DE102012205568A1 - Dosierpumpe aus Kunststoff - Google Patents

Dosierpumpe aus Kunststoff Download PDF

Info

Publication number
DE102012205568A1
DE102012205568A1 DE102012205568A DE102012205568A DE102012205568A1 DE 102012205568 A1 DE102012205568 A1 DE 102012205568A1 DE 102012205568 A DE102012205568 A DE 102012205568A DE 102012205568 A DE102012205568 A DE 102012205568A DE 102012205568 A1 DE102012205568 A1 DE 102012205568A1
Authority
DE
Germany
Prior art keywords
rotor
pump housing
pump
dosing pump
rotor shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE102012205568A
Other languages
English (en)
Inventor
Dan Barron
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Syntegon Pouch Systems AG
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Priority to DE102012205568A priority Critical patent/DE102012205568A1/de
Priority to PCT/EP2013/052988 priority patent/WO2013149750A1/de
Priority to ES13704120T priority patent/ES2735004T3/es
Priority to CN201380018525.1A priority patent/CN104246219B/zh
Priority to BR112014024399-9A priority patent/BR112014024399B1/pt
Priority to EP13704120.8A priority patent/EP2834521B1/de
Priority to US14/390,818 priority patent/US10060431B2/en
Publication of DE102012205568A1 publication Critical patent/DE102012205568A1/de
Ceased legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/24Rotary-piston machines or pumps of counter-engagement type, i.e. the movement of co-operating members at the points of engagement being in opposite directions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B13/00Pumps specially modified to deliver fixed or variable measured quantities
    • F04B13/02Pumps specially modified to deliver fixed or variable measured quantities of two or more fluids at the same time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/12Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/12Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C2/123Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with radially or approximately radially from the rotor body extending tooth-like elements, co-operating with recesses in the other rotor, e.g. one tooth
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/12Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C2/126Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with radially from the rotor body extending elements, not necessarily co-operating with corresponding recesses in the other rotor, e.g. lobes, Roots type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D1/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D1/003Having contrarotating parts

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)

Abstract

Die Erfindung betrifft eine Dosierpumpe (1) aus Kunststoff mit zwei über Zahnräder (11) miteinander gekoppelten, gegenläufig treibbaren Rotoren (10), die in einem Pumpengehäuse (5), das mit Ansaugstutzen (6) und Auslassstutzen (7) versehen ist, gelagert sind, wobei jeder Rotor (10) eine Rotorwelle (12) aufweist, deren Rotorwellenenden (15) in den Wänden (8, 4) des Pumpengehäuses (5) lagern. Jeder Rotor (10) weist zwei diametral an der Rotorwelle (12) angeordnete Rotorflügelwände (13) auf, an deren peripheren Enden jeweils ein teilzylindrischer Rotorflügelschuh (14) angeformt ist, wobei die Rotorflügelschuhe (14) an den zylindrischen Innenwandbereichen des Pumpengehäuses (5) einerseits, und an den Rotorflügelwellen (13) des benachbarten Rotors (10) andererseits gleitend und dichtend anliegen.

Description

  • Die vorliegende Erfindung betrifft eine Dosierpumpe aus Kunststoff mit zwei über Zahnräder miteinander gekoppelten, gegenläufig treibbaren Rotoren, die in einem Pumpengehäuse, das mit Ansaugstutzen und Auslassstutzen versehen ist, gelagert sind, wobei jeder Rotor eine Rotorwelle aufweist, deren Rotorwellenenden in den Wänden des Pumpengehäuses lagern.
  • Dosierpumpen sind in allen Grössen und Bautypen bekannt. Als Dosierpumpen aus Kunststoff sind insbesondere handbetätigte Kolbenpumpen bekannt, wie sie auf Seifenspendern für Flüssigseifen bekannt sind oder wie hier besonders von Interesse auch im Gastgewerbe, wo beispielsweise im Schnellimbissbetrieben Senf, Ketchup oder auch Kaffeesahne mit solchen handbetriebenen Kolbenpumpen dosiert abgegeben werden. Trotz diesen Dosierpumpen variiert die abgegebene Menge jedoch relativ stark, da bei den Dosierpumpen insbesondere solche wie hier gerade beschrieben, bei jeder Betätigung eigentlich der Hubweg vollständig genutzt werden sollte, doch ist dies meist nicht der Fall. Stattdessen werden oft ein, zwei oder drei Kurzhube durchgeführt und entsprechend variiert die Menge sehr stark. Solange diese Menge lediglich als Beigabe zu einem Hamburger abgegeben wird, spielt dies nur eine geringe Rolle. Dort aber, wo solche Dosierpumpen auch benutzt werden, um einem Rezept eine spezielle Menge eines flüssigen Lebensmittels beizugeben, wird durch unkorrekte Betätigung der Geschmack variiert, was von den Kunden nicht immer geschätzt wird.
  • Zwar sind verschiedene andersartige Pumpen durchaus bekannt, insbesondere auch Rotorpumpen, doch sind diese meist als relativ hochpräzise, aus Metall gefertigte Dosierpumpen gestaltet und dies ist in der Lebensmittelindustrie, wo grosse Mengen dosiert abgegeben werden müssen, auch erforderlich. Für die gewerbliche Anwendung werden jedoch meist sehr preiswerte Einwegdosierpumpen meist kostenlos abgegeben. Entsprechend müssen solche Dosierpumpen aus Kunststoff gefertigt sein, einen möglichst einfachen Aufbau haben und zuverlässig wirken.
  • Die hier interessierende Dosierpumpe aus Kunststoff soll insbesondere konzipiert sein für Lebensmittel, die in sogenannten Schlauchbeuteln abgegeben werden oder anderen Weichverpackungen aus Kunststofffolien, wobei in einer hier bevorzugten Ausführungsform die Dosierpumpe speziell hierfür angepasst ist, wie in Anspruch 12 offenbart.
  • Viele flüssige Lebensmittel enthalten auch grössere Feststoffanteile. Typische Beispiele für solche flüssige Lebensmittel sind beispielsweise Sauce Tartare, Senfsaucen mit Pickles, Vanillesauce mit Schokolade oder Mandelsplittern usw. Mit den heute üblichen Dosierpumpen lassen sich solche Festflüssiglebensmittel nicht dosiert abgeben. Insbesondere mit sogenannten Zahnradpumpen wie eine solche beispielsweise in der FR-2313971 dargestellt ist, lässt sich dies kaum realisieren. Bei grösseren Feststoffpartikeln, wie beispielsweise Mandelstiften, werden diese durch die Rotoren zermahlen oder die Rotoren blockieren. Entsprechend kommen für solche Dosierpumpen insbesondere Dosierpumpen in Frage, bei denen die Rotoren zwei oder mehrflügelige Wälzkörper aufweisen. Beispiele solcher Pumpen sind aus der US 3054417 bekannt, wo eine Dosierpumpe für flüssige Medien zum beimischen weiterer Flüssigkeiten gezeigt ist, wobei hier jeder Rotor drei Flügelarme aufweist und diese Flügelarme sich aneinander abwälzen und das Medium so weitertransportieren. Bei solchen Pumpen ist zwischen dem Gehäuse und den einzelnen Rotorflügeln genügend Raum, um auch Flüssigkeiten mit Feststoffteilen zu transportieren. Hier sind weniger die grösseren Feststoffteile ein Problem, als vielmehr die kleineren Feststoffteile, die an den sich gegenseitig aneinander abwälzenden Rotorflügeln kleben bleiben und beim Abwälzvorgang vollständig zerquetscht werden, worauf sich ein Belag bilden kann, der die Förderleistung reduziert und sogar zu Verstopfungen führen kann.
  • Dasselbe trifft auch zu auf eine Dosierpumpe gemäss der WO 95/24556 , bei der lediglich zweiflügelige Rotoren dargestellt sind, die aber ebenfalls sowohl aneinander als auch an der Gehäusewandung gegenseitig abwälzen.
  • Es ist folglich die Aufgabe der vorliegenden Erfindung, eine verbesserte Dosierpumpe zu schaffen, die eine relativ grosse Förderleistung hat und besonders geeignet ist zum Fördern von Feststoff-Flüssiggemischen, ohne dabei die vorher beschriebenen Nachteile zu besitzen.
  • Diese Aufgabe löst eine Dosierpumpe aus Kunststoff der eingangs genannten Art, die sich dadurch auszeichnet, dass jeder Rotor zwei diametral an der Rotorwelle angeordnete Rotorflügelwände aufweist, an deren peripheren Enden jeweils eine teilzylindrische Wand als Rotorflügelschuh angeformt ist, wobei die Rotorflügelschuhe an den zylindrischen Innenwandbereichen des Pumpengehäuses einerseits und an den Rotorwellen des benachbarten Rotors andererseits gleitend und dichtend anliegen.
  • Auf einer besonders bevorzugten Ausführungsform weist jeder Rotorflügelschuh auf der Aussenseite der teilzylindrischen Wand mindestens eine parallel zur Rotorachse verlaufende Dichtschabkante aufweist, die nahe der in Drehrichtung vorderen Kante der jeweiligen teilzylindrischen Wand des Rotorflügelschuhes angeordnet ist. Hierdurch wird sichergestellt, dass sich an der Gehäusewand keine Ablagerungen aufbauen können.
  • Weitere vorteilhafte Ausgestaltungsformen des Erfindungsgegenstandes gehen aus den abhängigen Ansprüchen hervor und deren Bedeutung und Wirkungsweise sind in der nachfolgenden Beschreibung mit Bezug auf die anliegende Zeichnung beschrieben.
  • In der Zeichnung ist ein bevorzugtes Ausführungsbeispiel des Erfindungsgegenstandes dargestellt. Es zeigt:
  • 1 Eine bevorzugte Verwendung der erfindungsgemässen Dosierpumpe angebracht auf einem Schlauchbeutel.
  • 2 zeigt eine perspektivische Ansicht der Dosierpumpe mit dem Befestigungsstutzen, wobei die lösbare Pumpengehäusewand entfernt worden ist.
  • 3 zeigt nochmals die Dosierpumpe in einer Seitenansicht, wiederum unter Weglassung der lösbaren Pumpengehäusewand, während
  • 4 die beiden Rotoren für sich allein in korrekter Relativlage zueinander in perspektivischer Ansicht dargestellt sind.
  • 5 stellt eine perspektivische Teilansicht des Pumpengehäuses für sich allein und
  • 6 die lösbare Pumpengehäusewand in perspektivischer Ansicht mit Blick auf dessen Innenseite dar.
  • 7 zeigt schliesslich den Einlassstutzen der Dosierpumpe mit einem Öffnungsmittel und einem Befestigungsstutzen mit Flansch zur Schweissverbindung mit einem Schlauchbeutel.
  • In der 1 ist symbolisch eine bevorzugte Anwendung der erfindungsgemässen Dosierpumpe, die gesamthaft mit 1 bezeichnet ist, auf einem Schlauchbeutel 2 dargestellt. Die Dosierpumpe 1 ist auf dem Schlauchbeutel 2 mittels einem Befestigungsstutzen 3 der mit einem Flansch 4 versehen ist auf dem Schlauchbeutel 2 gehalten. Die Verbindung des Flansches 4 mit dem Schlauchbeutel 2 erfolgt bevorzugterweise durch Ultraschallschweissung.
  • Die Dosierpumpe selbst besitzt ein Pumpengehäuse 5 mit einem Ansaugstutzen 6 und einem Auslassstutzen 7. Der Ansaugstutzen 6 ist schraubverbunden mit dem Befestigungsstutzen 3. Die Dosierpumpe selbst ist hier mit Blick auf eine feste Stirnwand 8 des Pumpengehäuses 5 gezeigt, wobei hier ein Rotorwellenende 15 mit einem Antriebskupplungsteil 16 versehen durch die erwähnte feste Stirnwand 8 hindurchragt und man das Antriebskupplungsteil 16 erkennt. Das Antriebskupplungsteil dient dazu, formschlüssig mit einem hier nicht dargestellten Antriebsmittel verbunden zu werden.
  • In der 2 ist die Dosierpumpe 1 mit dem Befestigungsstutzen für sich allein dargestellt. In dieser perspektivischen Ansicht blickt man schräg von oben auf den erwähnten Flansch 4 und erkennt Öffnungsmittel 17, die hier als Perforier- und Schneidezähne ausgebildet sind und in dieser Lage vor der Erstbenutzung noch vollständig innerhalb des Ansaugstutzens 6 liegen. Vor der Erstbenutzung wird man das Pumpengehäuse 5 mit seinem Ansaugstutzen 6 in dem Befestigungsstutzen 3 bis zu einem Anschlag einschrauben, wobei die erwähnten Öffnungsmittel 17 ein aseptisch geschlossenes Behältnis, bevorzugterweise einen Schlauchbeutel aus Kunststofffolie, aufschneiden. In der hier dargestellten Transportlage der Dosierpumpe 1 ist zudem der Auslassstutzen 7 mit einem Verschlussdeckel 18 versehen, der sicherstellt, dass während des Transportes und der Lagerung keine Fremdstoffe oder Fremdpartikel in die Dosierpumpe gelangen können.
  • In der 2 ist das Pumpengehäuse 5 offen dargestellt. Während man in der 1 wie bereits erwähnt auf die feste Stirnwand 8 des Pumpengehäuses 5 blickt, ist hier die Dosierpumpe 1 um 180° gedreht dargestellt und man blickt auf jene Seite der Dosierpumpe 1 mit einer lösbaren Stirnwand 9. Diese lösbare Stirnwand 9 ist seitlich versetzt beziehungsweise gelöst gezeigt. Die lösbare Stirnwand 9 kann auch als Pumpengehäusedeckel bezeichnet werden. Man blickt in dieser Figur auf die Aussenseite des Pumpengehäusedeckels und erkennt nach außen vorstehende geschlossene Lagerbuchsen 19, die auf der Innenseite die Rotorwellenende 15 aufzunehmen vermögen. Die nach aussen geschlossenen Lagerbuchsen 19 sind mit Versteifungsrippen 20 auf der Aussenseite der lösbaren Stirnwand 9 stabilisiert gehalten.
  • In der 3 ist die Dosierpumpe 1 in der Seitenlage gezeigt, jedoch in der gleichen Benutzungslage wie in 2, jedoch unter Weglassung der lösbaren Stirnwand des Pumpengehäuses 5. In dieser Ansicht erkennt man deutlich, die beiden im Pumpengehäuse 5 gelagerten Rotoren 10, an denen bevorzugterweise einstückig Zahnräder 11 angeformt sind, die bewirken, dass die beiden Rotoren, wenn einer der beiden Rotoren angetrieben wird, sich gegenläufig bewegen. Bezüglich der exakten Ausgestaltung der beiden Rotoren 10 wird auf die nachfolgende 4 verwiesen. In der 3 erkennt man, dass jeder Rotor mit einer Rotorwelle 12 versehen ist, wobei man hier auf die Rotorwellenenden 15 blickt, und wobei an den Rotorwellen 12 jeweils zwei einander diametral gegenüberstehende Rotorflügelwände 13 angeformt sind. An den peripheren Enden der Rotorflügelwände 13 ist jeweils ein Rotorflügelschuh 14 angeformt. Jeder Rotorflügelschuh besitzt eine teilzylindrische Form, die dem zylindrischen Teil des Pumpengehäuses 5 in der Krümmung angepasst ist. Wie hier ersichtlich liegt jeder Rotorflügelschuh 14 ständig entweder auf der Innenseite des Pumpengehäuses an oder an der Rotorwelle 12 des benachbarten Rotors an.
  • In der 4 ist nun detailliert die Gestaltung der beiden Rotoren erkennbar. Diese sind für sich allein zwar in einer korrekten Relativlage wie im Einbau vorgesehen dargestellt, jedoch unter Weglassung des Pumpengehäuses 5. Die bereits im Zusammenhang mit der 3 erwähnte Teile, nämlich die Rotorwelle 12 bzw. die entsprechenden Rotorwellenenden 15 sind hier nicht nochmals bezeichnet, um so die Fig. nicht unnötig zu belasten. Die spezielle Ausgestaltungsform der Rotorflügelschuhe 14 ist in dieser Figur besonders deutlich ersichtlich. Die Rotorschuhe 14 sind wie bereits erwähnt an den peripheren Enden der Rotorflügelwände 13 einstückig angeformt. Die Rotorflügelschuhe haben eine teilzylindrische Aussenfläche 21. Der Krümmungsradius dieser Aussenfläche entspricht der Distanz zwischen der Achse A, welche die Rotorwelle 12 mittig in deren Längsrichtung verlaufend durchsetzt und der Aussenfläche 21 der Rotorflügelschuhe.
  • Die erfindungsgemässe Dosierpumpe wird bevorzugterweise mindestens praktisch so gestaltet, dass die Pumpe die Verbindung zwischen Ansaugstutzen und Auslassstutzen dichtet. Hierzu weist die Pumpe bzw. deren Rotoren und das Pumpengehäuse 5 eine Vielzahl von unterschiedlichen Dichtelementen auf. Diese Dichtelemente wirken aber gleichzeitig auch reinigend und verhindern Ablagerungen im Pumpengehäuse, die zu einer Qualitätsminderung und zu Undichtigkeiten sowie im schlimmsten Fall zu Blockierungen der Pumpe führen können.
  • Entsprechend weisen die Rotorflügelschuhe 14 zumindest in Drehrichtung nahe der in Drehrichtung vorderen Kante eine Dichtschabkante 23 auf. Diese Dichtschabkante 23 hat im Wesentlichen die Form einer Wulst, die auf der erwähnten Aussenfläche 21 parallel zur Rotorwelle 12 verläuft. Wie der Name sagt, dient die Dichtschabkante 23 einerseits dazu, zwischen der inneren zylindrischen Wand Teile des Pumpengehäuses 5 und dem Rotor 10 eine Dichtung zu bilden, gleichzeitig aber soll diese Dichtschabkante 23 durch seine schabende Wirkung auch die Bildung von Ablagerungen vermeiden. Bevorzugterweise ist jeder Rotorflügelschuh 14 mit zwei Dichtschabkanten 23 versehen, nämlich sowohl in der Richtung der vorlaufenden Endkante 22, wie auch nahe der nachlaufenden Endkante 22. Diese Kanten werden beide Male als Endkante 22 bezeichnet, da bevorzugterweise beide Rotoren 10 absolut identisch gestaltet werden, um so lediglich eine Spritzgussform zu benötigen. Dies hat auch den Vorteil, dass bei gleicher Gestaltung der beiden Rotoren auch bei der Montage keine Fehlerquelle entsteht.
  • Die Dichtschabkante 23, die bevorzugterweise eine im Querschnitt etwa dreieckige Form aufweist führt dazu, dass die Aussenfläche 21 nicht mehr vollständig an der Innenwand des Pumpengehäuses 5 anliegt. Es bedingt aber auch, dass die Rotorflügelschuhe 14 im äusseren Bereich verformt werden. Um diese Verformung zu erleichtern und damit einen federnden Anlagedruck der Dichtschabkanten 23 zu erreichen sind auf der Innenfläche 24 Gelenkrillen 25 angebracht. Diese Gelenkrillen 25 befinden sich näher bei den Rotorflügelwänden 13 als die auf der gegenüberliegenden Seite angeordneten Dichtschabkanten 23. Die Gelenkrillen 25 lassen somit eine federnde gelenkige Bewegung der entsprechenden Endkanten 22 schwenkbar um die Gelenkrille 25 zu. Sind an beiden Enden der Rotorflügelschuhe auf den Aussenflächen 21 Dichtschabkanten 23 angeformt, so bringt man selbstverständlich auf beiden Seiten der Innenfläche 24 entsprechende Gelenkrillen 25 an.
  • In der 4 erkennt man des Weiteren, dass die Rotorflügelwände 13 Stirnflächen 26 besitzen. Auf den Stirnflächen 26, die im eingebauten Zustand der Rotoren im Pumpengehäuse 5 zur lösbaren Stirnwand 25 bzw. zum Pumpengehäusedeckel hin zu liegen kommen, sind mittig von den Rotorwellenenden bis zur Aussenfläche 21 der Rotorflügelschuhe sich erstreckend jeweils eine Dichtlippe 27 angeordnet. Auf der gegenüberliegenden Stirnseite, die hier nicht sichtbar ist, liegen die Zahnräder mit diesen Stirnflächen einstückig verbunden an. Hier wird man solche Dichtlippen an den entsprechenden Stirnflächenteilbereichen nur vom entsprechenden Zahnrad bis zur Aussenfläche 21 der Rotorflügelschuhe verlaufend anbringen.
  • Damit auch die Rotorflügelschuhe 14 gegenüber der Rotorwelle 12 gedichtet sind, sind auch auf der Rotorwelle 12 Längsabstreifrippen 28 angebracht. Diese Längsabstreifrippen 28 verlaufen parallel zur Achse A der Rotorwelle. Im Prinzip genügt es dabei, auf jeder Rotorwelle je eine Längsabstreifrippe 28 anzubringen, doch werden bevorzugterweise zwei solche Längsabstreifrippen jeweils auf derselben Seite angebracht, so dass der Bereich zwischen zwei Rotorflügelwänden 13 etwa gedrittelt wird. Diese Längsabstreifrippen 28 wirken nicht nur dichtend, sondern reinigen auch die Rotorflügelschuhe 14, an deren Aussenseite 21 von eventuell sich dort bildenden Ablagerungen. Durch diese konstruktiven Merkmale wird praktisch eine selbstreinigende Dosierpumpe gebildet.
  • In der 5 ist das Pumpengehäuse 5 für sich allein dargestellt. Der Ansaugstutzen 6 und der Auslassstutzen 7 sind nur noch ansatzweise ersichtlich. Auch bei dieser Lösung ist wiederum der Pumpengehäusedeckel, bzw. die lösbare Stirnwand des Pumpengehäuses, entfernt. Man blickt somit auf die Innenseite der festen Stirnwand 8 des Pumpengehäuses. Hierin sind zweite Lagerhülsen 29, 30 eingeformt, wobei die eine zweite Lagerhülse 29 geschlossen gestaltet ist, und die andere zweite Lagerhülse 30 durchgehend nach aussen offen ist. In dieser offenen Lagerhülse 30 ist bevorzugterweise eine umlaufende Dichtlippe 31 mit geringerer Höhe eingeformt. Es können aber auch mehrere solche umlaufende Dichtlippen 31 vorhanden sein und so praktisch eine Art Labyrinthdichtung bilden.
  • Die Rotoren 10 haben somit auf ihren Rotorwellen 12 auf beiden Seiten Rotorwellenenden 15, die als Rotorwellenzapfen gestaltet sind. Die Rotorwellenzapfen auf Seite des Pumpengehäusedeckels 9 haben einen geringeren Durchmesser, während die Rotorwellenenden auf der anderen Seite einen wesentlich grösseren Durchmesser haben. Da aber wie bereits erwähnt bevorzugterweise die beiden Rotoren identisch gestaltet sind, weisen auch beide Rotoren an jenem Rotorwellenende mit dem grösseren Durchmesser einen sogenannten Antriebskupplungsteil 16 auf, der bereits mit Bezug auf die 1 beschrieben wurde. Während in der 1 links die offene Lagerhülse 30 angeordnet ist und man somit dort den Antriebskupplungsteil 16 erkennt, ist in der 1 rechts die geschlossene Lagerhülse 29 dargestellt. In der 5, in der man das Pumpengehäuse nun von der Innenseite sieht, ist folglich die geschlossene, zweite Lagerhülse 29 links und die zweite, offene Lagerhülse 30 rechts erkennbar. Lediglich in der zweiten, offenen Lagerhülse 30 wird man die entsprechende umlaufende Dichtlippe 31 anbringen.
  • In der 6 ist nun die lösbare Stirnwand 9 bzw. der Pumpengehäusedeckel 9 für sich allein dargestellt. Man erkennt am umlaufenden Rand mehrere Federzungen 32, die aussen am Pumpengehäuse 5 im geschlossenen Zustand des Pumpengehäusedeckels sich am Einrastmittel 33 mit entsprechenden Nocken 34 einhaken. In der 2 ist eine alternative Form zur Befestigung der lösbaren Stirnwand 9 dargestellt. Hier sind auf der Innenseite des Pumpengehäusedeckels 9 zwei Federzungen angeformt, die wesentlich stabiler gestaltet sind und praktisch als Verdrängungskörper ausgebildet sind, der in jenem Bereich in das Pumpengehäuse eindringt, der von den beiden Rotoren nicht erfasst wird. Hier ist es selbstverständlich auch möglich, am Rotorgehäuse entsprechende Einrastmittel vorzusehen. Damit wird es auch in jenem Randbereich weitgehend verunmöglicht, dass sich Ablagerungen bilden können. Weiter gegen innen hin sind die Öffnungen von Ansaugstutzen 6 und Auslassstutzen 7 vorhanden, wo sich ohnehin keine Ablagerungen bilden können. Diese etwas stabileren Federzungen 32 können entsprechend Einrastmittel aufweisen, die hier nicht ersichtlich sind und die statt hinter Nocken hinter den Kanten der Innenseite der Einsaugstutzen 6 bzw. Auslassstutzen 7 eingreifen können.
  • Wie bereits erwähnt sind auch in der lösbaren Stirnwand 9 Lager eingeformt. Diese werden hier jedoch als geschlossene Lagerbuchsen 19 bezeichnet. Da diese Lagerbuchsen 19 geschlossen sind, sind hier keine zusätzlichen Dichtmittel erforderlich. Der Durchmesser dieser geschlossenen Lagerbuchsen 19 ist wesentlich kleiner als der Durchmesser der beiden Lagerhülsen 29 und 30. In diesen geschlossenen Lagerbuchsen 19 greifen die Rotorwellenenden 15 ein, die als Lagerzapfen 30 gestaltet sind, wie dies am deutlichsten in der 4 ersichtlich ist.
  • Schliesslich wird auch auf die 7 verwiesen, in der man den Befestigungsstutzen 3 mit dem Flansch 4 getrennt vom Einsaugstutzen 6 dargestellt erkennt. Hier sind auch die Öffnungsmittel 17 deutlich ersichtlich, die einstückig am Ansaugstutzen 6 angeformt sind. Der Ansaugstutzen 6 hat zudem ein Aussengewinde 36. Diese Aussengewinde 36 ist passend zum Innengewinde 37 im Befestigungsstutzen 3.
  • Mit der hier beschriebenen Dosierpumpe 1 lassen sich Fluide sowie auch Gemische aus Fluiden und Feststoffen problemlos fördern. Hierbei spielt die Grösse der Feststoffpartikel praktisch keine Rolle, sie müssen selbstverständlich in der Grösse so sein, dass diese geringer als der Abstand zwischen den beiden Rotorwellen ist. Ob aber die Feststoffteile grobkörnig oder feinkörnig sind und somit mehr oder weniger stark zu Ablagerungen neigen spielt keine Rolle. Zum einen werden die Feststoffteile nicht zermahlen und zum anderen werden durch die zuvor beschriebenen Mittel deren Ablagerung am Pumpengehäuse sowie an den Rotorflügelschuhen oder an den Rotorwellen fortwährend abgetragen. Damit ist sichergestellt, dass die Dosierpumpe, die als Einwegdosierpumpe dient, für die erforderliche Lebensdauer immer zuverlässig arbeitet. Da dank der zuvor beschriebenen Konstruktion zudem eine hohe Dichtigkeit zwischen dem Auslassstutzen 7 und dem Schlauchbeutel 2 besteht, bleibt während des gesamten Leervorganges ein praktisch aseptischer Zustand im Schlauchbeutel erhalten. Entsprechend kann das Lebensmittel, welches im vollständig geschlossenen aseptischen Schlauchbeutel angeliefert wird, ohne oder zumindest mit wesentlich weniger Konservierungsmitteln angeboten werden.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • FR 2313971 [0005]
    • US 3054417 [0005]
    • WO 95/24556 [0006]

Claims (14)

  1. Dosierpumpe (1) aus Kunststoff mit zwei über Zahnräder (11) miteinander gekoppelten, gegenläufig treibbaren Rotoren (10), die in einem Pumpengehäuse (5), das mit Ansaugstutzen (6) und Auslassstutzen (7) versehen ist, gelagert sind, wobei jeder Rotor (10) eine Rotorwelle (12) aufweist, deren Rotorwellenenden (15) in den Wänden (8, 4) des Pumpengehäuses (5) lagern, dadurch gekennzeichnet, dass jeder Rotor (10) zwei diametral an der Rotorwelle (12) angeordnete Rotorflügelwände (13) aufweist, an deren peripheren Enden jeweils ein teilzylindrischer Rotorflügelschuh (14) angeformt ist, wobei die Rotorflügelschuhe (14) an den zylindrischen Innenwandbereichen des Pumpengehäuses (5) einerseits, und an den Rotorflügelwellen (13) des benachbarten Rotors (10) andererseits gleitend und dichtend anliegen.
  2. Dosierpumpe (1) nach Anspruch 1, dadurch gekennzeichnet, dass auf jeder Rotorwelle (12) ein Zahnrad (11) einstückig angeformt ist.
  3. Dosierpumpe (1) nach Anspruch 1, dadurch gekennzeichnet, dass das Pumpengehäuse (5) eine fest mit dem Pumpengehäuse (5) verbundene (8) und eine damit lösbare Stirnwand (9) aufweist, wobei mindestens ein Rotorwellenende (15) einen das Pumpengehäuse (5) durchsetzenden Antriebskupplungsteil (16) aufweist, der die fest mit dem Pumpengehäuse (5) verbundene Stirnwand durchsetzt.
  4. Dosierpumpe (1) nach Anspruch 3, dadurch gekennzeichnet, dass beide Rotoren (10) identisch sind und beide somit einen Antriebskupplungsteil (16) aufweisen, wobei der eine Antriebskupplungsteil (16) in einer zweiten, offenen Lagerhülse (30) und der andere in einer nach aussen geschlossenen Lagerhülse (29) lagert.
  5. Dosierpumpe (1) nach Anspruch 1, dadurch gekennzeichnet, dass jeder Rotorflügelschuh (14) auf seiner Aussenfläche (21) mindestens eine parallel zur Rotorachse (A) verlaufende Dichtschabkante (23) aufweist, die nahe der in Drehrichtung Endkante (22) des jeweiligen Rotorflügelschuhs (14) angeordnet ist.
  6. Dosierpumpe (1) nach Anspruch 5, dadurch gekennzeichnet, dass jeder Rotorflügelschuh (14) parallel zur Rotorachse (A) verlaufende nahe sowohl der in Dreh- als auch in Gegendrehrichtung vorhandene Endkante (22) je eine Dichtschabkante (23) angeordnet ist.
  7. Dosierpumpe (1) nach den Ansprüchen 5 oder 6, dadurch gekennzeichnet, dass im Bereich zwischen jeder Dichtschabkante(23) und der Rotorflügelwand (13) auf der Innenfläche (24) des Rotorflügelschuhes (14), also auf der der Dichtschabkante (13) abgelegenen Seite, eine Gelenkrille (25) angeordnet ist.
  8. Dosierpumpe (1) nach Anspruch 4, dadurch gekennzeichnet, dass in der zweiten offenen Lagerhülse (30) mindestens eine umlaufende Dichtlippe (31) einstückig angeformt ist.
  9. Dosierpumpe (1) nach Anspruch 2, dadurch gekennzeichnet, dass an den Rotorflügelwänden (13) an dessen, den Zahnrädern (11) abgelegenen Stirnseiten (26) mindestens eine Dichtlippe(27) zur dichtenden Anlage an der lösbaren Stirnwand (9) des Pumpengehäuses (5) vorgesehen sind.
  10. Dosierpumpe (1) nach Anspruch 1, dadurch gekennzeichnet, dass an jeder Rotorwelle (12) mindestens eine radial nach aussen gerichtete und parallel zur Rotorwellenachse (A) verlaufende Längsabstreifrippe (28) angeordnet ist.
  11. Dosierpumpe (1) nach Anspruch 10, dadurch gekennzeichnet, dass zwischen den zwei diametral verlaufenden Rotorflügelwänden (13) auf beiden Seiten der Rotorwelle (12) zwei parallele Längsabstreifrippen (28) angeordnet sind.
  12. Dosierpumpe (1) nach Anspruch 1, dadurch gekennzeichnet, dass der Ansaugstutzen (6) mit schneidendem und/oder perforierendem Öffnungsmittel (17) und einem auf eine Behälterwand aufschweissbarem Befestigungsstuten (3) mit Flansch (4) versehen ist.
  13. Dosierpumpe (1) nach Anspruch 12, dadurch gekennzeichnet, dass der Auslassstutzen (7) mit einem Verschlussdeckel (18) versehen ist.
  14. Dosiervorrichtung (1) nach Anspruch 3, dadurch gekennzeichnet, dass in der lösbaren Stirnwand (9) des Pumpengehäuses (5) für beide Rotoren (10) geschlossene Lagerbuchsen (19) eingeformt sind.
DE102012205568A 2012-04-04 2012-04-04 Dosierpumpe aus Kunststoff Ceased DE102012205568A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
DE102012205568A DE102012205568A1 (de) 2012-04-04 2012-04-04 Dosierpumpe aus Kunststoff
PCT/EP2013/052988 WO2013149750A1 (de) 2012-04-04 2013-02-14 Dosierpumpe aus kunststoff
ES13704120T ES2735004T3 (es) 2012-04-04 2013-02-14 Bomba dosificadora de plástico
CN201380018525.1A CN104246219B (zh) 2012-04-04 2013-02-14 塑料制造的计量泵
BR112014024399-9A BR112014024399B1 (pt) 2012-04-04 2013-02-14 Bomba dosadora feita de plástico
EP13704120.8A EP2834521B1 (de) 2012-04-04 2013-02-14 Dosierpumpe aus kunststoff
US14/390,818 US10060431B2 (en) 2012-04-04 2013-02-14 Metering pump made of plastic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102012205568A DE102012205568A1 (de) 2012-04-04 2012-04-04 Dosierpumpe aus Kunststoff

Publications (1)

Publication Number Publication Date
DE102012205568A1 true DE102012205568A1 (de) 2013-10-10

Family

ID=47714119

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102012205568A Ceased DE102012205568A1 (de) 2012-04-04 2012-04-04 Dosierpumpe aus Kunststoff

Country Status (7)

Country Link
US (1) US10060431B2 (de)
EP (1) EP2834521B1 (de)
CN (1) CN104246219B (de)
BR (1) BR112014024399B1 (de)
DE (1) DE102012205568A1 (de)
ES (1) ES2735004T3 (de)
WO (1) WO2013149750A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2944815A3 (de) * 2014-04-22 2015-12-23 Wen-San Chou Luftkompressor vom gewichtsreduzierungstyp

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013220242A1 (de) * 2013-10-08 2015-04-23 Robert Bosch Gmbh Drehkolbenpumpe aus Kunststoff
DE102015215864A1 (de) * 2015-08-20 2017-02-23 Robert Bosch Gmbh Auslassstutzen mit einem auskragenden Flansch
CN112937946B (zh) * 2021-02-04 2022-06-21 河北嵘盛机械设备制造有限公司 一种灌装机

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3054417A (en) 1956-05-07 1962-09-18 Corvisier Louis Rene Apparatus for mixing liquids in a constant proportion
FR2313971A1 (fr) 1975-06-12 1977-01-07 Elastogran Masch Bau Appareil de melange et de dosage pour matieres plastiques a plusieurs constituants, notamment pour polyurethannes
WO1995024556A1 (de) 1994-03-07 1995-09-14 Alfatechnik Patent Ag Dosieraufsatz

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2226874A5 (en) * 1973-04-20 1974-11-15 Gevel Elisabeth Van De Volumetric pump with paddle type rotors - X-shaped rotors carry protuberances for improved sealing
US5180299A (en) 1992-04-27 1993-01-19 Feuling Engineering, Inc. Roots type supercharger
US6343724B1 (en) * 2000-07-10 2002-02-05 Hygiene Technik Inc. Unitary one-way valve for fluid dispenser
GB2440944B (en) * 2006-08-11 2011-10-12 Itt Mfg Enterprises Inc Rotary lobe pump
TW200848617A (en) * 2007-06-08 2008-12-16 Jaguar Prec Industry Co Ltd Motor direct drive air pump, related applications and manufacturing methods thereof
AU2008203457B2 (en) * 2007-08-01 2011-05-26 Entapack Pty Ltd Opening mechanism for a flexible container
EP2085616B1 (de) * 2008-01-29 2017-03-29 LEONARDO S.p.A. Schmiermittelpumpe
US7905717B2 (en) * 2008-06-09 2011-03-15 Wright Flow Technologies Limited PD pumps with a common gearbox module and varying capacities and easy access to mechanical seals
DE102008045440B4 (de) * 2008-09-02 2017-02-09 Börger GmbH Drehkolben einer Drehkolbenpumpe und Drehkolbenpumpe

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3054417A (en) 1956-05-07 1962-09-18 Corvisier Louis Rene Apparatus for mixing liquids in a constant proportion
FR2313971A1 (fr) 1975-06-12 1977-01-07 Elastogran Masch Bau Appareil de melange et de dosage pour matieres plastiques a plusieurs constituants, notamment pour polyurethannes
WO1995024556A1 (de) 1994-03-07 1995-09-14 Alfatechnik Patent Ag Dosieraufsatz

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2944815A3 (de) * 2014-04-22 2015-12-23 Wen-San Chou Luftkompressor vom gewichtsreduzierungstyp

Also Published As

Publication number Publication date
US10060431B2 (en) 2018-08-28
BR112014024399A2 (de) 2017-06-20
US20150056063A1 (en) 2015-02-26
EP2834521A1 (de) 2015-02-11
CN104246219A (zh) 2014-12-24
CN104246219B (zh) 2016-10-26
BR112014024399B1 (pt) 2022-04-05
WO2013149750A1 (de) 2013-10-10
ES2735004T3 (es) 2019-12-13
EP2834521B1 (de) 2019-04-10

Similar Documents

Publication Publication Date Title
EP3055567B1 (de) Drehkolbenpumpe aus kunststoff
EP1110590B1 (de) Flüssigkeitsfilter mit Ablass für Flüssigkeitsrückstände
WO2013107572A1 (de) Flüssigkeitsfilter und filterelement eines flüssigkeitsfilters
EP2834521B1 (de) Dosierpumpe aus kunststoff
DE1607877B2 (de) Verschlussvorrichtung
EP3352911B1 (de) Spender für flüssige bis pastöse massen
DE202009012158U1 (de) Drehkolbenpumpe
EP3374010B1 (de) Handbetätigbarer inhalator
DE102011054404A1 (de) Spender
DE1773494A1 (de) Umlaufende Fluessigkeitsverdraengungsvorrichtung
EP2981721B1 (de) Dosierpumpe aus kunststoff
EP2785593B1 (de) Fülleinrichtung für eine packmaschine
DE6919905U (de) Entleerungsvorrichtung fuer behaelter.
DE102016101966A1 (de) Schmiermittelspenderkopf, Schmiermittelspender und Applikationselement
DE102011000732B3 (de) Drehkolbenpumpe
DE102018113616A1 (de) Peristaltikpumpe
DE7903111U1 (de) Verschlussanordnung
DE1963681C3 (de) Mehrwegerohrdrehschieber an einer als Dickstoffpumpe verwendbaren Exzenterschneckenpumpe
DE3627723C2 (de)
EP1934481A1 (de) Rotorpumpe
DE102013226130B4 (de) Schmiermittelpumpe
DE202022100208U1 (de) Pumpe mit flexiblem Laufrad
WO2003024827A1 (de) Abgabeverschluss für fliessfähiges gut enthaltende behälter
WO2019243520A1 (de) Zylindereinheit, pumpeneinheit, und sprühgerät
DE2846524C2 (de) Absperr- und Dosiervorrichtung für ein fließfähiges Medium

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R082 Change of representative

Representative=s name: DAUB, THOMAS, DIPL.-ING., DE

R081 Change of applicant/patentee

Owner name: SYNTEGON POUCH SYSTEMS AG, CH

Free format text: FORMER OWNER: ROBERT BOSCH GMBH, 70469 STUTTGART, DE

R082 Change of representative

Representative=s name: DAUB, THOMAS, DIPL.-ING., DE

R002 Refusal decision in examination/registration proceedings
R003 Refusal decision now final