DE102012102327B3 - Verfahren zur Herstellung von wasserunlöslichen Lignin-Agglomeraten - Google Patents

Verfahren zur Herstellung von wasserunlöslichen Lignin-Agglomeraten Download PDF

Info

Publication number
DE102012102327B3
DE102012102327B3 DE201210102327 DE102012102327A DE102012102327B3 DE 102012102327 B3 DE102012102327 B3 DE 102012102327B3 DE 201210102327 DE201210102327 DE 201210102327 DE 102012102327 A DE102012102327 A DE 102012102327A DE 102012102327 B3 DE102012102327 B3 DE 102012102327B3
Authority
DE
Germany
Prior art keywords
lignin
acid
agglomerates
water
granules
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
DE201210102327
Other languages
English (en)
Inventor
Satyanarayana Narra
Peter Ay
Claudia Glaser
Florian Logsch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brandenburgische Technische Universitaet Cottbus
Original Assignee
Brandenburgische Technische Universitaet Cottbus
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brandenburgische Technische Universitaet Cottbus filed Critical Brandenburgische Technische Universitaet Cottbus
Priority to DE201210102327 priority Critical patent/DE102012102327B3/de
Priority to PCT/EP2013/053947 priority patent/WO2013135485A1/de
Application granted granted Critical
Publication of DE102012102327B3 publication Critical patent/DE102012102327B3/de
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08HDERIVATIVES OF NATURAL MACROMOLECULAR COMPOUNDS
    • C08H6/00Macromolecular compounds derived from lignin, e.g. tannins, humic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07GCOMPOUNDS OF UNKNOWN CONSTITUTION
    • C07G1/00Lignin; Lignin derivatives
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C11/00Regeneration of pulp liquors or effluent waste waters
    • D21C11/0007Recovery of by-products, i.e. compounds other than those necessary for pulping, for multiple uses or not otherwise provided for

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Compounds Of Unknown Constitution (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung von wasserunlöslichen Lignin-Agglomeraten aus der Ablauge eines Cellulosegewinnungsprozesses. Erfindungsgemäß umfasst das Verfahren die folgenden Schritte: 1. Durchführen einer Granulation mit der Ablauge zur Erzeugung von Lignin-Agglomeraten und 2. Behandeln der erzeugten Lignin-Agglomerate mit einer Säure.

Description

  • Die Erfindung betrifft ein Verfahren zur Herstellung von wasserunlöslichen Lignin-Agglomeraten aus der Ablauge von Cellulosegewinnungsprozessen sowie die damit herstellbaren wasserunlöslichen Lignin-Agglomerate.
  • Hintergrund der Erfindung
  • Cellulosegewinnungsprozesse erzeugen neben dem Hauptprodukt Cellulose auch Lignin-haltige Ablauge. Die Ablaugen besitzen je nach Gewinnungsprozess unterschiedliche Zusammensetzungen und werden als technische Lignine bezeichnet. Das im Holz oder Gräsern natürlich vorkommende Lignin wird durch den Holzaufschluss vom Zellstoff durch die Zugabe verschiedener Aufschlusschemikalien getrennt. Die Aufschlusschemikalien modifizieren die Ligninstruktur, indem das wasserunlösliche Lignin durch das Einbringen von Schwefel in eine wasserlösliche Struktur überführt wird. Die technischen Lignine (Ligninsulfonat aus dem Sulfitaufschluss und Kraftlignin aus dem Sulfataufschluss) kennzeichnen sich durch einen hohen Heizwert, ähnlich dem von Kohle und einen niedrigen Aschegehalt. Die in den derzeit kommerziell genutzten Aufschlussverfahren anfallenden Ablaugen (Schwarzlaugen, ca. 50 Mio t/a weltweit) enthalten neben den Aufschlusschemikalien und anderen Holzinhaltsstoffen, Lignin von 30% bis 50% (bez. auf den Feststoffanteil). In Deutschland betrug das Aufkommen an Schwarzlauge 2008 etwa 3,5 Mio t/a (Verband der Papierfabriken, 2010. FNR: Band „Nachwachsende Rohstoffe in der Industrie – stoffliche Nutzung von Agrar- und Holzwerkstoffen” S 20 ff, 2010.). Technische Lignine können generell auf zwei Verwertungswegen genutzt werden, wobei die energetische Nutzung dominiert und nur ein geringer Anteil der Ligninsulfonate einer stofflichen Nutzung zugefuhrt wird.
  • Die stoffliche Nutzung der Ligninsulfonate ist weltweit auf weniger als 2 Millionen Tonne pro Jahr beschränkt, d. h. nicht einmal 4% der anfallenden Menge. Mehr als die Hälfte entfällt dabei auf die Verwendung als Dispergiermittel in Beton und Zement sowie Zusatz zu Bohrflüssigkeiten. Weitere Anwendungen sind: Biokunststoffe, Bindemittel fur Pellets in Tiernahrung, Textilfarbstoffen, Agrochemikalien und die Produktion von Vanillin. Darüber hinaus werden sie als Papieradditiv, Dispergier- und Emulgiermittel in Lacken sowie als Zuschlagstoff in Gips und Gerbstoffen verwendet. Eine direkte Verbrennung von 90% der Nebenprodukte in den Zellstoffwerken zielt nicht nur auf die energetische Nutzung ab, sondern beinhaltet gleichzeitig eine Rückgewinnung verwendeter Aufschlusschemikalien. Die Verbrennung eingedickter Ablauge mit einem Trockengehalt von etwa 30% bis 70% findet in sogenannten Laugenkesseln statt. Dabei werden Prozesswärme und Energie gewonnen, die zur Deckung des Eigenenergiebedarfes mit eingestzt werden. Beim Einsatz der eingedickten Laugen im Laugenkessel sind, bedingt durch die hohen Wassergehalte (30% bis 70%), hohe Verdampfungsenergien notwendig (Puls, J.: Lignin – Verfügbarkeit, Markt und Verwendung: Perspektiven für schwefelfreie Lignine; Vtl-Institut für Holztechnologie, 2009), was zu einer deutlichen Reduzierung der Energieeffizienz durch Erniedrigung des Heizwertes führt.
  • Hinderungsgründe für eine weitergehende Nutzung von technischem Lignin sind insbesondere seine Heterogenitat, der Geruch, die Wasserlöslichkeit, die Staubbildung, und das hohe Reaktionsvermögen. Um die oben genannten Hindernisse (Handhabung der Flüssig- bzw. Trockensubstanz, Energieeffizienz, etc.) zu überwinden, wird in diesem Patent auf die Bildung von wasserunlössliche Bioagglomeraten aus Ligninablaugen der Zellstoffindustrie fokussiert. Die Erfindung beschreibt die Herstellung von definierten wasserunlöslichen Agglomeratstrukturen aus Schwarzlaugen der Zellstoffproduktion.
  • Die hydrophoben Ligninagglomerate weisen eine effizientere Handhabung und eine verbesserte Energieausbeute im Vergleich zur herkömmlichen Handhabung und Verbrennung der Schwarzlauge auf.
  • Nach derzeitigem Stand der Technik erfolgt die Abtrennung des Lignins aus Schwarzlaugen durch Fällungs- oder Flockungsprozesse, Elektrolyse, mit Enzymen etc. Die Grundlage bildet der Übergang der technischen Lignine von der wasserlöslichen Form in den wasserunlöslichen Zustand. Die Anwendung ist sowohl bei den Ligninsulfonaten (Sulfit) als auch bei Kraftlignin (Sulfat) möglich. Der Übergang vom wasserlöslichen in den wasserunlöslichen Zustand wird durch eine Desulfonierungsreaktion bzw. eine pH-Reduzierung bewirkt. Die Sulfonierungsreaktion, die im Holz für den Übergang des wasserunlöslichen Lignins in die wasserlösliche Form (Zellstoffgewinnung-Sulfitablaugen) sorgt, stellt eine reversible elektrophile aromatische Substitution dar, wobei das native wasserunlösliche Lignin durch das Einbringen von Sulfonatgruppen löslich gemacht wird. Die Reversibilität dieses Mechanismus ermöglicht es anschließend, unter Einfluss einer verdünnten mineralischen oder organischen Säure und Wärmezufuhr die Sulfonatgruppe wieder abzuspalten und damit aus der Sulfitablauge wasserunlösliche Ligninflocken zu erzeugen. Die Verdünnung der Säure ist wichtig, um genügend Wasser zum Auffangen des freigesetzten Elektrophils SO3H+ zur Verfügung zu stellen.
  • Die Gewinnung wasserunlöslicher Ligninflocken basierend auf dem Einfluss der pH-Wertänderung wird insbesondere im Patent ( US 2010/0325947 , EP 1797236 B1 ) beschrieben. Beim Kraftlignin liegt der Schwefel in Form einer Thioetherbindung vor, welche nur im alkalischen Milieu löslich ist, da dieses die Bildung von Phenolatgruppen begünstigt. Mittels einer Behandlung der Ablauge mit Säure auf einen pH-Wert unter 11 kann durch die Bildung von Phenolen eine Fällung des Kraftlignins und damit die Bildung wasserunlöslicher Ligninflocken erreicht werden. Die Phenolatgruppen werden bei der Ansäuerung in ihre phenolische Form überführt.
  • Die Gewinnung der Ligninflocken erfolgt herkömmlich durch nachgeschaltete Filtrationsprozesse, wobei sich dieser Prozess problematisch darstellt. Während des Fällungs-/Flockungs-prozesses bilden sich Flockenstrukturen mit erheblichen feinkolloidalen Anteilen, was der Durchführung eines effektiven Filtrationsprozesses entgegen wirkt. Die Feinstpartikel bilden sehr dichte, zur Verstofung neigende Filterkuchen (Tomani P. (2010): The Lignoboost process, Cellulose Chemistry and Technology 44 (1–3), 53–58). Der Filterkuchen wird im Anschluss in schüttfähige Pellets überführt. Eine optimierte Flockungs/Fällungs-Verfahrensweise stellt der LignoBoost-Prozess dar ( US 2010/0325947 , EP 1797236 B1 ). Die Schwarzlauge kommt aus dem Kochprozess direkt in eine Verdampfungseinheit und wird auf einen Feuchtigkeitsgehalt von etwa 50% verdickt. Daran schließt sich eine Ansäuerung der alkalische Lauge mit CO2 an (Absenkung pH-Wert 13 auf etwa pH 11), wobei Alkalilignin ausfällt und als Filterkuchen gewonnen wird. Der Filterkuchen wird wieder aufgeschlämmt und nochmals mit H2SO4 angesäuert, was eine Koagulation des Alkalilignins bewirkt und zur besseren Filtration beiträgt. Dieser Ansäuerungsprozess wird mehrmals durchlaufen. Die entstehenden Filtrate werden wiederum zur Aufkonzentrierung in die Verdampfungseinheit zurückgeführt, um gleichzeitig eine Ausbeutesteigerung zu erreichen. Die im Prozess der direkten Fällung/Flockung der Sulfitablauge/des Kraftlignins entstehenden Flockenstrukturen werden, wie bereits beschrieben, derzeit großtechnisch mittels Filtrationsprozesssen abgetrennt.
  • Der Filtrationsprozess gestaltet sich schwierig, da die Flocken einen sehr kompakten, zur Verblockung neigenden schwer entwässerbaren Filterkuchen bilden. Der sich anschließende Pelletierprozess wird ebenfalls durch die hohen Restfeuchtegehalte des Filterkuchens sowie die mit steigender Temperatur zunehmende Klebeneigung negativ beeinflusst. Der Pelletierprozess kann bedingt durch die beschriebenen negativen Einflüsse nicht kontinuierlich betrieben werden.
  • Demgemäß liegt der Erfindung das Problem zu Grunde, die oben genannten Material- und Prozessprobleme zu überwinden.
  • Beschreibung der Erfindung
  • Das der Erfindung zu Grunde liegende Problem wird mit der vorliegenden Erfindung gelöst.
  • Demgemäß wird ein Verfahren zur Herstellung von wasserunlöslichen Lignin-Agglomeraten aus Ablaugen von chemischen Celluloseaufschlussverfahren bereitgestellt, das zwei Schritte umfasst, nämlich wird zunächst die Schwarzlauge durch den Prozess der Sprühgranulation in Granulatform überführt. Im zweiten Prozessschritt werden die Granulate durch eine Säurebehandlung derart strukturiert, dass das Lignin in einen wasserunlöslichen Zustand überführt wird.
  • Die Ablauge von chemischen Celluloseaufschlussverfahren enthält in ihrer Festsubstanz Lignin, welches im Verlauf des Aufschlussverfahrens chemisch modifiziert wurde (z. B. sogenanntes Ligninsulfonat oder Kraft-Lignin).
  • Unter „Lignin-Agglomeraten” werden Lignin-enthaltende Festtoffe in unterschiedlicher Form und Größe verstanden, wie Granulate und Briketts. Das Lignin entstammt aus Cellulosegewinnungsprozessen aus cellulosehaltigen Pflanzen (Holz, Gräser, etc.).
  • Granulate bestehen aus vielen kleinen Feststoffpartikeln, unabhängig von der Geometrie der Partikel. Die Größe der erzeugten Granulate liegt im Bereich von 100 bis 2000 μm. Herkömmliche Briketts sind das Ergebnis der Brikettierung, bei der das Agglomerat in eine einheitliche Form gepresst wird. Die erzeugten Ligninbriketts entstehen durch einen Prozess der Bildung und Aushärtung von Feststoffbrücken, sowohl in den Granulaten als auch an deren Oberfläche. Die Oberflächenkomplexreaktion bewirkt einen Zusammenschluss der Agglomerate zu einem Brikett. Die Größe der erzeugten Briketts (bevorzugt < 25 mm im Durchmesser) ist abhängig von der verwendeten Form.
  • Die flüssige Ablauge aus der Cellulosegewinnung beinhaltet hauptsachlich wasserlösliches Lignin (technisches Lignin) und die Gewinnungschemikalien sowie nicht wasserlässliche Restbestandteile an Cellulose und Hemicellulose. Derzeit werden zur Cellulosegewinnung hauptsächlich das Sulfat- und das Sulfitverfahren genutzt. Die bei diesen Verfahren entstehenden flüssigen Ablaugen werden als Schwarzlaugen bezeichnet.
  • Die Granulation erfolgt bevorzugt mittels eines Sprühagglomerators (Sprühgranulators) oder eines Mischagglomerator.
  • Bei der als Granulation bevorzugt verwendeten Sprühgranulation werden sehr kleine Tröpfchen einer durch Düsen versprühten Flüssigkeit in einer Reaktionskammer durch direkte Wärmeübertragung in einem warmen, oder heißen Luftstrom zu Agglomeraten getrocknet. Die Trocknung von Flüssigkeiten bei simultanem Aufbau von Granulaten ist kennzeichnend für diese Art von Granulation. Schwarzlauge wird in der Reaktionskammer zuerst durch Trocknung verdüst, wodurch kleinste Partikel („Keime”) erzeugt werden. Dabei werden diese Keime in einer „Wirbelschicht” im Schwebezustand („Fluidisierung”) gehalten und bilden die Oberfläche zu einer schichtweisen Adsorption und Trocknung weiterer verdüster Tröpfchen. Die so erzeugten staubfreien Partikel können durch einen klassierenden Austrag mit frei einstellbaren Partikelgrößen zwischen 100 μm und 5000 μm ohne Unterbrechung des Trocknungsvorganges kontinuierlich aus dem Trocknungsraum entfernt werden.
  • Das Grundprinzip des Mischagglomerators ist eine Aufbaugranulation, welche durch eine Rotationsbewegung mit Hilfe von Mischwerkzeugen in einem definiertem Behältervolumen bewerkstelligt wird. Die Granulation von Schwarzlaugen in dem Mischagglomerator erfolgt über eine Trocknung durch Temperaturzufuhr und kann ggf. durch eine Vakuumeinheit unterstützt werden. Die so erzeugten staubfreien Partikel haben Partikelgrößen zwischen 100 μm und 5000 μm. Der Prozess kann sowohl kontinuerlich als auch diskontinuerlich (als batch Verfahren) betrieben werden.
  • Durch die Behandlung der erzeugten Lignin-Agglomerate mit einer Säure werden die verfestigten Agglomerate wasserunlöslich und es kann eine höhere Reinheit des Lignins in Bezug auf den Schwefelgehalt erzielt werden.
  • Die Sprühgranulation erfolgt bei dem erfindungsgemäßen Verfahren bevorzugt bei einer Temperatur von kleiner oder gleich 100°C; in einer besonders bevorzugten Ausführungsform der Erfindung bei 60°C bis 90°C. Die Sprühgranulation führt im allgemeinen zu einer Teilchengröße von 100 μm bis 2000 μm.
  • Die Mischagglomeration kann bei dem erfindungsgemäßen Verfahren bei einer Temperatur von kleiner oder gleich 100°C erfolgen; in einer bevorzugten Ausführungsform der Erfindung bei 80°C bis 100°C. Im Allgemeinen werden Teilchengrößen von 100 μm bis 4000 μm erhalten. Zusätzlich kann die Mischagglomeration u. a. durch Behältervolumen, Auswahl, Anordnung und Drehzahl der Mischwerkzeuge und Vakuumeinheit beeinflusst werden.
  • Die im Rahmen des Verfahrens zur Behandlung der erzeugten Lignin-Agglomerate verwendeten mineralischen oder organischen Säuren zur Absenkung des pH-Wertes und gleichzeitige Strukturänderungen können beliebig gewählt werden. Bevorzugt wird eine verdünnte Schwefelsäure (vorzugsweise einer Konzentration von 60 bis 80%) verwendet. Die bevorzugten Betriebsbedingungen sind eine Temperatur von 100°C bis 130°C und eine Konzentration an Schwefelsäure von 75%.
  • In Abhängigkeit der Ausgangsprodukte bilden sich beim Einsatz von Kraftlignin Agglomerate die sowohl hygroskopisch als auch hydrophile Eigenschaften besitzen bzw. beim Einsatz von Sulfitablaugen Granulate, welche nicht-hygroskopische und hydrophile Eigenschaften aufweisen. Durch das Einwirken von Schwefelsäure werden die in den Granulaten eingebundene Ligninbruchstücke durch die gleichzeitig ablaufenden komplexen Prozesse derart verändert, dass das Lignin wieder in seine wasserunlösliche Form überführt wird. Diese Prozesse laufen bevorzugt an der Granulatoberfläche ab. Damit wird das Granulat von einer wasserunlöslichen Schicht umgeben (Einhüllungsprozess-Verkapselung). Inwieweit der Chemismus bis ins Innere der Granulate fortschreitet, ist von der inneren Struktur (Porosität) abhängig. Die an den Granulaten nur lose anhaftenden Feinpartikel lösen sich von der Granulatoberfläche während der Säurebehandlung ab. Da der Prozess der Aushärtung der Feststoffbrücken ein Zeitprozess ist, werden die abgelösten Partikel nicht mit eingebunden, sondern verbleiben als kolloidaler Anteil in der Säure.
  • Das erfindungsgemäße Verfahren kann weitere Verfahrensschritte aufweisen. So kann nach dem Abtrennen der Säure-behandelten Lignin-Agglomerate von der durch Säurezugabe entstandenen sauren Lösung durch Filtration erfolgen. Die durch Säurebehandlung entstandenen wasserunlöslichen Lignin-Agglomerate werden vorteilhafter Weise gewaschen und optional anschließend filtriert. Das für den Wasch-/Filtrationsprozess der Lignin-Agglomerate verwendete Wasser liegt sollte in einem Temperaturbereich von 40°C bis 100°C liegen. Die optimale Wassertemperatur liegt bei etwa 80°C. Allgemein gilt, dass je höher die Wassertemperatur, desto effektiver die Porenreinigung und Reinigung der Granulate.
  • Der bei der Regeneration des Waschwasser-Filtrat-Gemischs entstehende (kolloidale Bestandteile aufweisende) Filterkuchen kann in die Lignin-haltige Lauge zurückgeführt werden, um den Feststoffanteil der Lauge zu erhöhen. Das Filtrat kann weiter aufbereitet werden. Die abgetrennte Säure wird bevorzugt in den Kochprozess zurückgeführt. Das Wasser wird bevorzugt in den Waschprozess zurückgeführt.
  • Wie oben erwähnt, können die Säure-behandelten Lignin-Agglomerate nicht nur als Granulat, sondern auch als Brikett vorliegen. Durch Verwendung eines Behälters mit definierten Volumen und einer definierten Stoffmenge im Säurebehandlungsprozess im Kochreaktor ist ein direkter Brikettierungssprozess möglich. Die Brikettform führt zu einer höheren Energiedichte und verbesserten Lagerungs- und Transporteigenschaften.
  • Bei der Brikettherstellung werden die Granulate in eine definierte Form gegeben (Granulatschüttung) und anschließend in einer Vorlage mit Schwefelsäure untergetaucht.
  • Der Prozess der Brikettbildung stellt eine komplexe Strukturbildung zwischen den Einzelgranulaten und der Granulatschüttung dar. Dieser Prozess ist außerdem sowohl von der Granulatporosität als auch von der Schüttgutporosität abhängig. Zunächst wird das Lignin an der Oberfläche der Granulate angelöst. Damit ändert sich die Viskosität. Gleichzeit bilden sich Bruchstücke. Unter Einfluss der SO2-Ionen kommt es zur Ausbildung von Feststoffbrücken zwischen den Primärstrukturen. Unter der Voraussetzung einer hohen Primärpartikeldichte in der verwendeten Kapsel verbinden sich die Einzelpartikel zu einem Sekundäragglomerat, welchen in Form und Abmessungen der Kapsel entspricht. Das angelöste Lignin wirkt als Bindemittel unter Ausbildung von Feststoffbrücken. Diese verbinden sowohl die Einzelgranulate, als auch die Bruchstücke zu einem Brikett. In einem nachfolgenden Schritt härten die Feststoffbrücken aus, da das Lignin durch die Schwefelbehandlung wieder in seine unlösliche Form überführt wird.
  • Die mechanische Stabilität des Briketts wird von den gebildeten Feststoffbrücken bestimmt. Außerdem wird der kolloidale Anteil reduziert. Nach Entfernen der Kapsel liegt ein mechanisch stabiles Brikett vor, dass in Abhängigkeit vom Einsatz weiteren Verfahrensschritten zugeführt werden kann. Die gebildeten Briketts sind außerdem hydrophob.
  • Die bei den Säurebehandlungsprozessen entstehenden Abgase (SO2- oder H2S) werden im Reaktor in der Säure gelöst (Rücklöseprozess), was zu einer gleichmäßigen Konzentration der Säure im Reaktor beiträgt. Überschüssiges Gas entweicht aus einem Überdruckventil aus dem Reaktor und wird der Regenerationseinheit aufgegeben.
  • Ein entscheidender Vorteil des erfindungsgemäßen Verfahrens liegt in der wesentlichen Verbesserung der Filtrierbarkeit. Die gebildeten Agglomeratstrukturen (Granulate und Briketts) ermöglichen eine effektive und damit auch kostengünstigere Durchführung der Filtration (Abtrennung der Flüssigkeiten). Die abgetrennten kolloidalen Partikel werden im Kreislauf der Schwarzlauge zurückgeführt, was zu einer Erhöhung des Feststoffanteils der Schwarzlauge führt.
  • Die Briketts ermöglichen neben der Einsparung einer Filtrationsstufe (im Vergleich zu den Granulaten) außerdem die Einsparung einer nachgeschalteten Pelletiereinheit für den Filterkuchen.
  • Weiterhin konnte nachgewiesen werden, dass der mit dem Aufschlussprozess eingetragene Schwefelgehalt bei den Agglomeraten wesentlich vermindert war (s. Tabelle 1).
  • Mit der vorliegenden Erfindung konnte der notwendige Säureeinsatz auf 30 bis 50 kg H2SO4 pro Tonne Lignin reduziert werden.
  • In einem weiteren Aspekt betrifft die Erfindung ein Lignin-Agglomerat, das mittels des hierin beschriebenen Verfahrens der Sprühgranulation einer Schwarzlauge und Behandelung der erzeugten Lignin-Agglomerate mit einer Säure hergestellt werden kann.
  • Die erfindungsgemäßen, aus der Ablauge eines Cellulosegewinnungsprozesses gewonnenen Lignin-Agglomeraten können nicht in allgemein gültiger Form chemisch charakterisiert werden. Die Lignin-Agglomerate sind gemäß dem hier beschriebenen Verfahren herstellbar. Die chemische Analyse der Agglomerate ist für ein Beispiel in Tabelle 1 zusammengestellt. Tabelle 1: Elementaranalyse der Lignin-Agglomerate vor und nach der Säurebehandlung (wasser- und aschefrei).
    Material H2O [%] C [%] H [%] O [%] N [%] S [%] Asche [%]
    Ablaugen aus Cellulosegewinnungsprozessen
    Calcium-Ligninsulfonat Natrium-Ligninsulfonat Kraftlignin 50 55 75 56,37 59,92 66,42 5,41 5,64 6,42 31,07 26,65 19,62 0,22 0,23 0,20 6,93 7,59 7,35 13,49 21,2 44,37
    Calcium-Ligninsulfonat Granulate
    Nach Säurebehandlung 5,69 62,73 0,35 32,65 0,26 4,01 4,52
    Natrium-Ligninsulfonat Granulate
    Nach Säurebehandlung 6,3 64,10 3,40 27,69 0,19 4,62 0,58
    Kraftlignin Granulate
    Nach Säurebehandlung 5,00 63,99 5,07 22,07 0,22 5,65 0,58
  • In einem weiteren Aspekt betrifft die Erfindung die Verwendung eines Granulats für die Herstellung von Biokunststoff. Die Produktion von Biokunststoffen erfordert ein granuliertes Einsatzprodukt, welches mit dem erfindungsgemäßen Liginin-Agglomerat zur Verfügung gestellt wird. Die Agglomerate sind auch für die Energiegewinnung durch Verbrennung einsetzbar.
  • Die Verwendung einer Sprühgranulations-Vorrichtung zur Durchführung eines hierin beschriebenen Verfahrens stellt einen weiteren Aspekt der Erfindung dar.
  • Figuren
  • 1: Aufbau eines Sprühagglomerators (Sprühtrocknungsvorrichtung).
  • 2: Prozessschema von hydrophober Schwarzlauge-Granulatproduktion mit Hilfe von Sprühgranulation und anschließender Säurebehandlung.
  • 3: Prozessschema von hydrophober Schwarzlauge-Brikettproduktion mit Hilfe von Sprühgranulaten in einen formschlüssigen Behälter während einer Säurebehandlung.
  • 4: Durchschnittliche Porengröße von Lignin-Granulaten in Abhängigkeit von der Trocknungstemperatur (mit Standardabweichungen).
  • 5: Wasserlöslichkeit der Granulate vor und nach der H2SO4-Behandlung.
  • 1: Aufbau eines Sprühgranulators als bevorzugte Ausführungsform eines Granulators
  • Die Granulierung (Aufbauagglomeration) führt zu dem Erzeugen eines körnigen Produktes mit einem engen Korngrößenspektrum. Die meisten Granulate werden in der Industrie in einem Größenbereich von 0,02 < xP 50 mm hergestellt.
  • Zunächst soll die in 1 gezeigte Ausgestaltung eines Sprühgranulators (G1 in 2 und 3) beschrieben werden.
  • Die gezeigte Vorrichtung umfasst einen zylinderförmigen Granulationsbehälter 10, einen Zick-Zack-Sichter 14 und einen Auffangbehälter 16 für erzeugtes Lignin-haltiges Agglomerat (Ganulate).
  • Ein Heißluftstrom 3 wird an einer Temperaturmessstelle 18 für Zuluft durch konische Luftanströmböden 12 in den Granulationsbehälter 10 zugeführt und führt dort durch Versprühung zur Zirkulation von Ablauge aus einem Cellulosegewinnungsprozess (z. B. Schwarzlauge), die aus einem Vorratsbehälter mittels einer Pumpe in eine Zerstäuberdüse 13 geführt wird, wo einer Zerstäuberluftzufuhr 5 die Zirkulation der Ablauge 11 im Granulationsbehälter 10 erzeugt. Während der Zirkulation der Ablauge 11 im Granulationsbehälter 10 kommt es zur Bildung Lignin-haltiger Agglomerate (Granulate).
  • Ein in den Zick-Zack-Sichter 14 eintretender Sichterluftstrom 4 führt zu einer Trennung des Feingutanteils 7 vom Grobgutanteil 8 im Sichter 14. Der Grobgutanteil 8 wird als kontinuierlicher Produktaustrag 9 in einem Auffangbehälter 16 gesammelt. Ein Ventil zur Produktaustragverriegelung 15 ist zwischen dem Zick-Zack-Sichter 14 und dem Auffangbehälter 16 angeordnet.
  • Eine weitere Vorrichtung für den kontinuierlichen Produktaustrag 9 ist für gasförmige Prozessprodukte vorgesehen und ist an einem oberen Ende des Granulationsbehälters 10 angeordnet, wo sich auch eine Temperaturmessstelle für die Abluft 17 befindet. An diesem oberen Ende des Granulationsbehälters 10 tritt die Abluft 1 aus dem Granulationsbehälter 10 aus, wobei Feinstaub 2 abgeschieden wird.
  • 2: Erzeugung von Granulaten in einem Sprühgranulator und anschließende Behandlung der Granulate mit Schwefelsäure
  • Die 2 zeigt eine schematische Darstellung des Verfahrensschemas. Die im Rahmen des erfindungsgemäßen Verfahrens zum Einsatz kommende Schwarzlauge (als Ablauge eines Cellulosegewinnungsprozesses) wird in einem Vorlagebehälter (B1) gelagert. Eine Pumpe (P1) fördert die Schwarzlauge in einen Sprühgranulator (G1). Zur Erzeugung von wasserlöslichen Ligningranulaten wird bevorzugt eine Sprüh-Trocknung/Sprüh-Granulation genutzt. Bevorzugter Weise wird der Temperaturbereich im Sprühgranulator (G1) auf Temperaturen unter 100°C beschränkt, um die Verdampfungsenergie zu minimieren und gleichzeitig feste, rieselfähige Granulate zu erzeugen. Die Granulate werden nach Erreichen der gewünschten Größe mittels eines Schwerkraftsichters, bevorzugt mittels eines Zick-Zack-Sichters, insbesondere wie in 1 gezeigt, aus dem Sprühgranulator (G1) ausgetragen und in einen säurebefüllten Kochreaktor (R1) gegeben. An die Säurebehandlung schließen sich bevorzugt mehrere Reinigungsstufen an. Im ersten Filtrationsprozess (F1) erfolgt die Abtrennung der Granulate aus der Suspension. Die ablaufende Säure wird in einer Regenerationseinheit (R2) behandelt und anschließend in den Kochreaktor (G1) zurückgeführt. Diese Regenerationseinheit trennt außerdem die mit dem Filtrat mitgeführten kolloidalen Bestandteile aus der Säure. Die Kolloidsuspension wird im Kreislauf dem Sprühgranulator (B1–G1) aufgegeben. An die erste Filtrationsstufe ist eine Wascheinheit (F2) nachgeschaltet. In dieser Prozesseinheit werden die nun wasserunlöslichen Granulate von anhaftenden Säureresten befreit (neutralisiert). Die Granulate gelangen in einen Sammelbehälter (B2). Das Waschwasser kann in Abhängigkeit der aufgenommenen Säuremenge entsprechenden Reinigungsstufen zugeführt werden.
  • Das beschriebene Verfahren zeichnet sich durch die Erzeugung waserunlöslicher Granulate aus. Gleichzeitig ist die Anzahl der Prozesstufen gegenüber aus dem Stand der Technik bekannter Verfahren deutlich reduziert. Weiterhin wird durch Reduzierung der Granulationstemperatur der notwendige Energieaufwand erheblich gesenkt. Als innovativer Schritt in diesem Verfahren erweist sich der Ansatz, eine Säurebehandlung auf Sprühgranulate anzuwenden. Der Einsatz von porösen Granulaten gewährleistet eine große Oberfläche, um eine umfangreiche und gleichzeitig schnelle Reaktion der verdünnten Säure mit dem Lignin zu realisieren. Durch die anschließende Filtration werden die Granulate aus der Kochlösung ohne die bekannten Filtrationsprobleme abgetrennt.
  • Ein deutlicher Vorteil dieser Verfahrensweise ist, dass die Säurebehandlung mit Trockengut außerdem mit einem geringeren Säureeinsatz bewerkstelligt werden kann als vergleichbare Verfahren, bei denen mit flüssiger Lauge gearbeitet wird. Das auf diesem Weg erzeugte Granulat stellt nach Trocknung, insbesondere Lufttrocknung ein bereits handhabbares, wasserunlösliches, geruchsarmes Produkt dar.
  • 3: Erzeugung von Granulaten in einem Sprühgranulator und anschließende Behandlung der Granulate mit Schwefelsäure und Bildung von Briketts
  • Die Granulierung der Schwarzlauge (als Ablauge eines Cellulosegewinnungsprozesses) erfolgt analog dem oben beschriebenen Prozess. Zur Bildung der Briketts erfolgt der Austrag der Granulate aus dem Schwerkraftsichter, insbesondere dem Zick-Zack Sichter in definierte, räumlich begrenzte Formen (Kapseln K1). Dieser Verfahrensschritt läuft bevorzugt drucklos, also bei Normaldruck ab. Diese mit Granulat gefüllten Kapseln werden in den Kochreaktor (R1) gegeben. Im Reaktor laufen zwei Verfahrensschritte teilweise parallel ab. Die Säureionen überführen das wasserlösliche Lignin in eine wasserunlösliche Form. Gleichzeitig bilden durch den Aufbau von Feststoffbrücken zwischen den Sprühgranulaten feste Brikettstrukturen. In der anschließenden Wascheinheit (F2) werden die Kapseln entfernt und die Briketts einem Waschschritt unterzogen. Die Filtrationseinheit (F1), die zur Abtrennung der kolloidalen Bestandteile aus der Suspension im Verfahrensprozess 1 (s. 2) notwendig war, kann hier entfallen, da nahezu die gesamten kolloidalen Anteile mit in den Brikettverband eingebaut werden. Das mit Säure beladene Waschwasser gelangt in eine Regenerationseinheit (R2). Hier werden Säure und Wasser, welches geringfügig kolloidale Anteile beinhalten kann, voneinander getrennt. Die Säure wird dem Kochreaktor (R1) zurückgeführt. Das von den Restbestandteilen gereinigte Wasser wird in eine Wasseraufbereitung oder als Waschwasser wieder in den Prozess geführt. Die abgtrennten Kolloide werden wieder in den Sprühgranulationsprozess gegeben (B1-P1-G1).
  • Das beschriebene Verfahren zeichnet sich in einer bevorzugten Ausführungsform dadurch aus, dass die Überführung in die Brikettform sowohl auf eine Filtrationsstufe, als auch auf eine nachgeschaltete Pelletiereinheit verzichtet wird. Die Briketts besitzen gegenüber Granulaten eine höhere Energiedichte und eignen sich insbesondere für eine energetische Nutzung.
  • 4: Durchschnittliche Porengröße von Lignin-Granulaten in Abhängigkeit von der Trocknungstemperatur (mit Standardabweichungen)
  • 4 stellt die thermischen Eigenschaften der in einem Sprühgranulator erzeugten Ligningranulate dar. Die Abhängigkeit der Porengröße von der Prozesstemperatur im Sprühgranulator ist deutlich zu erkennen. Die Porengröße nimmt mit steigender Temperatur exponentiell zu. Schlussfolgernd daraus kann die Säure tiefer in die Agglomerate eindringen, so dass die Reaktion (umfassend Einhüllung und Verkapselung) bis ins Innere der Agglomerate fortschreitet. Aus den Ergebnissen ist abzuleiten, dass die bei einer Prozesstemperatur bei 60°C gebildeten Agglomerate lediglich von einer wasserunlöslichen Hülle eingeschlossen werden, d. h., die Reaktion findet nur an der Oberfläche statt. Die Agglomerate, die bei einer Prozesstemperatur von 80°C erzeugt wurden, zeichnen sich sowohl durch eine wasserunlösliche Oberfläche, als auch durch tiefer liegende wasserunlösliche Schichten aus. Durch die grobporigen Strukturen der bei 100°C gebildeten Agglomerate kann der Prozess bis in das Innere der Agglomerate fortschreiten so dass zu erwarten ist, dass das gesamte Agglomerat (innen und außen) wasserunlöslich ist.
  • 5: Probe auf Wasserlöslichkeit der Granulate vor und nach der Behandlung mit H2SO4
  • Für die Bestimmung der Wasserlöslichkeit der mit Schwefelsäure behandelten Agglomerate (hier: Granulate) wird je 1 g der jeweiligen Produktprobe mit 10 ml Wasser versetzt. Nach etwa 24 Stunden erfolgt eine visuelle Begutachtung der entstandenen Lösungen.
  • Zur Überprüfung der Wasserlöslichkeit der Granulate vor und nach der Behandlung mit H2SO4 wurde diese in Wasser versetzt. Die 5 stellt die Sprühgranulate von Ca-LS, Na-LS, Kraftlignin vor (Glas 1 und 2) und nach (Glas 3 und 4) der Behandlung mit H2SO4 gegenüber. Dabei wird jeweils das trockene (Glas 1 und 3) und das mit Wasser versetzte Granulat (Glas 2 und 4) dargestellt. Die Ausgangsgranulate aus dem Sprühgranulationsprozess sind nach etwa 20 Minuten vollständig im Wasser gelöst (Glas 2). Demgegenüber lösen sich die schwefelsäurebehandelten Granulate nicht in Wasser (Glas 4). Damit ist die Produktion von wasserunlöslichen Ligningranulaten durch die Kombination von Granulatproduktion durch Sprüh-Trocknung und anschließender Säurebehandlung bewiesen.
  • Bezugszeichenliste
  • 1
    austretende Abluft aus dem System
    2
    abgeschiedener Feinstaub aus dem Fließbett
    3
    zugeführter Heißluftstrom
    4
    eintretender Sichterluftstrom
    5
    Zerstäuberluftzufuhr
    6
    Zuleitung des flüssigen Rohmaterials (Ablauge)
    7
    Feingutanteil
    8
    Grobgutanteil Granulate
    9
    kontinuierlicher Produktaustrag
    10
    zylinderförmiger Granulationsbehälter
    11
    zirkulierendes Material
    12
    konischer Luftanströmboden
    13
    Zerstäuberdüse
    14
    Zick-Zack-Sichter
    15
    Ventil zur Produktaustragverriegelung
    16
    Auffangbehälter für das Grobgut
    17
    Abluft Temperaturmessstelle
    18
    Zuluft Temperaturmessstelle

Claims (15)

  1. Verfahren zur Herstellung von wasserunlöslichen Lignin-Agglomeraten aus der Ablauge eines Cellulosegewinnungsprozesses, umfassend die Schritte: – Durchführen einer Granulation mit der Ablauge zur Erzeugung von Lignin-Agglomeraten und – Behandeln der erzeugten Lignin-Agglomerate mit einer Säure.
  2. Verfahren nach Anspruch 1, wobei die Ablauge eine Sulfitlauge oder Sulfatlauge ist.
  3. Verfahren nach Anspruch 1 oder 2, wobei die Granulation bei einer Temperatur von kleiner oder gleich 100°C erfolgt, insbesondere bei 60°C bis 90°C.
  4. Verfahren nach Anspruch 1 bis 3, wobei die Säure zur Behandlung der Lignin-Agglomerate eine mineralische oder organische Säure ist, insbesondere einer Konzentration von 60% bis 80%, wobei die Säure bevorzugt verdünnte Schwefelsäure ist.
  5. Verfahren nach Anspruch 1 bis 3, wobei die Säure zur Behandlung der Lignin-Agglomerate aus Sulfatlauge mit einer verdünnten Schwefel- oder eine Essigsäure erfolgt.
  6. Verfahren nach Anspruch 1 bis 5, wobei die Temperatur der Säure zur Behandlung der Lignin-Agglomerate 100°C bis 130°C beträgt.
  7. Verfahren nach Anspruch 1 bis 6, aufweisend – Abtrennen der Säure-behandelten Lignin-Agglomerate von der Säure durch Filtration, – Waschen der Lignin-Agglomerate mit Wasser und anschließender Filtration, und/oder – Trennen der kolloidalen Bestandteile der Säure durch Filtration.
  8. Verfahren nach Anspruch 7, wobei das zum Waschen der Lignin-Agglomerate verwendete Wasser eine Temperatur von 40°C bis 100°C, bevorzugt von 80°C aufweist.
  9. Verfahren nach Anspruch 1 bis 8, wobei die Lignin-Agglomerate als Granulate oder Briketts vorliegen.
  10. Verfahren nach Anspruch 9, wobei die Brikettierung durch Säurebehandlung bei Normaldruck in einer festen Form durchgeführt wird.
  11. Verfahren nach Anspruch 1 bis 10, wobei die Konzentration der Säure im Wesentlichen konstant bleibt, insbesondere durch Rückfluss von SO2- oder H2S-haltigem Gas in die Ablauge.
  12. Verfahren nach Anspruch 1 bis 11, wobei die Granulation mittels eines Sprühagglomerators oder eines Mischagglomerators erfolgt.
  13. Lignin-Agglomerat, herstellbar durch – Durchführen einer Granulation mit der Schwarzlauge zur Erzeugung von Lignin-Agglomeraten und – Behandeln der erzeugten Lignin-Agglomerate mit einer Säure.
  14. Verwendung eines Lignin-Agglomerats nach Anspruch 13 für die Herstellung von Biokunststoff oder für die Energiegewinnung durch Verbrennung.
  15. Verwendung einer Granulations-Vorrichtung, insbesondere eines Sprühagglomerators oder eines Mischagglomerators, zur Durchführung eines Verfahrens nach Anspruch 1 bis 12.
DE201210102327 2012-03-12 2012-03-20 Verfahren zur Herstellung von wasserunlöslichen Lignin-Agglomeraten Expired - Fee Related DE102012102327B3 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE201210102327 DE102012102327B3 (de) 2012-03-12 2012-03-20 Verfahren zur Herstellung von wasserunlöslichen Lignin-Agglomeraten
PCT/EP2013/053947 WO2013135485A1 (de) 2012-03-12 2013-02-27 Verfahren zur herstellung von wasserunlöslichen lignin-agglomeraten

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102012102063.9 2012-03-12
DE102012102063 2012-03-12
DE201210102327 DE102012102327B3 (de) 2012-03-12 2012-03-20 Verfahren zur Herstellung von wasserunlöslichen Lignin-Agglomeraten

Publications (1)

Publication Number Publication Date
DE102012102327B3 true DE102012102327B3 (de) 2013-08-01

Family

ID=48783975

Family Applications (1)

Application Number Title Priority Date Filing Date
DE201210102327 Expired - Fee Related DE102012102327B3 (de) 2012-03-12 2012-03-20 Verfahren zur Herstellung von wasserunlöslichen Lignin-Agglomeraten

Country Status (2)

Country Link
DE (1) DE102012102327B3 (de)
WO (1) WO2013135485A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013112499A1 (de) * 2013-11-13 2015-05-13 Brandenburgische Technische Universität Cottbus-Senftenberg Vorrichtung und Verfahren zur Agglomeration der Ablauge eines Cellulosegewinnungsprozesses
CN115768844A (zh) * 2020-07-03 2023-03-07 斯道拉恩索公司 涂料组合物的制造工艺

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015199608A1 (en) * 2014-06-27 2015-12-30 Ren Fuel K2B Ab Depolymerisation of lignin

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006031175A1 (en) * 2004-09-14 2006-03-23 Lignoboost Ab Method for separating lignin from black liquor
WO2006038863A1 (en) * 2004-10-07 2006-04-13 Lignoboost Ab Method for separating lignin from a lignin containing liquid/slurry

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB482894A (en) * 1935-10-25 1938-04-06 Mead Corp Improvements in or relating to the production of mouldable articles from lignin derivative material and fibrous filler
US2541058A (en) * 1948-06-16 1951-02-13 Wood Conversion Co Processing of lignocellulose materials
US3895996A (en) * 1972-08-01 1975-07-22 Betz Laboratories Beneficiation of lignin solutions and pulp mill wastes
JP3024526B2 (ja) * 1995-10-11 2000-03-21 日本製紙株式会社 リグニン組成物、その製造方法及びそれを用いたセメント分散剤
US8613781B2 (en) * 2007-08-08 2013-12-24 Harrison R. Cooper Lignin dewatering process
CN101952504B (zh) 2008-02-21 2013-09-18 李诺布斯特公司 从黑液分离木质素的方法、木质素产品及木质素产品在燃料或材料制造中的应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006031175A1 (en) * 2004-09-14 2006-03-23 Lignoboost Ab Method for separating lignin from black liquor
WO2006038863A1 (en) * 2004-10-07 2006-04-13 Lignoboost Ab Method for separating lignin from a lignin containing liquid/slurry
EP1797236A1 (de) * 2004-10-07 2007-06-20 Lignoboost Ab Verfahren zur abtrennung von lignin aus einer ligninhaltigen flüssigkeit bzw. aufschlämmung

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013112499A1 (de) * 2013-11-13 2015-05-13 Brandenburgische Technische Universität Cottbus-Senftenberg Vorrichtung und Verfahren zur Agglomeration der Ablauge eines Cellulosegewinnungsprozesses
CN115768844A (zh) * 2020-07-03 2023-03-07 斯道拉恩索公司 涂料组合物的制造工艺

Also Published As

Publication number Publication date
WO2013135485A1 (de) 2013-09-19

Similar Documents

Publication Publication Date Title
DE2501636C2 (de)
DE2654937A1 (de) Verfahren zur entfernung von phenolen und anderen organischen stoffen aus abwasser
EP3030598B1 (de) Verfahren zur gewinnung von lignin aus schwarzlauge und dadurch hergestellte produkte
DE2230158A1 (de) Verfahren zur Herstellung von granalienförmigem wasserhaltigem Natriumsilikat
DE102007062811A1 (de) Aus Biomasse hergestellter Werk- und/oder Brennstoff
DE2513900A1 (de) Verfahren zum verringern des schwefelgehalts von kohle
DE948212C (de) Verfahren zur Gewinnung von Lignin und Ligninverbindungen bei der Aufarbeitung von Schwarzlauge
DE3447454A1 (de) Verfahren zur thermischen entwaesserung von kohle
DE102012102327B3 (de) Verfahren zur Herstellung von wasserunlöslichen Lignin-Agglomeraten
DE2624779C2 (de) Verfahren zum Herstellen von Aktivkohlekörnern
DE1805779A1 (de) Verfahren zur Herstellung von Diatomeenerde
EP0600211B1 (de) Verfahren zur Herstellung von festem Natriumcyanid
DE4111442C1 (de)
DE3043518C2 (de) Verfahren zur Rückgewinnung von Abwässerniederschlägen bzw. -rückständen
DE102013112499A1 (de) Vorrichtung und Verfahren zur Agglomeration der Ablauge eines Cellulosegewinnungsprozesses
DE803836C (de) Verfahren zur Herstellung von Huminsaeuregemischen
DE102012112231B4 (de) Verfahren zur Herstellung von säurebeständigen Biopolymer-Lignin-Membranen
DE1926214A1 (de) Silikagel und Verfahren zu seiner Herstellung
EP0870009A1 (de) Kontinuierliches verfahren zur herstellung von weinsäure und futterhefe
AT240156B (de) Verfahren und Vorrichtung zur Behandlung der bei der Herstellung von Zellstoff anfallenden Aufschlußlaugen und Wiedergewinnung der in ihnen enthaltenen Salze
DD262868A1 (de) Verfahren zur perkolationsextraktion von hydrothermal behandelter braunkohle
DE2629798A1 (de) Verfahren zur herstellung von aktivkohle
AT319736B (de) Verfahren zur Abtrennung und Verwertung von organischen und anorganischen Substanzen aus einer wässerigen Ablauge
DE102021205595A1 (de) Verfahren und Vorrichtung zur Herstellung von Düngemittelgranulat
DE3119968A1 (de) &#34;verfahren zur kontinuierlichen einstufigen herstellung von magnesiumchlorid-granulaten&#34;

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R086 Non-binding declaration of licensing interest
R018 Grant decision by examination section/examining division
R020 Patent grant now final
R082 Change of representative

Representative=s name: HOPPE, GEORG JOHANNES, DIPL.-BIOCHEM. DR. RER., DE

R081 Change of applicant/patentee

Owner name: BRANDENBURGISCHE TECHNISCHE UNIVERSITAET COTTB, DE

Free format text: FORMER OWNER: BRANDENBURGISCHE TECHNISCHE UNIVERSITAET COTTBUS, 03046 COTTBUS, DE

Effective date: 20131105

R082 Change of representative

Representative=s name: HOPPE, GEORG JOHANNES, DIPL.-BIOCHEM. DR. RER., DE

Effective date: 20131105

R020 Patent grant now final

Effective date: 20131105

R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee