EP2981721B1 - Dosierpumpe aus kunststoff - Google Patents

Dosierpumpe aus kunststoff Download PDF

Info

Publication number
EP2981721B1
EP2981721B1 EP14708057.6A EP14708057A EP2981721B1 EP 2981721 B1 EP2981721 B1 EP 2981721B1 EP 14708057 A EP14708057 A EP 14708057A EP 2981721 B1 EP2981721 B1 EP 2981721B1
Authority
EP
European Patent Office
Prior art keywords
rotor
rotor blade
pump housing
metering pump
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14708057.6A
Other languages
English (en)
French (fr)
Other versions
EP2981721A1 (de
Inventor
Dan Barron
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2981721A1 publication Critical patent/EP2981721A1/de
Application granted granted Critical
Publication of EP2981721B1 publication Critical patent/EP2981721B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/12Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C2/126Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with radially from the rotor body extending elements, not necessarily co-operating with corresponding recesses in the other rotor, e.g. lobes, Roots type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B13/00Pumps specially modified to deliver fixed or variable measured quantities
    • F04B13/02Pumps specially modified to deliver fixed or variable measured quantities of two or more fluids at the same time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C11/00Combinations of two or more machines or pumps, each being of rotary-piston or oscillating-piston type; Pumping installations
    • F04C11/005Combinations of two or more machines or pumps, each being of rotary-piston or oscillating-piston type; Pumping installations of dissimilar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/0003Sealing arrangements in rotary-piston machines or pumps
    • F04C15/0034Sealing arrangements in rotary-piston machines or pumps for other than the working fluid, i.e. the sealing arrangements are not between working chambers of the machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/0057Driving elements, brakes, couplings, transmission specially adapted for machines or pumps
    • F04C15/0061Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/06Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/082Details specially related to intermeshing engagement type machines or pumps
    • F04C2/084Toothed wheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2225/00Synthetic polymers, e.g. plastics; Rubber

Definitions

  • the present invention relates to a metering pump made of plastic with two via gears coupled to each other, rotatably driven rotors, which are mounted in a pump housing which is provided with intake and outlet, each rotor having a rotor shaft whose rotor shaft ends in the walls of the pump housing ,
  • Metering pumps are known in all sizes and types. As metering pumps made of plastic in particular manually operated piston pumps are known, as they are known on soap dispensers for liquid soaps or as here of particular interest in the hospitality industry, where, for example, in fast food companies mustard, ketchup or creamer delivered with such hand-operated piston pumps metered. Despite these metering pumps, however, the quantity delivered varies relatively greatly, since in the case of the metering pumps, in particular those as described here, the stroke should actually be fully utilized with each actuation, but this is usually not the case. Instead, often one, two or three Kurzhube be carried out and varies accordingly, the amount very strong. As long as this amount is given as an addition to a hamburger, this plays only a minor role. However, where such metering pumps are also used to add a special amount of a liquid food to a recipe, the taste is varied by improper operation, which is not always appreciated by customers.
  • the plastic metering pump of interest here should be designed in particular for foods that are dispensed in so-called tubular bags or other soft packaging made of plastic films
  • Many liquid foods also contain larger amounts of solids.
  • Typical examples of such liquid foods are, for example, sauce tartare, mustard sauces with pickles, vanilla sauce with chocolate or almonds, etc.
  • sauce tartare a sauce tartare
  • mustard sauces with pickles a sauce with pickles
  • vanilla sauce with chocolate or almonds etc.
  • gear pumps as such, for example in the FR-2313971 is shown, this can hardly be realized.
  • For larger solid particles, such as almond pins they are ground by the rotors or block the rotors.
  • dosing pumps are suitable for such dosing pumps, in particular in which the rotors have two or more rolling elements.
  • Examples of such pumps are from the US 3054417 where a dosing pump for liquid media for admixing other liquids is shown, in which case each rotor has three vane arms and these vane arms roll against each other and so on transport the medium.
  • there is enough between the housing and the individual rotor blades Space to transport liquids with solid particles.
  • solid particles are less the larger solid particles a problem, but rather the smaller solid parts that stick to the mutually rolling rotor blades and are completely crushed during the rolling process, whereupon a coating can form, which reduces the flow rate and can even lead to blockages.
  • Another rotary piston pump is out of the EP-1 892 417 known. However, this is designed as an insert for an outer metallic housing, but is created for one-way use and has a plastic housing.
  • the gear transmission with which the correct relative position of the two rotors is ensured, is part of a arranged outside of the actual pump gear and not part of the intended for disposable parts.
  • the intermeshing rotors in operation have concave recesses, but they are not shaped in such a way that the rotary piston pump is particularly suitable for products with solids content.
  • the comparatively narrow radii of the concave recesses allow it to occur in these areas deposits that remain in the pump and possibly spoil quickly in the case of food by contact with the outside air.
  • optimization with regard to the achievement of minimal product residues means that the shape of the rotor blade shoes and the concave recesses is designed and matched to one another so that either no or only as few product residues as possible get caught in the concave molding areas or if the product remains stuck in the concave molding areas through the end edges the rotor wing shoes during operation as completely and continuously stripped again and transported on.
  • each rotor has for this purpose part-cylindrical rotor blade shoes and concave indentations whose respective curvatures or radii of curvature are in parts at least approximately equal.
  • the exact curves result from the counter-rotating rolling or combing movements of the two rotors.
  • Fig. 1 is symbolically a preferred application of the inventive metering pump, which is generally designated 1, shown on a tubular bag 2.
  • the metering pump 1 is held on the tubular bag 2 by means of a fastening sleeve 3 which is provided with a flange 4 on the tubular bag 2.
  • the connection of the flange 4 with the tubular bag 2 is preferably carried out by ultrasonic welding.
  • the metering pump itself is shown with a view of a fixed end wall 8 of the pump housing 5, in which case a rotor shaft end 15 with a Drive coupling part 16 provided by the aforementioned solid end wall 8 protrudes and one recognizes the drive coupling part 16.
  • the drive coupling part serves to be positively connected to a drive means, not shown here.
  • the metering pump 1 is shown with the attachment piece on its own.
  • opening means 17 which are formed here as perforating and incisors and in this position are still completely within the intake manifold 6 before the first use.
  • the aforementioned Opening means 17 an aseptically closed container, preferably a tubular bag made of plastic film, cut open.
  • the outlet port 7 is provided with a closure cap 18, which ensures that during transport and storage no foreign matter or foreign particles can get into the metering pump.
  • the pump housing 5 is shown open. While in the Fig. 1 As already mentioned, looking at the fixed end wall 8 of the pump housing 5, here the metering pump 1 is shown rotated by 180 ° and you look at that side of the metering pump 1 with a detachable end wall 9. This detachable end wall 9 is shown laterally offset or released.
  • the detachable end wall 9 can also be referred to as a pump housing cover.
  • the outwardly closed bearing bushes 19 are held stabilized with stiffening ribs 20 on the outside of the detachable end wall 9.
  • the metering pump 1 is shown in the side view, but in the same situation as in Fig. 2 However, with the omission of the detachable end wall 9 of the pump housing 5.
  • the two rotors mounted in the pump housing 5 rotors 10, which preferably integrally gears 11 are formed, which cause the two rotors, if one of the two rotors is driven, move in opposite directions.
  • the exact configuration of the two rotors 10 is based on the following Fig. 4 and 5 directed.
  • Fig. 4 and 5 directed.
  • every rotor is provided with a rotor shaft 12, wherein one looks here on the rotor shaft ends 15, and wherein on the rotor shafts 12 each have two diametrically opposed rotor blade walls 13 are formed.
  • a rotor blade shoe 14 is formed in each case.
  • Each rotor blade has a part-cylindrical shape, which is adapted to the cylindrical part of the pump housing 5 in the curvature. As here (but also from the Fig. 8 ) is visible, each rotor blade 14 is constantly either on the inside of the pump housing or strips with an end edge 22 of the rotor blade 14, a concave indentation 24 of the adjacent rotor.
  • concave recesses 24 on both sides between the Rotor shafts 12 and the rotor wing shoes 14 in the rotor blade walls and the rotor blade shoes 14 formed.
  • the shape of the rotor blade shoes and the indentations with respect to minimal product residues is optimized. Like from the Fig. 4 it can be seen that the curvature of the part-cylindrical rotor blade shoes 14 and the curvature of the concave recesses 24 are at least approximately equal. With this design optimization is to be achieved that in the region of the concave recesses 24 as possible no niches exist, in which material residues could remain undetectable.
  • both rotors 10 are designed absolutely identical, so that only one injection mold is needed for their production. This also has the advantage that with the same design of the two rotors also during assembly no source of error arises.
  • the metering pump according to the invention is preferably designed practically in such a way that the pump seals the connection between intake manifold 6 and outlet connector 7.
  • the pump or its rotors 10 and the pump housing 5 on sealing elements.
  • these sealing elements also purify and prevent deposits in the pump housing, which can lead to a reduction in quality and leaks and, in the worst case, blockages of the pump.
  • the rotor blade walls 13 have end faces 26.
  • the gears 11 are integrally connected to the end faces.
  • Leksabstreifrippen 28 are also mounted on the rotor shaft. These Leksabstreifrippen 28 extend parallel to the axis A of the rotor shaft 12. In principle, it suffices in each case to attach a Leksabstreifrippe 28 on each rotor shaft 12, but preferably two such Leksabstreifrippen are each mounted on the same side. These Lekssabstreifrippen 28 not only act sealing, but also clean the rotor blade 14 on the outside of 21 there may be formed deposits. These constructive features practically a self-cleaning and very low-residue metering pump is formed.
  • Fig. 5 shows for better understanding nor a rotor in a perspective view seen from the gear side. Clearly visible here are the integrally formed gear 11 and the drive coupling part 16.
  • the pump housing 5 is shown by itself.
  • the intake manifold 6 and the outlet 7 are only partially visible.
  • the pump housing cover, or the detachable end wall 9 of the pump housing 5 is removed.
  • Hierin are second bearing sleeves 29, 30 formed, wherein the second bearing sleeve 29 is designed to be closed, and the other second bearing sleeve 30 is open to the outside.
  • a circumferential sealing lip 31 is preferably formed with a lesser height.
  • the rotors 10 have on their rotor shafts 12 on both sides rotor shaft ends 15, which are designed as a bearing pin 35.
  • the bearing pin 35 on the side of the pump housing cover 9 have a smaller diameter, while the bearing pin 35 on the other gear side have a much larger diameter. Since, however, as already mentioned, preferably the two rotors are of identical design, both rotors also have the above-mentioned drive coupling part 16 at that rotor shaft end with the larger diameter, which already has reference to FIG Fig. 1 and 5 has been described. While in the Fig.
  • bearings are molded in the detachable end wall. However, these are referred to here as closed bearing bushes 19. Since these bushings 19 are closed, no additional sealing means are required here.
  • the diameter of these closed bearing bushes 19 is substantially smaller than the diameter of the two bearing sleeves 29 and 30. In these closed bearing bushes 19 engage the rotor shaft ends 15, which are designed as a bearing pin 30, as shown most clearly in the Fig. 4 is apparent.
  • the Fig. 8 shows for further illustration, finally, the Kämm the two rotors 10 in two different angular positions.
  • Analogous to the Figures 2-4 the two rotors on the left side of the picture are in a correct first relative position as shown in the installation. Since the two rotors 10 rotate in opposite directions, their position is shown after a rotation by an angle ⁇ on the right side again in a correct second relative position. It can clearly be seen that the end edges 22 of the rotor blade shoes 14 meshing with the concave recesses 24 of the adjacent rotor.
  • the size of the solid particles plays virtually no role, they must of course be in size so that it is less than the distance between the two rotor shafts. But whether the solid particles are coarse-grained or fine-grained and thus more or less prone to deposits does not matter.
  • the solid parts are not ground, and on the other hand, their deposits on the pump housing and on the rotor wing shoes or on the rotor shafts are continuously removed by the means described above. This ensures that the metering pump, which serves as a disposable metering pump, always works reliably for the required service life.
  • the food which is delivered in the fully closed aseptic tubular bag can be offered without or at least substantially less preservative.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)

Description

  • Die vorliegende Erfindung betrifft eine Dosierpumpe aus Kunststoff mit zwei über Zahnräder miteinander gekoppelten, gegenläufig treibbaren Rotoren, die in einem Pumpengehäuse, das mit Ansaugstutzen und Auslassstutzen versehen ist, gelagert sind, wobei jeder Rotor eine Rotorwelle aufweist, deren Rotorwellenenden in den Wänden des Pumpengehäuses lagern.
  • Dosierpumpen sind in allen Grössen und Bautypen bekannt. Als Dosierpumpen aus Kunststoff sind insbesondere handbetätigte Kolbenpumpen bekannt, wie sie auf Seifenspendern für Flüssigseifen bekannt sind oder wie hier besonders von Interesse auch im Gastgewerbe, wo beispielsweise im Schnellimbissbetrieben Senf, Ketchup oder auch Kaffeesahne mit solchen handbetriebenen Kolbenpumpen dosiert abgegeben werden. Trotz diesen Dosierpumpen variiert die abgegebene Menge jedoch relativ stark, da bei den Dosierpumpen insbesondere solche wie hier gerade beschrieben, bei jeder Betätigung eigentlich der Hubweg vollständig genutzt werden sollte, doch ist dies meist nicht der Fall. Stattdessen werden oft ein, zwei oder drei Kurzhube durchgeführt und entsprechend variiert die Menge sehr stark. Solange diese Menge lediglich als Beigabe zu einem Hamburger abgegeben wird, spielt dies nur eine geringe Rolle. Dort aber, wo solche Dosierpumpen auch benutzt werden, um einem Rezept eine spezielle Menge eines flüssigen Lebensmittels beizugeben, wird durch unkorrekte Betätigung der Geschmack variiert, was von den Kunden nicht immer geschätzt wird.
  • Zwar sind verschiedene andersartige Pumpen durchaus bekannt, insbesondere auch Rotorpumpen, doch sind diese meist als relativ hochpräzise, aus Metall gefertigte Dosierpumpen gestaltet und dies ist in der Lebensmittelindustrie, wo grosse Mengen dosiert abgegeben werden müssen, auch erforderlich. Für die gewerbliche Anwendung werden jedoch meist sehr preiswerte Einwegdosierpumpen meist kostenlos abgegeben. Entsprechend müssen solche Dosierpumpen aus Kunststoff gefertigt sein, einen möglichst einfachen Aufbau haben und zuverlässig wirken.
  • Die hier interessierende Dosierpumpe aus Kunststoff soll insbesondere konzipiert sein für Lebensmittel, die in sogenannten Schlauchbeuteln abgegeben werden oder anderen Weichverpackungen aus Kunststofffolien
    Viele flüssige Lebensmittel enthalten auch grössere Feststoffanteile. Typische Beispiele für solche flüssige Lebensmittel sind beispielsweise Sauce Tartare, Senfsaucen mit Pickles, Vanillesauce mit Schokolade oder Mandelsplittern usw. Mit den heute üblichen Dosierpumpen lassen sich solche Festflüssiglebensmittel nicht dosiert abgeben. Insbesondere mit sogenannten Zahnradpumpen wie eine solche beispielsweise in der FR-2313971 dargestellt ist, lässt sich dies kaum realisieren. Bei grösseren Feststoffpartikeln, wie beispielsweise Mandelstiften, werden diese durch die Rotoren zermahlen oder die Rotoren blockieren. Entsprechend kommen für solche Dosierpumpen insbesondere Dosierpumpen in Frage, bei denen die Rotoren zwei oder mehrflügelige Wälzkörper aufweisen. Beispiele solcher Pumpen sind aus der US 3054417 bekannt, wo eine Dosierpumpe für flüssige Medien zum Beimischen weiterer Flüssigkeiten gezeigt ist, wobei hier jeder Rotor drei Flügelarme aufweist und diese Flügelarme sich aneinander abwälzen und das Medium so weitertransportieren. Bei solchen Pumpen ist zwischen dem Gehäuse und den einzelnen Rotorflügeln genügend Raum, um auch Flüssigkeiten mit Feststoffteilen zu transportieren. Hier sind weniger die grösseren Feststoffteile ein Problem, als vielmehr die kleineren Feststoffteile, die an den sich gegenseitig aneinander abwälzenden Rotorflügeln kleben bleiben und beim Abwälzvorgang vollständig zerquetscht werden, worauf sich ein Belag bilden kann, der die Förderleistung reduziert und sogar zu Verstopfungen führen kann.
  • Dasselbe trifft auch zu auf eine Dosierpumpe gemäss der WO 95/24556 , bei der lediglich zweiflügelige Rotoren dargestellt sind, die aber ebenfalls sowohl aneinander als auch an der Gehäusewandung gegenseitig abwälzen.
  • Eine weitere Kreiskolbenpumpe ist aus der EP-1 892 417 bekannt. Diese ist jedoch als Einsatz für ein äusseres metallisches Gehäuse konzipiert, ist aber für den Einweggebrauch geschaffen und hat ein Gehäuse aus Kunststoff. Das Zahnradgetriebe mit dem die korrekte Relativlage der beiden Rotoren sichergestellt wird, ist Bestandteil eines ausserhalb der eigentlichen Pumpe angeordneten Getriebes und nicht Bestandteil der für den Einweggebrauch vorgesehenen Teile. Die im Betrieb ineinander kämmenden Rotoren weisen zwar konkave Einformungen auf, diese sie sind aber nicht in einer Weise geformt, dass die Kreiskolbenpumpe für Produkte mit Feststoffanteilen besonders geeignet ist. Insbesondere die vergleichsweise engen Radien der konkaven Einformungen lassen es zu, dass es genau in diesen Bereichen zu Ablagerungen kommen kann die in der Pumpe verbleiben und die im Fall von Lebensmitteln durch Kontakt mit der Aussenluft möglicherweise rasch verderben.
  • Es ist folglich die Aufgabe der vorliegenden Erfindung, eine verbesserte Einweg-Dosierpumpe zu schaffen, die eine relativ grosse Förderleistung hat und besonders geeignet ist zum Fördern von Feststoff-Flüssiggemischen, ohne dabei die vorher beschriebenen Nachteile zu besitzen.
  • Diese Aufgabe löst eine Dosierpumpe aus Kunststoff der eingangs genannten Art, die bezüglich der Erzielung minimaler Produktrückstände optimiert wurde und die Merkmale des Anspruchs 1 aufweist.
  • Optimierung bezüglich der Erzielung minimaler Produktrückstände heisst dabei, dass die Formgebung der Rotorflügelschuhe und der konkaven Einformungen so ausgestaltet und aufeinander abgestimmt ist, dass entweder keine oder nur möglichst wenige Produktrückstände in den konkaven Einformungsbereichen hängenbleiben bzw. dass hängengebliebene Produktrückstände in den konkaven Einformungsbereichen durch die Endkanten der Rotorflügelschuhe im Betrieb möglichst vollständig und fortlaufend wieder abgestreift und weiter transportiert werden.
  • In einer bevorzugten Ausführungsform weist jeder Rotor dazu teilzylindrische Rotorflügelschuhe und konkave Einformungen auf, deren jeweilige Krümmungen bzw. Krümmungsradien in Teilen zumindest annähernd gleich gross sind. Die genauen Kurven ergeben sich natürlich aus den gegenläufigen Abwälz- bzw. Kämmbewegungen der beiden Rotoren.
  • Weitere vorteilhafte Ausgestaltungsformen des Erfindungsgegenstandes gehen aus den abhängigen Ansprüchen hervor und deren Bedeutung und Wirkungsweise sind in der nachfolgenden Beschreibung mit Bezug auf die anliegende Zeichnung beschrieben.
  • In den Zeichnungen ist ein bevorzugtes Ausführungsbeispiel des Erfindungsgegenstandes dargestellt. Es zeigt:
  • Fig. 1
    Eine bevorzugte Verwendung der erfindungsgemässen Einweg-Dosierpumpe angebracht auf einem Schlauchbeutel.
    Fig. 2
    zeigt eine perspektivische Ansicht der Einweg-Dosierpumpe von Fig. 1 mit dem Befestigungsstutzen, wobei die lösbare Pumpengehäusewand entfernt worden ist.
    Fig. 3
    zeigt nochmals die Dosierpumpe in einer Seitenansicht, unter Weglassung der lösbaren Pumpengehäusewand, während
    Fig. 4
    die beiden Rotoren für sich allein in korrekter Relativlage zueinander in perspektivischer Ansicht dargestellt sind,
    Fig. 5
    einen einzelnen Rotor in perspektivischer Ansicht von der Zahnradseite her gesehen,
    Fig. 6
    stellt eine perspektivische Teilansicht des Pumpengehäuses für sich allein und
    Fig. 7
    die lösbare Pumpengehäusewand in perspektivischer Ansicht mit Blick auf dessen Innenseite dar.
    Fig. 8
    zeigt die Kämmung der beiden Rotoren in zwei verschiedenen Winkelstellungen.
  • In der Fig. 1 ist symbolisch eine bevorzugte Anwendung der erfindungsgemässen Dosierpumpe, die gesamthaft mit 1 bezeichnet ist, auf einem Schlauchbeutel 2 dargestellt. Die Dosierpumpe 1 ist auf dem Schlauchbeutel 2 mittels einem Befestigungsstutzen 3 der mit einem Flansch 4 versehen ist auf dem Schlauchbeutel 2 gehalten. Die Verbindung des Flansches 4 mit dem Schlauchbeutel 2 erfolgt bevorzugterweise durch Ultraschallschweissung.
  • Die Dosierpumpe selbst besitzt ein Pumpengehäuse 5 mit einem Ansaugstutzen 6 und einem Auslassstutzen 7. Der Ansaugstutzen 6 ist schraubverbunden mit dem Befestigungsstutzen 3. Die Dosierpumpe selbst ist hier mit Blick auf eine feste Stirnwand 8 des Pumpengehäuses 5 gezeigt, wobei hier ein Rotorwellenende 15 mit einem Antriebskupplungsteil 16 versehen durch die erwähnte feste Stirnwand 8 hindurchragt und man das Antriebskupplungsteil 16 erkennt. Das Antriebskupplungsteil dient dazu, formschlüssig mit einem hier nicht dargestellten Antriebsmittel verbunden zu werden.
  • In der Fig. 2 ist die Dosierpumpe 1 mit dem Befestigungsstutzen für sich allein dargestellt. In dieser perspektivischen Ansicht blickt man schräg von oben auf den erwähnten Flansch 4 und erkennt Öffnungsmittel 17, die hier als Perforier- und Schneidezähne ausgebildet sind und in dieser Lage vor der Erstbenutzung noch vollständig innerhalb des Ansaugstutzens 6 liegen. Vor der Erstbenutzung wird man das Pumpengehäuse 5 mit seinem Ansaugstutzen 6 in dem Befestigungsstutzen 3 bis zu einem Anschlag einschrauben, wobei die erwähnten Öffnungsmittel 17 ein aseptisch geschlossenes Behältnis, bevorzugterweise einen Schlauchbeutel aus Kunststofffolie, aufschneiden. In der hier dargestellten Transportlage der Dosierpumpe 1 ist zudem der Auslassstutzen 7 mit einem Verschlussdeckel 18 versehen, der sicherstellt, dass während des Transportes und der Lagerung keine Fremdstoffe oder Fremdpartikel in die Dosierpumpe gelangen können.
  • In der Fig. 2 ist das Pumpengehäuse 5 offen dargestellt. Während man in der Fig. 1 wie bereits erwähnt auf die feste Stirnwand 8 des Pumpengehäuses 5 blickt, ist hier die Dosierpumpe 1 um 180° gedreht dargestellt und man blickt auf jene Seite der Dosierpumpe 1 mit einer lösbaren Stirnwand 9. Diese lösbare Stirnwand 9 ist seitlich versetzt beziehungsweise gelöst gezeigt. Die lösbare Stirnwand 9 kann auch als Pumpengehäusedeckel bezeichnet werden. Man blickt in dieser Figur auf die Aussenseite des Pumpengehäusedeckels und erkennt nach aussen vorstehende geschlossene Lagerbuchsen 19, die auf der Innenseite (siehe dazu auch Fig. 7) die Rotorwellenende 15 aufzunehmen vermögen. Die nach aussen geschlossenen Lagerbuchsen 19 sind mit Versteifungsrippen 20 auf der Aussenseite der lösbaren Stirnwand 9 stabilisiert gehalten.
  • In der Fig. 3 ist die Dosierpumpe 1 in der Seitenansicht gezeigt, jedoch in der gleichen Benutzungslage wie in Fig. 2, jedoch unter Weglassung der lösbaren Stirnwand 9 des Pumpengehäuses 5. In dieser Ansicht erkennt man deutlich, die beiden im Pumpengehäuse 5 gelagerten Rotoren 10, an denen bevorzugterweise einstückig Zahnräder 11 angeformt sind, die bewirken, dass die beiden Rotoren, wenn einer der beiden Rotoren angetrieben wird, sich gegenläufig bewegen. Bezüglich der exakten Ausgestaltung der beiden Rotoren 10 wird auf die nachfolgenden Fig. 4 und 5 verwiesen. In der Fig. 3 erkennt man, dass jeder Rotor mit einer Rotorwelle 12 versehen ist, wobei man hier auf die Rotorwellenenden 15 blickt, und wobei an den Rotorwellen 12 jeweils zwei einander diametral gegenüberstehende Rotorflügelwände 13 angeformt sind. An den peripheren Enden der Rotorflügelwände 13 ist jeweils ein Rotorflügelschuh 14 angeformt. Jeder Rotorflügelschuh besitzt eine teilzylindrische Form, die dem zylindrischen Teil des Pumpengehäuses 5 in der Krümmung angepasst ist. Wie hier (aber auch aus der Fig. 8) ersichtlich liegt jeder Rotorflügelschuh 14 ständig entweder auf der Innenseite des Pumpengehäuses an oder streift mit einer Endkante 22 des Rotorflügelschuhs 14 eine konkave Einformung 24 des benachbarten Rotors.
  • In der Fig. 4 ist nun detailliert die Gestaltung der beiden Rotoren erkennbar. Diese sind für sich allein zwar in einer korrekten Relativlage wie im Einbau vorgesehen dargestellt, jedoch unter Weglassung des Pumpengehäuses 5. Die bereits im Zusammenhang mit der Fig. 3 erwähnte Teile, nämlich die Rotorwelle 12 bzw. die entsprechenden Rotorwellenenden 15 sind hier nochmals bezeichnet. Die spezielle Ausgestaltungsform der Rotorflügelschuhe 14 bzw. der Rotorflügelwände 13 ist in dieser Figur besonders deutlich ersichtlich. Die Rotorflügelschuhe 14 sind wie bereits erwähnt an den peripheren Enden der Rotorflügelwände 13 einstückig angeformt. Die Rotorflügelschuhe 14 haben eine teilzylindrische Aussenfläche 21 mit Endkanten 22. Der Krümmungsradius dieser Aussenfläche entspricht der Distanz zwischen der Achse A, welche die Rotorwelle 12 mittig in deren Längsrichtung verlaufend durchsetzt und der Aussenfläche 21 der Rotorflügelschuhe 14. Weiterhin sind konkave Einformungen 24 beidseits zwischen den Rotorwellen 12 und den Rotorflügelschuhen 14 in die Rotorflügelwände bzw. die Rotorflügelschuhe 14 eingeformt. Die beidseitig identischen konkaven Einformungen 24 gehen in einem rotorwellennahen Bereich in die eigentlichen (relativ schmalen) Rotorflügelwände 13 über.
  • Wie bereits erwähnt, ist die Formgebung der Rotorflügelschuhe und der Einformungen bezüglich minimaler Produktrückstände optimiert. Wie aus der Fig. 4 ersichtlich ist die Krümmung der teilzylindrischen Rotorflügelschuhe 14 und die Krümmung der konkaven Einformungen 24 zumindest annähernd gleich gross. Mit dieser Gestaltungsoptimierung soll erreicht werden, dass im Bereich der konkaven Einformungen 24 möglichst keine Nischen bestehen, in denen Materialrückstände unabstreifbar liegen bleiben könnten.
  • Bevorzugterweise sind zudem beide Rotoren 10 absolut identisch gestaltet, damit lediglich eine Spritzgussform zu deren Herstellung benötigt wird. Dies hat auch den Vorteil, dass bei gleicher Gestaltung der beiden Rotoren auch bei der Montage keine Fehlerquelle entsteht.
  • Die erfindungsgemässe Dosierpumpe wird bevorzugterweise praktisch so gestaltet, dass die Pumpe die Verbindung zwischen Ansaugstutzen 6 und Auslassstutzen 7 dichtet. Hierzu weist die Pumpe bzw. deren Rotoren 10 und das Pumpengehäuse 5 Dichtelemente auf. Diese Dichtelemente wirken aber gleichzeitig auch reinigend und verhindern Ablagerungen im Pumpengehäuse, die zu einer Qualitätsminderung und zu Undichtigkeiten sowie im schlimmsten Fall zu Blockierungen der Pumpe führen können.
  • In der Fig. 4 erkennt man des Weiteren, dass die Rotorflügelwände 13 Stirnflächen 26 besitzen. Auf den Stirnflächen 26, die im eingebauten Zustand der Rotoren im Pumpengehäuse 5 zur lösbaren Stirnwand 9 bzw. zum Pumpengehäusedeckel hin zu liegen kommen, sind mittig von den Rotorwellenenden 15 bis zur Aussenfläche 21 der Rotorflügelschuhe 14 sich erstreckend jeweils eine Dichtlippe 27 angeordnet. Auf der gegenüberliegenden Stirnseite, die hier nicht sichtbar ist (siehe dazu Fig. 5), liegen die Zahnräder 11 mit den Stirnflächen einstückig verbunden an. Hier wird man solche Dichtlippen an den entsprechenden Stirnflächenteilbereichen nur vom entsprechenden Zahnrad bis zur Aussenfläche 21 der Rotorflügelschuhe verlaufend anbringen.
  • Damit auch die Rotorflügelschuhe 14 gegenüber der Rotorwelle 12 gedichtet sind, sind auch auf der Rotorwelle 12 Längsabstreifrippen 28 angebracht. Diese Längsabstreifrippen 28 verlaufen parallel zur Achse A der Rotorwelle 12. Im Prinzip genügt es dabei, auf jeder Rotorwelle 12 je eine Längsabstreifrippe 28 anzubringen, doch werden bevorzugterweise zwei solche Längsabstreifrippen jeweils auf derselben Seite angebracht. Diese Längsabstreifrippen 28 wirken nicht nur dichtend, sondern reinigen auch die Rotorflügelschuhe 14 an deren Aussenseite 21 von eventuell sich dort bildenden Ablagerungen. Durch diese konstruktiven Merkmale wird praktisch eine selbstreinigende und sehr rückstandsarme Dosierpumpe gebildet.
  • Die Fig. 5 zeigt zum besseren Verständnis noch einen Rotor in perspektivischer Ansicht von der Zahnradseite her gesehen. Deutlich erkennbar sind hier das einstückig angeformte Zahnrad 11 sowie das Antriebskupplungsteil 16.
  • In der Fig. 6 ist das Pumpengehäuse 5 für sich allein dargestellt. Der Ansaugstutzen 6 und der Auslassstutzen 7 sind nur noch ansatzweise ersichtlich. Auch bei dieser Ansicht ist wiederum der Pumpengehäusedeckel, bzw. die lösbare Stirnwand 9 des Pumpengehäuses 5, entfernt. Man blickt somit auf die Innenseite der festen Stirnwand 8 des Pumpengehäuses 5. Hierin sind zweite Lagerhülsen 29, 30 eingeformt, wobei die eine zweite Lagerhülse 29 geschlossen gestaltet ist, und die andere zweite Lagerhülse 30 durchgehend nach aussen offen ist. In dieser offenen Lagerhülse 30 ist bevorzugterweise eine umlaufende Dichtlippe 31 mit geringerer Höhe eingeformt. Es können aber auch mehrere solche umlaufende Dichtlippen 31 vorhanden sein und so praktisch eine Art Labyrinthdichtung bilden.
  • Bezugnehmend auf die Figuren 4 und 5 ist ersichtlich, dass die Rotoren 10 auf ihren Rotorwellen 12 auf beiden Seiten Rotorwellenenden 15 haben, die als Lagerzapfen 35 gestaltet sind. Die Lagerzapfen 35 auf Seite des Pumpengehäusedeckels 9 haben einen geringeren Durchmesser, während die Lagerzapfen 35 auf der anderen Zahnradseite einen wesentlich grösseren Durchmesser haben. Da aber wie bereits erwähnt bevorzugterweise die beiden Rotoren identisch gestaltet sind, weisen auch beide Rotoren an jenem Rotorwellenende mit dem grösseren Durchmesser das erwähnte Antriebskupplungsteil 16 auf, das bereits mit Bezug auf die Fig. 1 und 5 beschrieben wurde. Während in der Fig. 1 links die offene Lagerhülse 30 angeordnet ist und man somit dort den Antriebskupplungsteil 16 (das natürlich verschiedenartig gestaltet sein kann) erkennt, ist in der Fig. 1 rechts die geschlossene Lagerhülse 29 dargestellt. In der Fig. 6, in der man das Pumpengehäuse nun von der Innenseite sieht, ist folglich die geschlossene, zweite Lagerhülse 29 links und die zweite, offene Lagerhülse 30 rechts erkennbar. Lediglich in der zweiten, offenen Lagerhülse 30 wird man die erwähnte umlaufende Dichtlippe 31 anbringen.
  • In der Fig. 7 ist nun die lösbare Stirnwand 9 bzw. der Pumpengehäusedeckel für sich allein dargestellt. Man erkennt am umlaufenden Rand mehrere Federzungen 32, die aussen am Pumpengehäuse 5 im geschlossenen Zustand des Pumpengehäusedeckels sich am Einrastmittel 33 mit entsprechenden Nocken 34 einhaken.
  • Wie bereits erwähnt sind auch in der lösbaren Stirnwand 9 Lager eingeformt. Diese werden hier jedoch als geschlossene Lagerbuchsen 19 bezeichnet. Da diese Lagerbuchsen 19 geschlossen sind, sind hier keine zusätzlichen Dichtmittel erforderlich. Der Durchmesser dieser geschlossenen Lagerbuchsen 19 ist wesentlich kleiner als der Durchmesser der beiden Lagerhülsen 29 und 30. In diesen geschlossenen Lagerbuchsen 19 greifen die Rotorwellenenden 15 ein, die als Lagerzapfen 30 gestaltet sind, wie dies am deutlichsten in der Fig. 4 ersichtlich ist.
  • Die Fig. 8 zeigt zur weiteren Veranschaulichung schliesslich noch die Kämmung der beiden Rotoren 10 in zwei verschiedenen Winkelstellungen. Analog zu den Figuren 2-4 sind die beiden Rotoren auf der linken Bildseite in einer korrekten ersten Relativlage wie im Einbau gezeigt. Da die beiden Rotoren 10 gegenläufig rotieren, ist deren Stellung nach einer Drehung um einen Winkel α auf der rechten Bildseite wiederum in einer korrekten zweiten Relativlage dargestellt. Deutlich erkennbar ist, dass die Endkanten 22 der Rotorflügelschuhe 14 die konkaven Einformungen 24 des benachbarten Rotors berührend kämmen. Somit ist verdeutlicht, dass die Endkanten der Rotorflügelschuhe jeweils den Krümmungen der konkaven Einformungen folgen, und zwar wie beabsichtigt in einer Weise, dass allfällige Rückstände in den konkaven Einformungen abgestreift und weiter befördert werden. Weil sich diese Kämmung in Abhängigkeit von anderen konstruktiven Vorgaben für die Einweg-Dosierpumpe möglicherweise nicht immer in idealer Weise erreichen lässt, spricht man bezüglich der Formgebung der Rotorflügelschuhe und der Einformungen von einer Optimierung bezüglich minimaler Produktrückstände. "Optimierung" bedeutet also im mathematischen Sinn, dass eine Zielfunktion minimiert oder maximiert wird.
  • Mit der hier beschriebenen Dosierpumpe 1 lassen sich Fluide sowie auch Gemische aus Fluiden und Feststoffen problemlos fördern. Hierbei spielt die Grösse der Feststoffpartikel praktisch keine Rolle, sie müssen selbstverständlich in der Grösse so sein, dass diese geringer als der Abstand zwischen den beiden Rotorwellen ist. Ob aber die Feststoffteile grobkörnig oder feinkörnig sind und somit mehr oder weniger stark zu Ablagerungen neigen spielt keine Rolle. Zum einen werden die Feststoffteile nicht zermahlen und zum anderen werden durch die zuvor beschriebenen Mittel deren Ablagerung am Pumpengehäuse sowie an den Rotorflügelschuhen oder an den Rotorwellen fortwährend abgetragen. Damit ist sichergestellt, dass die Dosierpumpe, die als Einwegdosierpumpe dient, für die erforderliche Lebensdauer immer zuverlässig arbeitet. Da dank der zuvor beschriebenen Konstruktion zudem eine hohe Dichtigkeit zwischen dem Auslassstutzen 7 und dem Schlauchbeutel 2 besteht, bleibt während des gesamten Leervorganges ein praktisch aseptischer Zustand im Schlauchbeutel erhalten. Entsprechend kann das Lebensmittel, welches im vollständig geschlossenen aseptischen Schlauchbeutel angeliefert wird, ohne oder zumindest mit wesentlich weniger Konservierungsmitteln angeboten werden.
  • Bezugszeichenliste:
    1. 1 Dosierpumpe
    2. 2 Schlauchbeutel
    3. 3 Befestigungsstutzen
    4. 4 Flansch
    5. 5 Pumpengehäuse
    6. 6 Ansaugstutzen
    7. 7 Auslassstutzen
    8. 8 feste Stirnwand des Pumpengehäuses
    9. 9 lösbare Stirnwand des Pumpengehäuses (Pumpengehäusedeckel) A Achse der Rotorwelle
    10. 10 Rotor
    11. 11 Zahnräder
    12. 12 Rotorwelle
    13. 13 Rotorflügelwände
    14. 14 Rotorflügelschuhe
    15. 15 Rotorwellenenden
    16. 16 Antriebskupplungsteil
    17. 17 Öffnungsmittel
    18. 18 Verschlussdeckel
    19. 19 geschlossene Lagerbuchsen
    20. 20 Versteifungsrippen
    21. 21 Aussenfläche der Rotorflügelschuhe
    22. 22 Endkante der Rotorflügelschuhe
    23. 23 nicht verwendet
    24. 24 konkave Einformung
    25. 25 nicht verwendet
    26. 26 Stirnfläche
    27. 27 Dichtlippe
    28. 28 Längsabstreifrippen
    29. 29 zweite Lagerhülsen geschlossen
    30. 30 zweite Lagerhülsen offen
    31. 31 umlaufende Dichtlippe in offener Lagerhülse
    32. 32 Federzungen
    33. 33 Einrastmittel
    34. 34 Nocken
    35. 35 Lagerzapfen
    • α Winkel

Claims (8)

  1. Einweg-Dosierpumpe (1) aus Kunststoff für Produkte mit Feststoffanteilen mit zwei über Zahnräder (11) miteinander gekoppelten, gegenläufig treibbaren Rotoren (10), die in einem Pumpengehäuse (5), das mit Ansaugstutzen (6) und Auslassstutzen (7) versehen ist, gelagert sind, wobei jeder Rotor (10) eine Rotorwelle (12) aufweist, deren Rotorwellenenden (15) in den Wänden (8, 4) des Pumpengehäuses (5) lagern, und wobei jeder Rotor (10) zwei diametral an der Rotorwelle (12) angeordnete Rotorflügelwände (13) aufweist, an deren peripheren Enden jeweils ein teilzylindrischer Rotorflügelschuh (14) angeformt ist, wobei die Rotorflügelschuhe (14) an den zylindrischen Innenwandbereichen des Pumpengehäuses (5) gleitend und dichtend anliegen, und wobei weiterhin die Rotorflügelwände (13) zwischen den Rotorwellen (12) und den Rotorflügelschuhen (14) beidseits konkave Einformungen (24) aufweisen in denen eine Endkante (22) eines Rotorflügelschuhs des benachbarten Rotors zu kämmen vermag, dadurch gekennzeichnet, dass die Formgebung der Rotorflügelschuhe und der Einformungen bezüglich der Erzielung minimaler Produktrückstände optimiert ist indem die Endkanten (22) der Rotorflügelschuhe (14) die konkaven Einformungen (24) des benachbarten Rotors berührend kämmen und dass weiterhin an jeder Rotorwelle (12) mindestens eine radial nach aussen gerichtete und parallel zur Rotorwellenachse (A) verlaufende Längsabstreifrippe (28) angeordnet ist..
  2. Dosierpumpe nach Patentanspruch 1, dadurch gekennzeichnet, dass die Krümmung der teilzylindrischen Rotorflügelschuhe (14) und die Krümmung der konkaven Einformungen (24) zumindest annähernd gleich gross ist.
  3. Dosierpumpe (1) nach Patentanspruch 1 oder 2, dadurch gekennzeichnet, dass auf jeder Rotorwelle (12) ein Zahnrad (11) einstückig angeformt ist.
  4. Dosierpumpe (1) nach einem der Patentansprüche 1 bis 3, dadurch gekennzeichnet, dass das Pumpengehäuse (5) eine fest mit dem Pumpengehäuse (5) verbundene (8) und eine damit lösbare Stirnwand (9) aufweist, wobei mindestens ein Rotorwellenende (15) einen das Pumpengehäuse (5) durchsetzenden Antriebskupplungsteil (16) aufweist, der die fest mit dem Pumpengehäuse (5) verbundene Stirnwand durchsetzt.
  5. Dosierpumpe (1) nach Anspruch 4, dadurch gekennzeichnet, dass beide Rotoren (10) identisch sind und beide somit einen Antriebskupplungsteil (16) aufweisen, wobei der eine Antriebskupplungsteil (16) in einer zweiten, offenen Lagerhülse (30) und der andere in einer nach aussen geschlossenen Lagerhülse (29) lagert.
  6. Dosierpumpe (1) nach Anspruch 5, dadurch gekennzeichnet, dass in der zweiten offenen Lagerhülse (30) mindestens eine umlaufende Dichtlippe (31) einstückig angeformt ist.
  7. Dosierpumpe (1) nach Anspruch 3, dadurch gekennzeichnet, dass an den Rotorflügelwänden (13) an dessen, den Zahnrädern (11) abgelegenen Stirnseiten (26) mindestens eine Dichtlippe (27) zur dichtenden Anlage an der lösbaren Stirnwand (9) des Pumpengehäuses (5) vorgesehen sind.
  8. Dosierpumpe (1) nach Anspruch 1, dadurch gekennzeichnet, dass zwischen den zwei diametral verlaufenden Rotorflügelwänden (13) auf beiden Seiten der Rotorwelle (12) zwei parallele Längsabstreifrippen (28) angeordnet sind.
EP14708057.6A 2013-04-03 2014-03-06 Dosierpumpe aus kunststoff Active EP2981721B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013205843.8A DE102013205843B4 (de) 2013-04-03 2013-04-03 Dosierpumpe aus Kunststoff
PCT/EP2014/054352 WO2014161700A1 (de) 2013-04-03 2014-03-06 Dosierpumpe aus kunststoff

Publications (2)

Publication Number Publication Date
EP2981721A1 EP2981721A1 (de) 2016-02-10
EP2981721B1 true EP2981721B1 (de) 2017-01-11

Family

ID=50231184

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14708057.6A Active EP2981721B1 (de) 2013-04-03 2014-03-06 Dosierpumpe aus kunststoff

Country Status (4)

Country Link
US (1) US9732750B2 (de)
EP (1) EP2981721B1 (de)
DE (1) DE102013205843B4 (de)
WO (1) WO2014161700A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2956851A1 (es) * 2022-05-24 2023-12-29 Alarcon Antonio Canizares Bomba de impulsion de masa viscosa con elementos solidos en suspension

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3054417A (en) 1956-05-07 1962-09-18 Corvisier Louis Rene Apparatus for mixing liquids in a constant proportion
FR1326006A (fr) * 1962-06-01 1963-05-03 Pompe pour produits pulvérulents ou granuleux ou pâteux
DE2526215A1 (de) 1975-06-12 1976-12-30 Elastogran Gmbh Misch- und dosiervorrichtung fuer mehrkomponentenkunststoffe, insbesondere polyurethan
US5558116A (en) 1994-03-07 1996-09-24 Createchnic Ag Metering cap
DE102005042040B3 (de) 2005-09-02 2007-05-16 Fresenius Medical Care De Gmbh Zahnradpumpe
GB2440944B (en) * 2006-08-11 2011-10-12 Itt Mfg Enterprises Inc Rotary lobe pump

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP2981721A1 (de) 2016-02-10
WO2014161700A1 (de) 2014-10-09
US20160053757A1 (en) 2016-02-25
DE102013205843B4 (de) 2024-02-15
US9732750B2 (en) 2017-08-15
DE102013205843A1 (de) 2014-10-09

Similar Documents

Publication Publication Date Title
EP3055567B1 (de) Drehkolbenpumpe aus kunststoff
DE3308227C2 (de)
EP2815127B1 (de) Drehkolbenpumpe
EP2834521B1 (de) Dosierpumpe aus kunststoff
EP2910783B1 (de) Zweispindelige Schraubenspindelpumpe in einflutiger Bauweise
EP1797327A1 (de) Drehkolbenpumpe mit einem pumpengehäuse und zwei zweiflügeligen drehkolben
DE10112028A1 (de) Schneckenpumpe und Doppelschneckenextruder mit einer solchen Schneckenpumpe
EP2981721B1 (de) Dosierpumpe aus kunststoff
DE102013022329A1 (de) Vorrichtung zum Fördern von Fluiden
DE2602659A1 (de) Rotationsverdraengungskompressor mit kapazitaetsregelung
DE1773494A1 (de) Umlaufende Fluessigkeitsverdraengungsvorrichtung
WO2013163987A1 (de) Drehkolbenpumpe mit optimierten ein- und auslässen
DE102012216122A1 (de) Fluidische Fördereinrichtung
EP3231716B1 (de) Fülleinrichtung für eine packmaschine
EP0959005B1 (de) Dosierventil
WO1993013296A1 (de) Rotationskolbenpumpe
EP3523201B1 (de) Fülleinrichtung für eine packmaschine zum füllen von schüttgütern in gebinde
DE102018113616A1 (de) Peristaltikpumpe
DE1553120A1 (de) Pumpe fuer pulverfoermige,granulierte oder breiige Erzeugnisse
DE102014000392A1 (de) Gleitringdichtungssystem, Dosiervorrichtung mit Gleitringdichtungssystem sowie dazugehöriges Montageverfahren einer Dosiervorrichtung
DE19726706A1 (de) Rührflügelantrieb für Pastenbehälter
DE102015203683A1 (de) Rotationskolbenpumpe
DE3734928A1 (de) Kolbenpumpe und leistungsregelventil fuer eine kolbenpumpe
EP4158228A1 (de) Verschlussmechanismus
EP3127831A1 (de) Strangdosierer zum ausbringen von cremes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20151103

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502014002489

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F04B0013020000

Ipc: F04C0015000000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F04C 15/06 20060101ALI20160930BHEP

Ipc: F04C 11/00 20060101ALI20160930BHEP

Ipc: F04C 15/00 20060101AFI20160930BHEP

INTG Intention to grant announced

Effective date: 20161019

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 861563

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014002489

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170411

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170511

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170411

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170511

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014002489

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

26N No opposition filed

Effective date: 20171012

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170306

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170331

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: PATENTANWALTSKANZLEI DAUB, CH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502014002489

Country of ref document: DE

Representative=s name: DAUB, THOMAS, DIPL.-ING., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502014002489

Country of ref document: DE

Owner name: SYNTEGON POUCH SYSTEMS AG, CH

Free format text: FORMER OWNER: ROBERT BOSCH GMBH, 70469 STUTTGART, DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: SYNTEGON POUCH SYSTEMS AG, CH

Free format text: FORMER OWNER: ROBERT BOSCH GMBH, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 861563

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190306

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230320

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230320

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230331

Year of fee payment: 10

Ref country code: CH

Payment date: 20230402

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240321

Year of fee payment: 11