.451 B2 .
  • Das Stützmaterial kann über denselben oder einen anderen Druckkopf als das Polyesteramidmaterial abgegeben werden. Das Stützmaterial wird häufig als Flüssigkeit geliefert und besteht typischerweise aus einem hydrophoben chemischen Material, das bei Umgebungstemperatur fest und bei erhöhten Anwendungstemperaturen flüssig ist. Im Gegensatz zum Polyesteramid-Material wird das Stützmaterial jedoch anschließend entfernt, um das fertige dreidimensionale Teil bereitzustellen.
  • Das Entfernen des Stützmaterials kann durch verschiedene Prozesse durchgeführt werden, u. a. durch das Erwärmen des Stützmaterials über seinen Schmelzpunkt hinaus in Verbindung mit dem Einsatz eines geeigneten organischen Trägerstoffs, um das Stützmaterial in ausreichendem Maß vom Polyesteramid-Material zu entfernen.
  • In Ausführungsformen besteht ein Verfahren zum Druck eines dreidimensionalen Artikels aus der selektiven Aufbringung von Polyesteramid-Schichten, wie in diesem Schriftstück offengelegt, als Werkstoff für die Herstellung eines dreidimensionalen Artikels auf einem Substrat, wobei der Werkstoff optional einen Verdünner enthalten kann. In Ausführungsformen kann ein Verfahren zum Druck eines dreidimensionalen Artikels weiterhin das Abstützen von mindestens einer Schicht des Werkstoffs mit einem Stützmaterial umfassen. Weiterhin wird der Werkstoff und / oder das Stützmaterial in Ausführungsformen von Verfahren, die in diesem Schriftstück beschrieben sind, selektiv entsprechend einem Bild des dreidimensionalen Artikels aufgebracht, wobei das Bild in einem computerlesbaren Format vorliegt.
  • Die folgenden Beispiele werden dargestellt, um Ausführungsformen der vorliegenden Offenlegung zu veranschaulichen. Diese Beispiele dienen nur zur Veranschaulichung und sollen den Geltungsbereich der vorliegenden Offenlegung nicht einschränken. Auch beziehen sich Anteile und Prozentangaben auf das Gewicht, sofern nichts anderes angegeben ist. Der Begriff „Raumtemperatur“, wie er hier verwendet wird, bezieht sich auf eine Temperatur von ca. 20° C bis ca. 25°C.
  • Beispiel 1
  • Dieses Beispiel beschreibt die Herstellung und die Charakterisierung beispielhafter Polyesteramide entsprechend der Ausführungsformen in diesem Schriftstück.
  • Probe 1, 10% Hexandiamin: In einen 1-L Parr-Reaktor, der mit einem mechanischen Rührwerk und einer Destillationsvorrichtung ausgerüstet ist, wurden 517,94 g depolymerisiertes recyceltes PET (Polylite, Reichhold Corporation), 73,05 g 1.4-Butandiol, 30,60 g 1.6-Hexandiamin und 2.03 g Zinn-Katalysator (Sn) FASCAT® 4100 (Arkema Chemicals) gegeben. Das Gemisch wurde unter Spülen mit Stickstoff (1 scfh <Standardkubikfuß pro Stunde>) auf 160 C erwärmt; anschließend wurde über einen Zeitraum von 3 Stunden die Temperatur langsam auf 190 C erhöht und für weitere 18 Stunden aufrecht erhalten, um die Umesterung zwischen dem 1.4-Butandiol und dem depolymerisierten PET zu ermöglichen. Anschließend wurde das Gemisch über 1,5 Stunden von 190°C auf 210°C erhitzt und ein Vakuum angelegt, um das überschüssige Butandiol zu entfernen und weitere Polykondensation zu ermöglichen.
  • Das Gemisch wurde danach langsam auf die endgültige Temperatur von 235°C unter Vakuum erhitzt, bis ein Erweichungspunkt von 197,4°C erreicht wurde. Das Harz zeigte eine Glasübergangstemperatur von 74,5°C.
  • Probe 2, 20% Hexandiamin: In einen 1-L Parr-Reaktor, ausgerüstet mit einem mechanischen Rührwerk und einer Destillationsvorrichtung, wurden 518,02 g depolymerisiertes recyceltes PET, 49,05 g 1.4-Butandiol, 61,38 g 1,6-Hexandiamin und 2.01 g Zinn-Katalysator (Sn) FASCAT® 4100 gegeben. Das Gemisch wurde unter Spülen mit Stickstoff (1 scfh <Standardkubikfuß pro Stunde>) auf 160 C erwärmt; anschließend wurde über einen Zeitraum von 3 Stunden die Temperatur langsam auf 190 C erhöht und für weitere 18 Stunden aufrecht erhalten, um die Umesterung zwischen dem 1.4-Butandiol und dem depolymerisierten PET zu ermöglichen. Anschließend wurde das Gemisch über 1,5 Stunden von 190°C auf 210°C erhitzt und ein Vakuum angelegt, um das überschüssige Butandiol zu entfernen und weitere Polykondensation zu ermöglichen. Das Gemisch wurde danach langsam auf die endgültige Temperatur von 240 °C unter Vakuum erhitzt, bis ein Erweichungspunkt von 230,8 °C erreicht wurde. Das Harz zeigte eine Glasübergangstemperatur von 83,8°C.
  • Charakterisierung: Die Harzfilamente wurden unter Verwendung des Schmelzindexmessgeräts (MFI) hergestellt; dabei wurde die Harzprobe in einem erwärmten Zylinder geschmolzen und durch eine Öffnung mit einem spezifischen Durchmesser unter einem bestimmten Gewicht extrudiert. Die mechanischen Eigenschaften der Harzfilamente wurden mit dem Zugprüfsystem von Instron gemessen und mit den im Handel erhältlichen 3D-Materialien ABS und PLA verglichen. Die in Tabelle 1 zusammengefassten Ergebnisse zeigen, dass Probe 1 mit 10% 1.6-Hexandiamin ähnliche Eigenschaften aufweist wie das im Handel erhältliche 3D Material PLA. Tabelle 1 zeigt den Vergleich von Probe 1 mit den im Handel erhältlichen 3D Materialien.
    Harzfilamente Molverhältnis PET/BDO/ Hexandiamin Streckgrenze (MPa) Streckdehnung (%) Modul Bruchdehnung (%) Bruchspannung (MPa)
    ABS Natural - 41,62 4,85 1.307 65 20,16
    PLA True Black - 67,87 5,31 1.932 26 28,82
    Probe 1 50/40/10 44,2 4,56 1,436 4,77 24,32
    Probe 2 50/30/20 17,8 1,73 1,30 2,01 9,47

Claims (4)

  1. Eine Rolle oder Filament zur Verwendung für den 3D-Druck, wobei die Rolle oder Filament aus einem Polyesteramid geformt ist, das Folgendes umfasst: ca. 1 bis ca. 30 Mol-% einer Diamin-Monomer-Einheit; eine Diol-Monomer-Einheit; und eine Terephthalat-Monomer-Einheit, welche ein depolymerisiertes Ethylen-Terephthalat ist, welches aus einem recycelten Polyethylen-Terephthalat abgeleitet ist; wobei das Polyesteramid eine Glasübergangstemperatur (Tg) in einem Bereich von ca. 50°C bis ca. 95°C aufweist.
  2. Rolle oder Filament nach Anspruch 1, wobei es sich bei der Diamin-Monomer-Einheit um ein aliphatisches Diamin mit 2 bis 12 Kohlenstoffatomen handelt.
  3. Rolle oder Filament nach Anspruch 1, wobei die Diol-Monomer-Einheit ein aliphatisches Diol mit 2 bis 6 Kohlenstoffatomen aufweist.
  4. 3D-Druckverfahren, das Folgendes umfasst: Bereitstellung einer Rolle oder Filament zur Verwendung für den 3D-Druck, wobei die Rolle oder Filament aus einem Polyesteramid geformt ist, das Folgendes umfasst: ca. 10 Mol-% bis ca. 30 Mol-% einer Diamin-Monomer-Einheit; ca. 10 Mol-% bis ca. 40 Mol-% einer Diol-Monomer-Einheit; und ca. 45 Mol-% bis ca. 55 Mol-% einer Terephthalat-Monomer-Einheit, welche ein depolymerisiertes Ethylen-Terephthalat ist, welches aus einem recycelten Polyethylen-Terephthalat abgeleitet ist; und Bereitstellung der Rolle oder des Filaments an eine beheizte Düse, um das Polyesteramid auf ein Substrat zur Bildung eines 3D-Objekts auf dem Substrat aufzubringen.
DE102016205963.7A 2015-04-24 2016-04-08 Rolle und Filament für 3D-Druck und 3D-Druckverfahren Active DE102016205963B4 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/695,480 US9962922B2 (en) 2015-04-24 2015-04-24 Polyesteramide for 3D printing
US14/695,480 2015-04-24

Publications (2)

Publication Number Publication Date
DE102016205963A1 DE102016205963A1 (de) 2016-10-27
DE102016205963B4 true DE102016205963B4 (de) 2021-12-23

Family

ID=57110752

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102016205963.7A Active DE102016205963B4 (de) 2015-04-24 2016-04-08 Rolle und Filament für 3D-Druck und 3D-Druckverfahren

Country Status (4)

Country Link
US (1) US9962922B2 (de)
JP (1) JP2016204640A (de)
CA (1) CA2926279C (de)
DE (1) DE102016205963B4 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3080377B1 (fr) * 2018-04-23 2020-10-09 Technip France Procede de preparation de polyesteramides aliphatiques

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69103552T2 (de) 1990-03-06 1995-04-20 Gen Electric Copolyester-Amide.
US20020113331A1 (en) 2000-12-20 2002-08-22 Tan Zhang Freeform fabrication method using extrusion of non-cross-linking reactive prepolymers
US20100152309A1 (en) 2008-09-30 2010-06-17 Booth Hubert J Recycled polyethylene terephthalate compositions, fibers and articles produced therefrom, and methods for producing same
US8460451B2 (en) 2011-02-23 2013-06-11 3D Systems, Inc. Support material and applications thereof
WO2013147950A1 (en) 2012-03-30 2013-10-03 Saudi Basic Industries Corporation Biodegradable aliphatic-aromatic copolyesters, methods of manufacture, and articles thereof
US20140134534A1 (en) 2012-11-15 2014-05-15 Xerox Corporation Sustainable Toner
WO2015019212A1 (en) 2013-08-09 2015-02-12 Kimberly-Clark Worldwide, Inc. Polymeric material for three-dimensional printing

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000119391A (ja) * 1998-10-12 2000-04-25 M & S Kenkyu Kaihatsu Kk ポリ(エチレンテレフタレート・エチレンテレフタルアミド)共重合体及びその製造法
JP3444870B2 (ja) * 2001-03-09 2003-09-08 株式会社クボタ ポリエチレンテレフタレートの解重合方法
JP4080720B2 (ja) * 2001-10-16 2008-04-23 帝人ファイバー株式会社 Petボトルのリサイクル方法
JP2003160656A (ja) * 2001-11-28 2003-06-03 Teijin Ltd ポリエステルの製造方法及び繊維
JP2004307780A (ja) * 2003-04-04 2004-11-04 Djk Kenkyusho:Kk ポリエステルに利用可能なリサイクルされたポリエチレンテレフタレ−トの分解方法
JP2012184347A (ja) * 2011-03-07 2012-09-27 Teijin Ltd 共重合ポリエステルアミド、ポリエステルアミド繊維

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69103552T2 (de) 1990-03-06 1995-04-20 Gen Electric Copolyester-Amide.
US20020113331A1 (en) 2000-12-20 2002-08-22 Tan Zhang Freeform fabrication method using extrusion of non-cross-linking reactive prepolymers
US20100152309A1 (en) 2008-09-30 2010-06-17 Booth Hubert J Recycled polyethylene terephthalate compositions, fibers and articles produced therefrom, and methods for producing same
US8460451B2 (en) 2011-02-23 2013-06-11 3D Systems, Inc. Support material and applications thereof
WO2013147950A1 (en) 2012-03-30 2013-10-03 Saudi Basic Industries Corporation Biodegradable aliphatic-aromatic copolyesters, methods of manufacture, and articles thereof
US20140134534A1 (en) 2012-11-15 2014-05-15 Xerox Corporation Sustainable Toner
WO2015019212A1 (en) 2013-08-09 2015-02-12 Kimberly-Clark Worldwide, Inc. Polymeric material for three-dimensional printing

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J. L. R. WILLIAMS, T. M. LAAKSO, and L. E. CONTOIS: Preparation of Regularly Alternating Polyesteramides. In: JOURNAL OF POLYMER SCIENCE, 61, 1962, 353-359.

Also Published As

Publication number Publication date
JP2016204640A (ja) 2016-12-08
DE102016205963A1 (de) 2016-10-27
CA2926279C (en) 2019-01-08
CA2926279A1 (en) 2016-10-24
US20160311977A1 (en) 2016-10-27
US9962922B2 (en) 2018-05-08

Similar Documents

Publication Publication Date Title
DE60012722T2 (de) Polymerzusammensetzung mit niedriger emission
DE10057455C2 (de) Polyamid-Formmassen mit verbesserten Eigenschaften
EP2022810B1 (de) Transparente Polyamid-Elastomere
DE69909629T2 (de) Polyamide mit hoher fliessfähigkeit, verfahren zu ihrer herstellung und zusammensetzungen, die diese copolyamide enthalten
EP2203521B1 (de) Polyamidformmassen, enthaltend copolyamide zur herstellung von transparenten formteilen mit geringem verzug im klimatest
WO2003000772A2 (de) Multimodale polyamide, polyester und polyesteramide
EP0027852A1 (de) Transparente Copolyamide und deren Verwendung zur Herstellung transparenter schlagzäher Formkörper
WO2004055084A2 (de) Copolyamide
DE10251294A1 (de) Polyamidformmasse, daraus herstellbare Formteile und deren Verwendung
EP0399415B1 (de) Thermoplastische verarbeitbare elastomere Blockcopolyetheresteretheramide, Verfahren zu ihrer Herstellung und ihre Verwendung
EP2252647A1 (de) Polyamid-elastomer
DE102016205963B4 (de) Rolle und Filament für 3D-Druck und 3D-Druckverfahren
DE2855928A1 (de) Neue copolyamide
EP3668926B1 (de) Spritzgussartikel enthaltend oberflächenmodifizierte silikate
DE112018002765B4 (de) Verfahren zur Herstellung von Polyesterfasern und Verwendung der damit hergestellten Polyesterfasern
DE60311437T2 (de) Verfahren zur herstellung von modifiziertem thermoplastischem polyester
DE1669543A1 (de) Polyamidmassen fuer Form-,Press- und UEberzugszwecke
DE102016205962A1 (de) Polyester umfassende Zusammensetzungen zum 3-D-Drucken
WO2010072392A2 (de) Inhärent stabilisiertes polyamid-elastomer sowie verfahren zu dessen herstellung
DE2343445B2 (de) Verwendung von epoxidharzen zum verbessern der verarbeitbarkeit thermoplastischer kunstharzmassen
DE102016205369A1 (de) Copolymere zum 3d-druck
DE2416743A1 (de) Polyurethane und das beschichten von glasbehaeltern damit
DE3738495C2 (de) Gesättigte, zur Herstellung von Klebemassen geeignete Copolyester
DE3328567A1 (de) Verfahren zur herstellung von kerbschlagzaehen formmassen auf basis von poly(alkylenterephthalaten)
EP3696232B1 (de) Spritzgussartikel

Legal Events

Date Code Title Description
R082 Change of representative

Representative=s name: GRUENECKER PATENT- UND RECHTSANWAELTE PARTG MB, DE

R012 Request for examination validly filed
R016 Response to examination communication
R079 Amendment of ipc main class

Free format text: PREVIOUS MAIN CLASS: C08G0069440000

Ipc: B29C0064118000

R018 Grant decision by examination section/examining division
R020 Patent grant now final