DE102013209391A1 - Batteriezellenverbund - Google Patents

Batteriezellenverbund Download PDF

Info

Publication number
DE102013209391A1
DE102013209391A1 DE201310209391 DE102013209391A DE102013209391A1 DE 102013209391 A1 DE102013209391 A1 DE 102013209391A1 DE 201310209391 DE201310209391 DE 201310209391 DE 102013209391 A DE102013209391 A DE 102013209391A DE 102013209391 A1 DE102013209391 A1 DE 102013209391A1
Authority
DE
Germany
Prior art keywords
battery cells
hard shell
wound
shell housing
busbars
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE201310209391
Other languages
English (en)
Inventor
Alexander Reitzle
Sarmimala Hore
Holger Fink
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Samsung SDI Co Ltd
Original Assignee
Robert Bosch GmbH
Samsung SDI Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH, Samsung SDI Co Ltd filed Critical Robert Bosch GmbH
Priority to DE201310209391 priority Critical patent/DE102013209391A1/de
Priority to US14/892,154 priority patent/US11050105B2/en
Priority to PCT/EP2014/059510 priority patent/WO2014187680A1/de
Priority to CN201480029143.3A priority patent/CN105264686B/zh
Publication of DE102013209391A1 publication Critical patent/DE102013209391A1/de
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/24Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/507Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing comprising an arrangement of two or more busbars within a container structure, e.g. busbar modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/509Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the type of connection, e.g. mixed connections
    • H01M50/51Connection only in series
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/509Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the type of connection, e.g. mixed connections
    • H01M50/512Connection only in parallel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6569Fluids undergoing a liquid-gas phase change or transition, e.g. evaporation or condensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

Die Erfindung bezieht sich auf einen Batteriemodul aus einer Anzahl von Batteriezellen (42, 44, 46), die an Anschlusspolen jeweils miteinander verschaltet sind. Die Batteriezellen (42, 44, 46) weisen jeweils Hartschalengehäuse (40) auf, in denen mindestens eine Stromsammelschiene (48, 50) verläuft. Über die mindestens eine Stromsammelschiene (48, 50) ist eine Anzahl gewickelter und/oder gestapelter Batteriezellen (42, 44, 46) elektrisch kontaktiert.

Description

  • Stand der Technik
  • US 2008/0280192 A1 ist ein Batteriemanagementsystem zu entnehmen. Ein Batteriepack eines Hybridkraftfahrzeugs wird durch das vorgeschlagene Batteriemanagementsystem auf einer Temperatur gehalten, die unterhalb einer kritischen Betriebstemperatur des Batteriepacks liegt. Das Batteriepack umfasst eine Anzahl von miteinander verschalteten Zellen sowie eine Lüftungseinrichtung. Des Weiteren ist ein Öffnungsmuster vorgesehen, durch welches Luft in einer gleichmäßigen Strömung durch das Batteriepack geleitet wird. Des Weiteren umfasst das Batteriemanagementsystem gemäß US 2008/0280192 A1 Sensoren zur Erfassung der Temperatur mindestens eines Teils der Zellen, ferner einen Ventilator. Der Ventilator umfasst einen Einlass, durch welchen Luft angesaugt wird und einen Auslass, durch welchen die angesaugte Luft in das Innere des Batteriepacks eingeblasen wird. Durch die in das Batteriepack eingeblasene Luft wird die Temperatur in diesem abgesenkt. Des Weiteren steht eine elektronische Steuervorrichtung mit den Sensoren und dem Ventilator in Verbindung, um die Ventilatoren entsprechend der von den Sensoren enthaltenen Temperatursignale zu steuern, so dass die Temperatur des Batteriepacks unterhalb einer maximal zulässigen Betriebstemperatur gehalten werden kann.
  • Batteriepacks gemäß des Standes der Technik umfassen in der Regel eine Anzahl von miteinander verschalteten Batteriezellen. Die Batteriezellen sind in der Regel miteinander durch flach ausgebildete Verbindungslaschen verbunden. Nachdem die einzelnen Batteriezellen montiert sind und mechanisch zu einem Batteriemodul verbunden sind, erfolgt das Aufbringen der im Allgemeinen aus metallischem Werkstoff gefertigten Verbindungslaschen auf die Anschlusspole der betreffenden Batteriezellen. In der Regel sind die Verbindungslaschen aus metallischem Material, wie beispielsweise Kupfer oder Aluminium gefertigt. Des Weiteren sind die Verbindungslaschen, mit denen die Anschlusspole der Batteriezellen zu einem Batteriepack verbunden sind, im Wege des Laserschweißens als stoffschlüssige Verbindungen ausgeführt.
  • Darstellung der Erfindung
  • Erfindungsgemäß wird ein Batteriemodul vorgeschlagen, welches aus einer Anzahl von Batteriezellen gebildet wird, die miteinander verschaltet sind, wobei die Batteriezellen als gewickelte und/oder gestapelte Batteriezellen ausgebildet sind, wobei die Elektroden gestapelt bzw. gewickelt sind, und in einem gemeinsamen Hart-schalengehäuse aufgenommen werden, durch welches sich mindestens eine Strom-sammelschiene erstreckt. Die jeweiligen Anschlüsse der Batteriezellen werden durch deren Stirnseiten gebildet, so dass diese innerhalb des den gewickelten oder gestapelten Batteriezellen gemeinsamen Gehäuses sehr einfach durch sich durch dieses erstreckende, beispielsweise an Ober- und Unterseite aufgenommene Stromsammelschienen kontaktiert werden können.
  • In einer ersten Ausführungsvariante besteht die Möglichkeit, dass die einzelnen gewickelten und/oder gestapelten Batteriezellen innerhalb des Hartschalengehäuses durch Trennwände voneinander getrennt sind. Die Trennwände unterteilen gemäß dieser Ausführungsvariante das den Batteriezellen gemeinsame Hartschalengehäuse in einzelne Kammern, in denen jeweils eine gewickelte und/oder gestapelte Batteriezelle aufgenommen ist. Gemäß einer weiteren Ausführungsvariante der erfindungsgemäß vorgeschlagenen Lösung besteht auch die Möglichkeit, das den gewickelten und/oder gestapelten Batteriezellen gemeinsame Hart-schalengehäuse trennwandfrei auszubilden. In diesem Falle bildet das Hartschalengehäuse eine für alle Batteriezellen, die insbesondere als gewickelte oder gestapelte Batteriezellen ausgebildet sind, gemeinsame Kammer.
  • Des Weiteren erstrecken sich beispielsweise an Ober- und Unterseite des den gewickelten und/oder gestapelten Batteriezellen gemeinsamen Hartschalengehäuses die besagte erste und eine weitere zweite Stromsammelschiene. Die beiden Stromsammelschienen erstrecken sich durch das Hartschalengehäuse, sei es gekammert, sei es ungekammert ausgeführt und kontaktieren die als gewickelte oder gestapelte Batteriezellen ausgebildeten Batteriezellen jeweils an deren Stirnseiten. In der ersten Stromsammelschiene sowie der zweiten Stromsammelschiene können Isolierungen aufgenommen sein. Die Isolierungen haben den Zweck, ein Batteriemodul mit serieller Schaltung zu realisieren. Bei diesem erfolgt eine Isolation der jeweils gewickelten oder gestapelten Batteriezellen gegeneinander. Werden die Isolierungen nicht eingezogen, würden die einzelnen Batteriewickel oder Batteriestapel parallel miteinander verschaltet.
  • Im Bereich der sich durch das Hartschalengehäuse erstreckenden Stromsammelschienen, die an dessen Unter- und an dessen Oberseite verlaufen können, sind Kühlleitungen aufgenommen. Diese Kühlleitungen dienen dazu, die im gemeinsamen Hartschalengehäuse aufgenommenen einzelnen gewickelten und/oder gestapelten Batteriezellen zu kühlen und eine im Betrieb des Batteriemoduls auftretende Temperaturerhöhung zu begrenzen. Die Kühlleitungen können von einem Kühlmedium durchströmt sein, welches beispielsweise in gasförmiger Phase vorliegt oder in flüssiger Phase vorliegt, wobei letzteres einen deutlich besseren Wärmetransport ermöglicht.
  • In den beiden Stromsammelschienen, die sich entweder durch ein Hartschalengehäuse erstrecken, welches einzelne Kammern aufweist, oder sich durch ein Hartschalengehäuse erstrecken können, welches ungekammert ausgebildet ist, sind Sensoren aufgenommen. Mittels der Sensoren kann die im Hartschalengehäuse herrschende Temperatur ermittelt werden; ferner besteht die Möglichkeit, durch die im Inneren des den gewickelten und/oder gestapelten Batteriezellen gemeinsamen Hartschalengehäuses angeordneten Sensoren die Temperatur des Kühlmediums zu erfassen und abhängig von dessen Temperatur-veränderung den Durchfluss des Kühlmediums entsprechend zu erhöhen oder abzusenken. Durch die Ausbildung des Hartschalengehäuses für alle Batteriezellen des Batteriemoduls als genau ein Gehäuse, ist eine fertigungstechnisch recht einfach herstellbare Kühlung gegeben, wobei dies unabhängig davon ist, ob das den gewickelten und/oder gestapelten Batteriezellen gemeinsame Hartschalengehäuse gekammert oder ungekammert ausgebildet ist.
  • Das Hartschalengehäuse, in dem die als gewickelte und/oder gestapelte Batteriezellen ausgebildeten Batteriezellen angeordnet sind, wird vorzugsweise aus einem Kunststoffmaterial, beispielsweise im Wege des Spritzgießverfahrens gefertigt. Als Werkstoffe für das Hartschalengehäuse eignen sich insbesondere solche Spritzgießwerkstoffe hinsichtlich ihrer mechanischen Festigkeit, der Entflammbarkeit und der Bruchzähigkeit, die faserverstärkte Polymermaterialien umfassen (PPD 14). Des Weiteren kommt metallisches Material in Frage oder Metall, welches auf Innen- und Außenseite mit einer Isolationsbeschichtung beispielsweise mit Isolationslack versehen ist.
  • Vorteile der Erfindung
  • Durch die erfindungsgemäß vorgeschlagene Lösung kann das recht aufwendige unter hohem Energieeinsatz erfolgende stoffschlüssige Fügeverfahren des Laserschweißens entfallen. Die einzelnen Batteriemodule können an den einzelnen Stromsammelschienen, die sich durch das jeweilige Hartschalengehäuse des Batteriemoduls erstrecken, angeschlossen werden, ohne dass es der Herstellung einer elektrischen Verbindung nach der Montage eines Batteriemoduls bedürfte. Ferner kann die mit dem stoffschlüssigen Fügeverfahren, bevorzugt dem Laserschweißen einhergehende thermische Belastung der Anschlussterminals bzw. der Anschlusspole des Batteriemoduls entfallen. Durch den Einsatz eines die gewickelten und/oder gestapelten Batteriezellen aufnehmenden gemeinsamen Hartschalengehäuses, kann das erhaltene Batteriemodul wesentlich leichter ausgeführt werden, was sich günstig auf das Gewicht eines mehrere Batteriemodule umfassenden Batteriepacks auswirkt.
  • Des Weiteren kann durch die erfindungsgemäß vorgeschlagene Lösung erreicht werden, dass abgesehen von den elektrischen Anschlüssen, die Sensorik sowie die Kühlung in das Hartschalengehäuse integriert werden kann. Diese Komponenten werden der erfindungsgemäß vorgeschlagenen Lösung folgend, ebenfalls im Bereich der Stromsammelschienen an Ober- und Unterseite des Hartschalengehäuses aufgenommen und sind zudem durch das Hartschalengehäuse gegen äußere Einflüsse geschützt.
  • Als weitere Vorteile dieses erfindungsgemäß vorgeschlagenen Batteriemoduls ist zu nennen, dass dieses gegenüber den Lösungen aus dem Stand der Technik eine signifkante Reduktion der Größe aufweist, was mit einer erheblichen Gewichtsreduktion einhergeht. Die erfindungsgemäß vorgeschlagene Lösung zeichnet sich durch eine automatische elektrische Isolation aus, die zudem auf Systemebene sehr einfach überwacht werden kann. Ferner besteht eine erhöhte Kurzschlußsicherheit innerhalb des Batteriemoduls, bedingt durch die Werkstoffwahl eben Kunststoff. Ferner ist als Vorteil zu nennen ein erheblich verbesserter Berührschutz, da die einzelnen die Batteriezellen mit den anderen verbindenden Elemente im inneren des Moduls liegen können.
  • Die Gewichtsreduktion kann einerseits durch den Einsatz von Polymermaterial für das Hartschalengehäuse gezielt werden, ferner ist eine Gewichtsreduktion dadurch erreichbar, dass im Falle eines ungekammerten Hartschalengehäuses Zwischenwände entfallen können, die ansonsten zum Gewicht beitragen würden. Die erfindungsgemäß vorgeschlagene Lösung bietet ein Batteriemodul in einem Box-Design, was sich erheblich leichter erstellen läßt und bei dem das Problem der Korrosion vollständig eliminiert ist. Bei der erfindungsgemäß vorgeschlagenen Lösung tritt das Elektrolyt nicht in Kontakt mit den Innenseiten des Hartschalengehäuses. Durch die erfindungsgemäß vorgeschlagene Ausbildung eines Batteriemoduls mit einem Hartschalengehäuse aus einem Kunststoffmaterial kann eine sehr hohe Standardisierung beim Herstellungsprozess erreicht werden. So lässt sich beispielsweise die Größe eines Batteriemoduls durch eine Standardhartschalengehäusekonfiguration vorgeben. Die Leistung des jeweiligen Batteriemoduls ist abhängig von der Anzahl der eingesetzten gewickelten und/oder gestapelten Batteriezellen. Eine einzelne Standardkonfiguration eines Hartschalengehäuses ist denkbar, welches eine Standardkonfiguration des Batteriemoduls vorgibt, wodurch in einer Großserienproduktion von Batteriemodulen die Herstellkosten signifikant abgesenkt werden können.
  • Bei einem Hartschalengehäuse kann auch in fertigungstechnisch äußerst einfacher Weise eine Ventilierungsöffnung im Hartschalengehäuse vorgesehen werden.
  • Kurze Beschreibung der Zeichnungen
  • Anhand der Zeichnung wird die Erfindung nachstehend eingehender beschrieben. Es zeigt:
  • 1 die Draufsicht auf eine Batteriezelle,
  • 2 die Seitenansicht der Batteriezelle gemäß 2,
  • 3 eine Draufsicht auf zwei miteinander durch eine Verbindungslasche verbundene Batteriezellen, ein Batteriemodul,
  • 4 eine Seitenansicht des Batteriemodules gemäß 3,
  • 5 eine schematische Darstellung eines gekammert ausgebildeten Hartschalengehäuses mit darin aufgenommenen über Stromsammelschienen elektrisch kontaktierten gewickelten Batteriezellen,
  • 6 ein ebenfalls als gekammertes Gehäuse ausgebildetes Hartschalengehäuse mit Stromsammelschienen sowie einer Leitung für ein Kühlmedium,
  • 7 ein ungekammert ausgebildetes Hartschalengehäuse mit darin verlaufenden Stromsammelschienen sowie an den Stromsammelschienen angeordneten Sensoren und
  • 8 ein ebenfalls ungekammert ausgebildetes Hartschalengehäuse, in dem mehrere als gewickelte Batteriezellen ausgebildete Batteriezellen aufgenommen sind, mit Stromsammelschienen, Kühlmediumleitungen sowie Sensoren.
  • Der Darstellung gemäß 1 ist die Draufsicht auf eine Batteriezelle zu entnehmen.
  • Eine Batteriezelle 10 umfasst an ihrer Oberseite 12 einen ersten Anschlusspol, einen Pluspol, vergleiche Position 14 und einen weiteren zweiten Anschlusspol 16, als Minuspol. Die Batteriezelle 10 umfasst ferner ein Gehäuse 18. 2 ist zu entnehmen, dass die Batteriezelle 10 gemäß 1 ein im Wesentlichen rechteckförmiges Aussehen hat, wobei eine Länge 20 des Gehäuses 18 eine Gehäusehöhe 22 übersteigt.
  • Aus der Draufsicht gemäß 3 geht hervor, dass einzelne Pole 14, 16 der Batteriezelle 10 sowie einer weiteren Batteriezelle 30 durch Verbindungslaschen 24 miteinander verbunden sind. Die Verbindungslaschen 24 werden in der Regel aus einem elektrisch leitfähigen Material, wie beispielsweise Kupfer, Aluminium oder einer Legierung beider Teile gebildet. Aus 3 geht des Weiteren hervor, dass die Verbindungslaschen 24 an Verbindungspunkten 26, die im Allgemeinen als Laserschweißpunkte 28 ausgebildet sind, mit den einzelnen Anschlusspolen 14, 16 stoffschlüssig verbunden werden. Stoffschlüssige Verbindung der Verbindungslaschen 24 mit den Anschlusspolen 14, 16 der beiden Batteriezellen 10, 30, stellt ein relativ aufwendiges Fügeverfahren dar.
  • 4 zeigt eine Seitenansicht eines Batteriemodules 32 gemäß der Darstellung in 3, wobei hier ebenfalls eine Länge 20 des Gehäuses 18 der Batteriezellen 10, 30 die Gehäusehöhe 22 übersteigt.
  • Ausführungsvarianten
  • Der Darstellung gemäß 5 ist eine erste Ausführungsvariante des erfindungsgemäß vorgeschlagenen Batteriemoduls zu entnehmen.
  • 5 zeigt, dass innerhalb eines Hartschalengehäuses 40, welches bevorzugt aus einem Kunststoffmaterial, wie beispielsweise faserverstärktes Polymermaterial z.B. PPD 14 gefertigt ist. Im Hartschalengehäuse 40 sind nebeneinanderliegend einzelne, bevorzugt als gewickelte und/oder gestapelte Batteriezellen 42, 44, 46 ausgeführte Batteriezellen angeordnet, wobei sich jeweils eine der gewickelte und/oder gestapelte Batteriezellen 42, 44 bzw. 46 in einer separaten Kammer innerhalb des Hartschalengehäuses 40 befindet. Die einzelnen Kammern innerhalb des Hartschalengehäuses 40 werden durch Trennwände 56, 58 bzw. 60 gebildet. Eine Kammerung des Hartschalengehäuses 40 durch die Trennwände 56, 58 bzw. 60 bietet in vorteilhafter Weise eine elektrische Isolation der einzelnen gewickelten oder gestapelten Batteriezellen 42, 44, 46 gegeneinander. Im Falle eines sicherheitsrelevanten Ereignisses kann somit eine Kettenreaktion d.h. ein „Thermal runaway“ unterbunden werden. Des Weiteren kann durch die einzelnen Trennwände 56, 58 bzw. 60 eine Mischpotentialbildung durch ggf. auftretende gegenseitige Kontaktierung der einzelnen gewickelten und/oder gestapelten Batteriezellen 42, 44, 46 untereinander vermieden werden.
  • Des Weiteren verlaufen durch das Hartschalengehäuse 40 eine erste Stromsammelschiene 48 sowie eine zweite Stromsammelschiene 50. Die beiden Stromsammelschienen 48, 50 erstrecken sich bevorzugt an einer Oberseite 62 bzw. an einer Unterseite 64 des Hartschalengehäuses 40 des Batteriemoduls 32.
  • Wie in der Darstellung gemäß 5 schematisch angedeutet, umfasst eine jede der beiden Stromsammelschienen 48, 50 eine Isolierung, wobei eine erste Isolierung durch Bezugszeichen 52 und eine zweite Isolierung durch Bezugszeichen 54 in 5 angedeutet ist.
  • Der Darstellung gemäß 5 ist des Weiteren zu entnehmen, dass die als gewickelte und/oder gestapelte Batteriezellenn 42, 44, 46 ausgebildeten Batteriezellen jeweils mit ihren Stirnseiten 66, 68 die beiden Stromsammelschienen 48 bzw. 50 kontaktieren. Die einzelnen als gewickelte oder gestapelte Batteriezellen 42, 44, 46 ausgebildeten Batteriezellen können die Stromsammelschienen 48 bzw. 50 über eine Klemmverbindung eine Schraubverbindung einen Klipmechanismus eine Halterung mittels einer Spange und dergleichen kontaktieren.
  • 5 lässt sich entnehmen, dass die drei gewickelten und/oder gestapelten Batteriezellen 42, 44 und 46 jeweils in alternierender Reihenfolge – was die Stirnseiten 66 bzw. 68 betrifft – in das Hartschalengehäuse 40 eingelassen sind. Aus der Darstellung gemäß 5 geht des Weiteren hervor, dass die drei gewickelten und/oder gestapelten Batteriezellen 42, 44, 46 in dieser Ausführungsvariante in Serie geschaltet sind. Selbstverständlich besteht auch die Möglichkeit, die drei gewickelten und/oder gestapelten Batteriezellen 42, 44, 46 parallel zu schalten. Jede der gewickelten und/oder gestapelten Batteriezellen 42, 44, 46, die im Hartschalengehäuse 40 angeordnet sind, führt einen separaten Elektrolytvorrat mit sich. Es können jedoch auch mehrere der gewickelten und/oder gestapelten Batteriezellen 42, 44, 46 auf einen gemeinsamen Elektrolytvorrat zugreifen. Jede der gewickelten und/oder gestapelten Batteriezellen 42, 44, 46 ist von einer Schutzhülle umgeben, welche das Austreten von Elektrolyten aus dem Inneren der gewickelten und/oder gestapelten Batteriezellen 42, 44, 46 wirksam unterbindet. Die Schutzhüllen sind aus einem Material wie beispielsweise Nomex®, Technora® oder Kefla® gefertigt, mit denen die gewickelten und/oder gestapelten Batteriezellen 42, 44, 46 bei Auftreten eines „Thermal Runaway“ geschützt werden.
  • Wie in 5 weiter dargestellt ist, sind die einzelnen gewickelten und/oder gestapelten Batteriezellen 42, 44, 46 jeweils an gemeinsame Stromsammelschienen 48, 50 angeschlossen, an denen die erste Isolierung 52 bzw. die zweite Isolierung 54 aufgenommen ist. Durch die Isolierungen wird erreicht, dass die einzelnen gewickelten und/oder gestapelten Batteriezellen 42, 44, 46 entweder in Serie oder in Parallelschaltung angeschlossen werden können. Die elektrisch leitenden Stirnseiten 66, 68 einer jeden der gewickelten und/oder gestapelten Batteriezellen 42, 44, 46 ist mit den Stromsammelschienen 48 bzw. 50 beispielsweise durch einen Clipsmechanismus oder durch Federwirkung gekoppelt. Die beiden Stromsammelschienen 48 bzw. 50 sind über geeignete Befestigungsvorrichtungen an den Innenseiten des Hartschalengehäuses 40 aufgenommen. Die Stromsammelschienen 48, 50 mit daran beispielsweise vormontierten gewickelten und/oder gestapelten Batteriezellen 42, 44, 46 können auf einfache Weise in das Hartschalengehäuse 40 eingelassen werden, wofür das Hartschalengehäuse 40 entsprechend konfiguriert sein kann, beispielsweise an den beiden einander gegenüberliegenden Längsseiten mit zwei Kanälen oder Nuten oder dergleichen ausgeführt ist. In Zusammenhang mit der Darstellung gemäß 5 umfasst das dort abgebildete Hartschalengehäuse 40 Trennwände 56, 58 und 60. An diesen Trennwänden 56, 58, 60 können beispielsweise Elektronikkomponenten angeordnet sein. Über derartige Elektronikbausteine können die Parameter der entsprechenden nächsten gewickelten und/oder gestapelten Batteriezelle 42 oder 44 oder 46 aufgezeichnet werden. Für den Fall einer Betriebsstörung, beispielsweise eines „Thermal Runaway“ bieten die Trennwände 56, 58 bzw. 60 eine Möglichkeit, die einzelnen gewickelten und/oder gestapelten Batteriezellen 42, 44 und 46 gegeneinander zu isolieren. Eine derartige gekammerte Version des Hartschalengehäuses 40 würde eventuell bei einem „Thermal Runaway“ austretende gasförmige Komponenten der Batteriemodule 32 in der jeweiligen Kammer zurückhalten, so dass sich austretende gasförmige Komponenten nicht innerhalb des gesamten Hartschalengehäuses 40 ausbreiten.
  • Die Trennwände 56, 58 bzw. 60 sind in Bezug auf die an den Stromsammelschienen 48, 50 vorgesehenen Isolierungen 52 bzw. 54 in Abständen angeordnet. Die Abstände dienen zur Ermöglichung einer Trennung und können toleranzbehaftet belegt werden. Die Abstände werden durch die gewünschte Energiedichte bzw. Leistungsdichte bestimmt. Durch die Isolierung 52, bzw. 54 können die einzelnen gewickelten oder gestapelten Batteriezellen 42, 44 oder 46 in Serie geschaltet werden. Aufgrund des Umstandes, dass die einzelnen Trennwände 56, 58, 60 elastisch d.h. flexibel sind, können elektronische Komponenten wie beispielsweise Stromsensoren, Temperatursensoren usw. auf eben jenen deformierbaren Trennwänden 56, 58, 60 angeordnet werden. Die Trennwände 56, 58 bzw. 60 an sich stellen keine elektrische Isolierung dar, sondern eine räumliche Isolierung der einzelnen gestapelt oder gewickelt ausgebildeten Batteriezellen 42, 44 oder 46 gegeneinander dar.
  • 6 ist eine weitere Ausführungsvariante des erfindungsgemäß vorgeschlagenen Batteriemoduls 32 zu entnehmen.
  • Auch das in 6 dargestellte Batteriemodul 32 umfasst ein gekammertes Hartschalengehäuse 40, da in diesem die Trennwände 56, 58 bzw. 60 enthalten sind, durch welche die im Hartschalengehäuse 40 angeordneten gewickelten und/oder gestapelten Batteriezellen 42, 44, 46 voneinander getrennt sind und gewissermaßen in Einzelkammern angeordnet sind. Im Bereich der beiden Stromsammelschienen 48 bzw. 50 erstrecken sich in Längsrichtung durch das Hartschalengehäuse 40, Kühlleitungen 70, die ein Kühlmedium 72 führen. Bei dem Kühlmedium 72 kann es sich um ein solches handeln, welches entweder in flüssiger Phase oder in gasförmiger Phase oder auch einer Kombination von beiden vorliegt. In fertigungstechnisch besonders einfacher Weise erstrecken sich die Kühlleitungen 70 zur Aufnahme des Kühlmediums in dem Bereich des Hartschalengehäuses 40, insbesondere im Bereich von Ober- und Unterseite 62 bzw. 64 dort, wo auch die Stromsammelschienen 48, 50 verlaufen. Der Darstellung gemäß 6 ist zu entnehmen, dass analog zur Darstellung gemäß 5 die einzelnen gewickelten und/oder gestapelten Batteriezellen 42, 44 bzw. 46 in alternierender Reihenfolge in Bezug auf deren erste Stirnseiten 66 bzw. zweiten Stirnseiten 68 montiert sind.
  • Auch in der Ausführungsvariante gemäß 6 sind die gewickelten und/oder gestapelten Batteriezellen 42, 44, 46 in alternierender Reihenfolge – was die Anordnung der die Anschlusspole darstellenden Stirnseiten 66, 68 betrifft – an den Stromsammelschienen 48, 50 in Serie geschaltet angeschlossen.
  • Das in den 5 und 6 dargestellte Hartschalengehäuse 40 kann aus einem Polymermaterial beispielsweise spritzgegossen sein. Es ist jedoch auch möglich, dass das Hartschalengehäuse 40 aus einem metallischen Material gefertigt ist, welches an seiner Innenseite beispielsweise eine Polymerschicht aufweisen kann, welche zur elektrischen Isolierung der im Hartschalengehäuse 40 aufgenommenen gewickelten und/oder gestapelten Batteriezellen 42, 44, 46 dient. Das Hartschalengehäuse 40 umfasst darüber hinaus eine erste Gehäuseseitenfläche sowie eine dieser gegenüberliegende zweite Gehäuseseitenfläche 82. Durch besagte Gehäuseseitenflächen treten in der Ausführungsvariante des Batteriemoduls 32 gemäß 6 sowohl die Kühlleitungen 70 als auch die Stromsammelschienen 48 bzw. 50 aus dem Gehäuse aus. Bei der Montage der einzelnen gewickelten Batteriezellen im Hartschalengehäuse 40, genauer gesagt in der nicht-gekammerten Variante, kann mindestens eine der beiden Gehäuseseitenflächen 74 bzw. 82 geöffnet werden, um die einzelnen, mit den Stromsammelschienen 48 bzw. 50 kontaktierten gewickelten Batteriezellen 42, 44, 46 zu montieren. Über die beiden Gehäuseseitenflächen 74 bzw. 82 und die Oberseite 62 und die Unterseite 64 des Hartschalengehäuses 40, ist dieses nach außen hermetisch abgedichtet.
  • In der Darstellung gemäß 7 ist eine ungekammerte Ausführungsvariante des erfindungsgemäß vorgeschlagenen Batteriemoduls dargestellt.
  • Aus 7 geht hervor, dass in dieser Ausführungsvariante des Hartschalengehäuses 40 zur Aufnahme der gewickelten Batteriezellen 42, 44, 46 die Trennwände 56, 58, 60 jeweils fehlen. Dies bedeutet, dass der Innenraum des Hartschalengehäuses 40 an sich eine einzige durchgehende Kammer bildet, in der durch die sich die Stromsammelschienen 48 bzw. 50 erstrecken. Analog zu der vorstehend beschriebenen Ausführungsvariante eines durch die Trennwände 56, 58, 60 in einzelnen Kammern aufgeteilten Innenraumes des Hartschalengehäuses 40 erstrecken sich die Stromsammelschienen 48 durch die Gehäuseseitenflächen 74 bzw. 82.
  • Aus der Darstellung gemäß 7 geht des Weiteren hervor, dass in den beiden Stromsammelschienen 48 bzw. 50 Sensoren 76, 78, 80 aufgenommen sind. Mit den Sensoren ist es einerseits möglich, beispielsweise die Ströme in den Stromsammelschienen 48, 50 zu messen. Andererseits besteht die Möglichkeit, als Sensoren 76, 78, 80 auch Temperatursensoren einzusetzen, mit denen die Innentemperatur des geschlossenen Hartschalengehäuses 40, in dem in diesem Falle drei gewickelte Batteriezellen 42, 44, 46 aufgenommen sind, kontinuierlich überwacht werden kann.
  • Aus der Darstellung gemäß 7 lässt sich entnehmen, dass analog zu den Ausführungsvarianten gemäß 5 und 6 die gewickelten und/oder gestapelten Batteriezellen 42, 44, 46 jeweils gegengleich in alternierender Reihenfolge in Bezug auf ihre Stirnseiten 66, 68 angeordnet und mit den entsprechenden Stromsammelschienen 48, 50 kontaktiert sind. Die Stromsammelschienen 48 bzw. 50 erstrecken sich durch das Innere des Hartschalengehäuses 40 von der ersten Gehäuseseitenfläche 74 aus zur zweiten Gehäuseseitenfläche 82.
  • 7 zeigt des Weiteren, dass die einzelnen gewickelten und/oder gestapelten Batteriezellen 42, 44, 46 Schutzhüllen umfassen können, welche aus Nomex®, Technora® oder auch Kevlar® gefertigt sind. Im Falle des Auftretens eines „ein sicherheitsrelevanten Ereignisses“ kann ein unzulässig hoher Druckaufbau im Inneren des Hartschalengehäuses 40 dadurch verhindert werden, dass im Hartschalengehäuse 40, sei es an der Oberseite 62, sei es an der Unterseite 64, einzelne Auslassventile vorgesehen sein können, über welche ein Druckabbau im Inneren des Hartschalengehäuses 40 vonstattengehen kann.
  • Es können statt der erwähnten Materialien Nomex®, Kevlar®, Technora® auch andere geeignete Materialien eingesetzt werden, welche benachbarte gewickelte und/oder gestapelte Batteriezellen 42, 44, 46 gegeneinander schützen. Die Schutzhüllen, welche die einzelnen gewickelten und/oder gestapelten Batteriezellen 42, 44, 46 umgeben, haben neben der Aufnahme des ballistischen Materials auch den Zweck, die gewickelten und/oder gestapelten Batteriezellen 42, 44, 46 gegen eine leckende Kühlleitung 70, die sich durch das Innere des Hart-schalengehäuses 40 erstreckt, zu schützen. Aus der Darstellung gemäß 8 geht eine Erweiterung des Batteriemoduls gemäß der Darstellung in 7 hervor.
  • Wie der Darstellung gemäß 8 entnommen werden kann, erstrecken sich durch die jeweiligen Gehäuseseitenflächen 74, 82 nicht nur die Stromsammelschienen 48 bzw. 50, sondern zusätzlich zu diesen die bereits in Zusammenhang mit der ersten Ausführungsvariante gemäß der 5 und 6 erwähnten Kühlleitungen 70. Besagte Schutzhüllen, mit welchen die einzelnen gewickelten Batteriezellen 42, 44, 46 versehen sind, schützen diese auch gegen aus der Kühlleitung 70 austretendes Kühlmedium. Bei dem in den Kühlleitungen 70 strömenden Kühlmedium 72 kann es sich sowohl um ein gasförmiges als auch um ein flüssiges Medium handeln; auch ein Gemisch beider Medienphasen ist möglich.
  • Über Sensoren 76, 78, 80 können die Temperaturen insbesondere des Hartschalengehäuses 40 gemessen werden. Bei den Sensorgen 76, 78, 80 kann es sich auch um kombinierte Temperatur- und Stromsensoren handeln, deren Verteilung innerhalb des Hartschalengehäuses beispielsweise an den eine Kammerung ermöglichenden Trennwänden 56, 58, 60 angeordnet sind. Bei der Verteilung von Temperatursensoren innerhalb des Hartschalengehäuses 40 ist der Einfluß der Abwärme der gewickelt oder gestapelt ausgebildeten Batteriezellen 42, 44, 46 zu berücksichtigen. Im Falle des Einsatzes von Stromsensoren als Sensoren 76, 78, 80 ist deren Verteilung innerhalb des Hartschalengehäuses 40 so zu wählen, dass der induktive Einfluß minimiert ist.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • US 2008/0280192 A1 [0001, 0001]

Claims (10)

  1. Batteriemodul (32) aus einer Anzahl von Batteriezellen (42, 44, 46), die jeweils miteinander verschaltet sind, dadurch gekennzeichnet, dass die Batteriezellen (42, 44, 46) in einem Hartschalengehäuse (40) aufgenommen sind, in dem mindestens eine Stromsammelschiene (48, 50) verläuft, über die die Anzahl gewickelter und/oder gestapelter Batteriezellen (42, 44, 46) elektrisch kontaktiert ist.
  2. Batteriemodul (32) gemäß Anspruch 1, dadurch gekennzeichnet, dass das Hartschalengehäuse (40) eine erste und eine zweite Stromsammelschiene (48, 50) umfasst und die erste und die zweite Stromsammelschiene (48, 50) jeweils eine Isolierung (52, 54) enthält, über die eine Serien- oder Parallelschaltung der gewickelten und/oder gestapelten Batteriezellen (42, 44, 46) erfolgt.
  3. Batteriemodul (32) gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die gewickelten und/oder gestapelten Batteriezellen (42, 44, 46) an ihren Stirnseiten (66, 68) durch die Stromsammelschienen (48, 50) kontaktiert sind.
  4. Batteriemodul (32) gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Stromsammelschienen (48, 50) jeweils an einer Oberseite (62) und an einer Unterseite (64) des Hartschalengehäuses (40) durch dieses verlaufen.
  5. Batteriemodul (32) gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass im Hartschalengehäuse (40) parallel zu den Stromsammelschienen (48, 50) Kühlleitungen (70) für ein Kühlmedium (72) verlaufen.
  6. Batteriemodul (32) gemäß dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass das Kühlmedium (72) in flüssiger Phase, gasförmiger Phase oder sublimiert vorliegt.
  7. Batteriemodul (32) gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die gewickelten und/oder gestapelten Batteriezellen (42, 44, 46) innerhalb des Hartschalengehäuses (40) durch Trennwände (56, 58, 60) voneinander getrennt sind.
  8. Batteriemodul (32) gemäß einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass im Hartschalengehäuse (40) die Anzahl der gewickelten und/oder gestapelten Batteriezellen (42, 44, 46) trennwandfrei aufgenommen ist.
  9. Batteriemodul (32) gemäß Anspruch 8, dadurch gekennzeichnet, dass die Kühlleitungen (70) für das Kühlmedium (72), die Stromsammelschienen (48, 50) trennwandfrei durch das Innere des Hartschalengehäuses (40) verlaufen.
  10. Batteriemodul (32) gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Stromsammelschienen (48, 50) Sensoren (76, 78, 80) für die Temperatur- und/oder Strommessung umfassen.
DE201310209391 2013-05-22 2013-05-22 Batteriezellenverbund Pending DE102013209391A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE201310209391 DE102013209391A1 (de) 2013-05-22 2013-05-22 Batteriezellenverbund
US14/892,154 US11050105B2 (en) 2013-05-22 2014-05-09 Battery cell assembly
PCT/EP2014/059510 WO2014187680A1 (de) 2013-05-22 2014-05-09 Batteriezellenverbund
CN201480029143.3A CN105264686B (zh) 2013-05-22 2014-05-09 一种蓄电池单池组合

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE201310209391 DE102013209391A1 (de) 2013-05-22 2013-05-22 Batteriezellenverbund

Publications (1)

Publication Number Publication Date
DE102013209391A1 true DE102013209391A1 (de) 2014-11-27

Family

ID=50687490

Family Applications (1)

Application Number Title Priority Date Filing Date
DE201310209391 Pending DE102013209391A1 (de) 2013-05-22 2013-05-22 Batteriezellenverbund

Country Status (4)

Country Link
US (1) US11050105B2 (de)
CN (1) CN105264686B (de)
DE (1) DE102013209391A1 (de)
WO (1) WO2014187680A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015007615A1 (de) 2015-06-13 2016-12-15 Daimler Ag Verbindungselement zur elektrischen Verschaltung von Einzelzellen, Zellblock und elektrische Batterie
DE102018129653A1 (de) * 2018-11-26 2020-05-28 Bayerische Motoren Werke Aktiengesellschaft Gehäusedeckel für ein Batteriegehäuse einer Hochvoltbatterie, Batteriegehäuse, Hochvoltbatterie sowie Kraftfahrzeug
CN112406565A (zh) * 2020-11-30 2021-02-26 安徽江淮汽车集团股份有限公司 一种撞击式电池包及新能源汽车
WO2022089961A1 (de) * 2020-10-29 2022-05-05 Kautex Textron Gmbh & Co. Kg Batterieschale, traktionsbatterie, kraftfahrzeug, werkzeug zum herstellen einer batterieschale und verfahren zum herstellen einer batterieschale
CN115461919A (zh) * 2020-06-12 2022-12-09 宁德新能源科技有限公司 电池和用电装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101804048B1 (ko) * 2015-04-22 2017-12-01 주식회사 엘지화학 이차전지 팩 및 이를 포함하는 차량
JP6583219B2 (ja) * 2016-11-15 2019-10-02 トヨタ自動車株式会社 電池モジュール
EP3496179B1 (de) * 2017-12-08 2023-06-14 Samsung SDI Co., Ltd. Verbinder für ein batteriepack
EP3736876A1 (de) * 2019-05-10 2020-11-11 Andreas Stihl AG & Co. KG Akkupack, bearbeitungssystem und verfahren zur herstellung eines akkupacks
DE102019208570A1 (de) * 2019-06-13 2020-12-17 Volkswagen Aktiengesellschaft Batterieanordnung, Fahrzeug oder stationäre Anlage mit einer solchen sowie Verfahren zur Herstellung der besagten Batterieanordnung
CN114744346B (zh) * 2019-12-31 2024-01-30 宁德时代新能源科技股份有限公司 电池模块、电池组、装置及电池模块的装配方法
KR20210108127A (ko) * 2020-02-25 2021-09-02 삼성에스디아이 주식회사 이차 전지 팩
CN112993479B (zh) * 2021-02-05 2022-11-25 天津海狸新能源科技有限公司 一种基于多电芯的可调电压锂电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004063986A1 (de) * 2004-11-05 2006-07-27 Siemens Ag Schienenfahrzeug mit einem Energiespeicher aus Doppelschichtkondensatoren
US20080280192A1 (en) 2007-02-09 2008-11-13 Advanced Lithium Power Inc. Battery thermal management system
DE102009035465A1 (de) * 2009-07-31 2011-02-03 Daimler Ag Batterie, insbesondere Fahrzeugbatterie
US20110159350A1 (en) * 2009-12-28 2011-06-30 Shingo Ochi Power source apparatus having bus-bars
US20120164490A1 (en) * 2009-09-18 2012-06-28 Toshiki Itoi Battery module

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070087266A1 (en) 2005-10-18 2007-04-19 Debbi Bourke Modular battery system
US20090061305A1 (en) * 2007-08-29 2009-03-05 Honda Motor Co., Ltd. Battery container unit
JP5221913B2 (ja) * 2007-08-29 2013-06-26 本田技研工業株式会社 電池格納ユニット
CN102057519B (zh) * 2008-04-14 2014-04-16 A123系统公司 电池模块、电池模块构造和制造电池模块的方法
CN201355622Y (zh) * 2009-01-23 2009-12-02 安耐信(北京)储能技术有限公司 电动汽车用电池模块导电汇流条
US20110274951A1 (en) * 2009-02-24 2011-11-10 Shunsuke Yasui Battery module and battery module assembly using same
EP2339672B1 (de) * 2009-07-17 2013-09-11 Panasonic Corporation Batteriemodul und batteriepack damit
JP5520064B2 (ja) * 2010-01-27 2014-06-11 三洋電機株式会社 バッテリシステム
KR101137365B1 (ko) * 2010-05-20 2012-04-20 에스비리모티브 주식회사 배터리 팩
CN102696131B (zh) 2010-11-30 2015-09-23 松下知识产权经营株式会社 电池模组及电池包
DE102011079394A1 (de) 2011-07-19 2013-01-24 Siemens Aktiengesellschaft Energiespeichermodul

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004063986A1 (de) * 2004-11-05 2006-07-27 Siemens Ag Schienenfahrzeug mit einem Energiespeicher aus Doppelschichtkondensatoren
US20080280192A1 (en) 2007-02-09 2008-11-13 Advanced Lithium Power Inc. Battery thermal management system
DE102009035465A1 (de) * 2009-07-31 2011-02-03 Daimler Ag Batterie, insbesondere Fahrzeugbatterie
US20120164490A1 (en) * 2009-09-18 2012-06-28 Toshiki Itoi Battery module
US20110159350A1 (en) * 2009-12-28 2011-06-30 Shingo Ochi Power source apparatus having bus-bars

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015007615A1 (de) 2015-06-13 2016-12-15 Daimler Ag Verbindungselement zur elektrischen Verschaltung von Einzelzellen, Zellblock und elektrische Batterie
DE102018129653A1 (de) * 2018-11-26 2020-05-28 Bayerische Motoren Werke Aktiengesellschaft Gehäusedeckel für ein Batteriegehäuse einer Hochvoltbatterie, Batteriegehäuse, Hochvoltbatterie sowie Kraftfahrzeug
CN115461919A (zh) * 2020-06-12 2022-12-09 宁德新能源科技有限公司 电池和用电装置
CN115461919B (zh) * 2020-06-12 2024-03-12 宁德新能源科技有限公司 电池和用电装置
WO2022089961A1 (de) * 2020-10-29 2022-05-05 Kautex Textron Gmbh & Co. Kg Batterieschale, traktionsbatterie, kraftfahrzeug, werkzeug zum herstellen einer batterieschale und verfahren zum herstellen einer batterieschale
CN112406565A (zh) * 2020-11-30 2021-02-26 安徽江淮汽车集团股份有限公司 一种撞击式电池包及新能源汽车
CN112406565B (zh) * 2020-11-30 2022-02-01 安徽江淮汽车集团股份有限公司 一种撞击式电池包及新能源汽车

Also Published As

Publication number Publication date
WO2014187680A1 (de) 2014-11-27
US11050105B2 (en) 2021-06-29
CN105264686A (zh) 2016-01-20
US20160111693A1 (en) 2016-04-21
CN105264686B (zh) 2018-12-11

Similar Documents

Publication Publication Date Title
DE102013209391A1 (de) Batteriezellenverbund
EP2661784B1 (de) Temperierung von galvanischen zellen mittels wärmeleitenden kunststoffcom-pounds
DE112015000462B4 (de) Verbindungseinheit
DE102014203715B4 (de) Effizient kühlbares Gehäuse für ein Batteriemodul
DE102014207403A1 (de) Batterieeinheit mit einer Aufnahmeeinrichtung und einer Mehrzahl von elektrochemischen Zellen sowie Batteriemodul mit einer Mehrzahl von solchen Batterieeinheiten
DE102014106287A1 (de) Elektrische Speichervorrichtung, Substratanordnung und Montageverfahren einer elektrischen Speichervorrichtung
EP2589094B1 (de) Thermische entkopplung von batteriezellen im störfall
DE102007045183A1 (de) Temperierte Batterieeinrichtung und Verfahren hierzu
DE102007010744A1 (de) Batteriezelle und Zellverbund einer Batterie
DE102012112294A1 (de) Elektrischer Energiespeicher
DE102019119242A1 (de) Akkupack
DE102019215636A1 (de) Batteriemodul
DE102016213142A1 (de) Batteriezelle, Batteriemodul und Verfahren zur Herstellung
DE102016203932A1 (de) Energiespeichermodul
DE112013005053T5 (de) Energiespeicherungsmodul und Energiespeicherungsvorrichtung
DE102017207966A1 (de) Energiespeicheranordnung
DE102008034886A1 (de) Batterie mit Einzelzellen
DE102012210611A1 (de) Energiespeichereinheit mit zwei getrennten elektrochemischen Bereichen
DE102009035494A1 (de) Hochvoltbatterie
DE102005041746A1 (de) Elektrochemische Energiespeicherzelle
DE102018000278B4 (de) Batterieanordnung
EP3531472B1 (de) Akkupack sowie elektrohandwerkzeuggerät
DE102013220171A1 (de) Batteriezelle und Herstellungsverfahren für diese, sowie Batterie
EP2909873B1 (de) Energiespeicherzelle und energiespeichermodul
DE102012103129A1 (de) Elektrischer Energiespeicher

Legal Events

Date Code Title Description
R082 Change of representative

Representative=s name: GULDE & PARTNER PATENT- UND RECHTSANWALTSKANZL, DE

R163 Identified publications notified
R012 Request for examination validly filed
R079 Amendment of ipc main class

Free format text: PREVIOUS MAIN CLASS: H01M0002200000

Ipc: H01M0050500000