DE102011120745A1 - Energetische Wirkmasse umfassend ein Dihydroxylammoniumsalz oder ein Diammoniumsalz - Google Patents

Energetische Wirkmasse umfassend ein Dihydroxylammoniumsalz oder ein Diammoniumsalz Download PDF

Info

Publication number
DE102011120745A1
DE102011120745A1 DE102011120745A DE102011120745A DE102011120745A1 DE 102011120745 A1 DE102011120745 A1 DE 102011120745A1 DE 102011120745 A DE102011120745 A DE 102011120745A DE 102011120745 A DE102011120745 A DE 102011120745A DE 102011120745 A1 DE102011120745 A1 DE 102011120745A1
Authority
DE
Germany
Prior art keywords
bistetrazole
diol
salt
dihydroxylammonium
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102011120745A
Other languages
English (en)
Inventor
Thomas M. Klapötke
Jörg Stierstorfer
Dennis Fischer
Niko Fischer
Davin Glenn Piercey
Marius Reymann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BAYERISCHE PATENTALLIANZ GMBH, DE
Original Assignee
Ludwig Maximilians Universitaet Muenchen LMU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ludwig Maximilians Universitaet Muenchen LMU filed Critical Ludwig Maximilians Universitaet Muenchen LMU
Priority to DE102011120745A priority Critical patent/DE102011120745A1/de
Priority to EP12753924.5A priority patent/EP2744796B1/de
Priority to PL12753924T priority patent/PL2744796T3/pl
Priority to CA2839188A priority patent/CA2839188C/en
Priority to US14/239,481 priority patent/US9296664B2/en
Priority to PCT/EP2012/066023 priority patent/WO2013026768A1/de
Publication of DE102011120745A1 publication Critical patent/DE102011120745A1/de
Priority to ZA2013/09434A priority patent/ZA201309434B/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B43/00Compositions characterised by explosive or thermic constituents not provided for in groups C06B25/00 - C06B41/00

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Die Erfindung betrifft eine energetische Wirkmasse umfassend ein Dihydroxylammoniumsalz oder Diammoniumsalz von 5,5'-Bistetrazol-1,1'-diol, 5,5'-Bistetrazol-1,2'-diol oder 5,5'-Bistetrazol-2,2'-diol oder ein Gemisch aus mindestens zwei dieser Salze.

Description

  • Die Erfindung betrifft eine energetische Wirkmasse umfassend ein Dihydroxylammoniumsalz oder Diammoniumsalz, eine Verwendung des Dihydroxylammoniumsalzes oder Diammoniumsalzes, ein Verfahren zur Herstellung des Dihydroxylammoniumsalzes oder Diammoniumsalzes und einen Ausgangsstoff oder ein Zwischenprodukt zur Erzeugung des Dihydroxylammoniumsalzes oder Diammoniumsalzes.
  • Tselinskii, I. V. et al., Russian Journal of Organic Chemistry, Band 37, Nr. 3, 2001, Seiten 430 bis 436 offenbart die Synthese und Reaktivität von aliphatischen und aromatischen Carbohydroximoylaziden und darauf basierenden 5-substituierten 1-Hydroxytetrazolen.
  • Aus Göbel, M. et al., J. AM. CHEM. SOC. 2010, 132, Seiten 17216 bis 17226 ist die Oxidation von Nitrotetrazolat zum Nitrotetrazolat-2N-oxid-Anion und die Herstellung des Hydroxylammoniumsalzes davon bekannt. Das Hydroxylammoniumsalz zeigte in der theoretischen Berechnung bessere Detonationscharakteristika als der Sekundärsprengstoff HMX. Gemäß Seite 17224, linke Spalte, zweiter Absatz der Druckschrift schließen jedoch die thermische Stabilität des Salzes und das extreme Zerfließen der freien Säure, die sich an Luft innerhalb weniger Minuten in absorbiertem Wasser löst, eine praktische Anwendung wahrscheinlich aus.
  • Weiterhin sind Nitramine als Sekundärsprengstoffe bekannt, wie beispielsweise Hexogen (RDX), Octogen (HMX) oder Hexanitroisowurtzitan (CL-20). Ein Nachteil dieser Nitramine und ihrer Reaktionsprodukte nach einer Detonation besteht in deren Toxizität und Umweltschädlichkeit. Weiterhin besteht ein Bedürfnis nach leistungsfähigeren Sekundärsprengstoffen. Diese sind zwar bereits bekannt, beispielsweise in Form von Dinitroazofuroxan oder Octanitrocuban. Ein Nachteil dieser Stoffe besteht in ihrer für Sekundärsprengstoffe hohen Sensitivität. Weiterhin ist deren Synthese sehr aufwändig und erfordert 10 oder mehr Reaktionsschritte.
  • Aufgabe der vorliegenden Erfindung ist es, eine alternative energetische Wirkmasse bereitzustellen, welche einfach herzustellen ist und eine hohe Leistungsfähigkeit bei sicherer Handhabbarkeit und vertretbarer Umweltschädlichkeit aufweist. Weiterhin soll eine Verwendung mindestens eines Bestandteils dieser Wirkmasse und ein Verfahren zur Herstellung eines solchen Bestandteils bereitgestellt und ein Ausgangsstoff oder Zwischenprodukt zur Erzeugung eines solchen Bestandteils angegeben werden.
  • Die Aufgabe wird durch die Merkmale des Anspruchs 1 gelöst. Zweckmäßige Ausgestaltungen der Erfindung ergeben sich aus den Merkmalen der Ansprüche 2 bis 9.
  • Erfindungsgemäß ist eine energetische Wirkmasse vorgesehen, die ein Dihydroxylammoniumsalz oder Diammoniumsalz von 5,5'-Bistetrazol-1,1'-diol, 5,5'-Bistetrazol-1,2'-diol oder 5,5'-Bistetrazol-2,2'-diol oder ein Gemisch aus mindestens zwei dieser Salze umfasst. Unter einer energetischen Wirkmasse wird hier eine nach deren Zündung deflagrativ oder detonativ reagierende Wirkmasse verstanden. Es kann sich dabei um eine pyrotechnische Wirkmasse handeln. Ein Vorteil der genannten Dihydroxylammoniumsalze und Diammoniumsalze ist, dass es sich dabei nicht um Nitramine handelt und somit auch bei deren Abbau in der Umwelt keine umweltschädlichen Nitrosamine entstehen. Die Umweltverträglichkeit dieser Salze und der Reaktionsprodukte dieser Salze nach einer Detonation ist deutlich besser als die Umweltverträglichkeit der genannten Nitramine und der Reaktionsprodukte der Nitramine.
  • Darüber hinaus hat es sich gezeigt, dass beispielsweise das Dihydroxylammoniumsalz Dihydroxylammonium-5,5'-bistetrazol-1,1'-diolat eine um 300 m/s höhere berechnete Detonationsgeschwindigkeit als CL-20 und eine um 1000 m/s höhere berechnete Detonationsgeschwindigkeit als RDX aufweist. Das Diammoniumsalz Diammonium-5,5'-bistetrazol-1,1'-diolat weist eine um 100 m/s höhere berechnete Detonationsgeschwindigkeit als CL-20 und eine um 700 m/s höhere berechnete Detonationsgeschwindigkeit als RDX auf. Beide Salze erfüllen damit die für einen Hochleistungssprengstoff geforderten Voraussetzungen. Die Berechnung der Detonationsgeschwindigkeiten erfolgte mit dem Programm EXPLO5, Version 5.04 (M. Sućeska, EXPLO5.04 program, Zagreb, Croatia, 2010; M. Sućeska, Calculation of detonation parameters by EXPLO5 computer program, Materials Science Forum, 2004, 465–466, 325–330; M. Sućeska, Calculation of the detonation properties of C-H-N-O explosives, Propellants, Explos., Pyrotech. 1991, 16, 197–202; M. Sućeska, Evaluation of detonation energy from EXPLO5 computer code results, Propellants, Explos., Pyrotech. 1999, 24, 280–285; M. L. Hobbs, M. R. Baer, Proc. of the 10th Symp. (International) an Detonation, ONR 33395-12, Boston, MA, July 12–16, 1993, p. 409).
  • Weiterhin ist die Sensitivität des Dihydroxylammonium-5,5'-bistetrazol-1,1'-diolats und des Diammonium-5,5'-bistetrazol-1,1'-diolats jeweils geringer als diejenige von RDX. Die mit der Fallhammermethode bestimmte Schlagempfindlichkeit beträgt für RDX 7,5 J, so dass RDX zur Verwendung als Sekundärsprengstoff durch den Zusatz von Bindemitteln und Plastifizierungsmitteln desensitiviert werden muss, um handhabbar zu sein. Das Dihydroxylammoniumsalz von 5,5'-Bistetrazol-1,1'-diol (im Folgenden: ”TKX50”) weist dagegen bereits ahne Zusatzstoffe eine deutlich geringere Schlagempfindlichkeit von 20 J auf. Das Diammoniumsalz von 5,5'-Bistetrazol-1,1'-diol (im Folgenden: ”ABTOX”) weist ohne Zusatzstoffe sogar eine Schlagempfindlichkeit von 35 J auf. Dadurch sind TKX50 und ABTOX deutlich sicherer zu handhaben als RDX und erlauben eine einfachere Erfüllung der vorgeschriebenen Erfordernisse für insensitive Munition.
  • Darüber hinaus ist die Dichte von TKX50 höher als die Dichte von RDX und eine TKX50 enthaltende Wirkmasse kann wegen einem geringen Anteil von für eine Desensitivierung erforderlichen Zusatzstoffen eine deutlich höhere Dichte aufweisen als eine RDX enthaltende Wirkmasse. Dies bedeutet, dass in einem gegebenen Volumen eine höhere Masse einer TKX50 enthaltenden Wirkmasse untergebracht und damit eine höhere Leistung erreicht werden kann, als mit RDX.
  • Die Dichte von ABTOX entspricht in etwa der Dichte von RDX. ABTOX ist jedoch aufgrund seiner Leistungsfähigkeit in der Lage, bei gegebenem Volumen mehr kinetische Energie auf ein Zielobjekt zu übertragen als RDX. Darüber hinaus weist ABTOX eine überragende thermische Stabilität auf. Es zersetzt sich erst bei einer Temperatur von 290°C und übersteigt damit bei weitem die Zersetzungstemperatur von RDX. ABTOX eignet sich daher zum Einsatz bei einer hohen Umgebungstemperatur, bei der RDX nicht eingesetzt werden kann.
  • Die Eigenschaften von TKX50 und ABTOX im Vergleich zu Nitropenta (PETN), RDX, HMX und CL-20 sind in der folgenden Tabelle dargestellt:
    PETN RDX HMX CL20 TKX50 ABTOX
    Formel C5H8N4O12 C3H6N6O6 C4H8N8O8 C6H6N12O12 C2H8N10O4 C2H8N10O2
    Molekulargewicht [g mol–1] 316,1 222,1 296,2 438,2 236,2 204,2
    IS [J]a 4 7,5 7 4 20 35
    FS [N]b 80 120 112 48 120 360
    ESD-Test [J]c 0,1 0,2 0,2 - 0,1 0,25
    N [%]d 17,72 37,8 37,8 38,3 59,3 68,6
    Ω [%]e –10,12 –21,6 –21,6 –11,0 –27,1 –47,0
    Tdec. [°C]f 150 210 285 195 221 290
    Dichte [g cm–3]g 1,778 1,820 1,905 2,038 1,915 1,800
    ΔfU°/kJ kg–1 h –1611 417 353 982 2010 654
    –ΔEU° [kJ kg–1]i 6190 6125 6063 6473 6029 5923
    TE [K]j 4306 4236 4117 4654 3957 3723
    pc-J [kbar]k 320 348 392 446 425 381
    D [m s–1]l 8320 8748 9058 9342 9687 9485
    Gasvolumen [L kg–1]m 688 739 734 669 846 844
    aSchlagempfindlichkeit (gemessen mittels der Fallhammermethode gemäß der Bundesanstalt für Materialforschung und -prüfung, 1 von 6); b Reibempfindlichkeit (gemessen mit einem Reibapparat gemäß der Bundesanstalt für Materialforschung und -prüfung, 1 von 6); c gemessen mit der elektrostatischen Entladungsvorrichtung der Firma OZM Research s. r. o., Tschechien; d Stickstoffgehalt; e Sauerstoffbilanz; f Zersetzungstemperatur gemäß DSC(Differential Scanning Calorimetry)-Messung (5°C pro Minute); g ermittelt mittels Röntgendiffraktometrie; h Bildungsenergie berechnet mittels der CBS-4M-Methode; i Explosionsenergie; j Explosionstemperatur; k Detonationsdruck; l Detonationsgeschwindigkeit; m ermittelt unter der Annahme ausschließlich gasförmiger Reaktionsprodukte.
  • Ein weiterer Vorteil der von der erfindungsgemäßen Wirkmasse umfassten Salze besteht darin, dass deren letzter Syntheseschritt in einer wässrigen Lösung erfolgen kann und dadurch verhältnismäßig sicher ist. Aus Wasser bzw. der wässrigen Lösung kristallisieren die Salze in idealen blockartigen Kristallen aus. Diese Kristalle sind für die Formulierung von Wirkmassen vorteilhaft, weil durch das geringe Oberfläche/Volumen-Verhältnis der Blöcke gegenüber den sich bei sonstigen Explosivstoffen üblicherweise bildenden Nadeln weniger Plastifizierungsmittel und Bindemittel benötigt werden, um einen sicher handhabbaren Wirkstoff bereitzustellen. Dadurch wird ein höherer Explosivstoffgehalt in der Wirkmasse und damit eine höhere Leistungsfähigkeit erreicht. Weiterhin ist die verhältnismäßig geringe Wasserlöslichkeit der Salze für deren Weiterverarbeitung vorteilhaft.
  • Bei einem Test der Leistungsfähigkeit mittels des sogenannten SSSRTs (Small Scale Shock Reactivity Test), bei dem untersucht wird, wie weit ein Aluminium-Block durch einen zu untersuchenden Sprengstoff bei dessen Detonation ausgebeult wird, zeigte es sich, dass TKX50 nach dessen Zündung eine ähnliche Leistungsfähigkeit wie HMX und eine höhere Leistungsfähigkeit als RDX aufweist. Bedingt durch eine nur teilweise erfolgte Detonation zeigte ABTOX beim SSSRT eine geringere Leistungsfähigkeit als RDX. Die nur teilweise erfolgte Detonation zeigt, dass ABTOX sehr sicher zu handhaben ist, weil für dessen vollständige Zündung ein sogenannter Boostersprengstoff erforderlich ist.
  • Da bekannt ist, dass beim SSSRT weniger sensitive Explosivstoffe eine größere Menge benötigen, um ihre Leistungsfähigkeit zu zeigen und sensitivere Explosivstoffe mit geringerer Leistungsfähigkeit eine scheinbar höhere Leistungsfähigkeit zeigen, kann davon ausgegangen werden, dass die tatsächlichen Leistungsfähigkeiten von TKX50 und ABTOX die Leistungsfähigkeit von HMX übersteigen.
  • Das Dihydroxylammoniumsalz von 5,5'-Bistetrazol-2,2'-diol weist gegenüber TKX50 eine etwas geringere thermische Stabilität, jedoch ebenso wie TKX50 eine verhältnismäßig hohe Dichte auf. Die hohe Dichte ist für leistungsfähige Sekundärsprengstoffe ein entscheidendes Kriterium. Das Dihydroxylammoniumsalz von 5,5'-Bistetrazol-2,2'-diol weist eine höhere Sensitivität als TKX50 auf und ist damit nicht nur als Sekundärsprengstoff, sondern auch als Boostersprengstoff geeignet. Ein Boostersprengstoff ist ein Sprengstoff, der zur Verstärkung der Wirkung eines anderen Sprengstoffs dient und dessen Sensitivität und Initiierbarkeit im Vergleich zu einem Primärsprengstoff niedriger und im Vergleich zu einem Sekundärsprengstoff höher ist.
  • Die vorteilhaften Eigenschaften der genannten Dihydroxylammoniumsalze und Diammoniumsalze waren so nicht zu erwarten. Gemäß Göbel, M. et al., J. AM. CHEM. SOC, 2010, 131, Seite 17224, linke Spalte, zweiter Absatz schließen die thermische Stabilität und das extreme Zerfließen der freien Säure eine praktische Anwendung wahrscheinlich aus. Bei dem gemäß dieser Veröffentlichung untersuchten Hydroxylammoniumsalz des Nitrotetrazolat-2N-oxids betrug die Zersetzungstemperatur lediglich 157°C. Da sich wasserfreies 5,5'-Bistetrazol-1,1'-diol bei Tests als verhältnismäßig instabil und auf Grund großer Empfindlichkeit gegenüber Schlag, Reibung und elektrostatischer Entladung als Sprengstoff kaum als sicher handhabbar erwiesen hat, konnte der Fachmann nicht davon ausgehen, dass die von der erfindungsgemäßen Wirkmasse umfassten Dihydroxylammoniumsalze und Diammoniumsalze derart überragende Eigenschaften als Sprengstoff aufweisen würden.
  • Die Erfindung betrifft weiterhin die Verwendung eines Dihydroxylammoniumsalzes oder Diammoniumsalzes von 5,5'-Bistetrazol-1,1'-diol, 5,5'-Bistetrazol-1,2'-diol oder 5,5'-Bistetrazol-2,2'-diol oder eines Gemischs aus mindestens zwei dieser Salze als Sprengstoff, insbesondere als Sekundärsprengstoff. Die Sensitivität des Dihydroxylammoniumsalzes von 5,5'-Bistetrazol-2,2'-diol hat sich als hoch genug erwiesen, um sogar als Boostersprengstoff eingesetzt werden zu können.
  • Weiterhin betrifft die Erfindung ein Verfahren zur Herstellung eines Dihydroxylammoniumsalzes oder Diammoniumsalzes von 5,5'-Bistetrazol-1,1'-diol, 5,5'-Bistetrazol-1,2'-diol oder 5,5'-Bistetrazol-2,2'-diol oder eines Gemischs aus mindestens zwei dieser Salze mit folgenden Schritten:
    • a) Oxidieren von 5,5'-Bistetrazol zu einem Gemisch aus 5,5'-Bistetrazol-1,1'-diol, 5,5'-Bistetrazol-1,2'-diol und 5,5'-Bistetrazol-2,2'-diol oder Förderung der Isomerisierung von Diazidoglyoxim zu 5,5'-Bistetrazol-1,1'-diol oder einem 5,5'-Bistetrazol-1,1'-diolat,
    • b) Inkubation des gemäß Schritt a) erhaltenen Reaktionsprodukts mit Hydroxylamin, Hydroxylammoniumionen, Ammoniumionen oder Ammoniak in wässriger Lösung und
    • c) Absondern des dabei erhaltenen Präzipitats.
  • Bei dem gemäß Schritt a) erhaltenen Reaktionsprodukt kann es sich um das Gemisch gemäß Schritt a) oder das 5,5'-Bistetrazol-1,1'-diol handeln. Das Oxidieren gemäß Schritt a) kann durch Zusatz von 2KHSO5·KHSO4·K2SO4 oder einer anderen anorganischen oder organischen Peroxosäure oder hypofluoriger Säure oder einem anderen Sauerstoffüberträger zum 5,5'-Bistetrazol erfolgen. 2KHSO5·KHSO4·K2SO4 wird unter dem Handelsnamen ”Oxone” von der Firma DuPont vertrieben. Der Zusatz von Oxone oder der anderen anorganischen oder organischen Peroxosäure oder hypofluoriger Säure oder dem anderen Sauerstoffüberträger erfolgt vorzugsweise im Überschuss, um eine vollständige Oxidation des 5,5'-Bistetrazols sicherzustellen. Beim Einsatz von Oxone im Überschuss entsteht das genannte Gemisch mit einem deutlichen Überschuss an 5,5'-Bistetrazol-2,2'-diol. Vorzugsweise erfolgt das Oxidieren in einer auf einen pH-Wert zwischen 5 und 8, insbesondere zwischen 7 und 7,5, gepufferten wässrigen Lösung. Das Puffern kann z. B. mittels Trinatriumphosphat erfolgen. Bei dem genannten pH-Wert liegt das 5,5'-Bistetrazol überwiegend deprotoniert vor. Dadurch wird ein für eine Oxidation durch Oxone erforderlicher nukleophiler Angriff des 5,5'-Bistetrazols am Peroxomonosulfat begünstigt.
  • Zur Erhöhung der Reinheit des Reaktionsprodukts kann das bei Schritt a) durch Oxidieren von 5,5'-Bistetrazol erhaltene Reaktionsprodukt angesäuert und anschließend mit einem organischen Extraktionsmittel, insbesondere Ether, extrahiert werden. Bei dem hier und im Folgenden genannten Ether handelt es sich insbesondere um Diethylether. Danach kann das Reaktionsprodukt, insbesondere durch Evaporation, aus dem Extrakt gewonnen werden. Zur weiteren Erhöhung der Reinheit kann der nach Evaporation verbleibende Rückstand rekristallisiert werden. Als dazu besonders geeignetes Lösungsmittel hat sich Methanol erwiesen.
  • Das Dihydroxylammoniumsalz und das Diammoniumsalz von 5,5'-Bistetrazol-1,1'-diol haben sich in Wasser als deutlich weniger löslich erwiesen als die Dihydroxylammoniumsalze und Diammoniumsalze von 5,5'-Bistetrazol-1,2'-diol und 5,5'-Bis-tetrazol-2,2'-diol. Um aus dem durch Oxidieren entstehenden Gemisch aus 5,5'-Bistetrazol-1,1'-diol, 5,5'-Bistetrazol-1,2'-diol und 5,5'-Bistetrazol-2,2'-diol spezifisch das Dihydroxylammoniumsalz oder Diammoniumsalz von 5,5'-Bistetrazol-1,1'-diol zu präzipitieren, genügt auf Grund der unterschiedlichen Löslichkeiten der aus dem Gemisch präzipitierbaren Dihydroxylammoniumsalze und Diammoniumsalze das Zusetzen des Hydroxylamins bzw. Ammoniaks zu der wässrigen Lösung.
  • Um die Dihydroxylammoniumsalze und Diammoniumsalze von 5,5'-Bistetrazol-1,2'-diol und 5,5'-Bistetrazol-2,2'-diol zu präzipitieren kann die wässrige Lösung nach der Präzipitation des Dihydroxylammoniumsalzes oder Diammoniumsalzes von 5,5'-Bistetrazol-1,1'-diol, insbesondere unter Zusatz von weiterem Hydroxylamin oder Ammoniak, durch Evaporation eingeengt werden. Dadurch kann zumindest das Löslichkeitsprodukte des Dihydroxylammoniumsalzes oder Diammoniumsalzes von 5,5'-Bistetrazol-1,2'-diol oder 5,5'-Bistetrazol-2,2'-diol überschritten werden, so dass das Dihydroxylammoniumsalz oder Diammoniumsalz präzipitiert. Alternativ kann das Dihydroxylammoniumsalz oder Diammoniumsalzes aus dem aus der Evaporation resultierenden Rückstand durch Umkristallisation, insbesondere aus einem Ethanol-Wasser-Gemisch, gewonnen werden.
  • Da durch Oxidieren von 5,5'-Bistetrazol das 5,5'-Bistetrazol-1,1'-diol nur in geringer Menge im Verhältnis zum 5,5'-Bistetrazol-2,2'-diol entsteht, hat es sich als vorteilhaft erwiesen, die Isomerisierung von Diazidoglyoxim zu Bistetrazol-1,1'-diol zu fördern, weil dabei kein 5,5'-Bistetrazol-1,2'-diol und kein 5,5'-Bistetrazol-2,2'-diol entsteht. Die Förderung der Isomerisierung kann durch Acylierung, insbesondere mittels Acetylchlorid, oder durch Inkubation mit gasförmigem HCl, insbesondere in Ether als Lösungsmittel oder in einem Ether enthaltenden Lösungsmittel, erfolgen. Das Diazidoglyoxim kann durch Reaktion von Dichloroglyoxim mit einem Azid erzeugt werden. Bei dem Azid kann es sich beispielsweise um Natriumazid handeln. Als Lösungsmittel kann dabei Dimethylformamid (DMF) verwendet werden. Das Dichloroglyoxim kann durch Reaktion von Glyoxim mit Chlor, beispielsweise in Ethanol als Lösungsmittel, erzeugt werden. Das Glyoxim wiederum kann durch Reaktion von Glyoxal mit Hydroxylamin erzeugt werden.
  • Bei einer vorteilhaften Ausgestaltung des Verfahrens erfolgt die Reaktion von dem Dichloroglyoxim mit dem Azid in einem nichtwässrigen Lösungsmittel, insbesondere Dimethylformamid (DMF) oder N-Methyl-2-pyrrolidon (NMP). Anschließend wird das Lösungsmittel mit dem dabei entstandenen Diazidoglyoxim mit dem Ether gemischt und mit dem gasförmigen HCl inkubiert. Der Vorteil dieses Verfahrens besteht darin, dass das Diazidoglyoxim nicht als Zwischenstufe isoliert werden muss, sondern in Lösung verbleibt. Da Diazidoglyoxim explosiv ist, wird das Herstellungsverfahren dadurch wesentlich sicherer und durch den Wegfall eines Isolationsschritts auch einfacher und kostengünstiger durchzuführen.
  • Es ist weiterhin möglich, vor Schritt c) den Ether und das HCl abzudampfen und, sofern vorhanden, das DMF abzudampfen. Das Abdampfen von Ether und HCl kann ggf. durch Zusatz von dann ebenfalls abzudampfendem H2O erleichtert werden. Im Falle von DMF als Lösungsmittel wird eine Mischung aus Dimethylammonium-5,5'-bistetrazol-1,1'-diolat und einem 5,5'-Bistetrazol-1,1'-diolat, das mindestens ein Gegenion des Azids umfasst, und im Falle von NMP als Lösungsmittel ein 5,5'-Bistetrazol-1,1'-diol enthaltender Rückstand erhalten.
  • Die genannte Mischung kann in H2O gelöst werden, wobei anschließend ein Hydroxylammoniumsalz, insbesondere Hydroxylammoniumchlorid, zugesetzt wird, so dass das Dihydroxylammoniumsalz von 5,5'-Bistetrazol-1,1'-diol als das Präzipitat erhalten wird.
  • Der 5,5'-Bistetrazol-1,1'-diol enthaltende Rückstand kann in einer wässrigen Alkalihydroxid-Lösung aufgenommen und das ausfallende Alkali-5,5'-bistetrazol-1,1'-diolat abgesondert und in H2O gelöst werden. Anschließend kann ein Hydroxylammoniumsalz, insbesondere Hydroxylammoniumchlorid, zugesetzt werden, so dass das Dihydroxylammoniumsalz von 5,5'-Bistetrazol-1,1'-diol als das Präzipitat erhalten wird.
  • Alternativ kann bei den obigen Verfahren statt des Hydroxylammoniumsalzes auch ein Ammoniumsalz, insbesondere Ammoniumchlorid, zugesetzt werden, so dass das Diammoniumsalz von 5,5'-Bistetrazol-1,1'-diol als das Präzipitat erhalten wird.
  • Die Erfindung betrifft weiterhin 5,5'-Bistetrazol-1,2'-diol oder 5,5'-Bistetrazol-2,2'-diol als Ausgangsstoff oder Zwischenprodukt zur Erzeugung des jeweiligen Dihydroxylammoniumsalzes oder Diammoniumsalzes davon.
  • Nachfolgend wird die Erfindung anhand von Ausführungsbeispielen näher erläutert. Es zeigen:
  • 1 ein Reaktionsschema eines ersten Syntheseverfahrens zur Erzeugung des Dihydroxylammoniumsalzes von 5,5'-Bistetrazo1-1,1'-diol,
  • 2 ein Reaktionsschema eines zweiten Syntheseverfahrens zur Erzeugung des Dihydroxylammoniumsalzes von 5,5'-Bistetrazol-1,1'-diol und
  • 3 ein Reaktionsschema eines Syntheseverfahrens zur Erzeugung des Diammoniumsalzes von 5,5'-Bistetrazol-1,1'-diol.
  • Zur Durchführung des ersten Verfahrens zur Synthese von Dihydroxylammonium-5,5'-bistetrazol-1,1'-diolat gemäß 1 kann wie folgt vorgegangen werden:
    3,0 g 5,5'-Bistetrazol (21,7 mmol) werden in 200 ml Wasser gelöst. 80,0 g Oxone (109 mmol, 5 eq) werden zu der entstandenen klaren Lösung hinzugefügt und die resultierende Lösung wird mit Trinatriumphosphat auf einen pH-Wert von 7 gepuffert. Das Gemisch wird für 5 Stunden bei Raumtemperatur gerührt und dann mit konzentrierter Schwefelsäure angesäuert. Das Reaktionsprodukt wird mittels Ether extrahiert. Durch Evaporation des Ethers wird das Rohprodukt als leicht gelber Feststoff erhalten. Der Feststoff wird in Methanol gelöst und daraus rekristallisiert, um zurückgebliebene Sulfate oder Phosphate daraus zu entfernen. Die Reaktion ergibt eine Mischung aus 5,5'-Bistetrazol-1,1'-diol, 5,5'-Bistetrazol-2,2'-diol und 5,5'-Bistetrazol-1,2'-diol in einer Gesamtausbeute von 71% (2,60 g, 15,3 mmol). Dabei ist das 2,2'-Isomer das Hauptprodukt.
  • 1,7 g des Isomerengemischs (10 mmol) werden in 20 ml heißem Wasser gelöst. Eine wässrige Lösung von 50% (w/w) Hydroxylamin (1,23 g, 20 mmol) werden zu der Lösung zugesetzt. Dabei bildet sich unmittelbar ein farbloses Präzipitat. Das Präzipitat wird durch Erwärmen der Mischung wieder gelöst. Beim langsamen Abkühlen präzipitiert das Dihydroxylammoniumsalz von 5,5'-Bistetrazol-1,1'-diol. Das Salz wird durch Filtrieren abgesondert. Das Salz wird dann in Wasser gelöst und daraus rekristallisiert, um verbliebenes 1,2'-Isomer und 2,2'-Isomer, die beide eine bessere Löslichkeit in Wasser aufweisen als das 1,1'-Isomer, zu entfernen.
  • Das Diammoniumsalz von 5,5'-Bistetrazol-1,1'-diol kann in analoger Weise aus dem in Wasser gelösten Isomerengemisch gewonnen werden. Dazu wird gasförmiges Ammoniak in die wässrige Lösung eingeleitet oder der wässrigen Lösung eine wässrige Ammoniaklösung zugesetzt. Dabei bildet sich unmittelbar ein Präzipitat, das durch Erwärmen der Mischung wieder gelöst wird. Beim langsamen Abkühlen präzipitiert das Diammoniumsalz von 5,5'-Bistetrazol-1,1'-diol. Das Salz wird durch Filtrieren abgesondert und dann in Wasser gelöst und daraus rekristallisiert, um verbliebenes 1,2'-Isomer und 2,2'-Isomer, die beide eine bessere Löslichkeit in Wasser aufweisen als das 1,1'-Isomer, zu entfernen.
  • Bedingt durch die vorwiegende Bildung des 2,2'-Isomers bei der Oxidation des 5,5'-Bistetrazols kann das Dihydroxylammoniumsalz von 5,5'-Bistetrazol-1,1'-diol beim obigen Verfahren nur in verhältnismäßig geringer Ausbeute von 13% (0,31 g, 1,3 mmol) erhalten werden. Um eine höhere Ausbeute zu erhalten, kann die Synthese gemäß dem in 2 dargestellten Reaktionsschema durchgeführt werden. Dazu wird zunächst Dichloroglyoxim synthetisiert und daraus, wie in Tselinskii, I. V. et al., Russian Journal of Organic Chemistry, Band 37, Nr. 3, 2001, Seiten 430 bis 436 beschrieben, 5,5'-Bistetrazol-1,1'-diol als Dihydrat hergestellt. 2,06 g (10 mmol) des so erhaltenen Dihydrats werden in 50 ml warmem Wasser gelöst. Dazu wird eine 50%ige (w/w) Hydroxylaminlösung (1,32 g, 20 mmol) zugesetzt. Beim Abkühlen der Lösung auf Raumtemperatur fällt das Dihydroxylammoniumsalz kristallförmig aus. Es wird durch Filtration abgesondert und luftgetrocknet. Die Ausbeute beträgt 82%.
  • Zur Herstellung des Dihydroxylammoniumsalz bzw. Diammoniumsalzes von 5,5'-Bistetrazol-2,2'-diol wird wie bei der Synthese gemäß 1 vorgegangen. Nachdem beim Abkühlen des Gemischs das Dihydroxylammoniumsalz bzw. Diammoniumsalz des 1,1'-Isomers präzipitiert ist, kann das Dihydroxylammoniumsalz bzw. Diammoniumsalz von 5,5'-Bistetrazol-2,2'-diol durch Evaporation des Lösungsmittels und Umkristallisation des hieraus erhaltenen Rückstandes aus einem Ethanol-Wasser-Gemisch gewonnen werden.
  • Die Synthese des Diammoniumsalzes von 5,5'-Bistetrazol-1,1'-diol kann auch gemäß dem in 3 dargestellten Reaktionsschema durchgeführt werden. Dazu wird zunächst Dichloroglyoxim synthetisiert und daraus, wie in Tselinskii, I. V. et al., Russian Journal of Organic Chemistry, Band 37, Nr. 3, 2001, Seiten 430 bis 436 beschrieben, 5,5'-Bistetrazol-1,1'-diol als Dihydrat hergestellt. 2,06 g (10 mmol) des so erhaltenen Dihydrats werden in 10 ml einer 2 M wässrigen Ammoniaklösung suspendiert. Nach Zusatz von 90 ml Wasser wird die Mischung auf ihren Siedepunkt erwärmt. Dabei entsteht eine klare Lösung. Beim Abkühlen der Lösung auf Raumtemperatur fällt das Diammoniumsalz kristallförmig aus. Es wird durch Filtration abgesondert und luftgetrocknet. Die Ausbeute beträgt 1,14 g (5,57 mmol, 56%).
  • Weitere Syntheseverfahren:
  • TKX50: Dichlorglyoxim (785 mg, 5 mmol) wird bei Raumtemperatur in 10 ml N,N'-Dimethylformamid (DMF) gelöst. Die Lösung wird auf 0°C gekühlt und NaN3 (715 mg, 11 mmol) zugegeben. Die Mischung wird bei 0°C 40 min gerührt, wobei NaCl ausfällt und Diazidoglyoxim in Lösung bleibt. Die Mischung wird in einen Kolben, in den 100 ml Diethylether bei 0°C vorgelegt wurden, überführt und HCl-Gas eingeleitet, wobei der Kolben ständig im Salz-Eis-Bad gekühlt wird und die Temperatur 20°C nicht überschreiten soll. Wenn die Temperatur trotz weiterer Gaseinleitung auf 0–5°C zurückgeht, ist HCl-Sättigung der Etherphase erreicht. Ein Niederschlag, welcher sich bei HCl-Einleitung bildet, agglomeriert zuerst und wird bei zunehmender HCl-Sättigung resuspendiert. Der Kolben wird mit einem Stopfen dicht verschlossen und die Mischung wird über Nacht bei Raumtemperatur unter leichtem HCl-Überdruck, welcher sich im Kolben aufgrund der Erwärmung auf Raumtemperatur bildet, weitergerührt. Der Druck wird abgelassen und die Mischung in ein offenes Gefäß überführt, so dass Diethylether und HCl entweder über Nacht bei Raumtemperatur oder in 1–2 h bei 50°C abdampfen kann. Nachdem der größte Teil des Ethers abgedampft ist, werden 50 ml Wasser zugegeben, wobei eine klare Lösung entsteht. Das Wasser wird am Rotationsverdampfer entfernt und das übrige DMF wird im Hochvakuum abgezogen, wobei man eine Mischung aus Dimethylammonium-5,5'-bistetrazol-1,1'-diolat und Dinatrium-5,5'-bistetrazol-1,1'-diolattetrahydrat als farblosen Feststoff erhält. Der Feststoff wird im kleinstmöglichen Volumen kochenden Wassers gelöst (ca. 10 ml) und Hydroxylammoniumchlorid (750 mg, 10,8 mmol, 2,16 eq) als konzentrierte wässrige Lösung zugegeben. TKX50 fällt aus der Lösung in 74,6% (882 mg, 3,73 mmol) Ausbeute aus. Es kann abgenutscht, mit wenig kaltem Wasser gewaschen und an der Luft getrocknet werden.
  • ABTOX: Die Synthesevorschrift orientiert sich an der Synthesevorschrift von TKX50, bis die Mischung aus Dimethylammonium-5,5'-bistetrazol-1,1'-diolat und Dinatrium-5,5'-bistetrazol-1,1'-diolattetrahydrat erhalten wird. Es wird wiederum im kleinstmöglichen Volumen kochenden Wassers gelöst (ca. 10 ml) und Ammoniumchlorid (800 mg, 15,0 mmol, 3 eq.) als konzentrierte wässrige Lösung zugegeben. Im Falle von ABTOX muss ein etwas größerer Überschuss Ammoniumsalz zugegeben werden, da die Wasserlöslichkeit von ABTOX etwas größer als die von TKX50 ist. Ebenso muss das Volumen der ABTOX und Dimethylammoniumchlorid enthaltenden Lösung zur Ausfällung von ABTOX um ca. 30% im Rotationsverdampfer reduziert werden. Es kann in 78,3% (799 mg, 3,91 mmol) Ausbeute isoliert werden. Ähnlich TKX50 wird ABTOX abgenutscht, mit wenig kaltem Wasser gewaschen und an der Luft getrocknet.
  • TKX50: Dichlorglyoxim (785 mg, 5 mmol) wird in 10 ml N-Methyl-2-pyrrolidon (NMP) bei Raumtemperatur gelöst. Die Lösung wird auf 0°C gekühlt und NaN3 (715 mg, 11 mmol) zugegeben. Die Mischung wird 40 min bei 0°C gerührt. NaCl fällt aus, wobei Diazidoglyoxim in Lösung bleibt. Die Mischung wird in einen Kolben, in den 150 ml Diethylether vorgelegt wurden, überführt und die Mischung im Salz-Eis-Bad auf 0°C gekühlt. HCl-Gas wird in die Mischung eingeleitet, wobei die Temperatur 20°C nicht überschreiten soll. Eine Sättigung des Ethers mit HCl ist erreicht, sobald die Temperatur trotz fortwährender HCl-Einleitung wieder auf 0–5°C abfällt. Ein dicker Niederschlag, der sich zu Beginn der Gaseinleitung gebildet hat, wird zusehends resuspendiert, wenn HCl-Sättigung erreicht ist. Der Kolben wird fest verschlossen und die Mischung über Nacht bei Raumtemperatur unter leichtem HCl-Überdruck, welcher sich durch das Aufwärmen auf Raumtemperatur im Kolben eingestellt hat, weitergerührt. Der Druck wird abgelassen und die Mischung in ein offenes Gefäß überführt, wo Diethylether und HCl über Nacht bei Raumtemperatur oder in 1–2 h bei 50°C abdampfen können. Nachdem der größte Teil des Diethylethers abgedampft ist, werden 50 ml Wasser zugegeben und das Lösemittel am Rotationsverdampfer wieder entfernt. Der dickflüssige Rückstand, welcher 5,5'-Bistetrazol-1,1'-diol, NaCl und NMP enthält, wird in 20 ml 2M NaOH aufgenommen, wobei das di-Natrium-5,5'-bistetrazol-1,1'-diolattetrahydrat auszufallen beginnt. Die Mischung wird kurz aufgekocht und beim Abkühlen fällt das di-Natrium-5,5'-bistetrazol-1,1'-diolattetrahydrat nahezu vollständig aus. Dieses wird abgenutscht und im kleinstmöglichen Volumen kochenden Wassers gelöst (ca. 10 ml). Hydroxylammoniumchlorid (750 mg, 10,8 mmol, 2,16 eq) wird als konzentrierte wässrige Lösung zugegeben. TKX50 fällt aus der Lösung in 85,1% (1,00 g, 4,25 mmol) Ausbeute aus. Dieses wird abgenutscht, mit kaltem Wasser gewaschen und an der Luft getrocknet.
  • ABTOX: Die Synthesevorschrift orientiert sich an der Synthesevorschrift von TKX50, bis das di-Natrium-5,5'-bistetrazol-1,1'-diolattetrahydrat erhalten wird. Es wird wiederum im kleinstmöglichen Volumen kochenden Wassers gelöst (ca. 10 ml) und Ammoniumchlorid (800 mg, 15,0 mmol, 3 eq.) als konzentrierte wässrige Lösung zugegeben. Im Falle von ABTOX muss ein etwas größerer Überschuß Ammoniumsalz zugegeben werden, da die Wasserlöslichkeit von ABTOX etwas größer als die von TKX50 ist. Ebenso muss das Volumen der ABTOX und NaCl enthaltenden Lösung zur Ausfällung von ABTOX um ca. 30% im Rotationsverdampfer reduziert werden. Es kann in 81,3% (830 mg, 4,07 mmol) Ausbeute isoliert werden. Ähnlich TKX50 wird ABTOX abgenutscht, mit wenig kaltem Wasser gewaschen und an der Luft getrocknet.
  • Die Vorteile der weiteren Syntheseverfahren von TKX50 und ABTOX liegen in erster Linie darin, dass die Isolierung der hoch schlag- und reibeempfindlichen Zwischenstufe Diazidoglyoxim umgangen wird. Die hochsensitive Zwischenstufe bleibt während des gesamten Prozesses in Lösung, so dass keine objektiven Gefahren bei der Synthese entstehen. Die hier isolierten Zwischenstufen Dimethylammonium-5,5'-bistetrazol-1,1'-diolat und di-Natrium-5,5'-bistetrazol-1,1'-diolattetrahydrat zeigen keine wesentliche Schlagempfindlichkeit (beide > 40 J) und ebenso keine wesentliche Reibeempfindlickeit (beide > 360 N). Ein weiterer Vorteil der hier vorgestellten Synthese ist die Ersparnis zweier Reaktionsschritte, nämlich der Isolierung von Diazidoglyoxim und 5,5'-Bistetrazol-1,1'-dioldihydrat, was einer Darstellung von TKX50 und ABTOX im großindustriellen Maßstab nicht nur aus finanziellen Gründen entgegenkommt.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Nicht-Patentliteratur
    • Tselinskii, I. V. et al., Russian Journal of Organic Chemistry, Band 37, Nr. 3, 2001, Seiten 430 bis 436 [0002]
    • Göbel, M. et al., J. AM. CHEM. SOC. 2010, 132, Seiten 17216 bis 17226 [0003]
    • (M. Sućeska, EXPLO5.04 program, Zagreb, Croatia, 2010 [0008]
    • M. Sućeska, Calculation of detonation parameters by EXPLO5 computer program, Materials Science Forum, 2004, 465–466, 325–330 [0008]
    • M. Sućeska, Calculation of the detonation properties of C-H-N-O explosives, Propellants, Explos., Pyrotech. 1991, 16, 197–202 [0008]
    • M. Sućeska, Evaluation of detonation energy from EXPLO5 computer code results, Propellants, Explos., Pyrotech. 1999, 24, 280–285 [0008]
    • M. L. Hobbs, M. R. Baer, Proc. of the 10th Symp. (International) an Detonation, ONR 33395-12, Boston, MA, July 12–16, 1993, p. 409) [0008]
    • Göbel, M. et al., J. AM. CHEM. SOC, 2010, 131, Seite 17224 [0017]
    • Tselinskii, I. V. et al., Russian Journal of Organic Chemistry, Band 37, Nr. 3, 2001, Seiten 430 bis 436 [0038]
    • Tselinskii, I. V. et al., Russian Journal of Organic Chemistry, Band 37, Nr. 3, 2001, Seiten 430 bis 436 [0040]

Claims (9)

  1. Verfahren zur Herstellung eines Dihydroxylammoniumsalzes oder Diammoniumsalzes von 5,5'-Bistetrazol-1,1'-diol, 5,5'-Bistetrazol-1,2'-diol oder 5,5'-Bistetrazol-2,2'-diol oder eines Gemischs aus mindestens zwei dieser Salze mit folgenden Schritten: a) Oxidieren von 5,5'-Bistetrazol zu einem Gemisch aus 5,5'-Bistetrazol-1,1'-diol, 5,5'-Bistetrazol-1,2'-diol und 5,5'-Bistetrazol-2,2'-diol oder Förderung der Isomerisierung von Diazidoglyoxim zu 5,5'-Bistetrazol-1,1'-diol oder einem 5,5'-Bistetrazol-1,1'-diolat, b) Inkubation des gemäß Schritt a) erhaltenen Reaktionsprodukts mit Hydroxylamin, Hydroxylammoniumionen, Ammoniumionen oder Ammoniak in wässriger Lösung und c) Absondern des dabei erhaltenen Präzipitats.
  2. Verfahren nach Anspruch 1, wobei die wässrige Lösung nach der Präzipitation des Dihydroxylammoniumsalzes oder Diammoniumsalzes von 5,5'-Bistetrazol-1,1'-diol, insbesondere unter Zusatz von weiterem Hydroxylamin oder Ammoniak, durch Evaporation eingeengt wird.
  3. Verfahren nach Anspruch 1, wobei die Förderung der Isomerisierung durch Acylierung, insbesondere mittels Acetylchlorid, oder durch Inkubation mit gasförmigem HCl, insbesondere in Ether als Lösungsmittel oder in einem Ether enthaltenden Lösungsmittel, erfolgt.
  4. Verfahren nach Anspruch 1 oder 3, wobei das Diazidoglyoxim durch Reaktion von Dichloroglyoxim mit einem Azid erzeugt wird, wobei das Dichloroglyoxim insbesondere durch Reaktion von Glyoxim mit Chlor erzeugt wird, wobei das Glyoxim insbesondere durch Reaktion von Glyoxal mit Hydroxylamin erzeugt wird.
  5. Verfahren nach Anspruch 3, wobei die Reaktion von dem Dichloroglyoxim mit dem Azid in einem nichtwässrigen Lösungsmittel, insbesondere Dimethylformamid (DMF) oder N-Methyl-2-pyrrolidon (NMP), erfolgt, wobei anschließend das Lösungsmittel mit dem dabei entstandenen Diazidoglyoxim mit dem Ether gemischt und mit dem gasförmigen HCl inkubiert wird.
  6. Verfahren nach Anspruch 5, wobei vor Schritt c) der Ether und das HCl, insbesondere unter Zusatz von dann ebenfalls abzudampfendem H2O, abgedampft werden und, sofern vorhanden, das DMF abgedampft wird, so dass im Falls von DMF als Lösungsmittel eine Mischung aus Dimethylammonium-5,5'-bistetrazol-1,1'-diolat und einem 5,5'-Bistetrazol-1,1'-diolat, das mindestens ein Gegenion des Azids umfasst, und im Falle von NMP als Lösungsmittel ein 5,5'-Bistetrazol-1,1'-diol enthaltender Rückstand erhalten wird.
  7. Verfahren nach Anspruch 6, wobei das Dimethylammonium-5,5'-bistetrazol-1,1'-diolat in H2O gelöst wird und anschließend ein Hydroxylammoniumsalz, insbesondere Hydroxylammoniumchlorid, zugesetzt wird, so dass das Dihydroxylammoniumsalz von 5,5'-Bistetrazol-1,1'-diol als das Präzipitat erhalten wird.
  8. Verfahren nach Anspruch 6, wobei der 5,5'-Bistetrazol-1,1'-diol enthaltende Rückstand in einer wässrigen Alkalihydroxid-Lösung aufgenommen und das ausfallende Alkali-5,5'-bistetrazol-1,1'-diolattetrahydrat abgesondert und in H2O gelöst wird, wobei anschließend ein Hydroxylammoniumsalz, insbesondere Hydroxylammoniumchlorid, zugesetzt wird, so dass das Dihydroxylammoniumsalz von 5,5'-Bistetrazol-1,1'-diol als Präzipitat erhalten wird.
  9. Verfahren nach Anspruch 7 oder 8, wobei statt des Hydroxylammoniumsalzes ein Ammoniumsalz, insbesondere Ammoniumchlorid, zugesetzt wird, so dass das Diammoniumsalz von Bistetrazol-1,1'-diol als Präzipitat erhalten wird.
DE102011120745A 2011-08-19 2011-12-08 Energetische Wirkmasse umfassend ein Dihydroxylammoniumsalz oder ein Diammoniumsalz Withdrawn DE102011120745A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
DE102011120745A DE102011120745A1 (de) 2011-12-08 2011-12-08 Energetische Wirkmasse umfassend ein Dihydroxylammoniumsalz oder ein Diammoniumsalz
EP12753924.5A EP2744796B1 (de) 2011-08-19 2012-08-16 Energetische wirkmasse umfassend ein dihydroxylammoniumsalz oder diammoniumsalz eines bistetrazoldiols
PL12753924T PL2744796T3 (pl) 2011-08-19 2012-08-16 Energetyczna masa aktywna zawierająca sól dihydroksyloamonową lub sól diamonową diolu bistetrazolowego
CA2839188A CA2839188C (en) 2011-08-19 2012-08-16 Energetic active composition comprising a dihydroxylammonium salt or diammonium salt of a bistetrazolediol
US14/239,481 US9296664B2 (en) 2011-08-19 2012-08-16 Energetic active composition comprising a dihydroxylammonium salt or diammonium salt of a bistetrazolediol
PCT/EP2012/066023 WO2013026768A1 (de) 2011-08-19 2012-08-16 Energetische wirkmasse umfassend ein dihydroxylammoniumsalz oder diammoniumsalz eines bistetrazoldiols
ZA2013/09434A ZA201309434B (en) 2011-08-19 2013-12-13 Energetic active composition comprising a dihydroxylammonium salt or diammonium salt of a bistetrazolediol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102011120745A DE102011120745A1 (de) 2011-12-08 2011-12-08 Energetische Wirkmasse umfassend ein Dihydroxylammoniumsalz oder ein Diammoniumsalz

Publications (1)

Publication Number Publication Date
DE102011120745A1 true DE102011120745A1 (de) 2013-06-13

Family

ID=48464563

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102011120745A Withdrawn DE102011120745A1 (de) 2011-08-19 2011-12-08 Energetische Wirkmasse umfassend ein Dihydroxylammoniumsalz oder ein Diammoniumsalz

Country Status (1)

Country Link
DE (1) DE102011120745A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109053620A (zh) * 2018-09-05 2018-12-21 西安近代化学研究所 一种低冲击波感度dntf及其制备方法

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
(M. Suceska, EXPLO5.04 program, Zagreb, Croatia, 2010
Göbel, M. et al., J. AM. CHEM. SOC, 2010, 131, Seite 17224
Göbel, M. et al., J. AM. CHEM. SOC. 2010, 132, Seiten 17216 bis 17226
M. L. Hobbs, M. R. Baer, Proc. of the 10th Symp. (International) an Detonation, ONR 33395-12, Boston, MA, July 12-16, 1993, p. 409)
M. Suceska, Calculation of detonation parameters by EXPLO5 computer program, Materials Science Forum, 2004, 465-466, 325-330
M. Suceska, Calculation of the detonation properties of C-H-N-O explosives, Propellants, Explos., Pyrotech. 1991, 16, 197-202
M. Suceska, Evaluation of detonation energy from EXPLO5 computer code results, Propellants, Explos., Pyrotech. 1999, 24, 280-285
Tselinskii, I. V. et al., Russian Journal of Organic Chemistry, Band 37, Nr. 3, 2001, Seiten 430 bis 436

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109053620A (zh) * 2018-09-05 2018-12-21 西安近代化学研究所 一种低冲击波感度dntf及其制备方法
CN109053620B (zh) * 2018-09-05 2022-03-15 西安近代化学研究所 一种低冲击波感度dntf及其制备方法

Similar Documents

Publication Publication Date Title
EP2744796B1 (de) Energetische wirkmasse umfassend ein dihydroxylammoniumsalz oder diammoniumsalz eines bistetrazoldiols
EP2925733B1 (de) 3,3'-dinitro-5,5'-bistriazol-1,1'-diol
CH506504A (de) Verfahren zur Herstellung von Thiolhydroxamsäure-Carbaminsäure-Verbindungen
DE2147023C3 (de) Verfahren zur Herstellung von 1H- Tetrazol-Verbindungen
DE102011081254B4 (de) Energetische Wirkmasse umfassend ein Dihydroxylammoniumsalz oder Diammoniumsalz eines Bistetrazoldiols sowie Verfahren zu deren Herstellung und Verwendung
DE102011120745A1 (de) Energetische Wirkmasse umfassend ein Dihydroxylammoniumsalz oder ein Diammoniumsalz
EP2338863B1 (de) Verfahren zur Herstellung von Bis-Tetrazolyltriazenat und Sprengstoff oder Brennstoff enthaltend bis-Tetrazolyltriazenat
DE19526503B4 (de) Verfahren zur Herstellung von Hexanitrohexaazaisowurtzitan
DE112015002246T5 (de) Verfahren zur Herstellung von Silberazid
DE4002807C2 (de) Hochenergetische, nicht sensitive cyclische nitramine
DE102005011563B4 (de) Verfahren zur Herstellung von Explosivstoffen
DE837098C (de) Verfahren zur Herstellung von quaternaeren 3-Oxyphenyl-ammoniumverbindungen
DE2807338C2 (de)
US3020317A (en) Polynitro alcohols and salts thereof
DE102016007865B4 (de) Verfahren zur Synthese von 1,1-Diamino-2,2-dinitroethylen (FOX-7) oder eines Salzes davon
US1754417A (en) Explosive and solvent therefor
DE102016007866B4 (de) Verfahren zur Synthese von 1,1-Diamino-2,2-dinitroethylen (FOX-7) oder eines Salzes davon
DE948687C (de) Verfahren zur Herstellung von Dialkylxanthinabkoemlingen
DE551306C (de) Verfahren zur Herstellung von Sprengstoffen
AT239252B (de) Verfahren zur partiellen oder vollständigen Carbamylierung von zweiwertigen Alkoholen oder von deren partiell O-substituierten Derivaten
DE10055964B4 (de) Dicarbamat-Polymer
DE341063C (de) Verfahren zur Herstellung von Zuendsaetzen
DE32891C (de) Verfahren zur Herstellung eines neuen Sprengstoffs, ,,Bromolith" genannt
AT272350B (de) Verfahren zur Herstellung von 2,3-Dihydro-1H-1,4-benzodiazepinen und von Säureadditionssalzen dieser Verbindungen
Robson et al. Formylation during Nitrolysis in Chloroform

Legal Events

Date Code Title Description
R081 Change of applicant/patentee

Owner name: BAYERISCHE PATENTALLIANZ GMBH, DE

Free format text: FORMER OWNER: LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN, 80539 MUENCHEN, DE

R082 Change of representative

Representative=s name: DR. GASSNER & PARTNER MBB PATENTANWAELTE, DE

R005 Application deemed withdrawn due to failure to request examination