WO2015037231A1 - 光走査装置 - Google Patents

光走査装置 Download PDF

Info

Publication number
WO2015037231A1
WO2015037231A1 PCT/JP2014/004646 JP2014004646W WO2015037231A1 WO 2015037231 A1 WO2015037231 A1 WO 2015037231A1 JP 2014004646 W JP2014004646 W JP 2014004646W WO 2015037231 A1 WO2015037231 A1 WO 2015037231A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
coil
scanning device
optical scanning
coils
Prior art date
Application number
PCT/JP2014/004646
Other languages
English (en)
French (fr)
Inventor
藤原 真人
篤義 嶋本
岳晴 印南
西村 淳一
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to JP2015536447A priority Critical patent/JP6422872B2/ja
Publication of WO2015037231A1 publication Critical patent/WO2015037231A1/ja
Priority to US15/065,969 priority patent/US10126547B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/103Scanning systems having movable or deformable optical fibres, light guides or waveguides as scanning elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00172Optical arrangements with means for scanning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/07Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements using light-conductive means, e.g. optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2461Illumination
    • G02B23/2469Illumination using optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/101Scanning systems with both horizontal and vertical deflecting means, e.g. raster or XY scanners
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2423Optical details of the distal end

Definitions

  • the present invention relates to an optical scanning device using a swingable optical fiber.
  • an optical scanning device that scans an object to be observed by irradiating light from the optical fiber toward the object to be observed while vibrating the exit end of the optical fiber is known (for example, see Patent Document 1).
  • Such an optical scanning device includes a scanning unit having a permanent magnet attached to an emission end portion of an optical fiber and four coils disposed on an inner wall of a housing around the permanent magnet.
  • the four coils constitute an X coil in which one of the two opposing coils drives the exit end of the optical fiber in the X-axis direction, and the other two coils orthogonally intersect the exit end of the optical fiber with the X-axis direction.
  • a Y coil driven in the Y-axis direction is configured.
  • the X coil is fed with a current having a frequency corresponding to the resonance frequency of the vibrating end including the exit end of the optical fiber and the permanent magnet.
  • a current having a frequency lower than the resonance frequency is supplied to the Y coil. Accordingly, the scanning unit performs raster scanning of the object to be observed by vibrating the vibrating part in the X-axis direction with electromagnetic force at a lower frequency than in the X-axis direction.
  • the optical scanning device using the above-described optical fiber has an advantage that the scanning unit can be miniaturized as one feature. Therefore, for example, when applied to an endoscope, it is possible to reduce the diameter of the insertion tip as compared with an electronic endoscope in which a solid-state imaging device is disposed at the insertion tip of the endoscope.
  • the optical scanning device since the optical scanning device has a small scanning unit, the vibration amplitude of the optical fiber is small, resulting in a narrow scanning range of the object to be observed.
  • the drive current supplied to the drive coil of the X coil or Y coil can be increased, or the permanent magnet can be increased.
  • the electromagnetic force that vibrates the optical fiber it is conceivable to increase the electromagnetic force that vibrates the optical fiber.
  • an object of the present invention made in view of such a viewpoint is to provide an optical scanning apparatus capable of efficiently increasing the maximum vibration amplitude of an optical fiber without causing an increase in the size of a scanning unit.
  • An optical scanning device that achieves the above object scans an object by irradiating the object with light emitted from the emission end face of the optical fiber while vibrating the emission end of the optical fiber by the scanning unit.
  • An optical scanning device The scanning unit At least a pair of first direction coils disposed opposite to each other in the first direction via the injection end and vibrating the injection end in the first direction; A permanent magnet attached to the injection end through the injection end, and The permanent magnet is magnetized in the axial direction of the through hole through which the injection end portion passes, The scanning unit causes the injection end to move in a second or higher order resonance mode in the first direction so that a vibration node is located inside the permanent magnet by a current supplied to the first direction coil.
  • a relative distance between the permanent magnet and the first direction coil in a non-vibrating state is smaller than in other directions. Is.
  • the vibration node is located inside the permanent magnet, so that the displacement of the permanent magnet during vibration can be reduced in the first direction. And it becomes possible to arrange
  • the permanent magnet may be configured asymmetrically when viewed from the axial direction of the through hole.
  • the permanent magnet In the cross section orthogonal to the axial direction of the through hole, the permanent magnet has a length in the first direction passing through the through hole that is longer than a length in a direction orthogonal to the first direction passing through the through hole. Longer is better.
  • the said permanent magnet can be arrange
  • the permanent magnet may be mounted with an inclination with respect to the axial direction of the through hole.
  • the scanning unit may vibrate the emission end in the second direction at a driving frequency lower than the driving frequency in the first direction by a current supplied to the second direction coil.
  • the first direction coil and the second direction coil are disposed to face each other at least on the magnetic pole side opposite to the injection end face side of the permanent magnet, In the non-vibration state of the injection end, the second direction coil may be disposed closer to the permanent magnet than the first direction coil. By doing in this way, in the first direction, the permanent magnet is brought closer to the first direction coil, and in the second direction, the second direction coil is brought closer to the permanent magnet.
  • the permanent magnet can effectively apply the magnetic fields of the first direction coil and the second direction coil to the permanent magnet while keeping the asymmetric shape.
  • the second direction is orthogonal to the first direction;
  • the scanning unit may perform raster scanning of the object with light emitted from the optical fiber.
  • the pair of coils may be provided so that the winding center axis of each coil intersects the polarization direction of the magnet in the vicinity of at least one end face in the magnetization direction of the permanent magnet.
  • the direction of the magnetic field generated by the coil is the permanent magnet.
  • the magnetic field in the direction crossing the magnetization direction of the magnetic field acts on the magnetic poles existing on the end face of the permanent magnet. Since the direction of the magnetic force coincides with the vibration direction of the permanent magnet necessary for exciting the vibration of the optical fiber, the optical fiber can be vibrated efficiently.
  • the pair of coils may be provided such that a winding center axis of each coil is substantially orthogonal to the magnetization direction of the permanent magnet.
  • the pair of coils are provided to face the side surface of the cylindrical member, As for the said cylindrical member, it is good for the part in which the said pair of coil is provided that opening is smaller than another part. By doing in this way, while being able to hold
  • Each of the coils may include a core rod made of a ferromagnetic material inserted along the winding center axis of the coil. By doing in this way, a bigger magnetic field can be generated, reducing the current supplied to the coil.
  • the scanning unit may be attached to the insertion tip of the endoscope.
  • FIG. 1 is a block diagram showing a schematic configuration of an optical scanning device according to a first embodiment. It is a figure which shows schematic structure of the light source part of FIG. It is a figure which shows schematic structure of the detection part of FIG.
  • FIG. 2 is an overview diagram schematically showing the optical scanning endoscope main body of FIG. 1. It is sectional drawing which expands and shows the front-end
  • FIG. 1 is a block diagram showing a schematic configuration of the optical scanning device according to the first embodiment.
  • the optical scanning device of FIG. 1 constitutes an optical scanning endoscope device 10, and includes an optical scanning endoscope body 20, a light source unit 30, a detection unit 40, a drive current generation unit 50, and a control.
  • a unit 60, a display unit 61, and an input unit 62 are included.
  • the light source unit 30 and the optical scanning endoscope main body 20 are optically connected by an illumination optical fiber 11 made of, for example, a single mode fiber.
  • the detection unit 40 and the optical scanning endoscope main body 20 are optically connected by a detection optical fiber bundle 12 made of, for example, a plurality of multimode fibers.
  • the light source unit 30, the detection unit 40, the drive current generation unit 50, and the control unit 60 may be housed in the same housing, or may be housed in separate housings.
  • the light source unit 30 combines, for example, light from three laser light sources that emit CW (continuous oscillation) laser light of three primary colors of red, green, and blue, and emits it as white light.
  • the laser light source for example, a DPSS laser (semiconductor excitation solid-state laser) or a laser diode can be used.
  • the configuration of the light source unit 30 is not limited to this, and a single laser light source or a plurality of other light sources may be used.
  • the optical scanning endoscope body 20 irradiates the object (object) 100 with light emitted from the light source unit 30 through the optical fiber 11 while vibrating the emission end of the optical fiber 11 by the scanning unit 70.
  • the object 100 is two-dimensionally scanned (in this embodiment, raster scanning).
  • the optical scanning endoscope body 20 collects signal light obtained by two-dimensional scanning of the object to be observed 100 and transmits it to the detection unit 40 via the optical fiber bundle 12.
  • the drive current generation unit 50 supplies a required oscillating current to the scanning unit 70 via the wiring cable 13 based on the control from the control unit 60.
  • the detection unit 40 separates the signal light transmitted by the optical fiber bundle 12 into spectral components, and photoelectrically converts the separated signal light into an electrical signal.
  • the control unit 60 synchronously controls the light source unit 30, the detection unit 40, and the drive current generation unit 50, processes the electrical signal output by the detection unit 40, and displays an image on the display unit 61. In addition, the control unit 60 performs various settings such as the scanning speed and the brightness of the display image based on the input signal from the input operation from the input unit 62.
  • FIG. 2 is a diagram showing a schematic configuration of the light source unit 30 of the optical scanning endoscope 10 of FIG.
  • the light source unit 30 includes laser light sources 31R, 31G, and 31B that emit CW (continuous oscillation) laser light of three primary colors of red, green, and blue, dichroic mirrors 32a and 32b, an AOM (acousto-optic modulator) 33, and a lens 34.
  • CW continuous oscillation
  • dichroic mirrors 32a and 32b dichroic mirrors 32a and 32b
  • an AOM acousto-optic modulator
  • a lens 34 a lens 34.
  • an LD semiconductor laser
  • a DPSS laser semiconductor excitation solid-state laser
  • an LD can be used as the blue laser light source 31B.
  • the red laser light emitted from the laser light source 31R is sequentially transmitted through the dichroic mirror 32a and the dichroic mirror 32b.
  • the green laser light emitted from the laser light source 31G is reflected by the dichroic mirror 32a, is coaxially combined with the red laser light, and passes through the dichroic mirror 32b.
  • the blue laser light emitted from the laser light source 31B is reflected by the dichroic mirror 32b, and is coaxially combined with the red laser light and the green laser light.
  • white laser light obtained by combining the three primary colors of red, green, and blue is emitted from the dichroic mirror 32b.
  • the white laser light emitted from the dichroic mirror 32 b is intensity-modulated by the AOM 33 and enters the incident end of the optical fiber 11 through the lens 34.
  • the AOM 33 modulates the intensity of white laser light incident on the optical fiber 11 under the control of the control unit 60 in FIG.
  • the laser light sources 31R, 31G, and 31B and the dichroic mirrors 32a and 32b are not limited to the arrangement shown in FIG. 2, and for example, after combining green and blue laser beams, combine the red laser beams. Also good. Further, the intensity of the laser beam may be modulated by directly modulating the LD current without using the AOM 33.
  • FIG. 3 is a diagram showing a schematic configuration of the detection unit 40 of the optical scanning endoscope 10 of FIG.
  • the detection unit 40 includes light receivers 41R, 41G, and 41B, dichroic mirrors 42a and 42b, and a lens 43 using photodiodes for detecting light corresponding to red, green, and blue colors.
  • the optical fiber bundle 12 is connected to the detection unit 40.
  • the signal light emitted from the emission end of the optical fiber bundle 12 is converted into a substantially parallel light beam by the lens 43, and then the light in the blue wavelength band is reflected and separated by the dichroic mirror 42a, and the red and green wavelengths are separated.
  • the band light passes through the dichroic mirror 42a.
  • the light in the blue wavelength band separated by the dichroic mirror 42a is received and photoelectrically converted by the light receiver 41B.
  • the light in the red and green wavelength bands transmitted through the dichroic mirror 42a is reflected by the dichroic mirror 42b, and the light in the red wavelength band is transmitted and separated.
  • the green and red signal lights separated by the dichroic mirror 42b are received and photoelectrically converted by the light receivers 41G and 41R, respectively.
  • the photoelectric conversion outputs of the light receivers 41R, 41G, and 41B are input to the control unit 60 in FIG.
  • the light receivers 41R, 41G, and 41B and the dichroic mirrors 42a and 42b are not limited to the arrangement shown in FIG. 3, for example, after separating red light from signal light, further separating green and blue signal lights. It is good also as arrangement.
  • FIG. 4 is a schematic view schematically showing the optical scanning endoscope main body 20.
  • the optical scanning endoscope body 20 includes an operation unit 22 and a flexible insertion unit 23.
  • the optical fiber 11 connected to the light source unit 30, the optical fiber bundle 12 connected to the detection unit 40, and the wiring cable 13 from the drive current generation unit 50 are guided to the distal end 24 through the insertion unit 23. Yes.
  • the direction of the distal end portion 24 is operated by the operation unit 22.
  • FIG. 5 is an enlarged sectional view showing the distal end portion 24 of the insertion portion 23 of FIG.
  • FIG. 6 is an enlarged view of the scanning unit 70 of FIG.
  • the distal end portion 24 includes a scanning portion 70 and a projection lens 25, and an optical fiber 11 passing through the insertion portion 23, an optical fiber bundle 12, and forceps holes 27 for inserting various treatment tools extend.
  • a detection lens may be provided at the tip of the optical fiber bundle 12.
  • the optical fiber 11 is fixed at a distal end portion 24 to a mounting ring 26 that is fixed inside the distal end portion 24 as a fixed portion 11a, and laser light is emitted from the fixed portion 11a toward the object 100 to be observed.
  • the injection end portion 11b up to the injection end surface 11c is supported to be swingable.
  • the optical fiber bundle 12 is arranged so that each optical fiber passes through the outer peripheral portion of the insertion portion 23, and extends to the tip of the tip portion 24.
  • the scanning unit 70 includes electromagnetic coils 72a to 72h for generating a deflection magnetic field that are spirally wound around the four side surfaces of the rectangular tube 71, and a part of the emission end 11b that penetrates the emission end 11b. And a permanent magnet 73 attached thereto.
  • One end of the square tube 71 is fixed to the mounting ring 26 so as to surround the periphery of the injection end 11b as a cylindrical member.
  • the permanent magnet 73 is magnetized in the axial direction of the optical fiber 11.
  • the electromagnetic coils 72 a to 72 h are provided on the square tube 71 so as to face each other through the magnetic poles of the permanent magnet 73.
  • the electromagnetic coils 72 a to 72 d constitute two pairs of X direction coils that vibrate the injection end portion 11 b in the X direction (first direction).
  • the electromagnetic coils 72 a and 72 c are one of the permanent magnets 73.
  • a pair of coils arranged opposite to each other in the X direction via a magnetic pole are formed, and the electromagnetic coils 72b and 72d constitute a pair of coils arranged opposite to each other in the X direction via the other magnetic pole of the permanent magnet 73.
  • the electromagnetic coils 72e to 72h constitute two pairs of Y direction coils that vibrate the injection end portion 11b in the Y direction (second direction) orthogonal to the X direction.
  • the electromagnetic coils 72e and 72g are permanent magnets.
  • the 73 constitutes a pair of coils arranged opposite to each other in the Y direction via one magnetic pole 73, and constitutes a pair of coils in which the electromagnetic coils 72f and 72h are arranged opposite to each other in the Y direction via the other magnetic pole of the permanent magnet 73. is doing.
  • the electromagnetic coils 72g and 72h are not shown.
  • the winding center axis of each coil is the magnetization direction of the permanent magnet 73 in the non-vibrating state of the injection end portion 11b, that is, the Z direction orthogonal to the X direction and the Y direction.
  • they are provided so as to cross each other.
  • the electromagnetic coils 72 a to 72 h are connected to the drive control unit 50 via the wiring cable 13, and a required current is supplied from the drive control unit 50. Thereby, the exit end portion 11b vibrates in the X direction and the Y direction, and the object 100 is raster-scanned with the laser light.
  • the projection lens 25 is disposed on the end face side of the distal end portion 24.
  • the projection lens 25 is configured so that the laser beam emitted from the emission end face 11 c of the optical fiber 11 is substantially condensed on the object to be observed 100. Further, in the case where a detection lens is disposed, light that is reflected, scattered, refracted, or the like by the laser beam collected on the object 100 (light that interacts with the object 100) ) Or fluorescence or the like as detection light, and is arranged so as to be condensed on the optical fiber bundle 12 arranged behind the detection lens.
  • the permanent magnet 73 has an asymmetrical ellipse when the axial direction of the through hole 73a of the injection end portion 11b is parallel to the Z direction and viewed from the axial direction. It is configured in a columnar shape.
  • the length of the permanent magnet 73 in the X direction is longer than the length in the Y direction. Therefore, in the non-vibrating state of the injection end portion 11b, the relative distance between the permanent magnet 73 and the electromagnetic coils 72a, 72c; 72b, 72d paired in the X direction is paired in the Y direction which is the other direction.
  • 72e, 72g; 72f, 72h is smaller than the relative distance.
  • the electromagnetic coils 72a, 72c; 72b, 72d that are paired in the X direction are connected to both ends of the permanent magnet 73 in the magnetization direction, for example, at a certain moment in the + X direction and the ⁇ X direction.
  • Power is supplied so that a reverse force (indicated by an arrow in FIG. 8) acts.
  • the injection end portion 11b is permanently in the vicinity of the region P1 of the fixed portion to the fixed portion 11a, in the vicinity of the region P2 inside the permanent magnet 73, and between the permanent magnet 73 and the injection end surface 11c.
  • the vibration node in the vibration in the X direction, if the vibration node is positioned inside the permanent magnet 73, the displacement of the permanent magnet 73 during the vibration can be reduced. Therefore, since the electromagnetic coils 72a, 72c; 72b, 72d can be disposed close to the permanent magnet 73, the magnetic field generated by the electromagnetic coils 72a, 72c; 72b, 72d acts effectively on the permanent magnet 73. Can be made. Thereby, the injection
  • the length of the permanent magnet 73 in the X direction passing through the through hole 73a is longer than the length of the Y direction passing through the through hole 73a in the cross section orthogonal to the axial direction of the through hole 73a, It is possible to approach the electromagnetic coils 72a, 72c; 72b, 72d in the direction. Thereby, the magnetic field by electromagnetic coil 72a, 72c; 72b, 72d can be made to act on the permanent magnet 73 effectively.
  • each coil is arrange
  • shaft of a coil may be orthogonal to the Z direction which is the magnetization direction of the permanent magnet 73 in the non-vibration state of the injection
  • the direction of the magnetic field generated by each coil intersects the magnetization direction of the permanent magnet 73, and the magnetic field in the direction intersecting the magnetization direction effectively acts on the magnetic poles existing on the end face of the permanent magnet 73. .
  • the direction of the magnetic force acting on the permanent magnet 73 coincides with the vibration direction of the permanent magnet 73 necessary for exciting the vibration of the injection end portion 11b, the injection end portion 11b can be vibrated efficiently. it can.
  • the electromagnetic coils 72a to 72h can be easily held on the four side surfaces of the rectangular tube 71.
  • the square tube 71 may have a round shape.
  • the tertiary resonance mode in the X direction is within a range of ⁇ several%, preferably ⁇ 1%, centered on the resonance frequency fx in the X direction of the vibration part including the emission end portion 11b and the permanent magnet 73. Can do.
  • the primary resonance mode in the Y direction can be in the range of ⁇ several%, preferably ⁇ 1%, centered on the resonance frequency fy in the Y direction of the vibration part.
  • the exit end face 11c of the optical fiber 11 is efficiently vibrated at a high speed with a large amplitude in the X direction and at a low speed with a large amplitude in the Y direction without causing an increase in the size of the scanning unit 70.
  • the permanent magnet 73 may be configured as an asymmetric rectangular parallelepiped having a rectangle whose length in the X direction is longer than that in the Y direction when viewed from the Z direction.
  • the permanent magnet 73 constituting the scanning unit 70 is inclined in the X direction as shown in FIG. It is attached to. According to such a configuration, the resonance frequency in the X direction and the Y direction of the portion to be vibrated can be made larger than when the asymmetry is given only to the shape of the permanent magnet 73, so that the effect of the first embodiment can be achieved. In addition, it is possible to more easily drive the vibration part in the third resonance mode in the X direction and in the first resonance mode in the Y direction.
  • the permanent magnet 73 may be configured asymmetrically when viewed from the Z direction by mounting it as a cylinder or a rectangular parallelepiped having a square cross section perpendicular to the longitudinal direction on the injection end portion 11b inclined in the X direction.
  • the optical scanning device according to the third embodiment is different from the optical scanning device according to the first embodiment or the second embodiment in the configuration of the scanning unit 70. That is, as shown in FIG. 11, in the scanning unit 70, the electromagnetic coils 72f and 72h arranged opposite to each other in the Y direction on the magnetic pole side opposite to the emission end face 11c side of the permanent magnet 73 are arranged opposite to each other in the Y direction. The electromagnetic coils 72e and 72g are arranged closer to the permanent magnet 73 in the non-vibrating state of the injection end portion 11b.
  • the opening of the part where the electromagnetic coils 72f and 72h are arranged is smaller than the opening of the part where the electromagnetic coils 72e and 72g are arranged. According to such a configuration, in addition to the effects of the first embodiment, the electromagnetic action between the electromagnetic coils 72f and 72h and the permanent magnet 73 can be enhanced by the distance between them.
  • the vibration amplitude in the primary resonance mode in the Y direction can be increased.
  • the current supplied to the electromagnetic coils 72f and 72h can be reduced.
  • the optical scanning device according to the fourth embodiment differs from the optical scanning device according to the first embodiment or the second embodiment in the configuration of the scanning unit 70 as in the case of the third embodiment. That is, as shown in FIG. 12, the scanning unit 70 replaces the electromagnetic coils 72 f and 72 h disposed opposite to each other in the Y direction on the magnetic pole side opposite to the emission end face 11 c side of the permanent magnet 73.
  • 71 includes solenoid electromagnetic coils 74f and 74h.
  • the solenoid electromagnetic coils 74f and 74h are configured by winding coils around the outer circumferences of the core rods 75f and 75h, respectively.
  • the core rods 75f and 75h are made of a paramagnetic material such as stainless steel, or a ferromagnetic material such as iron or permalloy, and the non-vibrating state of the injection end portion 11b is more than the electromagnetic coils 72b and 72d arranged to face each other in the X direction In FIG. 2, the permanent magnet 73 is disposed close to the permanent magnet 73.
  • the electromagnetic action between the two can be enhanced because the distance between the solenoid electromagnetic coils 74f and 74h and the permanent magnet 73 is short.
  • the injection end portion 11b can be efficiently vibrated in the primary resonance mode in the Y direction.
  • the electromagnetic action can be further enhanced, so that a larger magnetic field can be generated while reducing the current supplied to the solenoid electromagnetic coils 74f and 74h. it can.
  • the solenoid electromagnetic coils 74f and 74h may be air-core coils.
  • two pairs of solenoid electromagnetic coils 74a, 74c and 74b are used instead of the two pairs of electromagnetic coils 72a, 72c and 72b and 72d arranged opposite to each other in the X direction, as shown in FIG. , 74d are arranged.
  • the solenoid electromagnetic coils 74a to 74d are configured by winding coils around the outer circumferences of the core rods 75a to 74d, respectively, similarly to the solenoid electromagnetic coils 74f and 74h shown in FIG.
  • the core rods 75a to 75d are made of a paramagnetic material such as stainless steel, or a ferromagnetic material such as iron or permalloy, and the non-vibrating state of the injection end portion 11b is more than the electromagnetic coils 72e to 72h arranged opposite to each other in the Y direction.
  • the permanent magnet 73 is disposed close to the permanent magnet 73.
  • the solenoid electromagnetic coils 74a to 74d may be air-core coils.
  • each of the solenoid electromagnetic coils 74a to 74d has a winding center axis Oa to Od that is permanent when the injection end portion 11b is in a non-vibrating state, as shown in FIG.
  • the magnet 73 is provided so as to be substantially perpendicular to the magnetizing direction Om, that is, the Z direction, as shown in the figure.
  • the electromagnetic coils 72e to 72h arranged to face each other in the Y direction are similarly provided.
  • the solenoid electromagnetic coils 74a, 74c; 724b, 74d paired in the X direction are opposite to each other in the magnetization direction of the permanent magnet 73, for example, at a certain moment in the + X direction and the -X direction. Power is supplied so that a direction force (indicated by an arrow in FIG. 14) acts. Further, the electromagnetic coils 72e, 72g; 72f, 72h paired in the Y direction are supplied with power so that, for example, a force in the same direction acts in the + Y direction at a certain moment on both ends in the magnetization direction of the permanent magnet 73. .
  • the relative distance between the permanent magnet 73 and the solenoid electromagnetic coils 74a, 74c; 724b, 74d paired in the X direction in the non-vibrating state of the injection end portion 11b is This is smaller than the relative distance from the electromagnetic coils 72e, 72g; 72f, 72h that make a pair in the Y direction.
  • the magnetic fields generated by the solenoid electromagnetic coils 74a and 74c; 724b and 74d are indicated by broken lines.
  • the injection end 11b is arranged in the X direction in the vicinity of the region P1 of the fixed portion to the fixed portion 11a, in the vicinity of the region P2 inside the permanent magnet 73, and from the permanent magnet 73 to the injection end surface 11c.
  • the drive vibration is efficiently performed in the vicinity of the resonance frequency of the third resonance mode having a vibration node.
  • the exit end 11b is efficiently driven and vibrated in the vicinity of the resonance frequency of the primary vibration mode having a vibration node in the vicinity of the region P1.
  • the solenoid electromagnetic coils 74a to 74d have the core rods 75a to 75d made of a ferromagnetic material, it is possible to generate a larger magnetic field while reducing the current supplied to the solenoid electromagnetic coils 74a to 74d. It becomes possible to drive and vibrate the portion 11b in the X direction more efficiently.
  • the present invention is not limited to the above embodiment, and many variations or modifications are possible.
  • the configuration having the solenoid electromagnetic coils 74a to 74d of the fifth embodiment the configuration of bringing the electromagnetic coils 72f and 72h of the third embodiment close to the permanent magnet 73, or the electromagnetic coils 72f and 72h of the fourth embodiment. It may replace with and may combine with the structure which provides the solenoid electromagnetic coils 74f and 74h.
  • the resonance mode in the X direction of the emission end portion 11b of the optical fiber 11 is not limited to the third resonance mode, and may be the second resonance mode as long as a vibration node is located inside the permanent magnet 73.
  • the resonance mode may be a fourth order or higher.
  • the resonance mode in the Y direction is not limited to the vicinity of the resonance frequency of the primary resonance mode, and may be any drive frequency lower than the drive frequency in the X direction.
  • the scanning unit 70 oscillates the emission end portion 11b in the X direction and the Y direction orthogonal to perform raster scanning of the observation object 100, but may be configured to perform other Lissajous scanning. Alternatively, only one-dimensional scanning in a higher-order resonance mode in which a vibration node is located inside the permanent magnet 73 may be performed. Further, the present invention can be effectively applied not only to the optical scanning endoscope apparatus but also to various optical scanning apparatuses.
  • Optical scanning type endoscope apparatus 11 Optical fiber 11a Fixing part 11b Ejection end part 11c Ejection end surface 12 Optical fiber bundle 20 Optical scanning type endoscope main body 30 Light source part 40 Detection part 50 Drive current generation part 60 Control part 70 Scanning part 71 Square tube 72a to 72h Electromagnetic coil 73 Permanent magnet 73a Through hole 74a to 74d, 74f, 74h Solenoid electromagnetic coil 75a to 75d, 75f, 75h Core rod 100 Object to be observed

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • Surgery (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Astronomy & Astrophysics (AREA)
  • Endoscopes (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Abstract

 光ファイバ11の射出端部11bを走査部70により振動させて、光ファイバ11の射出端面11cから物体100に光を照射して物体100を走査する。走査部70は、射出端部11bを介して第1の方向に対向配置された少なくとも一対の第1方向コイル72a,72cと、射出端部11bに貫通させて装着された永久磁石73を備える。永久磁石73は、射出端部11bの軸方向に着磁される。走査部70は、第1方向コイル72a,72cへの給電により、永久磁石73の内部に振動の節を形成して射出端部11bを第1の方向に2次以上の高次共振モードで振動させる。第1方向の非振動状態時での永久磁石73と第1方向コイル72a,72cとの相対距離は、他の方向よりも小さい。

Description

光走査装置 関連出願の相互参照
 本出願は、2013年9月11日に日本国に特許出願された特願2013-188436の優先権を主張するものであり、この先の出願の開示全体をここに参照のために取り込む。
 本発明は、揺動可能な光ファイバを用いる光走査装置に関するものである。
 従来、光ファイバの射出端部を振動させながら、光ファイバから被観察物に向けて光を照射して被観察物を走査する光走査装置が知られている(例えば、特許文献1参照)。かかる光走査装置は、光ファイバの射出端部に取り付けられた永久磁石と、永久磁石の周囲のハウジングの内壁に配置された4つのコイルとを有する走査部を備える。4つのコイルは、対向する一方の2つのコイルが光ファイバの射出端部をX軸方向に駆動するXコイルを構成し、他方の2つのコイルが光ファイバの射出端部をX軸方向と直交するY軸方向に駆動するYコイルを構成する。
 Xコイルには、光ファイバの射出端部及び永久磁石を含む被振動部の共振周波数に相当する周波数の電流が給電される。Yコイルには、共振周波数よりも低周波数の電流が給電される。これにより、走査部は、被振動部を電磁力によってX軸方向に共振的に振動させながら、Y軸方向にはX軸方向よりも低周波数で振動させて、被観察物をラスタ走査する。
特開2008-116922号公報
 ところで、上述した光ファイバを用いる光走査装置は、一つの特徴として走査部を小型にできる利点がある。したがって、例えば内視鏡に適用した場合は、内視鏡の挿入先端部に固体撮像素子が配置される電子内視鏡と比較して、挿入先端部の細径化が可能となる。
 その一方で、光走査装置は、走査部が小型であることから、光ファイバの振動振幅が小さく、結果として被観察物の走査範囲が狭くなる。この問題を解消し、走査部を大型化することなく、光ファイバの最大振動振幅を大きくするには、XコイルやYコイルの駆動コイルに給電する駆動電流を大きくしたり、永久磁石を大きくしたりして、光ファイバを振動させる電磁力を大きくすることが考えられる。
 しかしながら、駆動コイルへの給電電流を大きくすると、発熱が著しくなって、被検者等に悪影響を及ぼしたり、駆動コイルが溶断したりすることが想定される。また、永久磁石を単に大きくすると、永久磁石が光ファイバとともに変位した際に駆動コイルやハウジングと干渉することが想定される。
 したがって、かかる観点に鑑みてなされた本発明の目的は、走査部の大型化を招くことなく、光ファイバの最大振動振幅を効率よく大きくできる光走査装置を提供することにある。
 上記目的を達成する本発明に係る光走査装置は、光ファイバの射出端部を走査部により振動させながら、前記光ファイバの射出端面から射出される光を物体に照射して該物体を走査する光走査装置であって、
 前記走査部は、
 前記射出端部を介して第1の方向に対向配置され、前記射出端部を第1の方向に振動させる少なくとも一対の第1方向コイルと、
 前記射出端部に該射出端部を貫通させて装着された永久磁石と、を備え、
 前記永久磁石は、前記射出端部が貫通する貫通孔の軸方向に着磁されており、
 前記走査部は、前記第1方向コイルに給電される電流により、前記永久磁石の内部に振動の節が位置するように前記射出端部を前記第1の方向に2次以上の高次共振モードの周波数近傍で駆動振動させ、
 前記第1の方向においては、非振動状態時における前記永久磁石と前記第1方向コイルとの相対距離が、他の方向よりも小さい、
ものである。
 このようにすることで、前記永久磁石の内部に振動の節が位置することにより、前記第1の方向においては、振動時における前記永久磁石の変位を小さくすることができる。そして、前記永久磁石と前記第1方向コイルとを、互いに近接した位置に配置することが可能となり、前記永久磁石に対して前記第1方向コイルが発生する磁場を効果的に作用させることができる。
 前記永久磁石は、前記貫通孔の軸方向からみて非対称に構成されるとよい。
 前記永久磁石は、前記貫通孔の軸方向と直交する断面において、前記貫通孔を通る前記第1の方向の長さが、前記貫通孔を通る前記第1の方向と直交する方向の長さよりも長くするとよい。
 このようにすることで、前記第1の方向においては、前記永久磁石を前記第1方向コイルに対して、より近接した位置に配置することができる。
 また、前記第1の方向の共振周波数と、前記第1の方向と直交する方向の共振周波数とが近い場合、前記共振周波数近傍で前記第1の方向にのみ駆動振動させたとしても、前記直交方向にも振動が発生し、意図せず軌跡が楕円となってしまうことがある。しかし、前述のような構成とすることで、楕円軌跡とならずに、直線軌跡などの所望の軌跡を得ることが可能となる。
 前記永久磁石は、前記貫通孔の軸方向に対して傾いて装着されるとよい。
 前記射出端部を介して前記第1の方向と交差する方向に対向配置され、前記射出端部を前記第1の方向と交差する第2の方向に振動させる少なくとも一対の第2方向コイルを更に備え、
 前記走査部は、前記第2方向コイルに給電される電流により、前記第1の方向における駆動周波数よりも低い駆動周波数で前記射出端部を前記第2の方向に振動させるとよい。
 前記第1方向コイル及び第2方向コイルは、少なくとも前記永久磁石の前記射出端面側とは反対側の磁極側においてそれぞれ対向配置されており、
 前記射出端部の非振動状態において、前記第2方向コイルが前記第1方向コイルよりも前記永久磁石に近づいて配置されるとよい。
 このようにすることで、前記第1の方向においては前記永久磁石を前記第1方向コイルに向けて近付け、更に前記第2の方向においては前記第2方向コイルを前記永久磁石に近付けることで、前記永久磁石は非対称形状のまま、前記第1方向コイル及び前記第2方向コイルの磁場を効果的に前記永久磁石に掛けることができる。
 前記第2の方向は、前記第1の方向と直交し、
 前記走査部は、前記光ファイバから照射される光により前記物体をラスタ走査するとよい。
 前記一対のコイルは、各コイルの巻き中心軸が前記永久磁石の着磁方向の少なくとも一方の端面近傍において、前記磁石の分極方向と交差するように設けられていると良い。
 この場合、前記一対のコイルは、各コイルの巻き中心軸が前記永久磁石の着磁方向に対する端面近傍に位置するように配置されているので、前記コイルが発生する磁場の方向は、前記永久磁石の着磁方向に交差し、該着磁方向に交差する方向の磁場が、前記永久磁石の端面に存在する磁極に作用する。この磁力の方向は、前記光ファイバの振動を励起するために必要な前記永久磁石の振動方向と一致するので、効率的に前記光ファイバを振動させることができる。
 前記一対のコイルは、各コイルの巻き中心軸が前記永久磁石の着磁方向に略直交するように設けられていると良い。
 このようにすることで、前記永久磁石に対して前記一対のコイルが発生する磁場を更に効果的に作用させることができる。
 前記射出端部を収容する筒部材を備え、
 前記一対のコイルは、前記筒部材の側面に対向して設けられ、
 前記筒部材は、前記一対のコイルが設けられている部分が、他の部分よりも開口が小さいと良い。
 このようにすることで、前記コイルを簡便な構成で保持できるとともに、前記コイルを前記永久磁石に対して、より近接した位置に配置することができる。
 各前記コイルは、当該コイルの巻き中心軸に沿って挿入された強磁性体からなる芯棒を備えると良い。
 このようにすることで、前記コイルに供給する電流を低減しつつより大きな磁場を発生させることができる。
 前記走査部は、内視鏡の挿入先端部に装着されているとよい。
 本発明によれば、走査部の大型化を招くことなく、光ファイバの最大振動振幅を効率よく大きくすることが可能となる。
第1実施の形態に係る光走査装置の概略構成を示すブロック図である。 図1の光源部の概略構成を示す図である。 図1の検出部の概略構成を示す図である。 図1の光走査型内視鏡本体を概略的に示す概観図である。 図4の挿入部の先端部を拡大して示す断面図である。 図5の走査部を拡大して示す図である。 図6の永久磁石を拡大して示す斜視図である。 被振動部のX方向における3次共振モードによる振動態様を説明する図である。 永久磁石の変形例を拡大して示す斜視図である。 第2実施の形態を説明する永久磁石の図である。 第3実施の形態を説明する走査部の構成を示す図である。 第4実施の形態を説明する走査部の構成を示す図である。 第5実施の形態を説明する永久磁石の2つの例を示す斜視図である。 第5実施の形態を説明する走査部の構成を示す図である。 図14のソレノイド電磁コイルの巻き中心軸と永久磁石の着磁方向との関係を説明するための図である。
 以下、本発明の実施の形態について、図を参照して説明する。
(第1実施の形態)
 図1は、第1実施の形態に係る光走査装置の概略構成を示すブロック図である。図1の光走査装置は、光走査型内視鏡装置10を構成するもので、光走査型内視鏡本体20と、光源部30と、検出部40と、駆動電流生成部50と、制御部60と、表示部61と、入力部62とを有している。光源部30と光走査型内視鏡本体20との間は、例えば1本のシングルモードファイバからなる照明用の光ファイバ11により光学的に接続される。検出部40と光走査型内視鏡本体20との間は、例えば複数本のマルチモードファイバからなる検出用の光ファイババンドル12により光学的に接続される。なお、光源部30、検出部40、駆動電流生成部50及び制御部60は、同一の筐体内に収納されていても良く、また、別々の筐体に収納されていても良い。
 光源部30は、例えば赤、緑及び青の三原色のCW(連続発振)レーザ光を射出する3つのレーザ光源からの光を合波して白色光として出射する。レーザ光源としては、例えばDPSSレーザ(半導体励起固体レーザ)やレーザダイオードを使用することができる。もちろん、光源部30の構成はこれに限られず、1つのレーザ光源を用いるものであっても、他の複数の光源を用いるものであっても良い。
 光走査型内視鏡本体20は、光ファイバ11の射出端部を走査部70により振動させながら、光源部30から光ファイバ11を経て射出される光を被観察物(物体)100に照射して被観察物100を2次元走査(本実施の形態ではラスタ走査)する。また、光走査型内視鏡本体20は、被観察物100の2次元走査により得られる信号光を集光して、光ファイババンドル12を経て検出部40に伝送する。ここで、駆動電流生成部50は、制御部60からの制御に基づいて走査部70に対して配線ケーブル13を介して所要の振動電流を給電する。
 検出部40は、光ファイババンドル12により伝送された信号光をスペクトル成分に分離し、分離した信号光を電気信号に光電変換する。制御部60は、光源部30、検出部40及び駆動電流生成部50を同期制御するとともに、検出部40により出力された電気信号を処理して、表示部61に画像を表示する。また、制御部60は、入力部62からの入力操作による入力信号に基づいて、走査速度や表示画像の明るさ等、種々の設定を行う。
 図2は、図1の光走査型内視鏡10の光源部30の概略構成を示す図である。光源部30は、赤、緑及び青の三原色のCW(連続発振)レーザ光を射出するレーザ光源31R,31G,31Bと、ダイクロイックミラー32a,32bと、AOM(音響光学モジュレータ)33と、レンズ34とを備える。赤色のレーザ光源31Rは、例えば、LD(半導体レーザ)を使用することができる。緑色のレーザ光源31Gは、例えば、DPSSレーザ(半導体励起固体レーザ)を使用することができる。青色のレーザ光源31Bは、例えば、LDを使用することができる。
 レーザ光源31Rから射出された赤色のレーザ光は、ダイクロイックミラー32a及びダイクロイックミラー32bを順次透過する。レーザ光源31Gから射出された緑色のレーザ光は、ダイクロイックミラー32aで反射されて赤色のレーザ光と同軸に合波されてダイクロイックミラー32bを透過する。レーザ光源31Bから射出された青色のレーザ光は、ダイクロイックミラー32bで反射されて、赤色のレーザ光及び緑色のレーザ光と同軸に合波される。これにより、ダイクロイックミラー32bから赤、緑、青の3原色のレーザ光が合波された白色のレーザ光が射出される。
 ダイクロイックミラー32bから射出された白色のレーザ光は、AOM33により強度変調されて、レンズ34を経て光ファイバ11の入射端に入射される。AOM33は、図1の制御部60の制御のもとに光ファイバ11に入射させる白色のレーザ光の強度を変調する。なお、レーザ光源31R,31G,31B及びダイクロイックミラー32a,32bは、図2の配置に限らず、例えば、緑色及び青色のレーザ光を合波した後、赤色のレーザ光を合波するようにしても良い。また、AOM33を用いずに、直接LDの電流を変調してレーザ光を強度変調しても良い。
 図3は、図1の光走査型内視鏡10の検出部40の概略構成を示す図である。検出部40は、赤、緑及び青の各色に対応する光を検出するためのフォトダイオードを用いた受光器41R,41G,41B、ダイクロイックミラー42a,42b及びレンズ43を備える。検出部40には、光ファイババンドル12が接続されている。
 光ファイババンドル12の射出端から射出される信号光は、レンズ43により略平行な光束に変換された後、ダイクロイックミラー42aで青色の波長帯域の光が反射されて分離され、赤色及び緑色の波長帯域の光はダイクロイックミラー42aを透過する。ダイクロイックミラー42aで分離された青色の波長帯域の光は、受光器41Bにより受光されて光電変換される。また、ダイクロイックミラー42aを透過した赤色及び緑色の波長帯域の光は、ダイクロイックミラー42bで緑色の波長帯域の光が反射され、赤色の波長帯域の光は透過されてそれぞれ分離される。ダイクロイックミラー42bで分離された緑色及び赤色の信号光は、それぞれ受光器41G及び受光器41Rにより受光されて光電変換される。
 受光器41R,41G及び41Bの光電変換出力は、図1の制御部60に入力される。なお、受光器41R,41G,41B及びダイクロイックミラー42a,42bは、図3の配置に限らず、例えば、信号光から赤色の光を分離した後、さらに緑色と青色の信号光を分離するような配置としても良い。
 図4は、光走査型内視鏡本体20を概略的に示す概観図である。光走査型内視鏡本体20は、操作部22及び可撓性の挿入部23を備える。光源部30に接続される光ファイバ11、検出部40に接続される光ファイババンドル12、及び、駆動電流生成部50からの配線ケーブル13は、挿入部23の内部を通して先端部24まで導かれている。先端部24は、操作部22により向きが操作される。
 図5は、図4の挿入部23の先端部24を拡大して示す断面図である。図6は、図5の走査部70を拡大して示す図である。先端部24は、走査部70、投影用レンズ25を備えるとともに、挿入部23を通る光ファイバ11、光ファイババンドル12、及び様々な処置具を挿通するための鉗子穴27が延在している。光ファイババンドル12の先端には、検出用レンズを備えていても良い。
 光ファイバ11は、先端部24において、一部が固定部11aとして先端部24の内部に固定された取付環26に固定され、この固定部11aからレーザ光を被観察物100に向けて射出する射出端面11cまでの射出端部11bが揺動可能に支持されている。一方、光ファイババンドル12は、それぞれの光ファイバが挿入部23の外周部を通るように配置されて、先端部24の先端まで延在している。
 走査部70は、角型チューブ71の4つの側面に螺旋状に扁平に巻回された偏向磁場発生用の電磁コイル72a~72hと、射出端部11bの一部に射出端部11bを貫通させて装着された永久磁石73とを有する。角型チューブ71は、筒部材として射出端部11bの周囲を囲むように、一端部が取付環26に固定される。永久磁石73は、光ファイバ11の軸方向に着磁されている。電磁コイル72a~72hは、永久磁石73のそれぞれの磁極を介して対向するように角型チューブ71に設けられる。
 ここで、電磁コイル72a~72dは、射出端部11bをX方向(第1の方向)に振動させる2対のX方向コイルを構成するもので、電磁コイル72a,72cが永久磁石73の一方の磁極を介してX方向に対向配置された一対のコイルを構成し、電磁コイル72b,72dが永久磁石73の他方の磁極を介してX方向に対向配置された一対のコイルを構成している。また、電磁コイル72e~72hは、射出端部11bをX方向と直交するY方向(第2の方向)に振動させる2対のY方向コイルを構成するもので、電磁コイル72e,72gが永久磁石73の一方の磁極を介してY方向に対向配置された一対のコイルを構成し、電磁コイル72f,72hが永久磁石73の他方の磁極を介してY方向に対向配置された一対のコイルを構成している。なお、電磁コイル72g,72hは図示していない。ここで、電磁コイル74a~74hの各々は、各コイルの巻き中心軸が、射出端部11bの非振動状態での永久磁石73の着磁方向、すなわちX方向及びY方向と直交するZ方向と交差するように、好ましくは略直交するように設けられる。
 電磁コイル72a~72hは、配線ケーブル13を介して駆動制御部50に接続されて、駆動制御部50から所要の電流が給電される。これにより、射出端部11bは、X方向及びY方向に振動して、被観察物100をレーザ光によりラスタ走査する。
 投影用レンズ25は、先端部24の端面側に配置される。投影用レンズ25は、光ファイバ11の射出端面11cから射出されたレーザ光が、被観察物100上に略集光するように構成されている。また、検出用レンズが配置される場合は、被観察物100上に集光されたレーザ光が、被観察物100により反射、散乱、屈折等をした光(被観察物100と相互作用した光)又は蛍光等を検出光として取り込み、検出用レンズの後方に配置された光ファイババンドル12に集光させるように配置される。
 本実施の形態において、永久磁石73は、図7に拡大斜視図を示すように、射出端部11bの貫通孔73aの軸方向をZ方向と平行にして軸方向から見たときに非対称な楕円柱状に構成される。図7においては、永久磁石73のX方向の長さがY方向の長さよりも長くなっている。したがって、射出端部11bの非振動状態では、永久磁石73とX方向に対を成す電磁コイル72a、72c;72b、72dとの相対距離が、他の方向であるY方向に対を成す電磁コイル72e、72g;72f、72hとの相対距離よりも小さくなっている。
 そして、図8に示すように、X方向に対を成す電磁コイル72a、72c;72b、72dには、永久磁石73の着磁方向の両端に、例えばある瞬間に+X方向と-X方向に互いに逆向きの力(図8に矢印で示す)が作用するように給電される。これにより、射出端部11bは、X方向においては、固定部11aへの固定部分の領域P1付近、永久磁石73の内部の領域P2付近、及び、永久磁石73から射出端面11cまでの間で永久磁石73の近傍の領域P3付近に、それぞれ振動の節を有する3次共振モードの共振周波数近傍で駆動振動される。また、Y方向に対を成す電磁コイル72e、72g;72f、72hには、これらのコイルと相対距離の大きい永久磁石73の着磁方向の両端に、例えばある瞬間に+Y方向に同じ向きの力が作用するように給電される。これにより、射出端部11bは、Y方向においては、領域P1付近に振動の節を有する1次振動モードの共振周波数近傍で駆動振動される。なお、図8において、電磁コイル72a、72c;72b、72dによる磁場は、破線で示されている。
 このように、X方向の振動において、永久磁石73の内部に振動の節を位置させれば、振動時における永久磁石73の変位を小さくすることができる。したがって、電磁コイル72a、72c;72b、72dを永久磁石73に近接して配置することができるので、永久磁石73に対して電磁コイル72a、72c;72b、72dが発生する磁場を効果的に作用させることができる。これにより、射出端部11bを3次共振モードの共振周波数近傍で効率よく振動させることができる。また、永久磁石73は、貫通孔73aの軸方向と直交する断面において、貫通孔73aを通るX方向の長さが、貫通孔73aを通るY方向の長さよりも長いので、永久磁石73をX方向において電磁コイル72a、72c;72b、72dに近づけることができる。これにより、電磁コイル72a、72c;72b、72dによる磁場を永久磁石73に効果的に作用させることができる。
 また、X方向の共振周波数とY方向の共振周波数とが近い場合、X方向にのみ共振周波数近傍で駆動振動させると、Y方向にも振動が発生して、振動の軌跡が意図しない楕円となることがあるが、上記の構成とすることで、楕円軌跡とならずに、直線軌跡などの所望の振動軌跡を得ることが可能となる。また、各コイルは、コイルの巻き中心軸が射出端部11bの非振動状態での永久磁石73の着磁方向であるZ方向と直交するように、永久磁石73の端面近傍に配置されている。したがって、各コイルが発生する磁場の方向が、永久磁石73の着磁方向に交差し、その着磁方向に交差する方向の磁場が、永久磁石73の端面に存在する磁極に効果的に作用する。これにより、永久磁石73に作用する磁力の方向が、射出端部11bの振動を励起するために必要な永久磁石73の振動方向と一致するので、射出端部11bを効率的に振動させることができる。また、射出端部11bを収容する角型チューブ71を設けることで、電磁コイル72a~72hを角型チューブ71の4つの側面に簡単に保持することが可能となる。なお、角型チューブ71の形状は丸型などであっても良い。
 ここで、X方向における3次共振モードは、射出端部11b及び永久磁石73を含む被振動部のX方向の共振周波数fxを中心とする±数%、好ましくは±1%の範囲とすることができる。同様に、Y方向における1次共振モードは、被振動部のY方向の共振周波数fyを中心とする±数%、好ましくは±1%の範囲とすることができる。これにより、本実施の形態によると、走査部70の大型化を招くことなく、光ファイバ11の射出端面11cを、効率よく、X方向に大きな振幅で高速振動させ、Y方向に大きな振幅で低速振動させて、被観察物100を広範囲でラスタ走査することが可能となる。なお、永久磁石73は、図9に拡大斜視図を示すように、Z方向からみて、X方向の長さがY方向の長さよりも長い長方形を有する非対称な直方体に構成されてもよい。
(第2実施の形態)
 第2実施の形態に係る光走査装置は、第1実施の形態に係る光走査装置において、走査部70を構成する永久磁石73が、図10に示すようにX方向に傾けて射出端部11bに装着されている。かかる構成によると、永久磁石73の形状のみに非対称性を付ける場合よりも、被振動部のX方向及びY方向における共振周波数に大きな差を付けることができるので、第1実施の形態の効果に加えて、より容易に被振動部を、X方向には3次共振モードで、Y方向には1次共振モードで振動駆動することが可能となる。
 なお、永久磁石73は、円柱又は長手方向と直交する断面が正方形の直方体として、射出端部11bにX方向に傾けて装着することにより、Z方向からみて非対称に構成されてもよい。
(第3実施の形態)
 第3実施の形態に係る光走査装置は、第1実施の形態又は第2実施の形態に係る光走査装置と走査部70の構成が異なる。すなわち、走査部70は、図11に示すように、永久磁石73の射出端面11c側とは反対側の磁極側で、Y方向に対向配置される電磁コイル72f,72hが、Y方向に対向配置される電磁コイル72e,72gよりも、射出端部11bの非振動状態において、永久磁石73に近づいて配置されて構成される。つまり、角型チューブ71は、電磁コイル72f,72hが配置される部分の開口が、電磁コイル72e,72gが配置される部分の開口よりも小さくなっている。かかる構成によると、第1実施の形態の効果に加えて、電磁コイル72f,72hと永久磁石73との距離を近くした分、両者間の電磁的作用を増強することができる。
 したがって、電磁コイル72f,72hに給電する電流を、第1実施の形態や第2実施の形態の場合と同じとした場合は、Y方向の1次共振モードにおける振動振幅をより大きくできる。また、Y方向の1次共振モードにおける振動振幅として、第1実施の形態や第2実施の形態の場合と同じ振幅を得る場合は、電磁コイル72f,72hに給電する電流を小さくできる。
(第4実施の形態)
 第4実施の形態に係る光走査装置は、第3実施の形態の場合と同様に、第1実施の形態又は第2実施の形態に係る光走査装置と走査部70の構成が異なる。すなわち、走査部70は、図12に示すように、永久磁石73の射出端面11c側とは反対側の磁極側で、Y方向に対向配置される電磁コイル72f,72hに代えて、角型チューブ71にソレノイド電磁コイル74f,74hが配置されて構成される。ソレノイド電磁コイル74f,74hは、それぞれ芯棒75f、75hの外周にコイルが巻回されて構成される。芯棒75f、75hは、ステンレス等の常磁性体や、鉄、パーマロイ等の強磁性体で構成され、X方向に対向配置される電磁コイル72b,72dよりも、射出端部11bの非振動状態において、永久磁石73に近づいて配置されている。
 したがって、本実施の形態においても、第3実施の形態の場合と同様に、ソレノイド電磁コイル74f,74hと永久磁石73との距離が近い分、両者間の電磁的作用を増強することができるので、射出端部11bをY方向に効率よく1次共振モードで振動させることが可能となる。また、芯棒75f、75hに強磁性体を用いることで、更に電磁的作用を増強することができるので、ソレノイド電磁コイル74f,74hに供給する電流を低減しつつより大きな磁場を発生させることができる。なお、ソレノイド電磁コイル74f,74hは空芯コイルであってもよい。
(第5実施の形態)
 上述した各実施の形態では、図7、図9、図10に示したように、永久磁石73を貫通孔73aの軸方向からみて非対称な形状とすることで、永久磁石73と第1方向コイルとの相対距離を、永久磁石73と第2方向コイルとの相対距離よりも小さくしている。本実施の形態では、第1実施の形態において、永久磁石73を、例えば図13(a)又は(b)に示すように、貫通孔73aの軸方向から見たときに、X方向及びY方向の長さが等しい対称な円柱状又は四角柱状とする。なお、永久磁石73は、図13(a)、(b)に示す構成に限らず、貫通孔73aの軸方向から見たときに、X方向及びY方向の長さが等しければ任意の形状とすることができる。
 また、角型チューブ71には、X方向に対向配置される二対の電磁コイル72a,72c及び72b、72dに代えて、図14に示すように、二対のソレノイド電磁コイル74a,74c及び74b、74dが配置される。ソレノイド電磁コイル74a~74dは、図12に示したソレノイド電磁コイル74f、74hと同様に、それぞれ芯棒75a~74dの外周にコイルが巻回されて構成される。芯棒75a~75dは、ステンレス等の常磁性体や、鉄、パーマロイ等の強磁性体で構成され、Y方向に対向配置される電磁コイル72e~72hよりも、射出端部11bの非振動状態において、永久磁石73に近づいて配置されている。なお、ソレノイド電磁コイル74a~74dは空芯コイルであってもよい。
 ここで、ソレノイド電磁コイル74a~74dの各々は、上記実施の形態と同様に、図15に示すように、各コイルの巻き中心軸Oa~Odが、射出端部11bの非振動状態での永久磁石73の着磁方向OmすなわちZ方向と交差するように、好ましくは図示のように略直交するように設けられる。なお、図示しないが、Y方向に対向配置される電磁コイル72e~72hについても同様に設けられる。
 図14に示すように、X方向に対を成すソレノイド電磁コイル74a、74c;724b、74dには、永久磁石73の着磁方向の両端に、例えばある瞬間に+X方向と-X方向に互いに逆向きの力(図14に矢印で示す)が作用するように給電される。また、Y方向に対を成す電磁コイル72e、72g;72f、72hには、永久磁石73の着磁方向の両端に、例えばある瞬間に+Y方向に同じ向きの力が作用するように給電される。ここで、上述した実施の形態と同様に、射出端部11bの非振動状態において、永久磁石73とX方向に対を成すソレノイド電磁コイル74a、74c;724b、74dとの相対距離は、他の方向であるY方向に対を成す電磁コイル72e、72g;72f、72hとの相対距離よりも小さくなっている。なお、図14において、ソレノイド電磁コイル74a、74c;724b、74dによる磁場は、破線で示されている。
 したがって、図8と同様に、射出端部11bは、X方向においては、固定部11aへの固定部分の領域P1付近、永久磁石73の内部の領域P2付近、及び、永久磁石73から射出端面11cまでの間で永久磁石73の近傍の領域P3付近に、それぞれ振動の節を有する3次共振モードの共振周波数近傍で効率よく駆動振動される。また、Y方向においては、射出端部11bは、領域P1付近に振動の節を有する1次振動モードの共振周波数近傍で効率よく駆動振動される。また、ソレノイド電磁コイル74a~74dが強磁性体よりなる芯棒75a~75dを有すれば、ソレノイド電磁コイル74a~74dに供給する電流を低減しつつより大きな磁場を発生させることができ、射出端部11bをより効率的にX方向に駆動振動させることが可能となる。
 なお、本発明は、上記実施の形態にのみ限定されるものではなく、幾多の変形または変更が可能である。例えば、第5実施の形態のソレノイド電磁コイル74a~74dを有する構成と、第3実施の形態の電磁コイル72f、72hを永久磁石73に近づける構成、あるいは第4実施の形態の電磁コイル72f、72hに代えてソレノイド電磁コイル74f,74hを設ける構成とを組み合わせてもよい。また、光ファイバ11の射出端部11bのX方向における共振モードは、3次共振モードに限らず、永久磁石73の内部に振動の節が位置すれば、2次共振モードであってもよいし、4次以上の共振モードであってもよい。また、Y方向における共振モードは、1次共振モードの共振周波数近傍に限らず、X方向における駆動周波数よりも低い駆動周波数であればよい。また、走査部70は、射出端部11bを直交するX方向及びY方向に振動させて、被観察物100をラスタ走査するようにしたが、他のリサージュ走査を行うよう構成してもよいし、永久磁石73の内部に振動の節が位置する高次共振モードによる1次元走査のみを行うように構成してもよい。また、本発明は光走査型内視鏡装置に限らず、種々の光走査装置にも有効に適用することができる。
 10 光走査型内視鏡装置
 11 光ファイバ
 11a 固定部
 11b 射出端部
 11c 射出端面
 12 光ファイババンドル
 20 光走査型内視鏡本体
 30 光源部
 40 検出部
 50 駆動電流生成部
 60 制御部
 70 走査部
 71 角型チューブ
 72a~72h 電磁コイル
 73 永久磁石
 73a 貫通孔
 74a~74d、74f,74h ソレノイド電磁コイル
 75a~75d、75f,75h 芯棒
 100 被観察物

Claims (12)

  1.  光ファイバの射出端部を走査部により振動させながら、前記光ファイバの射出端面から射出される光を物体に照射して該物体を走査する光走査装置であって、
     前記走査部は、
     前記射出端部を介して第1の方向に対向配置され、前記射出端部を第1の方向に振動させる少なくとも一対の第1方向コイルと、
     前記射出端部に該射出端部を貫通させて装着された永久磁石と、を備え、
     前記永久磁石は、前記射出端部が貫通する貫通孔の軸方向に着磁されており、
     前記走査部は、前記第1方向コイルに給電される電流により、前記永久磁石の内部に振動の節が位置するように前記射出端部を前記第1の方向に2次以上の高次共振モードの周波数近傍で駆動振動させ、
     前記第1の方向においては、非振動状態時における前記永久磁石と前記第1方向コイルとの相対距離が、他の方向よりも小さい、
     光走査装置。
  2.  前記永久磁石は、前記貫通孔の軸方向からみて非対称に構成されている、
     請求項1に記載の光走査装置。
  3.  前記永久磁石は、前記貫通孔の軸方向と直交する断面において、前記貫通孔を通る前記第1の方向の長さが、前記貫通孔を通る前記第1の方向と直交する方向の長さよりも長い、
     請求項2に記載の光走査装置。
  4.  前記永久磁石は、前記貫通孔の軸方向に対して傾いて装着されている、
     請求項2又は3に記載の光走査装置。
  5.  前記射出端部を介して前記第1の方向と交差する方向に対向配置され、前記射出端部を前記第1の方向と交差する第2の方向に振動させる少なくとも一対の第2方向コイルを更に備え、
     前記走査部は、前記第2方向コイルに給電される電流により、前記第1の方向における周波数よりも低い周波数で前記射出端部を前記第2の方向に駆動振動させる、
     請求項1乃至4のいずれかに記載の光走査装置。
  6.  前記第1方向コイル及び第2方向コイルは、少なくとも前記永久磁石の前記射出端面側とは反対側の磁極側においてそれぞれ対向配置されており、
     前記射出端部の非振動状態において、前記第2方向コイルが前記第1方向コイルよりも前記永久磁石に近づいて配置されている、
     請求項5に記載の光走査装置。
  7.  前記第2の方向は、前記第1の方向と直交し、
     前記走査部は、前記光ファイバから照射される光により前記物体をラスタ走査する、
     請求項5又は6に記載の光走査装置。
  8.  前記一対のコイルは、各コイルの巻き中心軸が前記永久磁石の着磁方向の少なくとも一方の端面近傍において、前記磁石の分極方向と交差するように設けられている、
     請求項1乃至7のいずれかに記載の光走査装置。
  9.  前記一対のコイルは、各コイルの巻き中心軸が前記永久磁石の着磁方向に略直交するように設けられている、
     請求項8に記載の光走査装置。
  10.  前記射出端部を収容する筒部材を備え、
     前記一対のコイルは、前記筒部材の側面に対向して設けられ、
     前記筒部材は、前記一対のコイルが設けられている部分が、他の部分よりも開口が小さい、
     請求項8又は9に記載の光走査装置。
  11.  各前記コイルは、当該コイルの巻き中心軸に沿って挿入された強磁性体からなる芯棒を備える、
     請求項1乃至10のいずれかに記載の光走査装置。
  12.  前記走査部は、内視鏡の挿入先端部に装着されている、
     請求項1乃至11のいずれかに記載の光走査装置。
PCT/JP2014/004646 2013-09-11 2014-09-10 光走査装置 WO2015037231A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015536447A JP6422872B2 (ja) 2013-09-11 2014-09-10 光走査装置
US15/065,969 US10126547B2 (en) 2013-09-11 2016-03-10 Optical scanning apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-188436 2013-09-11
JP2013188436 2013-09-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/065,969 Continuation US10126547B2 (en) 2013-09-11 2016-03-10 Optical scanning apparatus

Publications (1)

Publication Number Publication Date
WO2015037231A1 true WO2015037231A1 (ja) 2015-03-19

Family

ID=52665362

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/004646 WO2015037231A1 (ja) 2013-09-11 2014-09-10 光走査装置

Country Status (3)

Country Link
US (1) US10126547B2 (ja)
JP (1) JP6422872B2 (ja)
WO (1) WO2015037231A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015163001A1 (ja) * 2014-04-22 2015-10-29 オリンパス株式会社 光走査装置及び走査型内視鏡
JPWO2017013788A1 (ja) * 2015-07-23 2018-05-31 オリンパス株式会社 光走査型内視鏡および光ファイバ走査装置
WO2018235277A1 (ja) * 2017-06-23 2018-12-27 オリンパス株式会社 光ファイバ走査装置および内視鏡

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6280806B2 (ja) * 2014-05-02 2018-02-14 オリンパス株式会社 光ファイバ走査装置、および光走査型内視鏡

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012231910A (ja) * 2011-04-28 2012-11-29 Olympus Corp 光走査型観察装置
WO2013031824A1 (ja) * 2011-09-02 2013-03-07 オリンパス株式会社 光走査デバイス及びこれを備えた内視鏡、顕微鏡、プロジェクター

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6563105B2 (en) * 1999-06-08 2003-05-13 University Of Washington Image acquisition with depth enhancement
US6294775B1 (en) * 1999-06-08 2001-09-25 University Of Washington Miniature image acquistion system using a scanning resonant waveguide
JP2001174744A (ja) * 1999-10-06 2001-06-29 Olympus Optical Co Ltd 光走査プローブ装置
US7555333B2 (en) * 2000-06-19 2009-06-30 University Of Washington Integrated optical scanning image acquisition and display
US7616986B2 (en) * 2001-05-07 2009-11-10 University Of Washington Optical fiber scanner for performing multimodal optical imaging
DE10393608B4 (de) * 2002-10-30 2022-06-09 Optiscan Pty Ltd. Scanverfahren und - vorrichtung, konfokales Lichtleitfaser-Endoskop, -Mikroskop, oder -Endomikroskop mit einer Scanvorrichtung sowie Lichtleitfaser-Endoskop, -Mikroskop oder - Endomikroskop mit einer Scanvorrichtung
JP5371222B2 (ja) * 2006-09-14 2013-12-18 オプティスカン・ピーティーワイ・リミテッド 光ファイバ走査装置
EP2171521B1 (en) * 2007-07-20 2017-09-27 Koninklijke Philips N.V. Fiber-optic scanner
EP2429385B1 (en) * 2009-05-15 2013-07-17 Koninklijke Philips Electronics N.V. An optical probe with feedback correction
DE102010007729A1 (de) * 2010-02-12 2011-08-18 Leica Microsystems CMS GmbH, 35578 Vorrichtung zum Scannen eines Objekts, Verfahren zum Betreiben der Vorrichtung und Scanmikroskop
US9675252B2 (en) * 2011-09-27 2017-06-13 British Columbia Cancer Agency Branch Scanning optical systems
US10022187B2 (en) * 2013-12-19 2018-07-17 Novartis Ag Forward scanning-optical probes, circular scan patterns, offset fibers

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012231910A (ja) * 2011-04-28 2012-11-29 Olympus Corp 光走査型観察装置
WO2013031824A1 (ja) * 2011-09-02 2013-03-07 オリンパス株式会社 光走査デバイス及びこれを備えた内視鏡、顕微鏡、プロジェクター

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015163001A1 (ja) * 2014-04-22 2015-10-29 オリンパス株式会社 光走査装置及び走査型内視鏡
JP5945640B2 (ja) * 2014-04-22 2016-07-05 オリンパス株式会社 光走査装置及び走査型内視鏡
JPWO2017013788A1 (ja) * 2015-07-23 2018-05-31 オリンパス株式会社 光走査型内視鏡および光ファイバ走査装置
WO2018235277A1 (ja) * 2017-06-23 2018-12-27 オリンパス株式会社 光ファイバ走査装置および内視鏡

Also Published As

Publication number Publication date
JP6422872B2 (ja) 2018-11-14
JPWO2015037231A1 (ja) 2017-03-02
US20160187647A1 (en) 2016-06-30
US10126547B2 (en) 2018-11-13

Similar Documents

Publication Publication Date Title
JP6086674B2 (ja) 光走査装置
WO2014119288A1 (ja) 光走査型観察装置
JP6422872B2 (ja) 光走査装置
JP6057743B2 (ja) 光走査装置
JP6438221B2 (ja) 光走査用アクチュエータおよび光走査装置
JPWO2013111604A1 (ja) 光走査型観察装置
JP6071591B2 (ja) 光走査型内視鏡
JP5945640B2 (ja) 光走査装置及び走査型内視鏡
US10502947B2 (en) Optical fiber scanning apparatus and optical scanning type endoscope
JP2015112278A (ja) 光走査装置および光走査型観察装置
US20160143515A1 (en) Optical scanning device and light beam scanning method
JP6006039B2 (ja) 光走査型観察装置
WO2016079769A1 (ja) 光走査用アクチュエータ及び光走査装置
WO2016116963A1 (ja) 光走査方法及び光走査装置
JP6006127B2 (ja) 光走査装置
JP6071590B2 (ja) 光走査ユニット、光走査型観察装置、および光走査型表示装置
US11061222B2 (en) Optical fiber scanning apparatus and endoscope
WO2018235277A1 (ja) 光ファイバ走査装置および内視鏡
WO2016116962A1 (ja) 光走査方法及び光走査装置
WO2016098139A1 (ja) レーザ走査型観察装置
WO2018122916A1 (ja) 光ファイバ走査装置および内視鏡
JP6173035B2 (ja) 光走査デバイス、光走査型観察装置および光走査型画像表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14843394

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015536447

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14843394

Country of ref document: EP

Kind code of ref document: A1