DE102007040640A1 - Bariumsulfat enthaltendes Komposit - Google Patents

Bariumsulfat enthaltendes Komposit Download PDF

Info

Publication number
DE102007040640A1
DE102007040640A1 DE102007040640A DE102007040640A DE102007040640A1 DE 102007040640 A1 DE102007040640 A1 DE 102007040640A1 DE 102007040640 A DE102007040640 A DE 102007040640A DE 102007040640 A DE102007040640 A DE 102007040640A DE 102007040640 A1 DE102007040640 A1 DE 102007040640A1
Authority
DE
Germany
Prior art keywords
barium sulfate
composite
rubber
phr
composite according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE102007040640A
Other languages
English (en)
Inventor
Sonja Dr. Grothe
Jochen Dr. Winkler
Petra Dr. Fritzen
Bernd Dr. Rohe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Venator Germany GmbH
Original Assignee
Sachtleben Chemie GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sachtleben Chemie GmbH filed Critical Sachtleben Chemie GmbH
Priority to DE102007040640A priority Critical patent/DE102007040640A1/de
Publication of DE102007040640A1 publication Critical patent/DE102007040640A1/de
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/226Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Gegenstand der Erfindung sind Bariumsulfat enthaltende Komposite, Verfahren zu deren Herstellung und die Verwendung dieser Komposite.

Description

  • Gegenstand der Erfindung ist ein Bariumsulfat enthaltendes Komposit, ein Verfahren zu dessen Herstellung und die Verwendung dieses Komposits.
  • Aus der Anwendung von konventionellen Füllstoffen und Pigmenten, auch Additive genannt, in polymeren Systemen ist bekannt, dass die Art und die Stärke der Wechselwirkungen zwischen den Partikeln des Füllstoffs bzw. Pigments und der polymeren Matrix die Eigenschaften eines Komposits beeinflusst. Durch gezielte Oberflächenmodifizierung können die Wechselwirkungen zwischen den Partikeln und der polymeren Matrix beeinflusst und somit die Eigenschaften des Systems aus Füllstoffen und Pigmenten in einer polymeren Matrix, im folgenden auch Komposit genannt, verändert werden. Eine übliche Art der Oberflächenmodifizierung ist die Funktionalisierung der Partikeloberflächen unter Verwendung von Alkoxyalkylsilanen. Die Oberflächenmodifizierung kann dazu dienen, die Verträglichkeit der Partikel mit der Matrix zu erhöhen. Darüber hinaus kann durch die geeignete Auswahl von funktionellen Gruppen auch eine Anbindung der Partikel an die Matrix erreicht werden. Nachteilig bei der Verwendung von konventionellen Füllstoffen ist, dass diese aufgrund ihrer Partikelgröße sichtbares Licht stark streuen und deshalb die Transparenz des Komposits deutlich reduziert wird. Darüber hinaus stellt auch die schlechte chemische Beständigkeit von konventionellen Füllstoffen wie beispielsweise Calciumcarbonat einen Nachteil für zahlreiche Anwendungen dar.
  • Eine zweite Möglichkeit zur Verbesserung der mechanischen Eigenschaften von polymeren Materialien ist die Verwendung von ultrafeinen Partikeln. US-B-6 667 360 offenbart polymere Komposite, die 1 bis 50 Gew.-% Nanopartikel mit Partikelgrößen von 1 bis 100 nm enthalten. Als Nanopartikel werden Metalloxide, Metallsulfide, Metallnitride, Metallcarbide, Metallfluoride und Metallchloride vorgeschlagen, wobei die Oberfläche dieser Partikel unmodifiziert ist. Als polymere Matrix werden Epoxide, Polycarbonate, Silikone, Polyester, Polyether, Polyolefine, synthetischer Kautschuk, Polyurethane, Polyamid, Polystyrene, Polyphenylene Oxide, Polyketone und Copolymere sowie Mischung davon genannt. Die in US-B-6 667 360 offenbarten Komposite sollen im Vergleich zum ungefüllten Polymer verbesserte mechanische Eigenschaften, insbesondere Zugeigenschaften und Kratzfestigkeiten, aufweisen. Ein Nachteil der offenbarten ultrafeinen Partikel ist, dass diese oftmals eine hohe Mohs'sche Härte und somit eine hohe Abrasivität besitzen. Zudem ist der Brechungsindex der beschriebenen Materialien (beispielsweise Titandioxid n = 2,7) im Vergleich zum Brechungsindex der polymeren Materialien recht hoch. Dies führt zu einer vergleichsweise starken Lichtstreuung und folglich zur Reduzierung der Transparenz der Komposite.
  • Einen Sonderfall innerhalb der typischen Pigmente und Füllstoffe stellt Bariumsulfat (BaSO4) dar. Bariumsulfat ist chemisch inert und geht keinerlei Reaktionen mit typischen Polymeren ein. Mit einer Mohs'schen Härte von 3 ist Bariumsulfat vergleichsweise weich; so liegt die Mohs'sche Härte von Titandioxid in der Rutil-Modifikation bei 6,5. Der Brechungsindex von Bariumsulfat ist mit n = 1,64 vergleichsweise niedrig.
  • Die Patentanmeldung DE 102005025719 A1 offenbart ein Verfahren zur Einarbeitung von desagglomeriertem Bariumsulfat einer mittleren Partikelgröße von kleiner als 0,5 μm, das mit einem Dispergiermittel gecoatet ist, in Vorstufen von Kunststoffen, z.B. in Polyolen. Bei diesem Verfahren wird ein Kunststoff hergestellt, der ein Dispergiermittel und ein Kristallisationsinhibitor enthaltendes desagglomeriertes Bariumsulfat umfasst. Die WO 2007-039625 A1 beschreibt den Einsatz von Bariumsulfat bzw. Calciumcarbonat-Partikeln, die mindestens eine organische Komponente enthalten in transparenten Polymeren. Ein genereller Nachteil beim Einsatz der organisch gecoateten, desagglomerierten Bariumsulfat-Partikeln besteht darin, dass die organischen Komponenten nicht universell einsetzbar sind. Besonders nachteilig ist die Verwendung von Kristallisationsinhibitoren, da diese bereits bei der Herstellung (Fällung) der Bariumsulfat-Partikel eingesetzt werden. In diesem Fall schränkt die Verträglichkeit des Kristallisationsinhibitors mit den Kunststoffvorstufen bzw. Kunststoffen die Einsatzmöglichkeiten des Produktes stark ein. In Extremfall kann dies bedeuten, dass für jeden Kunststoff ein neues Produkt entwickelt und hergestellt werden muss.
  • Ein weiterer Nachteil, der in den Anmeldungen DE 102005025719 A1 und WO 2007-039625 A1 beschriebenen desagglomerierten Bariumsulfat-Partikel, besteht in der Partikelgrößenverteilung der Sekundärpartikel, die einen mittleren Partikeldurchmesser von kleiner als 2 μm, bevorzugt < 250 nm, besonders bevorzugt < 200 nm, ganz besonders bevorzugt < 130 nm, noch mehr bevorzugt < 100 nm, insbesondere bevorzugt < 50 nm aufweisen sollen. Solch feine Sekundärpartikelverteilungen führen zu einer starken Staubneigung, die aus Gründen der Arbeitssicherheit insbesondere bei nanoskaligen Partikeln zu vermeiden ist.
  • Ein weiterer Nachteil der im Stand der Technik beschriebenen, mit Füllstoffen modifizierten Komposite sind deren für viele Anwendungen unzureichenden mechanischen Eigenschaften.
  • Aufgabe der vorliegenden Erfindung ist es, die Nachteile des Standes der Technik zu überwinden.
  • Insbesondere Aufgabe der Erfindung ist es, ein Komposit zur Verfügung zu stellen, das im Vergleich zu Kompositen aus dem Stand der Technik deutlich verbesserte Biegemodule, Biegefestigkeiten, Zugmodule, Zugfestigkeiten, Risszähigkeiten, Bruchzähigkeiten, Schlagzähigkeiten und Verschleißraten besitzt.
  • Überraschenderweise wurde die Aufgabe durch erfindungsgemäße Komposite mit den Merkmalen des Hauptanspruchs gelöst. Vorzugsweise Ausgestaltungen sind in den Unteransprüchen charakterisiert.
  • Überraschenderweise wurden erfindungsgemäß bereits bei der Verwendung von gefälltem, nicht oberflächenmodifiziertem Bariumsulfat mit Kristallitgrößen d50 kleiner 350 nm (gemessen nach dem Debye-Scherrer-Verfahren) die mechanischen und tribologischen Eigenschaften von Polymer-Kompositen stark verbessert. Dies ist umso überraschender, als die nicht oberflächenmodifizierten Bariumsulfatpartikel keine Bindung zwischen Partikel und Matrix aufbauen können.
  • Es ist bekannt, dass chemische oder physikalische Bindungen zwischen Additiv und Matrix sich zusätzlich günstig auf die Verbesserung der mechanischen und tribologischen Eigenschaften des Komposits auswirken. Erfindungsgemäß ist daher in einer besonderen Ausgestaltung vorgesehen, Bariumsulfatpartikel bereitzustellen und einzusetzen, die in der Lage sind, solche Bindungen aufzubauen. Dazu sind erfindungsgemäß oberflächenmodifizierte Bariumsulfatpartikel vorgesehen. Die zur gezielten Einstellung der Bindung zwischen Partikel und Matrix benötigte Oberflächenmodifizierung, wird erfindungsgemäß aber erst nach der Herstellung der Bariumsulfat-Partikel (z.B. Fällung in wässrigen Medien), in einem zusätzlichen Verfahrensschritt, durchgeführt.
  • Der Vorteil der nachträglichen Oberflächenmodifizierung liegt in der damit möglichen hohen Flexibilität. Diese Verfahrensweise ermöglicht es einerseits, dass die Partikelbildung bei der Fällung von Bariumsulfat in gewohnter Weise vorgenommen werden kann, das heißt, die Partikelbildung wird durch Copräzipitate nicht negativ beeinflusst. Andererseits ist es leichter, die Partikelgröße und -morphologie der Bariumsulfatpartikel zu steuern.
  • Die Fällung des erfindungsgemäß einzusetzenden Bariumsulfats kann nach allen aus dem Stand der Technik bekannten Verfahren durchgeführt werden. Erfindungsgemäß bevorzugt wird Bariumsulfat eingesetzt, das in einem Fällreaktor zur Fällung von nanoskaligen Partikeln, insbesondere einer Reaktionszelle zur ultraschnellen Vermischung von mehreren Reaktanden, beispielsweise von wässrigen Lösungen von Bariumhydroxid oder Bariumsulfid oder Bariumchlorid und Natriumsulfat oder Schwefelsäure, hergestellt wurde. Erfindungsgemäß bevorzugt liegt das Bariumsulfat nach der Fällung in Form einer Fällsuspension vor.
  • Das erfindungsgemäß eingesetzte Bariumsulfat wird gewaschen und aufkonzentriert, so dass das anfallende Abwasser nicht organisch belastet ist. Das Bariumsulfat liegt nun in Form einer konzentrierten Bariumsulfatsuspension vor.
  • Die Trocknung der konzentrierten Bariumsulfatsuspension kann mittels Sprühtrocknung, Gefriertrocknung und/oder Mahltrocknung erfolgen. Abhängig vom Trocknungsverfahren kann eine anschließende Mahlung der getrockneten Pulver notwendig sein. Die Mahlung kann nach an sich bekannten Verfahren durchgeführt werden.
  • Vorzugsweise werden zur Herstellung der erfindungsgemäßen Komposite sprühgetrocknete Bariumsulfat-Pulver verwendet. Diese haben den Vorteil, dass die relativ groben Sprühtrockner-Agglomerate ein staubarmes und sehr gut fließfähiges Pulver bilden, das zudem überraschend gut dispergierbar ist.
  • Das erfindungsgemäße Komposit enthält eine polymere Matrix mit 0,1 bis 60 Gew.% gefällten Bariumsulfatpartikeln mit mittleren Kristallitgrößen d50 kleiner 350 nm (gemessen nach dem Debye-Scherrer-Verfahren). Bevorzugt beträgt die Kristallitgröße d50 weniger als 200 nm, besonders bevorzugt 3 bis 50 nm. Erfindungsgemäß können die Bariumsulfatpartikel dabei sowohl oberflächenmodifiziert als auch nicht oberflächenmodifiziert sein.
  • Weiterhin können die erfindungsgemäßen Komposite dem Fachmann an sich bekannte Bestandteile enthalten, beispielsweise mineralische Füllstoffe, Glasfasern, Stabilisatoren, Prozessadditive ((auch protective systems genannt) z. B. Dispergierhilfen, Trennmittel, Antioxidantien, Antiozonantien u.a.), Pigmente, Flammschutzmittel (z. B. Aluminiumhydroxid, Antimontrioxid, Magnesiumhydroxid, u. a.), Vulkanisationsbeschleuniger, Vulkanisationsverzögerer, Zinkoxid, Stearinsäure, Schwefel, Peroxid und/oder Weichmacher.
  • Ein erfindungsgemäßes Komposit kann beispielsweise zusätzlich bis zu 80 Gew.-%, vorzugsweise 10 bis 80 Gew.-%, mineralische Füllstoffe und/oder Glasfasern, bis zu 10 Gew.-%, vorzugsweise 0,05 bis 10 Gew.-% Stabilisatoren und Prozessadditive (z. B. Dispergierhilfen, Trennmittel, Antioxidantien, u. a.), bis zu 10 Gew.-% Pigment und bis zu 40 Gew.-% Flammschutzmittel (z. B. Aluminiumhydroxid, Antimontrioxid, Magnesiumhydroxid, u. a.) enthalten.
  • Beispielhaft genannt sei ein erfindungsgemäßes Komposit, bei dem das Komposit 100 phr Elastomer, 0,1 bis 300 phr Bariumsulfat, 0 bis 10 phr Vulkanisationsbeschleuniger, 0 bis 10 phr Vulkanisationsverzögerer, 0 bis 20 phr Zinkoxid, 0 bis 10 phr Stearinsäure, 0 bis 20 phr Schwefel und/oder Peroxid, 0 bis 300 phr mineralischen Füllstoff, 0 bis 200 phr Weichmacher, 0 bis 30 phr protective system, enthaltend vorzugsweise Antioxidantien und Antiozonantien; enthält.
  • Die polymere Matrix kann erfindungsgemäß aus einem Elastomer oder einem Duromer bestehen. Beim Elastomer kann es sich beispielsweise um Naturkautschuk (NR), Isopren-Kautschuk (IR), Butyl-Kautschuk (CIIR, BIIR), Butadien-Kautschuk (BR), Styrol-Butadien-Kautschuk (SBR), Acrylnitril-Butadien-Kautschuk (NBR), Brombutyl-Kautschuk (BIIR), Styrol-Butadien-Isopren-Kautschuk (SBIR), Chloropren-Kautschuk (CR), chlorsulfonierter Polyethylen-Kautschuk (CSM), hydrierter NBR-Kautschuk (HNBR), Polymethylsiloxan-Vinyl-Kautschuk (VMQ), Acrylat-Ethylen-Kautschuk (AEM), Acrylat-Kautschuk (ACM), Fluor-Kautschuk (FKM), Fluorsilikon-Kautschuk (FVMQ), thermoplastische Elastomere (TPE), thermoplastische Elastomere (TPE) auf Basis von Polyamid (TPA), auf Basis von Copolyestern (TPC), auf Basis von Olefinen (TPO), auf Basis von Styrol (TPS), auf Basis von Polyurethan (TPU), auf Basis von vernetztem Kautschuk (TPV) oder um Mischungen von mindestens zwei dieser Kunststoffe handeln. Als Duromere sind beispielsweise ungesättigte Polyesterharze (UP), Phenolharze, Melaminharze, Formaldehyd-Formassen, Vinylester-Harze, Diallylphthalat-Harze, Silikonharze oder Harnstoffharze geeignet. Besonders geeignet von den Duromeren sind UP-Harze.
  • Erfindungsgemäß können ultrafeine Bariumsulfatpartikel ohne Oberflächenmodifizierung eingesetzt werden. Alternativ können die Bariumsulfatpartikel, in einer besonderen Ausgestaltung, eine anorganische und/oder eine organische Oberflächenmodifizierung besitzen.
  • Die anorganische Oberflächenmodifizierung des ultrafeinen Bariumsulfates besteht typischerweise aus mindestens einer anorganischen Verbindung, die ausgewählt sind aus Aluminium-, Antimon-, Barium-, Calcium-, Cer-, Chlor-, Cobalt-, Eisen-, Phosphor-, Kohlenstoff-, Mangan-, Sauerstoff-, Schwefel-, Silicium-, Stickstoff-, Strontium-, Vanadium-, Zink-, Zinn- und/oder Zirkon-Verbindungen bzw. Salzen. Beispielhaft genannt seien Natriumsilikat, Natriumaluminat und Aluminiumsulfat.
  • Die anorganische Oberflächenbehandlung des ultrafeinen BaSO4 findet in wässriger Aufschlämmung statt. Die Reaktionstemperatur soll dabei vorzugsweise 50°C nicht übersteigen. Der pH-Wert der Suspension wird, beispielsweise unter Verwendung von NaOH auf pH-Werte im Bereich größer 9 eingestellt. Unter starkem Rühren werden dann die Nachbehandlungschemikalien (anorganische Verbindungen), vorzugsweise wasserlösliche anorganische Verbindungen wie beispielsweise Aluminium-, Antimon-, Barium-, Calcium-, Cer-, Chlor-, Cobalt-, Eisen-, Phosphor-, Kohlenstoff-, Mangan-, Sauerstoff-, Schwefel-, Silicium-, Stickstoff-, Strontium-, Vanadium-, Zink-, Zinn- und/oder Zirkon-Verbindungen oder Salze zugegeben. Der pH-Wert und die Mengen an Nachbehandlungschemikalien werden erfindungsgemäß so gewählt, dass letztere vollständig in Wasser gelöst vorliegen. Die Suspension wird intensiv gerührt, so dass sich die Nachbehandlungschemikalien homogen in der Suspension verteilen, vorzugsweise für mindestens 5 Minuten. Im nächsten Schritt wird der pH-Wert der Suspension abgesenkt. Als vorteilhaft hat sich dabei erwiesen, den pH-Wert langsam und unter starkem Rühren abzusenken. Besonders vorteilhaft wird der pH-Wert innerhalb von 10 bis 90 Minuten auf Werte von 5 bis 8 abgesenkt. Im Anschluss daran schließt sich erfindungsgemäß eine Reifezeit, vorzugsweise eine Reifezeit von etwa einer Stunde an. Die Temperaturen sollen dabei vorzugsweise 50°C nicht überschreiten. Die wässrige Suspension wird dann gewaschen und getrocknet. Zur Trocknung von ultrafeinem, oberflächenmodifiziertem BaSO4 bieten sich beispielsweise die Sprühtrocknung, die Gefriertrocknung und/oder die Mahltrocknung an. Abhängig vom Trocknungsverfahren kann eine anschließende Mahlung der getrockneten Pulver notwendig sein. Die Mahlung kann nach an sich bekannten Verfahren durchgeführt werden.
  • Zur Herstellung silanisierter, ultrafeiner, oberflächenmodifizierter BaSO4-Partikel wird eine wässrige BaSO4-Suspension aus bereits anorganisch oberflächenmodifizierten BaSO4-Partikeln mit mindestens einem Silan zusätzlich modifiziert. Als Silane werden vorzugsweise Alkoxyalkylsilane eingesetzt, besonders bevorzugt werden die Alkoxyalkylsilane ausgewählt aus Octyltriethoxysilan, gamma-Methacrylpropyltrimethoxysilan, gamma-Glycidoxypropyltrimethoxy-silan, gamma-Aminopropyltriethoxysilan, gamma-Aminopropyltrimethoxysilan, gamma-Isocynatopropyltriethoxysilan, Vinyltrimethoxysilan und/oder hydrolysierten Silanen, wie gamma-Aminopropylsilsesquioxan (Fa. GE). Dazu wird vor oder nach der Waschung eine BaSO4-Suspension aus anorganisch oberflächenmodifizierten BaSO4-Partikeln unter starkem Rühren oder unter Dispergierung mit einem Alkoxyalkylsilan versetzt. Es schließt sich erfindungsgemäß eine Reifezeit an, vorzugsweise eine Reifezeit von 10 bis 60 Minuten, vorzugsweise bei Temperaturen von maximal 40°C. Anschließend wird wie bereits beschrieben weiter verfahren. Alternativ kann das Alkoxyalkylsilan auch nach der Trocknung auf die anorganisch modifizierten Partikel durch Aufmischen aufgebracht werden.
  • Als organische Oberflächenmodifikatoren sind erfindungsgemäß folgende Verbindungen besonders geeignet: Polyether, Silane, Polysiloxane, Polycarbonsäuren, Fettsäuren, Polyethylenglykole, Polyester, Polyamide, Polyalkohole, organische Phosphonsäuren, Titanate, Zirkonate, Alkyl- und/oder Arylsulfonate, Alkyl- und/oder Arylsulfate, Alkyl- und/oder Arylphosphorsäureester.
  • Die Herstellung von organisch oberflächenmodifiziertem Bariumsulfat kann nach an sich bekannten Verfahren durchgeführt werden. Erfindungsgemäß wird die Bariumsulfatsuspension mit einer Bariumkomponente versetzt, so dass ein Bariumüberschuss entsteht. Als Bariumkomponente kann jede wasserlösliche Bariumverbindung, beispielsweise Bariumsulfid, Bariumchlorid und/oder Bariumhydroxid eingesetzt werden. Die Bariumionen adsorbieren an den Oberflächen der Bariumsulfatpartikel.
  • Dann werden geeignete organische Verbindungen unter starkem Rühren und/oder während einer Dispergierung zu dieser Suspension gegeben. Die organischen Verbindungen sind so auszuwählen, dass sie mit Bariumionen eine schwerlösliche Verbindung bilden. Durch die Zugabe der organischen Verbindungen zur Bariumsulfatsuspension fallen die organischen Verbindungen mit den überschüssigen Bariumionen auf der Oberfläche des Bariumsulfats aus.
  • Als organische Verbindungen eignen sich Verbindungen ausgewählt aus der Gruppe der Alkyl- und/oder Arylsulfonate, Alkyl- und/oder Arylsulfate, Alkyl- und/oder Arylphosphorsäureester oder Mischungen aus mindestes zwei dieser Verbindungen, wobei die Alkyl- oder Arylreste durch funktionelle Gruppen substituiert sein können. Auch können die organischen Verbindungen Fettsäuren sein, die ggf. funktionelle Gruppen besitzen. Auch Mischungen aus mindestens zwei solcher Verbindungen können eingesetzt werden.
  • Beispielsweise eingesetzt werden: Alkylsulfonsäuresalz, Natriumpolyvinylsulfonat, Natrium-N-alkyl-benzolsulfonat, Natriumpolystyrolsulfonat, Natriumdodecylbenzolsulfonat, Natriumlaurylsulfat, Natriumcetylsulfat, Hydroxylaminsulfat, Triethanolammoniumlaurylsulfat, Phosphorsäuremonoethylmonobenzylester, Lithiumperfluoroctansulfonat, 12-Brom-1-dodecansulfonsäure, Natium-10-hydroxy-1-decansulfonat, Natrium-Carrageenan, Natrium-10-Mercapto-1-Cetansulfonat, Natrium-16-Ceten(1)-sulfat, Oleylcetylalkoholsulfat, Ölsäuresulfat, 9,10-Dihydroxystearinsäure, Isostearinsäure, Stearinsäure, Ölsäure.
  • Das organisch modifizierte Bariumsulfat kann entweder direkt in Form der vorliegenden wässrigen Paste eingesetzt oder vor der Anwendung getrocknet werden. Die Trocknung kann nach an sich bekannten Verfahren durchgeführt werden. Für die Trocknung bietet sich insbesondere der Einsatz von Konvektionstrocknern, Sprühtrocknern, Mahltrocknern, Gefriertrocknern und/oder Pulsationstrocknern an. Andere Trockner sind jedoch erfindungsgemäß ebenso einsetzbar. Abhängig vom Trocknungsverfahren kann eine anschließende Mahlung der getrockneten Pulver notwendig sein. Die Mahlung kann nach an sich bekannten Verfahren durchgeführt werden. Das organisch modifizierte Bariumsulfat hat vorzugsweise einen mittleren Partikeldurchmesser von d50 = 1 nm bis 100 μm, bevorzugt von d50 = 1 nm bis 1 μm, besonders bevorzugt von d50 = 5 nm bis 0,5 μm und liegt vor der organischen Modifizierung vorzugsweise auf Primärpartikelgröße dispergiert vor.
  • Die Primärpartikel haben eine logarithmische Partikelgrößenverteilung mit einem Median von d = 1 bis 5000 nm, vorzugsweise d = 1 bis 1000 nm, besonders vorzugsweise von d = 5 bis 500 nm mit einer geometrischen Standardabweichungen von σg < 1,5, vorzugsweise von σg < 1,4.
  • Das organisch modifizierte Bariumsulfat kann nach der organischen Modifizierung zusätzlich mit funktionellen Silanderivaten oder funktionellen Siloxanen weiter nachbehandelt werden. Beispielsweise werden eingesetzt: Octyltriethoxysilan, Methyltriethoxysilan, γ-Methacryloxypropyltrimethoxysilan, γ-Glycidyloxypropyltrimethoxysilan, γ-Aminopropyltriethoxysilan, γ-Isocyanatopropyltriethoxysilan, Vinyltrimethoxysilan.
  • Erfindungsgemäß haben die organisch oberflächenmodifizierten Bariumsulfatpartikel optional ein oder mehrere funktionelle Gruppen, beispielsweise eine oder mehrere Hydroxy-, Amino-, Carboxyl-, Epoxy-, Vinyl-, Methacrylat-, und/oder Isocyanat-Gruppen, Thiole, Alkylthiocarboxylate, Di- und/oder polysulfidische Gruppen.
  • Die Oberflächenmodifikatoren können chemisch und/oder physikalisch an die Partikeloberfläche angebunden sein. Die chemische Bindung kann kovalent oder ionisch sein. Als physikalische Bindung sind Dipol-Dipol- oder Van-der-Waals-Bindungen möglich. Bevorzugt ist die Anbindung der Oberflächenmodifikatoren über kovalente Bindungen oder über physikalische Dipol-Dipol-Bindungen.
  • Erfindungsgemäß besitzen die oberflächenmodifizierten Bariumsulfatpartikel die Fähigkeit, über die Oberflächenmodifikatoren teilweise oder ganz eine chemische und/oder physikalische Bindung zur polymeren Matrix einzugehen. Als chemische Bindungsarten sind kovalente und ionische Bindungen geeignet. Als physikalische Bindungsarten sind Dipol-Dipol- und Van-der-Waals-Bindungen geeignet.
  • Vorzugsweise kann zur Herstellung des erfindungsgemäßen Komposits zunächst ein Masterbatch hergestellt werden, der vorzugsweise 5-80 Gew. % Bariumsulfat enthält. Dieser Masterbatch kann dann entweder nur mit dem Rohpolymer verdünnt oder mit den weiteren Bestandteilen der Rezeptur vermischt und ggf. nochmals dispergiert werden.
  • Zur Herstellung des erfindungsgemäßen Komposits kann auch ein Verfahren gewählt werden, bei dem das Bariumsulfat zunächst in organischen Substanzen insbesondere in Aminen, Polyolen, Styrolen, Formaldehyden und dessen Formmassen, Vinylestern-Harzen, Polyesterharzen oder Silikonharzen eingearbeitet und dispergiert wird. Diese, mit Bariumsulfat versetzten organischen Substanzen, können dann als Ausgangsmaterial für die Komposit-Herstellung genutzt werden.
  • Zur Dispergierung des Bariumsulfats im Masterbatch bzw. in einer organischen Substanz können übliche Dispergierverfahren, insbesondere unter Verwendung von Schmelzeextrudern, Dissolvern, Dreiwalzen, Kugelmühlen, Perlmühlen, Tauchmühlen, Ultraschall oder Knetern verwendet werden. Besonders vorteilhaft ist die Verwendung von Tauchmühlen oder Perlmühlen mit Perlendurchmessern von d < 1,5 mm.
  • Das erfindungsgemäße Komposit hat überraschenderweise herausragende mechanische und tribologische Eigenschaften. Im Vergleich zum ungefüllten Polymer hat das erfindungsgemäße Komposit deutlich verbesserte Biegemodule, Biegefestigkeiten, Zugmodule, Zugfestigkeiten, Risszähigkeiten, Bruchzähigkeiten, Schlagzähigkeiten und Verschleißraten.
  • Durch verbesserte mechanische Eigenschaften können dünnere Bauteile realisiert werden. Dies kann maßgeblich zur Gewichtseinsparung im Automobil- sowie im Flugzeug- und Raumfahrtbereich beitragen. Zu den Anwendungen gehören beispielsweise Stoßfänger oder Innenverkleidungen in Zügen aber auch Flugzeugen aus duroplastischen Formmassen. Hohe Zugfestigkeiten müssen vor allem bei Klebstoffen realisiert werden. Anwendungen für elastomere Kunststoffe, beispielsweise auf der Grundlage von Polymeren wie Styrol-Butadien-Kautschuk (SBR), sind u. a. Dichtungen und Schwingungsdämpfer.
  • Gegenstand der Erfindung sind im Einzelnen:
    • – Komposite, bestehend aus mindestens einem Elastomer und/oder mindestens einem Duromer und Bariumsulfat, dessen Kristallitgröße d50 kleiner 350 nm, bevorzugt kleiner 200 nm ist und besonders bevorzugt zwischen 3 und 50 nm beträgt und wobei das Bariumsulfat sowohl anorganisch oder organisch oberflächenmodifiziert als auch nicht oberflächenmodifiziert sein kann (nachfolgend auch Bariumsulfat-Komposite genannt);
    • – Bariumsulfat-Komposite, wobei als Duromer mindestens ein ungesättigtes Polyesterharz (UP), ein Phenolharz, ein Melaminharz, eine Formaldehyd-Formmasse, ein Vinylester-Harz, ein Diallylphthalat-Harz, ein Silikonharz und/oder ein Harnstoffharz, vorzugsweise ein UP-Harz, eingesetzt wird;
    • – Bariumsulfat-Komposite, wobei als Elastomer mindestens ein Elastomer ausgewählt wird aus: Naturkautschuk (NR), Isopren-Kautschuk (IR), Butyl-Kautschuk (CIIR, BIIR), Butadien-Kautschuk (BR), Styrol-Butadien-Kautschuk (SBR), Acrylnitril-Butadien-Kautschuk (NBR), Brombutyl-Kautschuk (BIIR), Styrol-Butadien-Isopren-Kautschuk (SBIR), Chloropren-Kautschuk (CR), chlorsulfonierter Polyethylen-Kautschuk (CSM), hydrierter NBR-Kautschuk (HNBR), Polymethylsiloxan-Vinyl-Kautschuk (VMQ), Acrylat-Ethylen-Kautschuk (AEM), Acrylat-Kautschuk (ACM), Fluor-Kautschuk (FKM), Fluorsilikon-Kautschuk (FVMQ), thermoplastischen Elastomeren (TPE), thermoplastischen Elastomeren (TPE) auf Basis von Polyamid (TPA), auf Basis von Copolyestern (TPC), auf Basis von Olefinen (TPO), auf Basis von Styrol (TPS), auf Basis von Polyurethan (TPU), auf Basis von vernetztem Kautschuk (TPV) oder wobei als Elastomer Mischungen von mindestens zwei dieser Elastomere eingesetzt werden;
    • – Bariumsulfat-Komposite, wobei das Komposit 20 bis 99,8 Gew.-% Duromer, 0,1 bis 60 Gew.-% Bariumsulfat, 0 bis 80 Gew.-% mineralischen Füllstoff und/oder Glasfaser, 0,05 bis 10 Gew.-% Prozessadditive, 0 bis 10 Gew.-% Pigment, und 0 bis 40 Gew.-% Aluminiumhydroxid enthält;
    • – Bariumsulfat-Komposite, wobei das Komposit 100 phr Elastomer, 0,1 bis 300 phr Bariumsulfat, 0 bis 10 phr Vulkanisationsbeschleuniger, 0 bis 10 phr Vulkanisationsverzögerer, 0 bis 20 phr Zinkoxid, 0 bis 10 phr Stearinsäure, 0 bis 20 phr Schwefel und/oder Peroxid, 0 bis 300 phr mineralischen Füllstoff, 0 bis 200 phr Weichmacher, 0 bis 30 phr protective system, enthaltend vorzugsweise Antioxidantien und Antiozonantien; enthält,
    • – Bariumsulfat-Komposite, wobei der Anteil von Bariumsulfat im Komposit 0,1 bis 60 Gew.-%, bevorzugt 0,5 bis 30 Gew.-%, besonders bevorzugt 1,0 bis 20 Gew.-%, beträgt;
    • – Verfahren zur Herstellung des Bariumsulfat-Komposits;
    • – Verfahren zur Herstellung des Bariumsulfat-Komposits, wobei zunächst ein Masterbatch hergestellt wird und das Bariumsulfat-Komposit durch Verdünnung des Masterbatches mit dem Rohpolymer erhalten wird, wobei das Masterbatch 5-80 Gew.-% Bariumsulfat, bevorzugt 15-60 Gew.-% Bariumsulfat enthält;
    • – Verfahren zur Herstellung des Bariumsulfat-Komposits, wobei zunächst ein Masterbatch hergestellt wird und das Bariumsulfat-Komposit durch Verdünnung des Masterbatches mit dem Rohpolymer unter Dispergierung erhalten wird;
    • – Verfahren zur Herstellung des Bariumsulfat-Komposits, bei dem das Masterbatch mit den weiteren Bestandteile der Rezeptur in einem oder mehreren Schritten vermischt wird und sich vorzugsweise eine Dispergierung anschließt;
    • – Verfahren zur Herstellung des Bariumsulfat-Komposits, wobei das Bariumsulfat zunächst in organischen Substanzen insbesondere in Aminen, Polyolen, Styrolen, Formaldehyden und dessen Formmassen, Vinylestern-Harzen, Polyesterharzen oder Silikonharzen eingearbeitet und dispergiert wird, wobei das Bariumsulfat sowohl anorganisch oder organisch oberflächenmodifiziert als auch nicht oberflächenmodifiziert sein kann;
    • – Verfahren zur Herstellung des Bariumsulfat-Komposits, wobei die mit dem Bariumsulfat versetzten organischen Substanzen als Ausgangsmaterial für die Komposit-Herstellung genutzt werden;
    • – Verfahren zur Herstellung des Bariumsulfat-Komposits, wobei die Dispergierung des Bariumsulfats im Masterbatch bzw. in einer organischen Substanz mittels üblicher Dispergierverfahren, insbesondere unter Verwendung von Schmelzextrudern, Dissolvern, Dreiwalzen, Kugelmühlen, Perlmühlen, Tauchmühlen, Ultraschall oder Knetern durchgeführt wird;
    • – Verfahren zur Herstellung des Bariumsulfat-Komposits, wobei für die Dispergierung des Bariumsulfats vorzugsweise Tauchmühlen oder Perlmühlen verwendet werden;
    • – Verfahren zur Herstellung des Bariumsulfat-Komposits, wobei für die Dispergierung des Bariumsulfats vorzugsweise Perlmühlen verwendet werden, wobei die Perlen vorzugsweise Durchmesser von d < 1,5 mm, besonders bevorzugt von d < 1,0 mm, ganz besonders bevorzugt von d < 0,3 mm aufweisen;
    • – Bariumsulfat-Komposit, das verbesserte mechanische Eigenschaften und verbesserte tribologische Eigenschaften besitzt;
    • – Bariumsulfat-Komposit, bei dem die Verbesserung der Festigkeit und Zähigkeit in einem Biegeversuch oder einem Zugversuch beobachtet werden können;
    • – Bariumsulfat-Komposit, das verbesserte Schlagzähigkeiten und/oder verbesserte Kerbschlagzähigkeiten besitzt;
    • – Bariumsulfat-Komposit, das verbesserte Verschleißfestigkeit besitzt;
    • – Bariumsulfat-Komposit, das verbesserte Kratzfestigkeit besitzt;
    • – Bariumsulfat-Komposit, das verbesserte Spannungsrissbeständigkeit.
    • – Bariumsulfat-Komposit, bei dem eine Verbesserung der Kriechbeständigkeit beobachtet werden kann,
    • – Bariumsulfat-Komposit, bei dem das viskoelastische Verhalten, charakterisiert über den Verlustfaktor tanδ, verbessert wird,
    • – Verwendung des Bariumsulfat-Komposits für Bauteile für den Automobil-, Luftfahrt- oder den Raumfahrt-Bereich insbesondere zur Gewichtseinsparung, beispielsweise in Form von Stoßfängern oder Innenverkleidungen
    • – Verwendung des Bariumsulfat-Komposits insbesondere in Form von Dichtungen oder Schwingungsdämpfern.
  • Die Erfindung wird durch die nachfolgenden Beispiele erläutert, ohne sie darauf einzuschränken.
  • Beispiel 1
  • Als Ausgangsmaterial wird ein gefälltes, unmodifiziertes Bariumsulfat verwendet, dass eine Kristallitgröße d50 von 26 nm besitzt. Das nicht oberflächenmodifizierte Bariumsulfat wird mit einer Perlmühle zu 25 Gew.-% in das UP-Harz Palapreg P17-02 eindispergiert, bis auf dem Hegmann-Keil eine Feinheit kleiner als 5 μm vorliegt. Tabelle 1: Rezeptur der glasfaserverstärkten Kunststoffe auf UP-Harz-Basis
    Edukte Hersteller Materialeinwaage [g]
    Palapreg P17-02* BASF 70 % 31,08*
    Palapreg H814-01 DSM Composite Resins 30 % 13,32
    BYK W996 BYK-Chemie GmbH 1,5 phr 0,67
    BYK P9060 BYK-Chemie GmbH 4 phr 1,78
    Trigonox C Akzo Nobel 1,5 phr 0,67
    Coathylene HA 1681 Du Pont Polymer Powders 1,5 phr 0,67
    Luvatol MV 35 NV Lehmann & Voss & Co 3 phr 1,33
    Millicarb OG Omya GmbH 50 phr 22,20
    Martinal ON 921 Martinswerk GmbH 120 phr 53,29
    Bariumsulfat* Sachtleben Chemie GmbH 2 % 2,59*
    Glasfasern Saint-Gobain Vetrolex 25 % 33,84
    • *als fertige Dispersion nach Perlmahlung demnach als Gesamteinwaage mit 33,67 g (Palapreg P17-02 + Bariumsulfat) eingewogen
  • Diese Dispersion wird laut Materialeinwaage gemäß Tabelle 1 mit dem weiteren Harz Palapreg H814-01 und den Additiven im Dissolver (Dissolverscheibe: Durchmesser 30 mm) bei 1500 U/Min. in einem 180 ml Kunststoffbecher gerührt und langsam mit steigender Drehzahl die erforderliche Einwaage an Füllstoffen zugegeben. Nach Beendigung der Füllstoffzugabe wird 3 Minuten bei 6500 U/Min. dispergiert.
  • Zur Rohmasse wird die erforderliche Menge an Glasfasern zugesetzt, die mit Hilfe eines Spatels untergehoben werden. Im Kneter wird dieses Gemisch für weitere 3 Minuten bei 50 U/Min. homogenisiert. Die entstehende Masse wird in ein mit Trennmittel imprägniertes Werkzeug mit 12 Aussparungen von 80 mm × 15 mm × 4 mm sorgfältig ausgebreitet geglättet. Als untere Pressplatte des Werkzeuges dient eine Teflonplatte, als obere Pressplatte eine polierte, verchromte Metallplatte. In der auf 150 °C aufgeheizten Presse werden die Platten samt Papierschutz eine Minute bei 150 °C temperiert (bei normalem Schließen der Presse), danach werden die Platten mit einem Druck von 100 bar bei 150 °C verpresst. Nach dem Pressvorgang werden die Platten abkühlen gelassen und die Prüfkörper aus dem Werkzeug gedrückt.
  • Die Prüfkörper werden in 3-Punkt-Biegeversuchen nach DIN EN ISO 178 und in Schlagzähigkeitsversuchen nach DIN EN ISO 179 untersucht. Die Ergebnisse sind in Tabelle 2 dargestellt.
  • Die erfindungsgemäßen Komposite zeigen im Vergleich zum Reinharz stark verbesserte Eigenschaften. Tabelle 2: Mechanischen Eigenschaften der hergestellten Prüfkörper
    Probe Elastizitätsmodul [MPa] max. Biege-spannung [MPa] Bruchspannung [MPa] rel. Dehnung beim Bruch [%] Schlagzähigkeit [kJ/m2]
    Komposit ohne Bariumsulfat 11759 66,51 39,66 0,84 8,77
    Komposit mit 2% Bariumsulfat 11804 86,04 58,69 1,05 12,01
  • Beispiel 2
  • Als Ausgangsmaterial wird ein oberflächenmodifiziertes Bariumsulfat mit einer Kristallitgröße d50 von 26 nm eingesetzt. Die Bariumsulfatoberfläche ist anorganisch nachbehandelt und silanisiert. Die anorganische Oberflächenmodifizierung besteht aus einer Silicium-Aluminium-Sauerstoff-Verbindung. Zur Silanisierung wurde das 3-Methacryloxy-propyltrimethoxy-silan verwendet.
  • Hergestellt werden kann das anorganisch oberflächenmodifizierte Bariumsulfat beispielsweise nach folgendem Verfahren:
    3,7 kg einer 6,5 Gew.-%igen wässrigen Suspension ultrafeiner BaSO4-Partikel mit mittleren Primärpartikeldurchmessern d50 von 26 nm (Ergebnis von TEM-Untersuchungen) werden unter Rühren auf eine Temperatur von 40°C erhitzt. Mit 10 %iger Natronlauge wird der pH-Wert der Suspension auf 12 eingestellt. Unter starkem Rühren werden gleichzeitig 14,7 ml einer wässrigen Natriumsilikatlösung (284 g SiO2/L), 51,9 ml einer Aluminiumsulfat-Lösung (mit 75 g Al2O3/L) und 9,7 ml einer Natriumaluminat-Lösung (275 g Al2O3/L) unter Einhaltung des pH-Wertes von 12,0 zur Suspension gegeben. Die Suspension wird für weitere 10 Minuten unter starkem Rühren homogenisiert. Anschließend wird der pH-Wert langsam, vorzugsweise innerhalb von 60 Minuten, durch Zugabe einer 5 %igen Schwefelsäure auf einen pH-Wert von 7,5 eingestellt. Es schließt sich eine Reifezeit von 10 Minuten bei ebenfalls einer Temperatur 40°C an. Die Suspension wird dann auf eine Leiffähigkeit kleiner 100 μS/cm gewaschen und anschließend sprühgetrocknet. Die gewaschene Suspension wird mit VE-Wasser auf einen Feststoffgehalt von 20 Gew.% eingestellt und mittels Dissolver 15 Minuten aufdispergiert. Der Suspension werden unter Dissolverdispergierung 15 g des 3Methacryloxypropyltrimethoxy-silan langsam zugegeben. Die Suspension wird anschließend für weitere 20 Minuten mit dem Dissolver dispergiert und dann im Gefriertrockner getrocknet.
  • Das oberflächenmodifizierte Bariumsulfat wird mit einer Perlmühle zu 25 Gew.-% in das UP-Harz Palapreg P17-02 eindispergiert, bis auf dem Hegmann-Keil eine Feinheit kleiner als 5 μm vorliegt. Tabelle 3: Rezeptur der glasfaserverstärkten Kunststoffe auf UP-Harz-Basis
    Edukte Hersteller Materialeinwaage [g]
    Palapreg P17-02* BASF 70 % 31,08*
    Palapreg H814-01 DSM Composite Resins 30 % 13,32
    BYK W996 BYK-Chemie GmbH 1,5 phr 0,67
    BYK P9060 BYK-Chemie GmbH 4 phr 1,78
    Trigonox C Akzo Nobel 1,5 phr 0,67
    Coathylene HA 1681 Du Pont Polymer Powders 1,5 phr 0,67
    Luvatol MV 35 NV Lehmann & Voss & Co 3 phr 1,33
    Millicarb OG Omya GmbH 50 phr 22,20
    Martinal ON 921 Martinswerk GmbH 120 phr 53,29
    Bariumsulfat oberflächenmodifiziert* Sachtleben Chemie GmbH 2 % 2,59*
    Glasfasern Saint-Gobain Vetrolex 25 % 33,84
    • * als fertige Dispersion nach Perlmahlung demnach als Gesamteinwaage mit 33,67g (Palapreg P17-02 + Bariumsulfat) eingewogen
  • Diese Dispersion wird laut Materialeinwaage gemäß Tabelle 3 mit dem weiteren Harz Palapreg H814-01 und den Additiven im Dissolver (Dissolverscheibe: Durchmesser 30 mm) bei 1500 U/Min. in einem 180 ml Kunststoffbecher gerührt und langsam mit steigender Drehzahl die erforderliche Einwaage an Füllstoffen zugegeben. Nach Beendigung der Füllstoffzugabe wird 3 Minuten bei 6500 U/Min. dispergiert.
  • Zur Rohmasse wird die erforderliche Menge an Glasfasern zugesetzt, die mit Hilfe eines Spatels untergehoben werden. Im Kneter wird dieses Gemisch für weitere 3 Minuten bei 50 U/Min. homogenisiert. Die entstehende Masse wird in ein mit Trennmittel imprägniertes Werkzeug mit 12 Aussparungen von 80 mm × 15 mm × 4 mm sorgfältig ausgebreitet geglättet. Als untere Pressplatte des Werkzeuges dient eine Teflonplatte, als obere Pressplatte eine polierte, verchromte Metallplatte. In der auf 150 °C aufgeheizten Presse werden die Platten samt Papierschutz eine Minute bei 150 °C temperiert (bei normalem Schließen der Presse), danach werden die Platten mit einem Druck von 100 bar bei 150 °C verpresst. Nach dem Pressvorgang werden die Platten abkühlen gelassen und die Prüfkörper aus dem Werkzeug gedrückt.
  • Die Prüfkörper werden in 3-Punkt-Biegeversuchen nach DIN EN ISO 178 und in Schlagzähigkeitsversuchen nach DIN EN ISO 179 untersucht. Die Ergebnisse sind in Tabelle 4 dargestellt.
  • Die erfindungsgemäßen Komposite zeigen im Vergleich zum Reinharz stark verbesserte Eigenschaften. Tabelle 4: Mechanischen Eigenschaften der hergestellten Prüfkörper
    Probe Elastizitätsmodul [MPa] max. Biegespannung [MPa] Bruchspannung [MPa] rel. Dehnung beim Bruch [%] Schlagzähigkeit [kJ/m2]
    Komposit ohne Bariumsulfat 11759 66,51 39,66 0,84 8,77
    Komposit mit 2% silanisiertem Bariumsulfat 12310 90,23 60,28 1,12 13,14
  • Beispiel 3
  • Als Ausgangsmaterial wird ein organisch oberflächenmodifiziertes Bariumsulfat mit einer Kristallitgröße d50 von 20 nm eingesetzt. Als organische Oberflächenmodifizierung wurde ein Oleylcetylalkoholsulfat-Na-Salz mit Acrylatfunktionalität verwendet.
  • Hergestellt werden kann das organisch oberflächenmodifizierte Bariumsulfat beispielsweise nach folgendem Verfahren:
    In einem Rührbehälter werden 500 g Bariumsulfat in 0,5 L VE-Wasser (vollentsalztes Wasser) bei Raumtemperatur suspendiert. Mit einer 0,1 molaren Bariumhydroxidlösung wird dann ein Bariumüberschluss so eingestellt, dass ein pH-Wert von 11 erreicht wird. In die stark gerührte Bariumsulfatsuspension werden 25 g Oleylcetylalkoholsulfat-Na-Salz mit Acrylaffunktionalität langsam eingetragen. Die Suspension wird anschließend für weitere 30 min gerührt. Dann wird mit 0,1 molarer Schwefelsäure der pH-Wert auf 6,0 langsam eingestellt und weitere 15 min gerührt.
  • Das anfallende Produkt wird und anschließend bei 105°C getrocknet.
  • Das organisch oberflächenmodifizierte Bariumsulfat wird mit einer Perlmühle zu 25 Gew.-% in das UP-Harz Palapreg P17-02 eindispergiert bis auf dem Hegmann-Keil eine Feinheit kleiner als 5 μm vorliegt. Tabelle 5: Rezeptur der glasfaserverstärkten Kunststoffe auf UP-Harz-Basis
    Edukte Hersteller Materialeinwaage [g]
    Palapreg P17-02* BASF 70 % 31,08*
    Palapreg H814-01 DSM Composite Resins 30 % 13,32
    BYK W996 BYK-Chemie GmbH 1,5 phr 0,67
    BYK P9060 BYK-Chemie GmbH 4 phr 1,78
    Trigonox C Akzo Nobel 1,5 phr 0,67
    Coathylene HA 1681 Du Pont Polymer Powders 1,5 phr 0,67
    Luvatol MV 35 NV Lehmann & Voss & Co 3 phr 1,33
    Millicarb OG Omya GmbH 50 phr 22,20
    Martinal ON 921 Martinswerk GmbH 120 phr 53,29
    Bariumsulfat oberflächenmodifiziert* Sachtleben Chemie GmbH 2 % 2,59*
    Glasfasern Saint-Gobain Vetrolex 25 % 33,84
    • *als fertige Dispersion nach Perlmahlung demnach als Gesamteinwaage mit 33,67 g (Palapreg P17-02 + Bariumsulfat) eingewogen
  • Diese Dispersion wird laut Materialeinwaage in der Tabelle 1 mit dem weiteren Harz Palapreg H814-01 und den Additiven im Dissolver (Dissolverscheibe: Durchmesser 30 mm) bei 1500 U/Min. In einem 180 ml Kunststoffbecher gerührt und langsam mit steigender Drehzahl die erforderliche Einwaage an Füllstoffen zugegeben. Nach Beendigung der Füllstoffzugabe wird 3 Minuten bei 6500 U/Min. dispergiert.
  • Zur Rohmasse wird die erforderliche Menge an Glasfasern zugesetzt, die mit Hilfe eines Spatels untergehoben werden. Im Kneter wird dieses Gemisch für weitere 3 Minuten bei 50 U/Min. homogenisiert. Die entstehende Masse wird in ein mit Trennmittel imprägniertes Werkzeug mit 12 Aussparungen von 80 mm × 15 mm × 4 mm sorgfältig ausgebreitet geglättet. Als untere Pressplatte des Werkzeuges dient eine Teflonplatte, als obere Pressplatte eine polierte, verchromte Metallplatte.
  • In der auf 150 °C aufgeheizten Presse werden die Platten samt Papierschutz eine Minute bei 150 °C temperiert (bei normalem Schließen der Presse), danach werden die Platten mit einem Druck von 100 bar bei 150 °C verpresst. Nach dem Pressvorgang werden die Platten abkühlen gelassen und die Prüfkörper aus dem Werkzeug gedrückt.
  • Die Prüfkörper werden in 3-Punkt-Biegeversuchen nach DIN EN ISO 178 und in Schlagzähigkeitsversuchen nach DIN EN ISO 179 untersucht. Die Ergebnisse sind in Tabelle 6 dargestellt.
  • Die erfindungsgemäßen Komposite zeigen im Vergleich zum Reinharz stark verbesserte Eigenschaften. Tabelle 6: Mechanischen Eigenschaften der hergestellten Prüfkörper
    Probe Elastizitätsmodul [MPa] max. Biegespannung [MPa] Bruchspannung [MPa] rel. Dehnung beim Bruch [%] Schlagzähigkeit [kJ/m2]
    Komposit ohne Bariumsulfat 11759 66,51 39,66 0,84 8,77
    Komposit mit 2% organisch oberflächenmodifiziertem Bariumsulfat 12354 88,26 59,73 1,09 12,87

Claims (29)

  1. Komposit aus Füllstoffen und Pigmenten in einer polymeren Matrix, dadurch gekennzeichnet, dass es Bariumsulfat, mindestens ein Elastomer und/oder mindestens ein Duromer enthält, wobei die Kristallitgröße des Bariumsulfats d50 kleiner 350 nm, bevorzugt kleiner 200 nm ist und besonders bevorzugt zwischen 3 und 50 nm beträgt und das Bariumsulfat sowohl anorganisch oder organisch oberflächenmodifiziert als auch nicht oberflächenmodifiziert sein kann.
  2. Komposit gemäß Anspruch 1, dadurch gekennzeichnet, dass als Duromer mindestens ein ungesättigtes Polyesterharz (UP), ein Phenolharz, ein Melaminharz, eine Formaldehyd-Formmasse, ein Vinylester-Harz, ein Diallylphthalat-Harz, ein Silikonharz und/oder ein Harnstoffharz, vorzugsweise ein UP-Harz ausgewählt wird.
  3. Komposit gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass als Elastomer mindestens ein Elastomer ausgewählt wird aus: Naturkautschuk (NR), Isopren-Kautschuk (IR), Butyl-Kautschuk (CIIR, BIIR), Butadien-Kautschuk (BR), Styrol-Butadien-Kautschuk (SBR), Acrylnitril-Butadien-Kautschuk (NBR), Brombutyl-Kautschuk (BIIR), Styrol-Butadien-Isopren-Kautschuk (SBIR), Chloropren-Kautschuk (CR), chlorsulfonierter Polyethylen-Kautschuk (CSM), hydrierter NBR-Kautschuk (HNBR), Polymethylsiloxan-Vinyl-Kautschuk (VMQ), Acrylat-Ethylen-Kautschuk (AEM), Acrylat-Kautschuk (ACM), Fluor-Kautschuk (FKM), Fluorsilikon-Kautschuk (FVMQ), thermoplastischen Elastomeren (TPE), thermoplastischen Elastomeren (TPE) auf Basis von Polyamid (TPA), auf Basis von Copolyestern (TPC), auf Basis von Olefinen (TPO), auf Basis von Styrol (TPS), auf Basis von Polyurethan (TPU), auf Basis von vernetztem Kautschuk (TPV) oder dass als Elastomer Mischungen von mindestens zwei dieser Elastomere ausgewählt werden;
  4. Komposit gemäß einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Komposit 20 bis 99,8 Gew.-% Duromer, 0,1 bis 60 Gew.-% Bariumsulfat, 0 bis 80 Gew.-% mineralischen Füllstoff und/oder Glasfaser, 0,05 bis 10 Gew.-% Prozessadditive, 0 bis 10 Gew.-% Pigment, und 0 bis 40 Gew.-% Aluminiumhydroxid enthält.
  5. Komposit gemäß einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Komposit 100 phr Elastomer, 0,1 bis 300 phr Bariumsulfat, 0 bis 10 phr Vulkanisationsbeschleuniger, 0 bis 10 phr Vulkanisationsverzögerer, 0 bis 20 phr Zinkoxid, 0 bis 10 phr Stearinsäure, 0 bis 20 phr Schwefel und/oder Peroxid, 0 bis 300 phr mineralischen Füllstoff, 0 bis 200 phr Weichmacher, 0 bis 30 phr protective system, enthaltend vorzugsweise Antioxidantien und Antiozonantien; enthält.
  6. Komposit gemäß einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Anteil an Bariumsulfat im Komposit 0,1 bis 60 Gew.-%, bevorzugt 0,5 bis 30 Gew.-%, besonders bevorzugt 1,0 bis 20 Gew.-%, beträgt.
  7. Komposit gemäß einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Bariumsulfat mit mindestens einer anorganischen Verbindung oberflächenmodifiziert ist.
  8. Komposit gemäß Anspruch 7, dadurch gekennzeichnet, dass der Gewichtsanteil der anorganischen Verbindungen bezogen auf BaSO4 0,1 bis 50,0 Gew.-%, bevorzugt 1,0 bis 10,0 Gew.-% beträgt.
  9. Komposit gemäß Anspruch 7 oder 8, dadurch gekennzeichnet, dass die anorganischen Verbindungen ausgewählt sind aus Aluminium-, Antimon-, Barium-, Calcium-, Cer-, Chlor-, Cobalt-, Eisen-, Phosphor-, Kohlenstoff-, Mangan-, Sauerstoff-, Schwefel-, Silicium-, Stickstoff-, Strontium-, Vanadium-, Zink-, Zinn- und/oder Zirkon-Verbindungen oder Salzen.
  10. Komposit gemäß einem oder mehreren der Ansprüche 7 bis 9, dadurch gekennzeichnet, dass die BaSO4-Partikel zusätzlich zu der Oberflächenmodifizierung aus anorganischen Verbindungen mit mindestens einem Silan oder mehreren Silanen modifiziert sind.
  11. Komposit gemäß Anspruch 10, dadurch gekennzeichnet, dass die Silane Alkoxyalkylsilane sind.
  12. Komposit gemäß Anspruch 11, dadurch gekennzeichnet, dass die Alkoxyalkylsilane ausgewählt sind aus Octyltriethoxysilan, gamma-Methacrylpropyltrimethoxysilan, gamma-Glycidoxypropyltrimethoxy-silan, gamma-Aminopropyltriethoxysilan, gamma-Aminopropyltrimethoxysilan, gamma-Isocynatopropyltriethoxysilan, Vinyltrimethoxysilan und/oder hydrolysierten Silanen, wie gamma-Aminopropylsilsesquioxan (Fa. GE).
  13. Komposit gemäß einem oder mehreren der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass die BaSO4-Partikel eine Primärpartikelgröße d50 von kleiner oder gleich 0,1 μm, vorzugsweise von 0,05 bis 0,005 μm aufweisen.
  14. Komposit gemäß einem oder mehreren der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass das Bariumsulfat mit mindestens einer organischen Verbindung oberflächenmodifiziert ist.
  15. Komposit gemäß Anspruch 14, dadurch gekennzeichnet, dass die organischen Verbindungen ausgewählt sind aus der Gruppe der Alkyl- und/oder Arylsulfonate, Alkyl- und/oder Arylsulfate, Alkyl- und/oder Arylphosphorsäureester, wobei die Alkyl- oder Arylreste durch funktionelle Gruppen substituiert sein können, und/oder Fettsäuren, die ggf. funktionelle Gruppen besitzen, oder aus Mischungen aus mindestes zwei dieser Verbindungen.
  16. Komposit gemäß Anspruch 14 oder 15, dadurch gekennzeichnet, dass die organischen Verbindungen ausgewählt sind aus: Alkylsulfonsäuresalzen, Natriumpolyvinylsulfonat, Natrium-N-alkyl-benzolsulfonat, Natriumpolystyrolsulfonat, Natriumdodecylbenzolsulfonat, Natriumlaurylsulfat, Natriumcetylsulfat, Hydroxylaminsulfat, Triethanolammoniumlaurylsulfat, Phosphorsäuremonoethylmonobenzylester, Lithiumperfluoroctansulfonat, 12-Brom-1-dodecansulfonsäure, Natium-10-hydroxy-1-decansulfonat, Natrium-Carrageenan, Natrium-10-Mercapto-1-Cetansulfonat, Natrium-16-Ceten(1)sulfat, Oleylcetylalkoholsulfat, Ölsäuresulfat, 9,10-Dihydroxystearinsäure, Isostearinsäure, Stearinsäure, Ölsäure oder aus Mischungen aus mindestes zwei dieser Verbindungen.
  17. Komposit gemäß einem oder mehreren der Ansprüche 14 bis 16, dadurch gekennzeichnet, dass das Bariumsulfat einen mittleren Partikeldurchmesser von d50 = 1 nm bis 100 μm, bevorzugt von d50 = 1 nm bis 1 μm, besonders bevorzugt von d50 = 5 nm bis 0,5 μm aufweist.
  18. Komposit gemäß einem oder mehreren der Ansprüche 14 bis 17, dadurch gekennzeichnet, dass die Primärpartikel des Bariumsulfats eine logarithmische Partikelgrößenverteilung mit einem Median von d = 1 bis 5000 nm, bevorzugt von d = 1 bis 1000 nm, besonders bevorzugt von d = 5 nm bis 500 nm und eine logarithmische Partikelgrößenverteilung mit einer geometrischen Standardabweichungen von σg < 1,5, vorzugsweise von σg < 1,4 haben.
  19. Komposit gemäß einem oder mehreren der Ansprüche 14 bis 18, dadurch gekennzeichnet, dass das Bariumsulfat mit funktionellen Silanderivaten und/oder funktionellen Siloxanen nachbehandelt ist, wobei die funktionellen Silanderivate und/oder funktionellen Siloxane vorzugsweise ausgewählt sind aus: Octyltriethoxysilanen, Methyltriethoxysilanen, γ-Methacryloxypropyltrimethoxysilanen, γ-Glycidyloxypropyltrimethoxysilanen, γ-Aminopropyltriethoxysilanen, γ-Isocyanatopropyltriethoxysilanen, Vinyltrimethoxysilan oder aus Mischungen aus mindestes zwei solcher Verbindungen.
  20. Verfahren zur Herstellung eines Komposits gemäß einem oder mehreren der Ansprüche 1 bis 19, dadurch gekennzeichnet, dass aus dem Bariumsulfat und einem Teil des Rohpolymers ein Masterbatch hergestellt wird und das Komposit durch Verdünnung des Masterbatches mit dem Rohpolymer unter Dispergierung erhalten wird.
  21. Verfahren gemäß Anspruch 20, dadurch gekennzeichnet, dass aus dem Bariumsulfat und einem Teil des Rohpolymers ein Masterbatch hergestellt wird und das Komposit durch Verdünnung des Masterbatches mit dem Rohpolymer erhalten wird, wobei der Masterbatch 5-80 Gew.-% Bariumsulfat, bevorzugt 15-60 Gew.-% Bariumsulfat enthält.
  22. Verfahren gemäß Anspruch 20 oder 21, dadurch gekennzeichnet, dass das Masterbatch mit den weiteren Bestandteile der Rezeptur in einem oder mehreren Schritten vermischt wird und sich vorzugsweise eine Dispergierung anschließt;
  23. Verfahren gemäß einem oder mehreren der Ansprüche 20 bis 22, dadurch gekennzeichnet, dass das Bariumsulfat zunächst in organischen Substanzen, insbesondere in Aminen, Polyolen, Styrolen, Formaldehyden und dessen Formmassen, Vinylestern-Harzen, Polyesterharzen oder Silikonharzen eingearbeitet und dispergiert wird.
  24. Verfahren gemäß Anspruch 23, dadurch gekennzeichnet, dass die mit dem Bariumsulfat versetzten organischen Substanzen als Ausgangsmaterial für die Komposit-Herstellung genutzt werden.
  25. Verfahren gemäß einem oder mehreren der Ansprüche 20 bis 24, dadurch gekennzeichnet, dass die Dispergierung des Bariumsulfats im Masterbatch bzw. in einer organischen Substanz mittels üblicher Dispergierverfahren, insbesondere unter Verwendung von Schmelzextrudern, Dissolvern, Dreiwalzen, Kugelmühlen, Perlmühlen, Tauchmühlen, Ultraschall oder Knetern durchgeführt wird.
  26. Verfahren gemäß einem oder mehreren der Ansprüche 20 bis 25, dadurch gekennzeichnet, dass die Dispergierung des Bariumsulfats vorzugsweise in Tauchmühlen oder Perlmühlen durchgeführt wird.
  27. Verfahren gemäß einem oder mehreren der Ansprüche 20 bis 26, dadurch gekennzeichnet, dass die Dispergierung des Bariumsulfats in Perlmühlen durchgeführt wird, wobei Perlen mit Durchmessern von d < 1,5 mm, besonders bevorzugt von d < 1,0 mm, ganz besonders bevorzugt von d < 0,3 mm eingesetzt werden.
  28. Verwendung eines Komposits gemäß einem oder mehreren der Ansprüche 1 bis 19 für Bauteile für den Automobil-, Luftfahrt- oder den Raumfahrt-Bereich insbesondere zur Gewichtseinsparung, beispielsweise in Form von Stoßfängern oder Innenverkleidungen.
  29. Verwendung eines Komposits gemäß einem oder mehreren der Ansprüche 1 bis 19 für Dichtungen oder Schwingungsdämpfer.
DE102007040640A 2006-08-25 2007-08-27 Bariumsulfat enthaltendes Komposit Ceased DE102007040640A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE102007040640A DE102007040640A1 (de) 2006-08-25 2007-08-27 Bariumsulfat enthaltendes Komposit

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102006039855 2006-08-25
DE102006039855.6 2006-08-25
DE102007040640A DE102007040640A1 (de) 2006-08-25 2007-08-27 Bariumsulfat enthaltendes Komposit

Publications (1)

Publication Number Publication Date
DE102007040640A1 true DE102007040640A1 (de) 2008-03-13

Family

ID=39047128

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102007040640A Ceased DE102007040640A1 (de) 2006-08-25 2007-08-27 Bariumsulfat enthaltendes Komposit

Country Status (1)

Country Link
DE (1) DE102007040640A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010149571A1 (de) * 2009-06-23 2010-12-29 Sachtleben Chemie Gmbh Chemiefaser mit einem additiv zur verbesserung der physikalischen eigenschaften
CN115924954A (zh) * 2022-12-28 2023-04-07 佛山安亿纳米材料有限公司 一种介孔硫酸钡的制备方法及其应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010149571A1 (de) * 2009-06-23 2010-12-29 Sachtleben Chemie Gmbh Chemiefaser mit einem additiv zur verbesserung der physikalischen eigenschaften
CN115924954A (zh) * 2022-12-28 2023-04-07 佛山安亿纳米材料有限公司 一种介孔硫酸钡的制备方法及其应用

Similar Documents

Publication Publication Date Title
EP2057216B1 (de) Titandioxid enthaltendes komposit
WO2008023075A1 (de) Bariumsulfat enthaltendes komposit
DE2743682C2 (de) Mit einem Silan oberflächlich behandelte oxidische oder silicatische Teilchen und deren Verwendung
DE69811151T2 (de) Zugabe von Salzen zur Verbesserung der Wechselwirkung von Silica mit Kautschuk
EP1773919B1 (de) Wässrige bindemitteldispersion mit nanopartikeln, verfahren zu deren herstellung und deren verwendung
DE60226065T2 (de) Thixotropiermaterial und pastöse harzzusammensetzung
DE2624065A1 (de) Neue magnesiumhydroxide
DE102013001520B4 (de) Neuartiges anorganisches, halogenfreies Flammschutzmittel auf Basis von chemisch modifiziertem rekarbonisiertem Rotschlamm, dessen Herstellung und Verwendung sowie brandgeschütztes Stoffsystem
EP2883917A1 (de) Calciumphosphat-haltige Kompositpigmente und Verfahren zu ihrer Herstellung
DE102008031361A1 (de) Verfahren zur Herstellung von grob- und/oder nanoskaligen, gecoateten, desagglomerierten Magnesiumhydroxiparikeln
EP2141189B1 (de) Verfahren zum Herstellen von aushärtbaren Massen, enthaltend nanoskalige, gecoatete, desagglomerierte und bevorzugt funktionalisierte Magnesiumhydroxidpartikel, sowie von ausgehärteten thermoplastischen oder duroplastischen Polymeren bzw. Kompositen, enthaltend desagglomerierte und homogen verteilte Magnesiumhydroxidfüllstoffpartikel
WO2000009599A1 (de) Verbundmaterial mit polymermatrix und anionisch interkalierten schichtförmigen doppelhydroxiden
EP2658931B1 (de) Verfahren zur herstellung von nanoskaligen, primär gecoateten hydrotalcit und hydrotalcit
DE69103131T2 (de) Pigmente mit verbesserter Dispersionsfähigkeit in thermoplastischen Harzen.
DE102007040640A1 (de) Bariumsulfat enthaltendes Komposit
DE102007040658A1 (de) Bariumsulfat enthaltendes Komposit
DE102008026268A1 (de) Verfahren zur Herstellung eines lagerstabilen Bariumsulfats mit guter Dispergierbarkeit
DE102007040657A1 (de) Titandioxid enthaltendes Komposit
DE202014010800U1 (de) Talkpartikulat und seine Verwendungen
DE102007040638A1 (de) Titandioxid enthaltendes Komposit
DE102007040641A1 (de) Anorganisch oberflächenmodifizierte ultrafeine Partikel
DE102017001365A1 (de) Isocyanatfreie Polyhydroxyurethane mit oxidischen Aluminiumnanoplättchen
EP2241602A1 (de) Mit Phosphonocarbonsäure modifizierte Zinkoxid-Partikel und Verwendung von Zinkoxid-Partikeln

Legal Events

Date Code Title Description
R012 Request for examination validly filed

Effective date: 20140714

R082 Change of representative

Representative=s name: DEMSKI & NOBBE PATENTANWAELTE, DE

R002 Refusal decision in examination/registration proceedings
R003 Refusal decision now final