DE102006011159A1 - Verfahren zur Herstellung einer thermoplastischen Folie - Google Patents

Verfahren zur Herstellung einer thermoplastischen Folie Download PDF

Info

Publication number
DE102006011159A1
DE102006011159A1 DE102006011159A DE102006011159A DE102006011159A1 DE 102006011159 A1 DE102006011159 A1 DE 102006011159A1 DE 102006011159 A DE102006011159 A DE 102006011159A DE 102006011159 A DE102006011159 A DE 102006011159A DE 102006011159 A1 DE102006011159 A1 DE 102006011159A1
Authority
DE
Germany
Prior art keywords
film
areas
crosslinking
electron beam
thermoplastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102006011159A
Other languages
English (en)
Inventor
Jürgen Dr. Bühring
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Benecke Kaliko AG
Original Assignee
Benecke Kaliko AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Benecke Kaliko AG filed Critical Benecke Kaliko AG
Priority to DE102006011159A priority Critical patent/DE102006011159A1/de
Priority to EP07703845.3A priority patent/EP1996391B1/de
Priority to PT77038453T priority patent/PT1996391E/pt
Priority to PCT/EP2007/050325 priority patent/WO2007104588A1/de
Priority to JP2008557694A priority patent/JP5072866B2/ja
Priority to ES07703845.3T priority patent/ES2538454T3/es
Publication of DE102006011159A1 publication Critical patent/DE102006011159A1/de
Priority to US12/206,277 priority patent/US9486954B2/en
Priority to US13/938,367 priority patent/US9902107B2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/16Surface shaping of articles, e.g. embossing; Apparatus therefor by wave energy or particle radiation, e.g. infrared heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/0266Local curing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C71/00After-treatment of articles without altering their shape; Apparatus therefor
    • B29C71/04After-treatment of articles without altering their shape; Apparatus therefor by wave energy or particle radiation, e.g. for curing or vulcanising preformed articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0866Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using particle radiation
    • B29C2035/0877Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using particle radiation using electron radiation, e.g. beta-rays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0866Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/002Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/12Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor of articles having inserts or reinforcements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/26Component parts, details or accessories; Auxiliary operations
    • B29C51/264Auxiliary operations prior to the thermoforming operation, e.g. cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/26Component parts, details or accessories; Auxiliary operations
    • B29C51/46Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/04Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing using rollers or endless belts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/10Polymers of propylene
    • B29K2023/12PP, i.e. polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/04Condition, form or state of moulded material or of the material to be shaped cellular or porous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/24Condition, form or state of moulded material or of the material to be shaped crosslinked or vulcanised
    • B29K2105/243Partially cured
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/25Solid
    • B29K2105/253Preform
    • B29K2105/256Sheets, plates, blanks or films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2007/00Flat articles, e.g. films or sheets
    • B29L2007/001Flat articles, e.g. films or sheets having irregular or rough surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/30Vehicles, e.g. ships or aircraft, or body parts thereof
    • B29L2031/3005Body finishings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/268Monolayer with structurally defined element

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Thermal Sciences (AREA)
  • Toxicology (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Laminated Bodies (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)

Abstract

Verfahren zur Herstellung einer thermoplastischen Folie mit einer dreidimensional strukturierten, geprägten Oberfläche, wobei die Folie vor einem nachfolgenden formgebenden Verarbeitungsschritt einer Elektronenstrahlvernetzung unterworfen wird, die einzelne flächige Bereiche der Folie unterschiedlich vernetzt, so dass die Bereiche, die beim Verformen höheren Auszugsgraden unterworfen werden, andere Vernetzungsgrade aufweisen als ihre Nachbarbereiche.

Description

  • Die Erfindung betrifft ein Verfahren zur Herstellung einer thermoplastischen Folie mit einer dreidimensional strukturierten Oberfläche, wobei die bereits in einem vorlaufenden Formgebungsschritt mit einer Oberflächenstruktur versehene Folie einem weiteren nachfolgenden formgebenden Verarbeitungsschritt unterworfen wird, insbesondere einem formgebenden Tiefziehen, bei dem die Folie ihre Bauteilform erhält. Ebenfalls betrifft die Erfindung eine Folie für einen formgebenden Verarbeitungsschritt.
  • Der vorlaufende Formgebungsschritt, bei dem die Folie mit einer Oberflächenstruktur versehene wird, besteht in aller Regel aus einem Prägeverfahren. Als nachfolgenden formgebenden Verarbeitungsschritt kennt man dabei neben dem Tiefziehen natürlich eine Reihe weiterer Umformverfahren, wie etwa Drück- oder Pressverfahren, bei denen die Folie gegen Formen gepresst wird und ihre Bauteilform erhält.
  • Thermoplastischen Folie mit einer dreidimensional strukturierten, geprägten Oberfläche, also etwa genarbte, gemusterte, oder fein strukturiert Formhäute aus Kunststoffen sind als Oberflächen für Gegenstände weithin bekannt und werden z. B. verwendet für die Innenverkleidung in Fahrzeugen, hier oft als relativ weiche unterschäumte Folien, so genannte Schaumfolien, mit angenehmer Haptik etwa für die Verkleidung von Armaturenbrettern oder die Innenschalen von Türen etc. In entsprechender Anpassung von Festigkeit und Design werden solche Folien natürlich auch für andere hochwertig beschichtete Waren genutzt.
  • Im Stand der Technik sind zur Herstellung solcher Formhäute verschiedene Verfahren bekannt, zum Beispiel Walzverfahren zur Herstellung von „endlosen" Folienbahnen oder auch Verfahren zur Herstellung von werkzeugfallenden einzelnen Formhäuten. Hier sind jedoch im Weiteren die Walzverfahren angesprochen, bei denen eine thermoplastische Folie mit Hilfe einer Prägewalze mit einer Oberflächenstruktur versehen wird.
  • Dem Fachmann ist in Bezug auf nachfolgende Verformungsverfahren das Problem bekannt, dass beim Ausbringen einer Folie auf ein dreidimensionales Bauteil, also etwa bei einem Ziehvorgang, bei dem eine mit einer einheitlich geprägten Oberfläche versehene Folie in ein Formwerkzeug gezogen (Tiefziehen) oder über einen festen Träger oder Grundkörper gespannt wird, es natürlich zu Verformungen der Folie kommen kann, die über die Elastizitätsgrenze des Materials, aus dem das Werkstück besteht, hinausgehen. Es können dabei Verzerrungen durch sich ändernde Abstände zwischen einzelnen Oberflächenbereichen entstehen, die dem Betrachter als Unregelmäßigkeiten sofort auffallen. Da im Bereich des Automobilinterieurs ein starker Trend zur Verbesserung der Qualitätsanmutung zu beobachten ist, sind solche Unregelmäßigkeiten immer weniger akzeptabel.
  • Die DE 102 02 752 offenbart hierzu ein Verfahren zur Herstellung eines aus einer thermoplastischen Folie tiefgezogenen Formteiles, bei dem die Oberflächenstruktur der Prägewalze in den Bereichen verdichtet bzw. verkleinert wird, in denen beim Tiefziehvorgang eine Dehnung der thermoplastischen Folie erfolgt. Durch diese Kompensation entsteht dann beim Tiefziehen ein gleichmäßiges Oberflächenmuster. Hier muss jedoch die Prägewalze bzw. die als Negativ dienende äußere Walzenoberfläche in Form eines Silikonschlauches auf relativ aufwendige Weise bearbeitet werden, um die kompensierenden Musterverdichtungen einzustellen.
  • Die DE 100 18 196 A1 beschreibt ein Verfahren zur Herstellung einer genarbten Folie aus unvernetzten Polyolefinen, die zur Erhöhung der Narbfestigkeit mit Elektronenstrahlen behandelt wird und dann tiefgezogen wird. Da Durch ein solches Verfahren die Folie insgesamt eine stabilere und damit weniger verformbare Narbe aufweist, wird lediglich die Dehnung insgesamt erniedrigt, das Problem der erforderlichen unterschiedlichen Dehnung einzelner Bereiche der Folie aber nicht zufriedenstellend gelöst.
  • Für die Erfindung bestand daher die Aufgabe, ein kostengünstiges Verfahren vorzustellen, mit dem eine für nachfolgende formgebende Verarbeitung, insbesondere für ein Tiefziehen geeignete Folie hergestellt werden kann, die unterschiedliche Verformungen/Dehnungen über der einzelne Flächenbereiche der Folie erlaubt, ohne sichtbare Verzerrungen durch sich ändernde Abstände zwischen einzelnen Oberflächenstrukturen erkennbar werden zu lassen.
  • Gelöst wird diese Aufgabe durch die Merkmale des Hauptanspruchs. Vorteilhafte Weiterbildungen sind in den Unteransprüchen enthalten. Ebenfalls offenbart ist eine thermoplastische Folie, welche dem Verfahren in besonderer Weise Rechnung trägt.
  • Hierbei wird die Folie, die in der Regel extrudiert, bereits geprägt und ggf. auch schon lackiert wurde, vor dem nachfolgenden formgebenden Verarbeitungsschritt einer Elektronenstrahlvernetzung unterworfen, die einzelne flächige Bereiche der Folie unterschiedlich und im Wesentlichen auf eine solche Weise vernetzt, dass die Bereiche, die bei dem nachfolgenden formgebenden Verarbeitungsschritt höheren Auszugsgraden unterworfen werden, andere Vernetzungsgrade aufweisen als ihre Nachbarbereiche.
  • Die Vernetzung von Polymeren entsteht durch Ausbildung kovalenter Bindungen zwischen den Polymerketten. Üblicherweise erfolgt die Vernetzung durch die klassische Vulkanisation mit elementarem Schwefel oder Silanen, durch die Peroxidvernetzung, durch die Vernetzung mit Elektronenstrahlen, oder durch eine Kombination der Verfahren. Bei der Elektronenstrahlenvernetzung entstehen die den Vernetzungsprozess startenden Radikale durch die Einwirkung energiereicher Strahlung auf die Polymermoleküle. Dabei gehen die beschleunigten Elektronen Wechselwirkungen mit den bestrahlten Molekülen ein. Durch elastische Stöße wird die kinetische Energie der Elektronen auf Atome des Molekülverbundes übertragen. Die betroffenen Atome werden dadurch in einen höheren Anregungszustand überführt. Ist die so zugeführte Energie größer als die Bindungsenergie der kovalenten Bindungen, so wird die Bindung gespalten und es entstehen Radikale, Makroradikale und Ionen.
  • Die Radikale reagieren in Folgereaktionen mit den Molekülen der Polymerketten oder sich selbst und führen sowohl zur Ausbildung kovalenter Bindungen zwischen den einzelnen Ketten, als auch zum Abbau der Makromoleküle durch Kettenspaltung. Kettenspaltung und Kettenaufbau laufen parallel. Es hängt dabei vom verwendeten Polymertyp und den Verarbeitungsbedingungen wie Strahlendosis, Art der Strahlung, Temperatur, etc. ab, welche Reaktion dominiert. Die Einstellung der Verfahrensparameter bei der Elektronenstrahlvernetzung ist daher von elementarer Wichtigkeit. Da auch ein Kettenabbau stattfindet, ist eine Vernetzung aller vorhandenen Polymerketten miteinander nicht realisierbar. Obwohl durch Strahlenvernetzung eine vollständige Vernetzung nicht erreicht wird, werden dennoch Hauptmerkmale der bestrahlten Polymere stark beeinflusst.
  • Die bei einer durch Elektronenstrahlen induzierten Vernetzung neu entstandenen Vernetzungsstellen behindern den Faltvorgang der Polymerketten. Dadurch kommt es zu einer Erniedrigung des Kristallinitätsgrades, wobei insbesondere die mechanische Festigkeit und Sprödigkeit mit sinkendem Kristallinitätsgrad abnehmen, während Zähigkeit und Dämpfungseigenschaften zunehmen. Tatsächlich tritt in den meisten Fällen jedoch eine durch die Erniedrigung des Kristallinitätsgrades zu erwartende Abnahme der Festigkeit nicht auf. Der Grund hierfür ist, dass die geringere Kristallinität durch die gesteigerte Strukturfestigkeit der vernetzten amorphen Bereiche überkompensiert wird. Die Kohäsionskräfte zwischen den vernetzten Polymerkettensegmenten sind um ein Vielfaches größer als im unvernetzten Zustand, wo lediglich van der Waalsche Wechselwirkungskräfte zwischen den Ketten wirken. Das Abgleiten und Verlagern der Polymerketten wird durch das Vernetzen wesentlich erschwert. Diese Veränderungen äußern sich beispielsweise durch eine Zunahme der mechanischen Festigkeit und der Wärmeformbeständigkeit.
  • Dadurch, dass die Bereiche, die bei dem nachfolgenden formgebenden Verarbeitungsschritt höheren Auszugsgraden unterworfen werden, andere Vernetzungsgrade aufweisen als ihre Nachbarbereiche, insbesondere und vorteilhafterweise höhere Vernetzungsgrade, verbleibt auch nach dem nachfolgenden Verformungsschritt, zum Beispiel nach dem Aufbringen der Folie auf ein dreidimensionales Bauteil, eine außerordentlich gleichmäßige Oberflächenstruktur erhalten.
  • Dies kommt daher, dass die stark umgeformten Folienbereiche, d.h. zum Beispiel solche auf vorspringenden Geometrien mit engen Radien, sich stärker dehnen als die Nachbarbereiche und daher die Verformungsspannungen in die Nachbarbereich übertragen. Über die gesamte Fläche gesehen ergibt sich dann eine Vergleichmäßigung der Oberflächenspannung der Folie nach der Verformung. Dadurch bleibt auch die Oberflächenstruktur im Wesentlichen erhalten, jedenfalls aber so, dass eine Veränderung nicht mit bloßem Auge merkbar ist. Bei den herkömmlichen Verfahren im Stand der Technik mussten die Bereiche mit höheren Auszugsgraden die gesamte Dehnung allein auffangen, wurden also z. B. um 60% gedehnt, während die direkt daneben liegenden Bereiche nicht gedehnt wurden. Die Unterschiede in der Struktur waren somit oft erkennbar groß. Bei dem erfindungsgemäßen Verfahren wird durch die Vernetzung die Dehnung der Bereiche mit höheren Auszugsgraden stark reduziert, wodurch eine Übertragung der Umformspannungen auch auf die daneben liegenden Bereiche erfolgt, so dass beide Bereiche um etwa gleich Beträge von z. B. 25–30% gedehnt werden. Damit sind Strukturunterschiede im Übergang der Bereiche wesentlich reduziert.
  • Eine über die Folienfläche inhomogene Verteilung der neu entstandenen Vernetzungsstellen, also der Vernetzungsdichteverteilung oder Netzbogendichte – beispielsweise ausgedrückt durch den Gelgehalt als bekanntes Maß für die Vernetzung – kann dadurch besonders vorteilhaft erreicht werden, dass die Folie von beiden Seiten einer Elektronenstrahlung ausgesetzt wird, wobei die Vernetzungsgrade auf den beiden Folienseiten bzw. Folienoberflächen unterschiedlich hoch sein können.
  • Hierdurch kann sowohl über die bestrahlte Fläche als auch über die Strahlungsintensität und die damit beeinflussbare Wirkung der Vernetzung in Dickenrichtung der Folie die Gesamtvernetzung einzelner Bereiche beeinflusst werden.
  • Bei einer einseitigen Bestrahlung kann dabei durch die Wahl der Beschleunigungsspannung für die Elektronen abhängig von der Foliendicke der Bereich der maximalen Dosisadsorption variiert und damit bei die Vernetzungsdichteverteilung definiert werden.
  • Im Falle der zweiseitigen Bestrahlung lässt sich die Vernetzungsdichteverteilung darüber hinaus durch die Relation der aufgebrachten Dosen unter Variation der jeweiligen Beschleunigungsspannung beeinflussen. Abhängig von den jeweiligen Zusammensetzungen der zu bestrahlenden Folien, sind diese für jedes chemische System neu anzupassen.
  • Eine vorteilhafte Weiterbildung besteht darin, dass die Elektronenstrahlvernetzung der Folie durch eine mindestens bereichsweise mehrfache Bestrahlung mindestens einer Folienoberfläche mit einer Elektronenstrahlquelle erfolgt. Damit lässt sich durch die einfache örtliche Steuerung der Strahlquelle bzw. des Elektronenstrahles bereits die gewünschte Unterschiedlichkeit in der Vernetzung erzeugen. Da die zu bearbeitenden Folien üblicherweise als Bahnenware vorliegen, wobei die Breite der Folienbahnen abhängig von der vorlaufenden Herstellung festgelegt ist, können im Rahmen der Erfindung natürlich verschiedene Bestrahlungsvarianten durchgeführt werden, die der weiteren Verarbeitung der Folienbahn angepasst sind. Wenn zum Beispiel feststeht, dass immer der mittlere Bereich einer Folienbahn derjenige ist, der bei der nachfolgenden Formgebung in den Bereich der Instrumentenhaube eines Armaturenbrettes fällt und damit die größten Auszugsgrade ertragen muß, wird eben dieser mittlere Bereich der Folie ein- oder mehrfach erfindungsgemäß vernetzt.
  • Eine weitere vorteilhafte Weiterbildung besteht darin, dass die Elektronenstrahlvernetzung der Folienoberfläche strichweise nacheinander durchgeführt wird, wobei die Strahlbreite des Elektronenstrahls mit Hilfe einer Blende einstellbar ist. Mit Hilfe eines solche „Scanning" lässt sich auf einfache Weise ein über die Folienbreite unterschiedlicher Vernetzungsgrad einstellen.
  • Dies gilt ebenso für eine weitere vorteilhafte Weiterbildung, die darin besteht, dass zwischen der der Elektronenstrahlquelle und der bestrahlten Folienoberfläche eine Maske angeordnet ist, die die Intensität der Elektronenstrahlung mindestens in Teilbereichen des Strahlquerschnitts verändert.
  • In besonderer Weise geeignet zur Verwendung in dem erfindungsgemäßen Verfahren ist eine thermoplastische Folie aus vernetzten polymeren Materialen mit einer dreidimensional strukturierten, geprägten Oberfläche, die aus einem thermoplastischen Elastomer, insbesondere einem thermoplastischen Olefin (TPO) oder einer Polyolefinmischung besteht.
  • Der besondere Vorteil der Nutzung dieser Polymerart bei dem erfindungsgemäßen Folie besteht darin, dass die ursprünglich vorhandene intermolekulare Vernetzung eines thermoplastischen Olefins (Wasserstoffbrücken, kristalline Strukturen) dominierend thermoreversibel und im Wesentlichen physikalischer Natur ist, was im Hinblick auf die Eignung für eine Verformung grundlegend ist. Die „zusätzliche" Elektronenstrahlvernetzung bestimmter Bereiche des Polyolefins stellt die besondere und überraschende Eigenschaft der Folie bereit, bei der während des üblicherweise in der Wärme erfolgenden Umformschrittes einerseits ein für die Umformung erforderliches Dehnverhalten und andererseits ein ausreichender Widerstand gegenüber zu großen Dehnungen der Oberfläche zur prozesssicheren Werkstoffhandhabung vorliegt.
  • Eine weitere vorteilhafte Weiterbildung besteht darin, dass die Folie aus vorvernetzten polymeren Materialen besteht, insbesondere aus einer Zusammensetzung von Polypropylen, Polyethylen, sowie deren Copolymeren und Terpolymeren, welche sich zur Verwendung als Folie für Kraftfahrzeuginterieur besonders eignen. Auch hierdurch ergibt sich nach dem sich anschließenden Verformungsschritt eine besonders gleichmäßige Oberflächenstruktur ohne auffällige Überdehnungen. Die Vorvernetzung erfolgt auf chemischem Wege durch Zugabe von üblichen Vernetzungsmitteln.
  • Eine weitere vorteilhafte Weiterbildung besteht darin, dass die Folie als mehrschichtiger Polymerfolienverbund ausgebildet ist. Eine solche Ausbildung unterstützt die beeinflussbare Wirkung der Vernetzung in Dickenrichtung der Folie und damit die Gesamtvernetzung einzelner Folienbereiche.
  • Die Bestandteile der Polymerfolien sind vorzugsweise Polyolefine. Das Spektrum der eingesetzbaren Polyolefine unterliegt dabei keiner prinzipiellen Einschränkung. Verwendet werden können vorzugsweise Polyolefine wie PP, PE, Poly(1-buten), Polyisobutylen, Poly(4-methylpenten), PP-Copolymere oder -Terpolymere mit C2, C4-C12-α-Olefinen, PE-Copolymere oder -Terpolymere mit C3 bis C12-α-Olefinen oder Mischungen daraus, wobei als Co- oder Termonomer auch Dien-Monomere eingesetzt werden können, die nichtkonjugierte Doppelbindungen enthalten, wie z. B. 1,4-Hexadien, 5-Methyl-1,5-Hexadien, 5-Ethyliden-2-Norbonen, 5-Butyliden-2-Norbonen, Dicylopentadien, 1,4-Octadien, Cyclohexadien oder Cyclooctadien; Copolymere von Propylen und/oder Ethylen mit polaren Comonomeren wie Acrylsäure und/oder deren C1-C12-Estern, Methacrylsäure und/oder deren C1-C12-Estern, Ionomere auf Basis von Acrylsäure und/oder mit Methacrylsäure sowie Schwefelsäure, Vinylestern gesättigter C1-C8-Carbonsäuren, wahlweise mit Kohlenmonoxid als Termonomer; Pfropfcopolymere von Propylen und/oder Ethylen mit 8–45% aufgepfropften Einheiten von ungesättigten Carbonsäuren, Dicarbonsäuren, deren Estern und/oder Anhydriden sowie Gemische der genannten Polymere.
  • Eine weitere vorteilhafte Weiterbildung besteht darin, dass das die Folie eine Dicke von 0,4 bis 4 mm aufweist. Hierdurch wird die Einstellbarkeit der Vernetzungstiefe weiter erleichtert.
  • Mit dem Ziel einer guten Vergleichmäßigung der Dehnung wird die Vernetzung der Folie vorteilhafterweise so eingestellt, dass die Folie in den Bereichen, die bei dem nachfolgenden formgebenden Verarbeitungsschritt höheren Auszugsgraden unterworfen werden, einen Gelgehalt von mindestens 30% aufweist, vorzugsweise einen Gelgehalt von 40 bis 60%. Damit ist die Narbfestigkeit der gedehnten Bereiche der Folie ausreichend hoch, um eine Verzerrung der Oberflächenstruktur/Narbstruktur zu verhindern, wobei die den niedrigeren Gelgehalt aufweisenden anderen Bereiche der Folie genügend Dehnfähigkeit bereitstellen, um eine prozesssichere Verformung zur Bedeckung eines dreidimensionalen Bauteiles zu erreichen.
  • Eine vorteilhafte Ausbildung besteht darin, dass der Unterschied im Gelgehalt zwischen hoch- und niedrigvernetzten Bereichen der Folie 10 und 60%, vorzugsweise 20 bis 50% beträgt. Damit erreicht man eine ausreichende Vergleichmäßigung der Dehnungen des Materials auch bei stark verformten Bauteilen, wie beispielsweise bei Abdeckungen für den Kardantunnel eines PKW.
  • Die Bestimmung des Gelgehalts erfolgt üblicherweise über eine Extraktionsmethode, bei der zunächst Proben bei einer Dicke von etwa 0,5 mm in Quadrate einer Kantenlänge von etwa 1,0 mm geschnitten werden. Die Proben (etwa 100 mg) werden dann in Reagenzgläsern vorgelegt, welche mit Pfropfen aus rostfreiem Stahldraht versehen sind, die ein Aufschwimmen der Proben verhindern. Die Reagenzgläser werden mit 100 ml Xylol gefüllt und mit Alufolie verschlossen, um ein Abdampfen des Lösungsmittels zu verhindern. Das Xylol wird dann zum Sieden erhitzt. Die Probekörper lässt man etwa 24 h im siedenden Xylol. Anschließend wird das Gel-Xylol-Gemisch über eine Siebtrommel mit einer Maschenweite von 200 mesh filtriert, wobei das Gel in der Siebtrommel verbleibt. Die Siebtrommeln werden auf Metallplatten gestellt und bei 140°C für 3 h im Umluftofen getrocknet. Nach Abkühlen auf Raumtemperatur wird der Gehalt ausgewogen und zur Einwaage ins Verhältnis gesetzt.
  • Besonders vorteilhaft lässt sich das vorgenannte Herstellungsverfahren nutzen für ein Armaturenbrett zur Innenverkleidung von Fahrzeugen mit einer Außenoberfläche in Form einer unterschäumten Folie. Solche Armaturenbretter besitzen oft stark umgeformte Bereiche, die für Fahrer und Beifahrer direkt und permanent sichtbar sind. Dies gilt beispielsweise für die Instrumentenhaube, für das Handschuhfach und für Lüftungsdüsen und -ausschnitte. Hier ist eine Vergleichmäßigung der Dehnungen, wie sie durch das erfindungsgemäße Verfahren in der Folie erreicht wird, aus ästhetischen Gründen besonders wichtig.

Claims (13)

  1. Verfahren zur Herstellung einer thermoplastischen Folie mit einer dreidimensional strukturierten Oberfläche, wobei die bereits in einem vorlaufenden Formgebungsschritt mit einer Oberflächenstruktur versehene Folie einem nachfolgenden formgebenden Verarbeitungsschritt, insbesondere einem formgebenden Tiefziehen unterworfen wird, dadurch gekennzeichnet, dass die Folie vor dem nachfolgenden formgebenden Verarbeitungsschritt einer Elektronenstrahlvernetzung unterworfen wird, die einzelne flächige Bereiche der Folie unterschiedlich und im Wesentlichen auf eine solche Weise vernetzt, dass die Bereiche, die bei dem nachfolgenden formgebenden Verarbeitungsschritt höheren Auszugsgraden unterworfen werden, andere Vernetzungsgrade aufweisen als ihre Nachbarbereiche.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Bereiche, die bei dem nachfolgenden formgebenden Verarbeitungsschritt höheren Auszugsgraden unterworfen werden, höhere Vernetzungsgrade aufweisen als ihre Nachbarbereiche
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Elektronenstrahlvernetzung beidseitig der Folie erfolgt, wobei die Vernetzungsgrade auf den beiden Folienseiten bzw. Folienoberflächen unterschiedlich hoch sind.
  4. Verfahren nach Anspruch 1 bis 3, dadurch gekennzeichnet, dass die Elektronenstrahlvernetzung der Folie durch eine mindestens bereichsweise mehrfache Bestrahlung mindestens einer Folienoberfläche mit einer Elektronenstrahlquelle erfolgt.
  5. Verfahren nach Anspruch 1 bis 4, dadurch gekennzeichnet, dass die Elektronenstrahlvernetzung der Folienoberfläche strichweise nacheinander durchgeführt wird, wobei die Strahlbreite des Elektronenstrahls mit Hilfe einer Blende einstellbar ist.
  6. Verfahren nach Anspruch 1 bis 5, dadurch gekennzeichnet, dass zwischen der der Elektronenstrahlquelle und der bestrahlten Folienoberfläche eine Maske angeordnet ist, die die Intensität der Elektronenstrahlung mindestens in Teilbereichen des Strahlquerschnitts verändert.
  7. Thermoplastische Folie aus vernetzten polymeren Materialen mit einer dreidimensional strukturierten, geprägten Oberfläche zur Verwendung in einem nachfolgenden formgebenden Verarbeitungsschritt, hergestellt nach einem Verfahren gemäß Anspruch 1 bis 6, dadurch gekennzeichnet, dass das die Folie aus einem thermoplastischen Elastomer, insbesondere einem thermoplastischen Olefin oder einer Polyolefinmischung besteht.
  8. Thermoplastische Folie nach Anspruch 7, dadurch gekennzeichnet, dass die Folie aus vorvernetzten polymeren Materialen besteht, insbesondere aus einer Zusammensetzung von Polypropylen, Polyethylen, sowie deren Copolymeren und Terpolymeren, insbesondere zur Verwendung als Folie für Kraftfahrzeuginterieur.
  9. Thermoplastische Folie nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass die Folie als mehrschichtiger Polymerfolienverband ausgebildet ist.
  10. Thermoplastische Folie nach Anspruch 7 bis 9, dadurch gekennzeichnet, dass das die Folie eine Dicke von 0,4 bis 4 mm aufweist.
  11. Thermoplastische Folie nach Anspruch 7 bis 10, dadurch gekennzeichnet, dass die Folie in den Bereichen, die bei dem nachfolgenden formgebenden Verarbeitungsschritt höheren Auszugsgraden unterworfen werden, einen Gelgehalt von mindestens 30% aufweist, vorzugsweise einen Gelgehalt von 40 bis 60%.
  12. Thermoplastische Folie nach Anspruch 7 bis 11, dadurch gekennzeichnet, dass der Unterschied im Gelgehalt zwischen hoch- und niedrig vernetzten Bereichen der Folie 10 und 60%, vorzugsweise 20 bis 50% beträgt.
  13. Armaturenbrett zur Innenverkleidung von Fahrzeugen mit einer Außenoberfläche in Form einer unterschäumten Folie, hergestellt nach dem Verfahren gemäß Anspruch 1 bis 12.
DE102006011159A 2006-03-10 2006-03-10 Verfahren zur Herstellung einer thermoplastischen Folie Withdrawn DE102006011159A1 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
DE102006011159A DE102006011159A1 (de) 2006-03-10 2006-03-10 Verfahren zur Herstellung einer thermoplastischen Folie
EP07703845.3A EP1996391B1 (de) 2006-03-10 2007-01-15 Verfahren zur herstellung einer thermoplastischen folie
PT77038453T PT1996391E (pt) 2006-03-10 2007-01-15 Processo para a produção de uma película termoplástica
PCT/EP2007/050325 WO2007104588A1 (de) 2006-03-10 2007-01-15 Verfahren zur herstellung einer thermoplastischen folie
JP2008557694A JP5072866B2 (ja) 2006-03-10 2007-01-15 熱可塑性フィルムの製造方法
ES07703845.3T ES2538454T3 (es) 2006-03-10 2007-01-15 Procedimiento para la producción de una lámina termoplástica
US12/206,277 US9486954B2 (en) 2006-03-10 2008-09-08 Method for producing a thermoplastic film
US13/938,367 US9902107B2 (en) 2006-03-10 2013-07-10 Method for producing a thermoplastic film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102006011159A DE102006011159A1 (de) 2006-03-10 2006-03-10 Verfahren zur Herstellung einer thermoplastischen Folie

Publications (1)

Publication Number Publication Date
DE102006011159A1 true DE102006011159A1 (de) 2007-09-13

Family

ID=37903606

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102006011159A Withdrawn DE102006011159A1 (de) 2006-03-10 2006-03-10 Verfahren zur Herstellung einer thermoplastischen Folie

Country Status (7)

Country Link
US (2) US9486954B2 (de)
EP (1) EP1996391B1 (de)
JP (1) JP5072866B2 (de)
DE (1) DE102006011159A1 (de)
ES (1) ES2538454T3 (de)
PT (1) PT1996391E (de)
WO (1) WO2007104588A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2263856A1 (de) * 2009-06-18 2010-12-22 Benecke-Kaliko AG Verfahren zur Herstellung eines Formkörpers und nach diesem Verfahren herstellbarer Formkörper
DE102012110327A1 (de) 2012-10-29 2014-04-30 Bayer Materialscience Aktiengesellschaft Verformbare Folie

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2243618B1 (de) 2009-04-22 2012-10-31 Nordenia Deutschland Gronau GmbH Verfahren zur Herstellung einer thermoplastischen Folie mit einer dreidimensional strukturierten Oberfläche
GB201005889D0 (en) * 2010-04-08 2010-05-26 Cambridge Entpr Ltd Tuning of mechanical properties of polymers
US8545945B2 (en) * 2012-01-27 2013-10-01 Indian Institute Of Technology Kanpur Micropattern generation with pulsed laser diffraction
ES2556908T3 (es) * 2012-07-18 2016-01-20 Unilever N.V. Paquetes infusión y procedimiento de fabricación
JP6965743B2 (ja) * 2015-03-30 2021-11-10 大日本印刷株式会社 加飾シート
CN108472862B (zh) * 2015-12-28 2020-10-20 3M创新有限公司 三维制品及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1935933A1 (de) * 1968-07-15 1970-01-22 Ibm Verfahren zur Herstellung von Formteilen von im wesentlichen gleichbleibender Wandstaerke
DE3528810C1 (de) * 1985-08-10 1987-04-02 Freudenberg Carl Fa Verfahren zum Herstellen eines tiefgezogenen Formteiles aus teilkristallinem Kunststoff
DE4007876A1 (de) * 1990-03-13 1991-09-19 Alkor Gmbh Verfahren zur herstellung von gepraegten, narbstabilen, thermoverformbaren, tiefziehfaehigen kunststoffolien
DE102005009415A1 (de) * 2005-03-02 2006-09-14 Bayerische Motoren Werke Ag Tiefziehfolie

Family Cites Families (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3144399A (en) * 1958-06-16 1964-08-11 Grace W R & Co Polyethylene product
US3519527A (en) * 1966-04-08 1970-07-07 Richard P Crowley Embossed plastic surface coverings and method of preparing same
US3467244A (en) * 1967-03-10 1969-09-16 Mahaffy & Harder Eng Co Evacuated package with semirigid shell and flexible closure
US3657533A (en) * 1969-07-14 1972-04-18 Dow Chemical Co Plastic tubing electron irradiation apparatus with roller means to flatten the tubing during irradiation
US3734496A (en) * 1970-09-18 1973-05-22 New York Toy Corp Stabilized trampoline
US3741253A (en) * 1971-03-30 1973-06-26 Grace W R & Co Laminates of ethylene vinyl acetate polymers and polymers of vinylidene chloride
US3899807A (en) * 1971-04-02 1975-08-19 Raychem Corp Heat recoverable articles and method of making same
US3959052A (en) * 1975-03-21 1976-05-25 Sigmaform Corporation Wrap around heat shrinkable article
US4457817A (en) * 1975-05-12 1984-07-03 Forschungs Institut Fur Textiltechnologie Method of treating high-polymer materials
US4056421A (en) * 1977-01-10 1977-11-01 Shaw Pipe Industries Ltd. Method of fabricating crosslinked thermoplastics articles
US4178220A (en) * 1977-04-04 1979-12-11 W. R. Grace & Co. Uniformly irradiated polymer film
US4323607A (en) * 1978-09-01 1982-04-06 Ube Industries, Ltd. Heat shrinkable covers
DE2922089C2 (de) * 1979-05-31 1984-05-30 Dynamit Nobel Ag, 5210 Troisdorf Verfahren zur Herstellung partiell vernetzter Folien aus einem EPDM- oder EPM-Kunststoff
DE8007086U1 (de) * 1980-03-14 1982-03-18 Multivac Sepp Haggenmüller KG, 8941 Wolfertschwenden Vorrichtung zum formen von behaeltnissen aus einer folie
AU547249B2 (en) * 1980-04-22 1985-10-10 Ube Industries, Ltd. Heat-shrinkable cover sheet
US4366201A (en) * 1980-07-28 1982-12-28 Raychem Corporation Heat shrinkable wraparound closures
US4407881A (en) * 1981-05-30 1983-10-04 Dai Nippon Insatsu Kabushiki Kaisha Decorative sheets and processes for producing decorative articles by using the same
US4491616A (en) * 1982-05-28 1985-01-01 Congoleum Corporation Resinous polymer sheet material having surface decorative effects of contrasting gloss and method of making the same
DE3631698A1 (de) * 1986-08-16 1988-03-24 Kabelmetal Electro Gmbh Verfahren zur herstellung eines bandes aus einem bei waermezufuhr schrumpfbaren kunststoff
EP0260712B1 (de) * 1986-09-19 1995-12-27 Matsushita Electric Industrial Co., Ltd. Verfahren zur Herstellung eines Reliefstruktur ausgehärtetem Kunststoff auf einer transparenten, angefärbten Schicht
CN88101343A (zh) * 1987-02-09 1988-09-14 三井石油化学工业株式会社 片状成型材料和以其为一层的层压制品
JPS6467326A (en) * 1987-09-09 1989-03-14 Toa Nenryo Kogyo Kk Manufacture of crosslinking oriented polyethylene film
US5250332A (en) * 1988-10-18 1993-10-05 Rxs Schrumpftechnik Garnituren Gmbh Heat-shrinkable envelope having low-tearing susceptibility
ES2064501T3 (es) * 1989-03-03 1995-02-01 Rxs Schrumpftech Garnituren Envuelta de contraccion en caliente.
US5127974A (en) * 1989-05-15 1992-07-07 Kansai Paint Co., Ltd. Method of protecting coating film
GB2241194B (en) * 1990-02-06 1994-07-27 Honda Motor Co Ltd Method for molding fiber-reinforced resin
EP0471854A4 (en) * 1990-03-07 1993-09-01 Tonen Chemical Corporation Label made of polyethylene and method of manufacture thereof
DE4007877C2 (de) * 1990-03-13 1998-02-26 Alkor Gmbh Verfahren zur Herstellung von geprägten, narbstabilen, thermoverformbaren, vorzugsweise tiefziehfähigen Kunststoffolien
US5344691A (en) * 1990-03-30 1994-09-06 Minnesota Mining And Manufacturing Company Spatially modified elastic laminates
JP3132909B2 (ja) * 1992-07-31 2001-02-05 積水化学工業株式会社 射出成形品の製造方法
US5993922A (en) * 1996-03-29 1999-11-30 Cryovac, Inc. Compositions and methods for selectively crosslinking films and improved film articles resulting therefrom
DE19743014A1 (de) * 1997-09-29 1999-04-01 Basf Ag Verfahren zur Vernetzung von strahlungsvernetzbaren Haftklebstoffschichten
JP3206558B2 (ja) * 1998-08-18 2001-09-10 日本電気株式会社 電子ビーム描画用アパーチャ
DE19846902A1 (de) * 1998-10-12 2000-05-04 Beiersdorf Ag Elektronenstrahlvernetzung und UV-Vernetzung von Masseschichten sowie Produkte, die mit diesen Masseschichten hergestellt werden
DE60028370T2 (de) * 1999-04-21 2007-05-03 Howmedica Osteonics Corp. Verfahren zur herstellung einer selektiv vernetzten medizinischen prothese aus polyethylen, sowie eine dergestalt hergestellte prothese
WO2001019916A1 (en) * 1999-09-17 2001-03-22 The Procter & Gamble Company Radiation crosslinked elastomeric materials
US6365089B1 (en) * 1999-09-24 2002-04-02 Zimmer, Inc. Method for crosslinking UHMWPE in an orthopaedic implant
DE10008844A1 (de) * 2000-02-25 2001-09-06 Beiersdorf Ag Verfahren zur Vernetzung von Polyacrylaten durch Elektronenstrahlen
DE10008840A1 (de) * 2000-02-25 2001-09-06 Beiersdorf Ag Strukturierte UV-vernetzte Acrylathaftklebemassen
DE10018196A1 (de) * 2000-04-12 2001-11-22 Benecke Kaliko Ag Verfahren zur Herstellung einer Polyolefinfolie und deren Verwendung
US6652943B2 (en) * 2001-06-04 2003-11-25 Saint-Gobain Performance Plastics Corporation Multilayer polymeric article with intercrosslinked polymer layers and method of making same
US20030072917A1 (en) * 2001-10-11 2003-04-17 Ewen Anthony Campbell Vacuum formed thermoplastic films and articles therefrom
KR20050042007A (ko) * 2001-10-31 2005-05-04 쓰리엠 이노베이티브 프로퍼티즈 컴파니 비자체지지형 중합체 필름의 열성형 방법 및 이 방법으로제조된 물품
DE10202752B4 (de) 2002-01-25 2004-09-23 Benecke-Kaliko Ag Verfahren zur Herstellung eines aus einer thermoplastischen Folie tiefgezogenen Formteils sowie Prägewalze zum Prägen der Oberfläche einer für Tiefziehzwecke bestimmten thermoplastischen Folie
WO2003089501A1 (en) * 2002-04-19 2003-10-30 Gammatron (Pty) Ltd Method of increasing the hydrostatic stress strength of a polymer
US6841105B2 (en) * 2002-04-30 2005-01-11 Durakon Industries, Inc. Process for manufacturing thermoformed article having textured or grained surface
JP2004091594A (ja) * 2002-08-30 2004-03-25 Sumitomo Chem Co Ltd 熱硬化性樹脂組成物、並びに、該組成物からなる接着性フィルム
US20040108625A1 (en) * 2002-12-06 2004-06-10 Moder Jerry R. Pneumatically assisted contour bonding system and formed laminated products produced thereby
DE10356665A1 (de) * 2003-12-04 2005-07-07 Benecke-Kaliko Ag Verfahren zur Herstellung von genarbten Formkörpern und die danach hergestellten Formkörper
US20060142868A1 (en) * 2004-12-21 2006-06-29 Zimmer Technology, Inc. Selective crosslinking of orthopaedic implants
DE102006032751A1 (de) * 2006-07-14 2008-01-31 Veritas Ag Flexibler Schlauch

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1935933A1 (de) * 1968-07-15 1970-01-22 Ibm Verfahren zur Herstellung von Formteilen von im wesentlichen gleichbleibender Wandstaerke
DE3528810C1 (de) * 1985-08-10 1987-04-02 Freudenberg Carl Fa Verfahren zum Herstellen eines tiefgezogenen Formteiles aus teilkristallinem Kunststoff
DE4007876A1 (de) * 1990-03-13 1991-09-19 Alkor Gmbh Verfahren zur herstellung von gepraegten, narbstabilen, thermoverformbaren, tiefziehfaehigen kunststoffolien
DE102005009415A1 (de) * 2005-03-02 2006-09-14 Bayerische Motoren Werke Ag Tiefziehfolie

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2263856A1 (de) * 2009-06-18 2010-12-22 Benecke-Kaliko AG Verfahren zur Herstellung eines Formkörpers und nach diesem Verfahren herstellbarer Formkörper
DE102012110327A1 (de) 2012-10-29 2014-04-30 Bayer Materialscience Aktiengesellschaft Verformbare Folie

Also Published As

Publication number Publication date
US9902107B2 (en) 2018-02-27
EP1996391A1 (de) 2008-12-03
US20130292883A1 (en) 2013-11-07
WO2007104588A1 (de) 2007-09-20
ES2538454T3 (es) 2015-06-22
JP2009529439A (ja) 2009-08-20
PT1996391E (pt) 2015-07-06
US9486954B2 (en) 2016-11-08
US20090001752A1 (en) 2009-01-01
EP1996391B1 (de) 2015-03-18
JP5072866B2 (ja) 2012-11-14

Similar Documents

Publication Publication Date Title
EP1996391B1 (de) Verfahren zur herstellung einer thermoplastischen folie
EP1948421B1 (de) Verfahren zur herstellung von genarbten kunststoff-formteilen
EP1149858B2 (de) Verfahren zur Herstellung von genarbten Polyolefinfolien und deren Verwendung
EP1538175B1 (de) Verfahren zur Herstellung von genarbten Formkörpern und die danach hergestellten Formkörpern
EP1688460B1 (de) Verfahren zur Herstellung einer genarbten Folie und deren Verwendung
DE3528810C1 (de) Verfahren zum Herstellen eines tiefgezogenen Formteiles aus teilkristallinem Kunststoff
WO2018114300A1 (de) Verfahren zur herstellung einer lackierten genarbten folie, die lackierte genarbte folie und deren verwendung
DE2927935A1 (de) Vernetzte kraftfahrzeugteile sowie verfahren zu deren herstellung
DE102006059590A1 (de) Thermoplastische Folie mit geschäumter Deckfolie
EP2263857B1 (de) Verfahren zur Herstellung eines Formkörpers
EP2107968B1 (de) Thermoplastische folie
EP2751197B1 (de) Thermoplastische elastomerzusammensetzung, folie und verwendung
DE102009025994A1 (de) Verfahren zur Herstellung eines Formkörpers
DE69632239T2 (de) Mehrschichtige Schaumfolie und daraus hergestellter Formkörper für den Innenraum eines Kraftfahrzeuges
EP3904041A2 (de) Verfahren zur herstellung einer genarbten folie oder eines genarbten, mehrlagigen folienlaminat, genarbte polymerfolie sowie deren verwendung
DD247911A5 (de) Witterungsbeständige weichmacherfreie Folie insbesondere für Kraftfahrzeuge

Legal Events

Date Code Title Description
OM8 Search report available as to paragraph 43 lit. 1 sentence 1 patent law
R012 Request for examination validly filed

Effective date: 20121120

R120 Application withdrawn or ip right abandoned