DE102010007729A1 - Vorrichtung zum Scannen eines Objekts, Verfahren zum Betreiben der Vorrichtung und Scanmikroskop - Google Patents

Vorrichtung zum Scannen eines Objekts, Verfahren zum Betreiben der Vorrichtung und Scanmikroskop Download PDF

Info

Publication number
DE102010007729A1
DE102010007729A1 DE201010007729 DE102010007729A DE102010007729A1 DE 102010007729 A1 DE102010007729 A1 DE 102010007729A1 DE 201010007729 DE201010007729 DE 201010007729 DE 102010007729 A DE102010007729 A DE 102010007729A DE 102010007729 A1 DE102010007729 A1 DE 102010007729A1
Authority
DE
Germany
Prior art keywords
magnetic field
coil
carrier body
arrangement
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE201010007729
Other languages
English (en)
Inventor
Holger Dr. 74909 Birk
Bernd 69221 Widzgowski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leica Microsystems CMS GmbH
Original Assignee
Leica Microsystems CMS GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leica Microsystems CMS GmbH filed Critical Leica Microsystems CMS GmbH
Priority to DE201010007729 priority Critical patent/DE102010007729A1/de
Priority to PCT/EP2011/050008 priority patent/WO2011098303A1/de
Priority to US13/578,609 priority patent/US9036232B2/en
Priority to JP2012552320A priority patent/JP5638093B2/ja
Publication of DE102010007729A1 publication Critical patent/DE102010007729A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/101Scanning systems with both horizontal and vertical deflecting means, e.g. raster or XY scanners
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0875Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more refracting elements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

Eine Vorrichtung zum Scannen eines Objekts hat einen Trägerkörper (10) und einen ersten elektromagnetischen Antrieb (2). Der Trägerkörper (10) ist in einer Ebene beweglich gelagert und hält ein optisches Element (12), das einen Beleuchtungslichtstrahl (19) auf eine zu der Ebene parallele erste Objektebene des Objekts fokussiert. Der erste elektromagnetische Antrieb (2) bewegt den Trägerkörper (10) mit dem optischen Element (12) und einen Fokusbereich (23) des Beleuchtungslichtstrahls (19) innerhalb der ersten Objektebene.

Description

  • Die Erfindung betrifft eine Vorrichtung zum Scannen eines Objekts. Die Vorrichtung hat einen Trägerkörper und einen ersten elektromagnetischen Antrieb. Ferner betrifft die Erfindung ein Verfahren zum Betreiben der Vorrichtung zum Scannen eines Objekts und ein Scanmikroskop.
  • Ein Scanmikroskop zum Untersuchen eines Objekts, insbesondere einer Probe, hat grundsätzlich mindestens eine Lichtquelle, die einen Beleuchtungslichtstrahl erzeugt. Der Beleuchtungslichtstrahl wird mit Hilfe einer Scaneinheit abgelenkt und nachfolgend mit Hilfe einer Fokussieroptik auf das Objekt fokussiert. Die Scaneinheit weist bei bekannten Scanmikroskopen zwei oder mehr Spiegel auf, die mit Hilfe von den Spiegeln zugeordneten Stellelementen verstellt werden können. Das Verstellen der Spiegel bewirkt, dass ein Fokusbereich, der beispielsweise punkt- oder linienförmig sein kann, auf oder in dem Objekt verschoben wird. Vorzugsweise wird beim Scannen des Objekts der Fokusbereich so innerhalb eines Scanfeldes verschoben, dass das gesamte Scanfeld optisch abgetastet werden kann. Von dem Objekt ausgehende Detektionsstrahlen, die beispielsweise durch Fluoreszenzeffekte in dem beleuchteten Bereich des Objekts entstehen, können dann auf eine Detektoreinheit gelenkt werden.
  • Es ist Aufgabe der vorliegenden Erfindung, eine Vorrichtung zum Scannen eines Objekts, ein Verfahren zum Betreiben der Vorrichtung und ein Scanmikroskop zu schaffen, die auf kostengünstige Weise ermöglichen, ein Objekt zu scannen und so optisch abzutasten.
  • Die Aufgabe wird gelöst durch die Merkmale der unabhängigen Ansprüche. Vorteilhafte Ausgestaltungen sind in den Unteransprüchen angegeben.
  • Die Erfindung zeichnet sich dadurch aus, dass der Trägerkörper in einer Ebene beweglich gelagert ist und ein optisches Element hält, das einen Beleuchtungslichtstrahl auf eine zu der Ebene parallele erste Objektebene des Objekts fokussiert. Der erste elektromagnetische Antrieb bewegt den Trägerkörper mit dem optischen Element und innerhalb der ersten Objektebene einen Fokusbereich des Beleuchtungslichtstrahls. Dabei wird der Trägerkörper mit dem optischen Element quer zu einer Mittelachse des Beleuchtungslichtstrahls in einer Referenzposition des Beleuchtungslichtstrahls bewegt.
  • Vorzugsweise erfolgt das Bewegen des Trägerkörpers mit dem optischen Element und damit des Fokusbereiches in zwei unterschiedliche Richtungen innerhalb der Ebene. Dies dient zum Abscannen eines vorgegebenen Scanfeldes auf oder innerhalb des Objekts. Bei dem Objekt handelt es sich vorzugsweise um eine Probe, insbesondere um eine Gewebeprobe. Die Referenzposition des Beleuchtungslichtstrahls ist eine beliebige fest vorgegebene Position des Beleuchtungslichtstrahls. Falls beispielsweise der Beleuchtungslichtstrahl selbst beweglich ist, beispielsweise indem er über eine zumindest teilweise bewegliche optisch leitende Faser auf das optische Element gerichtet wird, so ist die Referenzposition des Beleuchtungslichtstrahls durch eine Referenzposition des beweglichen Teils der optisch leitenden Faser vorgegeben. Alternativ dazu kann das optische Element die optisch leitende Faser sein und die Bewegung des Beleuchtungslichtstrahls ermöglichen. Die Referenzposition ist dann durch eine Referenzposition des Trägerkörpers vorgegeben, beispielsweise die Position, die der Trägerkörper in unbestromten Zustand der Aktoranordnung einnimmt.
  • Eine besonders präzise Aufhängung des Trägerkörpers wird bei einer bevorzugten Ausführungsform mit Hilfe einer Parallel-Federanordnung erzielt. Die Parallel-Federanordnung umfasst beispielsweise zwei oder mehr parallele Federgelenke. Eines oder mehrere der Parallel-Federgelenke können als Stromzufuhrleitung für den elektromagnetischen Antrieb verwendet werden. Dadurch kann auf gesonderte Kabel für die Stromzufuhr verzichtet werden. Ferner können die Parallel-Federgelenke für eine Biegebeanspruchung in zwei unterschiedliche Richtungen zwei unterschiedliche Federkonstanten aufweisen, so dass das System aus Trägerkörper und Parallel-Federgelenken in unterschiedliche Bewegungsrichtungen unterschiedliche Eigenfrequenzen hat. Dadurch kann das System in beide Richtungen unabhängig voneinander zu resonanten Schwingungen angeregt werden.
  • In einer bevorzugten Ausführungsform umfasst der Trägerkörper eine Leiterplatte oder ist aus dieser gebildet, wobei zumindest eine Antriebskomponente des ersten elektromagnetischen Antriebs auf der Leiterplatte ausgebildet ist. Somit erfüllt auch der Trägerkörper eine Doppelfunktion gemäß der der Trägerkörper das optische Element trägt und gleichzeitig eine Basis für die Antriebskomponenten bildet.
  • In einer weiteren bevorzugten Ausführungsform umfasst der erste elektromagnetische Antrieb als erste Antriebskomponente eine Spulenanordnung und als zweite Antriebskomponente eine Magnetfeldanordnung, die zumindest ein Magnetfeld erzeugt. Die Spulenanordnung oder die Magnetfeldanordnung sind fest mit dem Trägerkörper verbunden, wobei diejenige der beiden Antriebskomponenten, die nicht mit dem Trägerkörper verbunden ist, ortsfest angeordnet ist. Die Magnetfeldanordnung kann eine oder mehrere Magnetelemente, die das Magnetfeld erzeugen, aufweisen. Bei den Magnetelementen kann es sich um Spulenleitungen, die zu einer oder mehreren Spulen gewickelt sind, und/oder um Permanentmagneten handeln.
  • Eine aktuelle Position des Trägerkörpers kann einfach und präzise jederzeit mit Hilfe eines Positionssensors ermittelt werden, der die Position des Trägerkörpers erfasst.
  • Darüber hinaus betrifft die Erfindung ein Scanmikroskop, das eine Lichtquelle und die Vorrichtung zum Scannen des Objekts umfasst.
  • Ausführungsbeispiele der Erfindung sind nachfolgend anhand von schematischen Zeichnungen näher erläutert.
  • Es zeigen:
  • 1 eine erste Ausführungsform eines elektromagnetischen Antriebs in einem ersten Betriebszustand,
  • 2 die erste Ausführungsform des elektromagnetischen Antriebs in einem zweiten Betriebszustand,
  • 3 eine zweite Ausführungsform des ersten elektromagnetischen Antriebs in dem ersten Betriebszustand,
  • 4 die zweite Ausführungsform des ersten elektromagnetischen Antriebs in dem zweiten Betriebszustand,
  • 5 eine Vorrichtung zum Scannen eines Objekts,
  • 6 eine Draufsicht auf eine dritte Ausführungsform des ersten elektromagnetischen Antriebs,
  • 7 eine Draufsicht auf eine vierte Ausführungsform des ersten elektromagnetischen Antriebs,
  • 8 eine Draufsicht auf eine fünfte Ausführungsform des ersten elektromagnetischen Antriebs,
  • 9 eine erste Ausführungsform eines Scanmikroskops,
  • 10 eine zweite Ausführungsform des Scanmikroskops,
  • 11 eine Draufsicht auf einen Trägerkörper der Vorrichtung zum Scannen des Objekts, und
  • 12 eine Darstellung des Funktionsprinzips eines Positionssensors.
  • Elemente gleicher Konstruktion oder Funktion sind figurenübergreifend mit den gleichen Bezugszeichen gekennzeichnet.
  • 1 zeigt eine erste Ausführungsform eines ersten elektromagnetischen Antriebs 2 in einem ersten Betriebszustand. Der erste elektromagnetische Antrieb 2 hat eine Spulenanordnung 3 und eine Magnetfeldanordnung 6 und kann auch als Aktoranordnung bezeichnet werden. Die Spulenanordnung 3 umfasst eine erste Spulenleitung 4. Die Magnetfeldanordnung 6 umfasst ein oberes erstes Magnetfeldelement 6a und ein unteres erstes Magnetfeldelement 6b. Die erste Spulenleitung 4 ist fest mit einem Trägerkörper 10 gekoppelt, der eine Fokussieroptik 12 trägt und der über ein erstes Federelement 5 und ein zweites Element 7 an einer Halterung 1 aufgehängt ist. Die beiden Federelemente 5, 7 sind Parallel-Federgelenke und Bestandteil einer Parallel-Federanordnung, mit deren Hilfe der Trägerkörper 10 und die damit verbundene Fokussieroptik 12 in einer Ebene beweglich gelagert sind. Mindestens eines der beiden Federelemente 5, 7 wird als Stromzufuhrleitung für die Spulenanordnung 3 verwendet.
  • Die Magnetfeldanordnung 6 erzeugt ein erstes Magnetfeld, dessen Magnetfeldlinien 14 in der 1 von oben nach unten zeigen. In dem ersten Betriebszustand ist der Stromfluss in der ersten Spulenleitung 4 entgegen dem Uhrzeigersinn gerichtet. Dies bewirkt eine erste Kraft auf die Spulenleitung 4 und damit auf den Trägerkörper 10 und die Fokussieroptik 12. Die erste Kraft drückt den Trägerkörper 10 gemäß einem ersten Kraftvektor 16 aus dem Magnetfeld heraus. Die erste Kraft entsteht aufgrund der Lorentzkraft, die auf die sich bewegenden Ladungsträger in der ersten Spulenleitung 4 wirkt.
  • 2 zeigt die gleiche Ausführungsform des ersten elektromagnetischen Antriebs 2 wie 1, wobei sich der Antrieb lediglich in einem zweiten Betriebszustand befindet, in dem der Stromfluss durch die erste Spulenleitung 4 verglichen mit dem ersten Betriebszustand entgegengesetzt und zwar gemäß dem Uhrzeigersinn erfolgt. In diesem zweiten Betriebszustand wird die Spulenanordnung 3 und somit der Trägerkörper 10 mit der Fokussieroptik 12 in Richtung hin zu dem Magnetfeld gezogen. Ferner zeigt 2 einen Querschnitt durch das obere erste und das untere erste Magnetelement 6a, 6b, die in diesem Ausführungsbeispiel eine erste bzw. zweite Magnetspule 15, 17 umfassen. Alternativ dazu können in den Magnetelementen Permanentmagneten vorgesehen sein.
  • 3 zeigt eine zweite Ausführungsform des elektromagnetischen Antriebs, bei der die erste Spulenleitung 4 über eine Spulenhalterung 21 ortsfest befestigt ist und bei der die Magnetfeldanordnung 6, insbesondere das obere und untere erste Magnetelement 6a, 6b an dem Trägerkörper 10 befestigt sind. Auch bei diesem Ausführungsbeispiel fließt in dem ersten Betriebszustand der Strom in der ersten Spulenleitung 4 entgegen dem Uhrzeigersinn und bewirkt eine Kraft auf die Spulenleitung 4 entsprechend des ersten Magnetkraftvektors 16. Da die Spulenleitung 4 jedoch bei diesem Ausführungsbeispiel ortsfest ist, wird die Magnetfeldanordnung 6 zusammen mit dem Trägerkörper 10 und der Fokussieroptik 12 in Richtung weg von der Spulenhalterung 21 gedrückt.
  • 4 zeigt die zweite Ausführungsform des ersten elektromagnetischen Antriebs 2 in dem zweiten Betriebszustand, bei dem die Stromrichtung in der ersten Spulenleitung 4 bezogen auf den ersten Betriebszustand entgegengesetzt ist. Dies bewirkt, dass eine Kraft auf die erste Spulenleitung 4 in Richtung hin zu der Magnetfeldanordnung 6 oder von der Magnetfeldanordnung 6 hin zu der ersten Spulenleitung 4 wirkt, wodurch der Trägerkörper 10 mit der Fokussieroptik 12 hin zu der Spulenhalterung 21 bewegt wird. Auch bei diesem Ausführungsbeispiel sind die Magnetelemente 6a, 6b durch Spulen verwirklicht. Alternativ dazu können auch Permanentmagnete vorgesehen sein.
  • 5 zeigt eine bevorzugte Ausführungsform, bei der zusätzlich zu dem ersten und zweiten Federelement 5, 7 ein drittes Federelement 9 und ein viertes Federelement 11 vorgesehen sind. Die Federelemente 5, 7, 9, 11 halten den Trägerkörper 10 so, dass dieser zusammen mit der Fokussieroptik 12 in einer Ebene beweglich gelagert ist. Bei geringen Auslenkungen des Trägerkörpers 10, welche im Betrieb üblich sind, bewegt sich der Trägerkörper 10 derart gering in Richtung senkrecht zu der Ebene, dass diese Bewegung vernachlässigbar ist. Die Federelemente 5, 7, 9, 11 sind so ausgebildet, dass sich der Trägerkörper 10 zwar in zwei Richtungen bewegen jedoch nicht verdrehen kann. Zusätzlich können die Federelemente 5, 7, 9, 10 so ausgebildet sein, dass das Gesamtsystem aus Trägerkörper und Federelementen 5, 7, 9, 11 entlang einer ersten Richtung innerhalb der Ebene, beispielsweise der x-Richtung, eine andere Eigenfrequenz hat, als entlang einer zweiten Richtung innerhalb der Ebene, beispielsweise der y-Richtung. Insbesondere können die Federelemente 5, 7, 9, 11 bei einer Biegebeanspruchung in zwei unterschiedliche Richtungen je zwei unterschiedliche Federkonstanten haben. So kann die Bewegung in x-Richtung und/oder in y-Richtung resonant erfolgen, wodurch die Scangeschwindigkeit und/oder eine Scanamplitude gegenüber der nicht-resonanten Anregung deutlich erhöht werden kann. Die Frequenzen sollten dabei so gewählt werden, dass die entstehenden Lissajou-Figuren das komplette gewünschte Bildfeld lückenfrei überstreichen.
  • Die Halterung 1 hat vorzugsweise eine Ausnehmung 13 über die ein Beleuchtungslichtstrahl 19 auf die Fokussieroptik 12 gerichtet ist. Die Fokussieroptik 12 fokussiert den Beleuchtungslichtstrahl auf einen Fokusbereich, insbesondere auf einen Fokuspunkt 23. Alternativ dazu kann der Beleuchtungslichtstrahl 19 zu einem beliebigen Fokusbereich, beispielsweise einer Fokuslinie fokussiert werden.
  • 6 zeigt eine Draufsicht auf eine dritte Ausführungsform des ersten elektromagnetischen Antriebs, aus der besonders gut die relative Anordnung der Spulenanordnung 3 und Magnetfeldanordnung 6 zueinander erkennbar ist. Insbesondere zeigt 6 zusätzlich zu dem unteren ersten Magnetelement 6b ein unteres zweites Magnetelement 8b, das mit einem entsprechenden oberen zweiten Magnetelement (nicht dargestellt) ein zweites Magnetfeld erzeugt, das parallel zu dem ersten Magnetfeld ist. Die erste Spulenleitung 4 ist zu einer ersten Spule 4a gewickelt. Die Richtung des Magnetfeldes, welches unter anderem mit Hilfe der beiden unteren Magnetelemente 6b, 8b erzeugt wird, ist durch jeweils einen Punkt bzw. ein Kreuz in dem entsprechenden Magnetelement 6b, 8b gekennzeichnet. Die Pfeile entlang der ersten Spulenleitung 4 geben die Richtung an, in der die erste Spule 4a gewickelt ist. Bei einem Stromfluss durch die erste Spulenleitung 4 wird die erste Spule 4a abhängig von der Stromrichtung in der ersten Spule 4a in das erste oder zweite Magnetfeld hinein- oder herausgedrückt.
  • 7 zeigt eine dritte Ausführungsform des ersten elektromagnetischen Antriebs 2, die eine Bewegung des Trägerkörpers 10 und damit der Fokussieroptik 12 in zwei Richtungen innerhalb einer Ebene ermöglicht. Dazu ist eine zweite Spulenleitung 26 vorgesehen. Die zweite Spulenleitung 26 umfasst eine zweite Spule 26a, eine dritte Spule 26b, eine vierte Spule 26c und eine fünfte Spule 26d. Der Trägerkörper 10 ist durch eine Leiterplatte gebildet, auf der die zweite bis fünfte Spule 26a bis 26d lithografisch ausgebildet sind. Bei diesem Ausführungsbeispiel ist auch die erste Spulenleitung 4 mit ihrer ersten Spule 4a auf dem Trägerkörper 10 ausgebildet.
  • Die Wicklungen gegenüberliegender Spulen derselben Spulenleitung sind einander entgegengesetzt. Dies bewirkt, dass bei einem Stromfluss durch beispielsweise die zweite Spulenleitung 26 ausschließlich eine Kraft in einer Richtung auf die Spulen und damit den Trägerkörper 10 und die Fokussieroptik 12 wirkt. Abhängig von der Stromrichtung in der zweiten Spulenleitung 26 bewegt sich dann der Trägerkörper 10 mit der Fokussieroptik 12 in 7 nach oben bzw. nach unten. Über den Stromfluss durch die erste Spulenleitung 4 kann die Bewegung senkrecht dazu, nämlich in 7 nach rechts und nach links gesteuert werden. Alternativ dazu kann die Bewegung nach oben und unten auch durch Bewegen der Probe 34 umgesetzt werden. Der Rastervorgang kann zeilen- oder spaltenweise erfolgen, aber auch entlang von beliebigen Raumrichtungen, beispielsweise um Vorgänge entlang bestimmter Strukturen besonders schnell darstellen zu können.
  • 8 zeigt eine vierte Ausführungsform des ersten elektromagnetischen Antriebs 2 der auch eine Bewegung der Fokussieroptik 12 in zwei Raumrichtungen innerhalb der Ebene ermöglicht. Dazu weist der erste elektromagnetische Antrieb 2 zusätzlich zu dem ersten und dem zweiten unteren Magnetelement 6b, 8b ein drittes unteres Magnetelement 22b und ein viertes unteres Magnetelement 24b auf, die mit entsprechenden, nicht dargestellten oberen dritten und vierten Magnetelementen ein drittes bzw. ein viertes Magnetfeld erzeugen. Bei diesem Ausführungsbeispiel umfasst die erste Spulenleitung 4 die erste Spule 4a und eine sechste Spule 4b. Die erste und die sechste Spule 4a, 4b sind bezüglich der Fokussieroptik 12 gegenüberliegend angeordnet. Die erste Spule 4a taucht teilweise in das erste und das zweite Magnetfeld. Die sechste Spule 4b taucht teilweise in das dritte und vierte Magnetfeld ein. Die zweite Spulenleitung 26 weist eine siebte Spule 26e und eine achte Spule 26f auf. Die siebte und die achte Spule 26e und 26f sind bezüglich der Fokussieroptik 12 gegenüberliegend zueinander angeordnet. Die siebte Spule 26e taucht zumindest teilweise in das zweite und das vierte Magnetfeld ein. Die achte Spule 26f taucht zumindest teilweise in das erste und dritte Magnetfeld ein.
  • 9 zeigt ein Scanmikroskop, das als Scaneinheit 31 die im vorangehenden dargestellte Vorrichtung zum Scannen eines Objekts, insbesondere einer Probe 34 hat. Das Scanmikroskop hat eine Lichtquelle 29, die den Beleuchtungslichtstrahl 19 erzeugt. Der Beleuchtungslichtstrahl 19 ist kollimiert und wird über einen Strahlteiler 30 auf die Fokussieroptik 12 gelenkt. Dabei wird die Fokussieroptik 12 vollständig überleuchtet, damit für alle Rasterpositionen der Beleuchtungslichtstrahl 19 in der gleichen Richtung durch die Fokussieroptik 12 tritt. Dabei dient der Trägerkörper 10 als Blende oder Maske. Die Fokussieroptik 12 richtet einen fokussierten Beleuchtungslichtstrahl 32 auf die Probe 34, die sich auf einem Objektträger 36 befindet. Die erste und die sechste Spule 4a, 4b der ersten Spulenleitung 4 sind so auf dem Trägerkörper 10 angebracht, dass sie den Rand je einer Ausnehmung 27 des Trägerkörpers 10 umschließen. Die erste Magnetfeldanordnung 6 und eine zweite Magnetfeldanordnung 33, die das obere und das untere zweite Magnetelement umfasst, sind mit einem Gehäuse der Scaneinheit 31, die auch als Vorrichtung zum Scannen eines Objekts bezeichnet werden kann, integral ausgebildet. Ein von der Probe 34 ausgehender Detektionslichtstrahl 44 ist über den Strahlteiler 30 auf eine Detektionslinse 46 gerichtet, die den Detektionslichtstrahl 34 über eine Detektionsblende auf einen Detektor 50 richtet. Der Detektionslichtstrahl 44 entsteht unter anderem aufgrund von Fluoreszenzeffekten in der Probe 34, beispielsweise aufgrund von Raman-Effekten und insbesondere nicht-linearen Raman-Effekten. Für die Zuordnung der Messwerte zu den entsprechenden Pixelpositionen werden dieselben Verfahren wie bei der konventionellen Konfokalmikroskopie angewendet.
  • Mikroskopieverfahren, bei denen die erfindungsgemäße Vorrichtung anwendbar ist, oder dabei auftretende zu beobachtende Effekte sind beispielsweise SRS (Stimulierter Raman-Streung), FLIM (Fluoreszenz Lifetime Imaging), SHG (Second Harmonic Generation), FRAP (Fluorescence Recovery After Photobleaching), FREI (Fluoreszenz Resonanz Energie Transfer) und FCS (Fluoreszenz-Korrelations-Spektroskopie).
  • 10 zeigt eine Ausführungsform des Scanmikroskops gemäß 9, bei der die Scaneinheit 31 über Vertikalfederelemente 68 senkrecht zu der Ebene beweglich gelagert ist, in der der Trägerkörper 10 beweglich gelagert ist. Insbesondere umfasst das Scanmikroskop bei dieser Ausführungsform eine dritte Magnetfeldanordnung 60, die mit einem Gehäuse des Scanmikroskops verbunden ist. Die dritte Magnetfeldanordnung wirkt über eine vertikale Spule 62, die mit einem vertikalen Trägerkörper 64 gekoppelt ist, zusammen, um abhängig von einem Stromfluss durch die vertikale Spule 62 die gesamte Scaneinheit 31 in Richtung senkrecht zu dem Objektträger 36 zu bewegen. Dadurch kann der Fokuspunkt 23 innerhalb des Objekts in z-Richtung verschoben werden. Dies ermöglicht nicht nur einen ebenen Bereich, sondern ein ganzes Volumen optisch abzutasten. Alternativ dazu kann auch die Probe in z-Richtung verschoben werden.
  • 11 zeigt eine Detailansicht des Trägerkörpers 10 als Draufsicht. Dabei sind die Fokussieroptik 12, die Ausnehmungen 27 und die erste und die zweite Spule 26a, 26b zu erkennen. Zusätzlich weist der Trägerkörper zwei Ausnehmungen 92 auf. Die Ausnehmungen 92 sind Teil eines einfachen Positionssensors, der in 12 gezeigt ist.
  • 12 zeigt den Trägerkörper 10 mit Ausnehmungen 92 im Trägerkörper 10. Zwischen einer Lichtquelle 95 des Positionssensors und dem Trägerkörper 10 ist eine Streuscheibe 94 angeordnet. Jenseits des Trägerkörpers 10 ist ein Lichtdetektor 96 mit vier unterschiedlichen lichtempfindlichen Bereichen angeordnet. Das Licht der Lichtquelle 95 des Positionssensors wirft eine Projektion des Lichts über die Ausnehmung 92 auf den Lichtdetektor 96. Abhängig von der Position der Projektion kann die Position des Trägerkörpers 10 ermittelt werden. So kann eine Ist-Position des Trägerkörpers 10 über eine Regelschleife besonders präzise an eine Soll-Position angeglichen werden. Der Lichtdetektor 96 kann beispielsweise ein positionsempfindlicher Silizium-Detektor (PSD) mit 4-Quadranten-Diode sein. Alternativ dazu kann der Positionssensor auch einen kapazitiven, induktiven oder Magnetowiderstands-Sensor (AMR-/GMR-Sensor) umfassen. Vorzugsweise sind zwei Positionssensoren bezüglich der Position der Fokussieroptik 12 symmetrisch angeordnet.
  • Die Erfindung ist nicht auf die angegebenen Ausführungsbeispiele beschränkt. Beispielsweise ist jegliche Spulen- und Magnetfeldkombination denkbar, die die Bewegung der Trägerkörpers in der Ebene ermöglicht. Insbesondere kann für jede der Spulen eine eigene Spulenleitung vorgesehen sein, wodurch der Trägerkörper noch präziser ausgelenkt werden kann oder sogar verdreht werden kann, beispielsweise um eine ungewollte Verdrehung auszugleichen. Ferner können zum Erzeugen der Magnetfelder auch Permanentmagneten verwendet werden. Die Fokussieroptik 12 muss nicht überleuchtet sein. Es können auch weitere Lichtquellen vorgesehen sein. Zwischen der Fokussieroptik 12 und der Probe 34 kann ein Immersionsmedium vorgesehen sein, insbesondere ein internes Immersionsmedium innerhalb der Scaneinheit und/oder ein externes Immersionsmedium außerhalb der Scaneinheit. Alternativ oder zusätzlich kann die Fokussieroptik 12 eine von der Probe 34 aus gesehen nach innen gewölbte Linse umfassen.
  • Bezugszeichenliste
  • 1
    Halterung
    2
    erster elektromagnetischer Antrieb
    3
    Spulenanordnung
    4
    erste Spulenleitung
    4a
    erste Spule
    4b
    sechste Spule
    5
    erstes Federelement
    6
    erste Magnetfeldanordnung
    6a
    oberes erstes Magnetelement
    6b
    unteres erstes Magnetelement
    7
    zweites Federelement
    8b
    unteres zweites Magnetelement
    9
    drittes Federelement
    10
    Trägerkörper
    11
    viertes Federelement
    12
    Fokussieroptik
    13
    Ausnehmung Halterung
    14
    Magnetfeldlinien
    15
    erste Magnetspule
    16
    erster Kraftvektor
    17
    zweite Magnetspule
    18
    zweiter Kraftvektor
    19
    Beleuchtungslichtstrahl
    20
    Scan-Mikroskop
    21
    Spulenhalterung
    22b
    unteres drittes Magnetelement
    23
    Fokuspunkt
    24b
    unteres viertes Magnetelement
    26
    zweite Spulenleitung
    26a
    zweite Spule
    26b
    dritte Spule
    26c
    vierte Spule
    26d
    fünfte Spule
    26e
    siebte Spule
    26f
    achte Spule
    27
    Ausnehmung Trägerköper
    30
    Strahlteiler
    31
    Scaneinheit
    32
    fokussierter Beleuchtungslichtstrahl
    33
    zweite Magnetfeldanordnung
    34
    Probe
    36
    Objektträger
    44
    Detektionslichtstrahl
    46
    Detektionslinse
    48
    Detektionsblende
    50
    Detektor
    59
    zweiter elektromagnetischer Antrieb
    60
    dritte Magnetfeldanordnung
    62
    vertikale Spule
    64
    vertikaler Trägerkörper
    68
    Vertikalfederelement
    92
    Ausnehmung im Trägerkörper
    94
    Streuscheibe
    95
    Lichtquelle Positionssensor
    96
    Lichtdetektor

Claims (14)

  1. Vorrichtung zum Scannen eines Objekts, mit einem Trägerkörper (10), der in einer Ebene beweglich gelagert ist und ein optisches Element (12) hält, das einen Beleuchtungslichtstrahl (19) auf eine zu der Ebene parallele erste Objektebene des Objekts fokussiert, und mit einem ersten elektromagnetischen Antrieb (2), der den Trägerkörper (10) mit dem optischen Element (12) quer zu einer Mittelachse des Beleuchtungslichtstrahls (19) in einer Referenzposition des Beleuchtungslichtstrahls (19) bewegt und einen Fokusbereich des Beleuchtungslichtstrahls (19) innerhalb der ersten Objektebene bewegt.
  2. Vorrichtung nach Anspruch 1, bei der der Trägerkörper (10) mit Hilfe einer Parallel-Federanordnung parallel zu der Ebene beweglich gelagert ist.
  3. Vorrichtung nach Anspruch 2, bei der die Parallel-Federanordnung zwei oder mehr Parallel-Federgelenke (5, 7, 9, 11) umfasst.
  4. Vorrichtung nach Anspruch 3, bei der eines oder mehrere der Parallel-Federgelenke (5, 7, 9, 11) Stromzufuhrleitungen für den elektromagnetischen Antrieb (2) bilden.
  5. Vorrichtung nach einem der vorstehenden Ansprüche, bei der der Trägerkörper (10) eine Leiterplatte umfasst, auf der zumindest eine Antriebskomponente des ersten elektromagnetischen Antriebs (2) ausgebildet ist.
  6. Vorrichtung nach einem der vorstehenden Ansprüche, bei der der erste elektromagnetische Antrieb (2) als erste Antriebskomponente eine Spulenanordnung (3) und als zweite Antriebskomponente eine Magnetfeldanordnung (6) umfasst, die zumindest ein Magnetfeld erzeugt, wobei die Spulenanordnung (3) oder die Magnetfeldanordnung (6) fest mit dem Trägerkörper (10) verbunden ist und wobei diejenige der beiden Antriebskomponenten, die nicht mit dem Trägerkörper (10) verbunden ist, ortsfest angeordnet ist.
  7. Vorrichtung nach Anspruch 6, bei der die Magnetfeldanordnung (6) eine erste Magnetfeldvorrichtung (6a, 6b), die ein erstes Magnetfeld erzeugt, und eine zweite Magnetfeldvorrichtung (8a, 8b) umfasst, die einen vorgegebenen Abstand zu der ersten Magnetfeldvorrichtung hat und die ein zweites Magnetfeld erzeugt, das dem ersten Magnetfeld entgegengerichtet ist, und bei der die Spulenanordnung (3) eine erste Spulenleitung (4) mit einer ersten Spule (4a) umfasst, deren Zentrum zwischen den beiden Magnetfeldvorrichtungen (6a, 6b, 8a, 8b) liegt und die teilweise in das erste Magnetfeld und teilweise in das zweite Magnetfeld ragt.
  8. Vorrichtung nach Anspruch 7, bei der die Spulenanordnung (3) eine zweite Spulenleitung (26) mit einer zweiten Spule (26a), einer dritten Spule (26b), einer vierten Spule (26c) und einer fünften Spule (26d) umfasst, von denen je zwei mit gleichem Drehsinn und je zwei mit entgegen gesetztem Drehsinn gewickelt sind, wobei zwei der Spulen (26a, 26c) mit Wicklungen mit gleichem Drehsinn auf der gleichen Seite der beiden Magnetfelder angeordnet sind und eine dieser Spulen (26c) teilweise in das erste Magnetfeld ragt und die andere Spule (26a) teilweise in das zweite Magnetfeld ragt, und wobei die beiden anderen Spulen (26b, 26d) auf der anderen Seite der beiden Magnetfelder angeordnet sind und eine dieser Spulen (26d) in das erste Magnetfeld ragt und die andere Spule (26b) in das zweite Magnetfeld ragt, und wobei keine der zweiten bis fünften Spule (26a, 26b, 26c, 26d) auf der Seite der Magnetfelder angeordnet ist, auf der die erste Spule (4a) angeordnet ist.
  9. Vorrichtung nach Anspruch 7, bei der die Magnetfeldanordnung (6) eine dritte Magnetfeldvorrichtung (22b), die ein drittes Magnetfeld erzeugt, das dem ersten Magnetfeld entgegengesetzt ist, und eine vierte Magnetfeldvorrichtung (24b) umfasst, die ein viertes Magnetfeld erzeugt, das dem zweiten Magnetfeld entgegengesetzt ist, wobei die vier Magnetfeldvorrichtungen (6b, 8b, 22b, 24b) an Eckpunkten eines Rechtecks angeordnet sind und wobei jede der Magnetfeldvorrichtungen (6b, 8b, 22b, 24b) entlang des Rechtecks von einer Magnetfeldvorrichtung (6b, 8b, 22b, 24b) mit entgegen gesetztem Magnetfeld benachbart ist, bei der die erste Spulenleitung (4) eine sechste Spule (4b) umfasst, die mit entgegen gesetztem Drehsinn zu der ersten Spule (4a) gewickelt ist, deren Zentrum zwischen der dritten und der vierten Magnetfeldvorrichtung (22b, 24b) liegt und die teilweise in das dritte und teilweise in das vierte Magnetfeld ragt, und bei der die Spulenanordnung (3) eine zweite Spulenleitung (26) umfasst, die eine siebte Spule (26f) und eine achte Spule (26e) hat, die zueinander mit entgegen gesetztem Drehsinn gewickelt sind, wobei das Zentrum der siebten Spule (26f) zwischen der ersten und der dritten Magnetfeldvorrichtung (6b, 22b) liegt und die siebte Spule (26f) in die erste und die dritte Magnetfeldvorrichtung (6b, 22b) ragt und wobei das Zentrum der achten Spule (26e) zwischen der zweiten und der vierten Magnetfeldvorrichtung (8b, 24b) liegt und die achte Spule (26e) in die zweite und die vierte Magnetfeldvorrichtung (8b, 24b) ragt.
  10. Vorrichtung nach einem der vorstehenden Ansprüche, die zum Erfassen der Position des Trägerkörpers (10) und damit des optischen Elements (12) einen Positionssensor umfasst.
  11. Vorrichtung nach Anspruch 10, bei der der Positionssensor eine Ausnehmung (92) in dem Trägerkörper (10), eine Lichtquelle (95) und eine Lichtdetektor (96) umfasst, wobei das Licht der Lichtquelle (95) durch die Ausnehmung (92) auf den Lichtdetektor (96) fällt und wobei sich die Projektion des Lichts auf dem Lichtdetektor (96) durch Bewegen des Tragekörpers (10) entsprechend bewegt, wodurch die aktuelle Position des Trägerkörpers (10) feststellbar ist.
  12. Vorrichtung nach einem der vorstehenden Ansprüche, bei der der Trägerkörper (10) senkrecht zu der Ebene beweglich gelagert ist und die einen zweiten elektromagnetischen Antrieb (59) umfasst, der den Trägerkörper (10) senkrecht zu der Ebene bewegt, so dass der Fokuspunkt des Beleuchtungslichtstrahls (19) innerhalb einer zweiten Objektebene, die einen vorgegebenen Abstand zu der ersten Objektebene hat, parallel zu der Ebene bewegbar ist.
  13. Scan-Mikroskop, das eine Lichtquelle (22), die den Beleuchtungslichtstrahl (19) erzeugt, und die Vorrichtung nach einem der vorstehenden Ansprüche umfasst, die den Beleuchtungslichtstrahl (19) auf unterschiedliche Objektpunkte in der ersten oder zweiten Objektebene fokussiert.
  14. Verfahren zum Betreiben einer Vorrichtung zum Scannen eines Objekts, bei dem ein erster elektromagnetischer Antrieb (3) der Vorrichtung so angesteuert wird, dass ein mit einer Antriebskomponente des elektromagnetischen Antriebs (3) verbundener Trägerkörper (10) der Vorrichtung, der ein optisches Element (12) hält, das einen Beleuchtungslichtstrahl (19) auf einen Fokusbereich einer Objektebene fokussiert, parallel zu der Objektebene bewegt wird und dass so der Fokusbereich des Beleuchtungslichtstrahl (19) innerhalb der Objektebene bewegt wird.
DE201010007729 2010-02-12 2010-02-12 Vorrichtung zum Scannen eines Objekts, Verfahren zum Betreiben der Vorrichtung und Scanmikroskop Withdrawn DE102010007729A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE201010007729 DE102010007729A1 (de) 2010-02-12 2010-02-12 Vorrichtung zum Scannen eines Objekts, Verfahren zum Betreiben der Vorrichtung und Scanmikroskop
PCT/EP2011/050008 WO2011098303A1 (de) 2010-02-12 2011-01-03 Vorrichtung zum scannen eines objekts, verfahren zum betreiben der vorrichtung und scanmikroskop
US13/578,609 US9036232B2 (en) 2010-02-12 2011-01-03 Device for scanning an object, method for operating the device and scanning microscope
JP2012552320A JP5638093B2 (ja) 2010-02-12 2011-01-03 対象物を走査する装置、その装置の作動方法および走査顕微鏡

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE201010007729 DE102010007729A1 (de) 2010-02-12 2010-02-12 Vorrichtung zum Scannen eines Objekts, Verfahren zum Betreiben der Vorrichtung und Scanmikroskop

Publications (1)

Publication Number Publication Date
DE102010007729A1 true DE102010007729A1 (de) 2011-08-18

Family

ID=43754863

Family Applications (1)

Application Number Title Priority Date Filing Date
DE201010007729 Withdrawn DE102010007729A1 (de) 2010-02-12 2010-02-12 Vorrichtung zum Scannen eines Objekts, Verfahren zum Betreiben der Vorrichtung und Scanmikroskop

Country Status (4)

Country Link
US (1) US9036232B2 (de)
JP (1) JP5638093B2 (de)
DE (1) DE102010007729A1 (de)
WO (1) WO2011098303A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015037231A1 (ja) * 2013-09-11 2015-03-19 オリンパス株式会社 光走査装置
US11506877B2 (en) 2016-11-10 2022-11-22 The Trustees Of Columbia University In The City Of New York Imaging instrument having objective axis and light sheet or light beam projector axis intersecting at less than 90 degrees
US10288568B2 (en) * 2016-12-08 2019-05-14 The Board Of Trustees Of The Leland Stanford Junior University Raman probe and methods of imaging

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5179276A (en) * 1991-03-27 1993-01-12 Fuji Photo Film Co., Ltd. Optical scanning type image pickup apparatus and optical scanning type microscope
JPH05127089A (ja) * 1991-11-01 1993-05-25 Fuji Photo Film Co Ltd 走査型顕微鏡
JPH07325262A (ja) * 1994-05-31 1995-12-12 Sony Corp レーザ顕微鏡装置
US5880465A (en) 1996-05-31 1999-03-09 Kovex Corporation Scanning confocal microscope with oscillating objective lens
JP2003507777A (ja) * 1999-08-26 2003-02-25 アフィメトリックス インコーポレイテッド 高性能走査を行う装置及び方法
JP3797874B2 (ja) 2000-12-26 2006-07-19 オリンパス株式会社 走査型光学顕微鏡
JP4209709B2 (ja) * 2003-03-20 2009-01-14 株式会社キーエンス 変位計
JP5371222B2 (ja) 2006-09-14 2013-12-18 オプティスカン・ピーティーワイ・リミテッド 光ファイバ走査装置
US20110001036A1 (en) * 2006-10-24 2011-01-06 Koninklijke Philips Electronics N.V. system for imaging an object
WO2009040745A1 (en) * 2007-09-26 2009-04-02 Koninklijke Philips Electronics N.V. Objective driving unit for an optical device

Also Published As

Publication number Publication date
JP2013525823A (ja) 2013-06-20
US20130010340A1 (en) 2013-01-10
WO2011098303A1 (de) 2011-08-18
JP5638093B2 (ja) 2014-12-10
US9036232B2 (en) 2015-05-19

Similar Documents

Publication Publication Date Title
DE102006037219B4 (de) Linsenantriebsvorrichtung
DE10105391B4 (de) Scanmikroskop und Modul für ein Scanmikroskop
DE102012013163B4 (de) Mikroskop und Verfahren zur Lichtscheibenmikroskopie
EP2534520A1 (de) Raster-mikroskop und verfahren zum optischen abtasten einer oder mehrerer proben
DE102007026847A1 (de) Teilchenstrahlgerät und Verfahren zur Anwendung bei einem Teilchenstrahlgerät
EP2592461A2 (de) Mikroskopische Einrichtung und Verfahren zur dreidimensionalen Lokalisierung von punktförmigen Objekten in einer Probe
WO2016189013A1 (de) Anordnung und verfahren zur strahlformung und zur lichtblattmikroskopie
DE102012202167A1 (de) Vorrichtung zur magnetfeldkompensierten Positionierung eines Bauelements
DE10050529A1 (de) Verfahren zur Strahlsteuerung in einem Scanmikroskop, Anordnung zur Strahlsteuerung in einem Scanmikroskop und Scanmikroskop
DE102009047249A1 (de) Autofokusvorrichtung
DE102010007729A1 (de) Vorrichtung zum Scannen eines Objekts, Verfahren zum Betreiben der Vorrichtung und Scanmikroskop
DE102010026571A1 (de) Optische Scan-Einrichtung
DE102018126232B3 (de) Scanning-Lichtmikroskop mit verschiedenen Eingängen für Licht unterschiedlicher Wellenlängen zum Abtasten einer Probe
DE102004042913A1 (de) Scanneranordnung und Verfahren zum optischen Abtasten eines Objektes
WO2011107401A1 (de) Probenhalterung für ein mikroskop
DE112006000419T5 (de) Abtastsondenmikroskop-Versatzerfassungsmechanismus und Abtastsondenmikroskop, welches dergleichen verwendet
DE102012214932B4 (de) Testprobenvorrichtung und Testverfahren für ein optisches, im Sub-Wellenlängenbereich auflösendes Mikroskop
EP3368934B1 (de) Mikroskop mit objektivwechselvorrichtung
DE102015223980A1 (de) Optische Baugruppe
DE102009056250A1 (de) Phasenfilter für ein Rastermikroskop
EP3482247A2 (de) Verfahren zum untersuchen einer probe sowie vorrichtung zum ausführen eines solchen verfahrens
DE19904487A1 (de) Verfahren zur Messung achssymmetrischer elektromagnetischer Felder
DE102015100695A1 (de) Optische Anordnung für ein Laser-Scanner-System
DE102006018302A1 (de) Laser-Scanning-Mikroskop und Laser-Scanning-Mikroskopierverfahren
DE102017124236A1 (de) Definiert schaltbare magnetische Haltevorrichtung

Legal Events

Date Code Title Description
R082 Change of representative

Representative=s name: ,

Representative=s name: KUDLEK & GRUNERT PATENTANWAELTE, DE

Representative=s name: KUDLEK GRUNERT & PARTNER PATENTANWAELTE MBB, DE

R016 Response to examination communication
R120 Application withdrawn or ip right abandoned