DE102005045099A1 - Entsättigungsschaltung für einen IGBT - Google Patents

Entsättigungsschaltung für einen IGBT Download PDF

Info

Publication number
DE102005045099A1
DE102005045099A1 DE102005045099A DE102005045099A DE102005045099A1 DE 102005045099 A1 DE102005045099 A1 DE 102005045099A1 DE 102005045099 A DE102005045099 A DE 102005045099A DE 102005045099 A DE102005045099 A DE 102005045099A DE 102005045099 A1 DE102005045099 A1 DE 102005045099A1
Authority
DE
Germany
Prior art keywords
circuit
desaturation
igbt
voltage
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE102005045099A
Other languages
English (en)
Other versions
DE102005045099B4 (de
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Infineon Technologies AG
Original Assignee
EUPEC GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EUPEC GmbH filed Critical EUPEC GmbH
Priority to DE102005045099A priority Critical patent/DE102005045099B4/de
Publication of DE102005045099A1 publication Critical patent/DE102005045099A1/de
Priority to US11/534,045 priority patent/US7724065B2/en
Application granted granted Critical
Publication of DE102005045099B4 publication Critical patent/DE102005045099B4/de
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/082Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit
    • H03K17/0828Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit in composite switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/04Modifications for accelerating switching
    • H03K17/042Modifications for accelerating switching by feedback from the output circuit to the control circuit
    • H03K17/0422Anti-saturation measures
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/10Modifications for increasing the maximum permissible switched voltage
    • H03K17/107Modifications for increasing the maximum permissible switched voltage in composite switches

Landscapes

  • Power Conversion In General (AREA)
  • Electronic Switches (AREA)

Abstract

Die Erfindung betrifft eine Entsättigungsschaltung für einen IGBT. Hierzu wird vor Abschalten des IGBT eine Überschwemmung des Bauelements mit Ladungsträgern reduziert.

Description

  • Die Erfindung betrifft eine Entsättigungsschaltung für einen IGBT sowie ein Verfahren zur Entsättigung eines IGBT.
  • Insulated-Gate-Bipolar-Transistoren (TGBTs) kombinieren ein Bipolar-Transistor-Prinip mit einer leistungslosen Ansteuerung eines MOS (Metall-Oxid-Halbleiter)-Feldeffekttransistors. Dabei wird zur Ansteuerung des IGBTs ein Elektronenstrom über einen lateralen oder vertikalen MOS-Kanal geführt. Dieser Elektronenstrom führt zur Injektion von Löchern aus einem an einer Rückseite des IGBTs ausgebildeten und in Vorwärtsrichtung gepolten pn-Übergang. Hierdurch lässt sich im eingeschalteten Zustand des IGBTs durch Injektion eines Elektron-Loch-Plasmas die niedrige Leitfähigkeit einer spannungsaufnehmenden Schicht um mehrere Größenordnungen erhöhen. Beim Abschalten des IGBTs ist es jedoch erforderlich, dieses leitfähige Plasma aus der aktiven Zone zu entfernen, was zwangsläufig zu Abschaltverlusten führt, da während eines Spannungsanstiegs zwischen Emitter und Kollektor des IGBTs weiterhin ein Ausräumstrom oder Teilstrom zum Abbau des Elektron-Loch-Plasmas fließt.
  • Bei bekannten NPT (Non-Punch-Through)-IGBTs mit planarer Zellengeometrie wie IGBT2 von Infineon Technologies ist ein Verlauf von Gatespannung und Kollektorspannung beim Abschalten des IGBTs von der Impedanz des Gatekreises durch einen Gatewiderstand innerhalb des Treibers, Vorwiderständen in Modulen und auf dem Chip sowie durch parasitäre Kapazitäten des IGBTs bestimmt. Eine Reduzierung dieser Impedanz führt zu einer schnelleren Entladung des Gates auf ein sogenanntes Miller-Plateau; das Miller-Plateau wird kürzer und die Spannung am Kollektor steigt schneller an. Auf dieses Verhalten lässt sich durch Veränderung der Impedanz oder einer Höhe des Gatestroms in weiten Bereichen Einfluss nehmen um eine entsprechende Reaktion des IGBTs hervorzurufen.
  • IGBTs neuester IGBT-Generationen mit Trench-Zellen und Feldstop wie z.B. IGBT3 von Infineon Technologies zeigen jedoch ein von obigem Verhalten verschiedenes Verhalten. Derartige IGBTs zeichnen sich durch sehr niedrige Durchlasswerte bei erhöhten Stromdichten aus, was durch Verbesserungen der Ladungsträgerverteilungen von Elektronen und Löchern erzielt wird. Erniedrigte Durchlasswerte werden durch erhöhte Überschwemmung des Bauelements mit Elektronen und Löchern im leitenden Zustand erzielt. Dabei ändern sich jedoch die Ansteuereigenschaften und die Steuerbarkeit von Strom- und Spannungsverläufen insbesondere beim Abschalten unter induktiven Lasten wie in Motorantrieben. Das Schaltverhalten ist nicht mehr alleine durch die parasitären Kapazitäten und Treiberimpedanzen bestimmt. Vielmehr kann ein Spannungsanstieg am Kollektor beim Abschalten des IGBTs mit kleiner werdenden Impedanzen nicht mehr der Entladung der Gatekapazität folgen, weshalb das Gate unter das Miller-Plateau, d.h. der Gatespannung beim fließenden Laststrom, entladen wird. Da während dieser Zeit der Laststrom weiter fließt, wird dieser von im IGBT gespeicherten Ladungsträgern gespeist. Damit ist auch ein Anstieg der Kollektorspannung durch den Abbau der im IGBT gespeicherten Ladungsträger bestimmt und lässt sich nicht durch eine stärkere Entladung des Gates bei geringerer Gateimpedanz beschleunigen. Ein derartiges Verhalten behindert jedoch eine verzögerungsfreie Rückkopplung einer zeitlichen Änderung des Kollektorstroms oder Überspannungen am Kollektor, da bis zu einer Reaktion dieser neuartigen IGBTs das Gate zunächst wieder auf das Miller-Plateau aufgeladen werden muss. Darüber hinaus lässt sich ein Spannungsanstieg im IGBT nicht beschleunigen, was bei IGBTs bekannter Vorgängergenerationen durch Verringerung der Gateimpedanz möglich war. Eine derartige Beschleunigung im Spannungsanstieg ist jedoch für schnelle Schaltanwendungen erwünscht.
  • Zur Lösung obiger Probleme ist es bekannt, Impedanzen im Gatekreis eines IGBTs so weit zu erhöhen, dass dieser mit langsamem Stromabfall abschaltet. Ein Absinken der Gatespannung unter das Miller-Plateau wurde hierbei mittels spezieller Gatesteuerschaltungen ausgeglichen, um eine Rückkopplung verzögerungsfrei zu ermöglichen. Stromeinheiten wurden durch geeignete Einstellungen des IGBTs auf niedrige di/dt begrenzt.
  • EP 0 898 811 B1 beschreibt ein Verfahren zur Änderung des Abschaltverhaltens eines bekannten IGBTs einer Generation wie IGBT2. Hierzu wird die Miller-Kapazität durch Erhöhung der Kollektorspannung vor dem Abschalten reduziert, um daraufhin eine zeitliche Änderung der Kollektorspannung dV/dt regeln zu können. Dies gelingt durch vorheriges Erreichen des Miller-Plateaus, weil damit die Verzögerungszeit bis zum steileren Spannungsanstieg verkürzt wird. Die Kollektorspannungen werden hierbei zur Reduktion der Miller-Kapazität auf hohe Spannungen wie etwa 200 V eingestellt.
  • DE 102 06 392 A1 schlägt eine gestufte Abschaltung des IGBTs vor.
  • Der Erfindung liegt die Aufgabe zugrunde, eine Schaltung anzugeben, mit der obige Probleme für IGBTs der neuesten Generation und zukünftiger Generationen lösbar sind und die zudem besonders flexibel und leicht realisierbar ist.
  • Die Aufgabe wird gelöst durch eine Entsättigungsschaltung für einen IGBT gemäß den unabhängigen Patentansprüchen 1 und 15. Bevorzugte Ausführungsformen der Entsättigungsschaltung können den abhängigen Patentansprüchen 2 bis 14 und 16 bis 17 entnommen werden. Verfahren zur Entsättigung eines IGBTs sind in den Patentansprüchen 18 bis 27 definiert.
  • Erfindungsgemäß weist eine Entsättigungsschaltung für einen IGBT eine Diode sowie eine Schaltereinrichtung mit einem ersten und einem zweiten Ein-/Ausgang sowie einem Steuersignaleingang zum Ein- und Ausschalten einer elektrisch leitenden Verbindung zwischen dem ersten und dem zweiten Ein-/Ausgang auf, wobei die Diode und die Schaltereinrichtung in Serie liegen und Elemente einer ersten Schaltungskomponente ausbilden, die zwischen ein Gate und einen Kollektor des IGBT geschaltet ist und wobei eine Kathode der Diode zum Kollektor und eine Anode der Diode zum Gate gerichtet sind. Zur Entsättigung des IGBTs wird die Schaltereinrichtung eingeschaltet und damit die Diode zwischen Gate und Kollektor zugeschaltet. Da die Spannung am Kollektor während des Durchlassbetriebs geringer ist als diejenige des Gates, wird die Gatespannung soweit abgesenkt, bis die Gatespannung um eine Durchlassspannung der Diode höher liegt als die Kollektorspannung. Bei diesem Vorgang erhöht sich die Kollektorspannung entsprechend und der IGBT wird durch Verringerung der Ladungsträgerüberschwemmung entsättigt.
  • Bei einer vorteilhaften Ausführungsform entspricht die Diode einem als Diode verschalteten aktiven Halbleiterbauelement. Dies lässt sich beispielsweise durch Kurzschließen von Body- und Sourcegebiet eines n-Kanals MOSFETs zur Anode der Diode erzielen. Anstatt eines MOSFETs lässt sich beispielsweise auch ein Bipolartransistor durch geeignete Verschaltung als Diode einsetzen.
  • Bei einer bevorzugten Ausführungsform ist in Serie zur ersten Schaltungskomponente eine stromverstärkende Gatetreiberschaltung als weitere Schaltungskomponente zwischen die erste Schaltungskomponente und das Gate geschaltet. Somit befindet sich beispielsweise die stromverstärkende Ausgangsstufe des Gatetreibers zwischen einem Einkoppelpunkt der Diode und dem Gate des IGBT. Aufgrund einer hochohmigen inneren Impedanz der Gatetreiberschaltung wird die Strombelastung der Diode als auch diejenige der Schaltereinrichtung der ersten Schaltungskomponente reduziert.
  • Bei einer weiteren vorteilhaften Ausführungsform ist in Serie zur ersten Schaltungskomponente eine Zenerdiode als weitere Schaltungskomponente zwischen die erste Schaltungskomponente und das Gate geschaltet, wobei die Zenerdiode mit ihrer Anode zum Gate und mit ihrer Kathode zum Kollektor gerichtet ist. Die Zenerdiode bewirkt, dass ein Spannungsniveau zur Entsättigung, d.h. die Kollektorspannung, um eine Durchbruchsspannung der Zenerdiode angehoben wird. Durch Einfügen weiterer spannungsbegrenzender Elemente wie Dioden oder in Sperrrichtung betriebender Halbleiterbauelemente in die erste oder weitere Schaltungskomponente lässt sich das Spannungsniveau der Entsättigung variieren und auf gewünschte Werte einstellen. Im Falle der Zenerdiode innerhalb der weiteren Schaltungskomponente ist es jedoch erforderlich, dass eine Gatetreiberspannung um die Durchbruchsspannung der Zenerdiode angehoben wird, um im eingeschalteten Zustand des IGBTs eine übliche Spannung am Gate von etwa 15 V aufrecht zu erhalten.
  • Bei einer weiteren vorteilhaften Ausführungsform ist in Serie zur ersten Schaltungskomponente eine weitere Schaltungskomponente zwischen das Gate und die erste Schaltungskomponente geschaltet, wobei die weitere Schaltungskomponente eine Serienschaltung aus einer stromverstärkenden Gatetreiberschaltung und einer Zenerdiode aufweist und eine Anode der Zenerdiode zum Gate und eine Kathode der Zehnerdiode zum Kollektor gerichtet sind. Somit stellt diese Ausführungsform eine Kombination der beiden oben erläuterten Ausführungsformen dar, wobei die entsprechenden Schaltungskomponenten seriell ver schaltet sind. Diese Ausführungsform ermöglicht somit einerseits eine Erhöhung des Spannungsniveaus zur Entsättigung durch Einbringen der Zenerdiode als auch andererseits eine Reduzierung der Strombelastung der Schaltereinrichtung und der Diode der ersten Schaltungskomponente als auch der Zenerdiode.
  • Bei einer vorteilhaften Ausführungsform weist die stromverstärkende Gatetreiberschaltung einen ersten Versorgungsspannungsanschluss für einen positiven Pol einer Versorgungsspannungsquelle und einen zweiten Versorgungsspannungsanschluss für einen negativen Pol der Versorgungsspannungsquelle auf und eine weitere Schaltereinrichtung ist zwischen dem zweiten Versorgungsspannungsanschluss und einem zwischen erster und weiterer Schaltungseinrichtung liegenden Bezugspunkt geschaltet. Durch Einschalten der weiteren Schaltereinrichtung wird die Spannung am Gate auf eine negative Versorgungsspannung der Gatetreiberschaltung geschaltet. Hierdurch lässt sich das Spannungsniveau zur Entsättigung am Kollektor beschleunigt einstellen.
  • Eine besonders vorteilhafte Ausführungsform weist eine Verzögerungsschaltungseinrichtung zum Verzögern des Einschaltens des IGBT um eine Verzögerungszeit sowie zum Verzögern des Ausschaltens des IGBT um die Verzögerungszeit auf. Während der Verzögerungszeit wird die Entsättigung des IGBT durchgeführt. Da die Verzögerungszeit beim Ein- und Ausschalten identisch ist, bleibt ein Duty-Cycle etwa bei PWM (Pulsweitenmodulation)-Ansteuerung des IGBT erhalten. Somit werden die Pulsweiten entsprechend einer Steuerung wiedergegeben. Die Verzögerungszeit stimmt somit vorzugsweise mit der Entsättigungszeitdauer überein.
  • Bei einer vorteilhaften Ausführungsform weist die Verzögerungsschaltungseinrichtung ein Monoflop zur Erzeugung der Verzögerung beim Ein- und Ausschalten des IGBT auf. Somit wird die Verzögerung beim Ein- und Ausschalten durch das selbe Bauelement bewirkt. Dadurch wird vermieden, dass bei Verwendung verschiedenartiger Bauelemente zur Erzeugung der Verzögerung beim Ein- und Ausschalten Toleranzen dieser Bauelemente zur Verfälschung des Duty-Cycles führen, indem die Verzögerungszeiten beim Ein- und Ausschalten aufgrund der Bauelementtoleranzen voneinander abweichen.
  • Bei einer vorteilhaften Ausführungsform ist ein Anschluss eines Elements innerhalb der ersten Schaltungskomponente mit einem Eingangsanschluss einer Kurzschlussüberwachungsschaltung leitend verbunden. Die Entsättigungsschaltung wird somit mit der Kurzschlussüberwachungsschaltung kombiniert und die Diode der ersten Schaltungskomponente kann über ihre Funktion zur Einstellung des Spannungsniveaus bei der Entsättigung des IGBT auch zur Messung der Kollektorspannung herangezogen werden indem die Kathode dieser Diode mit dem Eingangsanschluss der Kurzschlussüberwachungsschaltung verbunden wird. Die Kurzschlussüberwachungsschaltung weist beispielsweise einen weiteren Eingangsanschluss für eine Referenzspannung auf, um durch Vergleich der beiden Eingangssignale zu bewerten, ob ein Kurzschluss vorliegt oder nicht.
  • Bei einer weiteren vorteilhaften Ausführungsform ist eine ein spannungsbegrenzendes Element aufweisende zusätzliche Schaltungskomponente zur Spannungsbegrenzung zwischen Gate und Emitter zwischen einen Anschluss eines Elements innerhalb der ersten Schaltungskomponente und den Emitter geschaltet. Mit Hilfe der Schaltereinrichtung der ersten Schaltungskomponente kann das spannungsbegrenzende Element am Gate zugeschaltet werden. Jedoch bietet sich die Möglichkeit, die Entsättigungsschaltung im Fehlerfall eines Kurzschlusses zum abgestuften Abschalten des IGBT zu nutzen.
  • Das spannungsbegrenzende Element ist in vorteilhafter Weise eine Diode mit einer Durchbruchsspannung im Bereich von 10 bis 14 V. Nimmt man an, dass der IGBT bei einer Gatespannung von 15 V im eingeschalteten Zustand betrieben wird, führt ein Zuschalten des spannungsbegrenzenden Elements durch die Schaltereinrichtung im Kurzschlussfall bei Kombination von Kurzschlussüberwachungsschaltung und Entsättigungsschaltung zu keinem abrupten, sondern abgestuften Abschalten des IGBT.
  • Eine bevorzugte Ausführungsform weist eine wenigstens zur ersten Schaltereinrichtung parallel geschaltete Schaltungskomponente auf, wobei die parallel geschaltete Schaltungskomponente eine Serienschaltung aus einer zusätzlichen Schaltereinrichtung und einer zusätzlichen Zenerdiode als Schaltungselemente aufweist und die zusätzliche Zenerdiode mit ihrer Anode zum Kollektor und mit ihrer Kathode zum Gate gerichtet ist. Diese Ausführungsform eignet sich insbesondere zur dreistufigen Entsättigung, wobei zunächst eine Vorentsättigung durch Einschalten der zusätzlichen Schaltereinrichtung bei ausgeschalteter Schaltereinrichtung der ersten Schaltungskomponente und anschließend eine Entsättigung bei höherer Spannung zwischen Kollektor und Emitter durch Ausschalten der zusätzlichen Schaltereinrichtung und Einschalten der Schaltereinrichtung der ersten Schaltungskomponente erfolgen kann. Aufgrund der Verpolung der zusätzlichen Zenerdiode erfolgt die Entsättigung mit Hilfe der parallelgeschalteten Schaltungskomponente bei niedrigerer Spannung zwischen Kollektor und Emitter in Vergleich zur Entsättigung mit Hilfe der ersten Schaltungskomponente. An Stelle der zusätzlichen Zenerdiode lässt sich auch ein hierzu verschiedenes Bauelement nutzen, sofern dieses wie eine Zenerdiode spannungsbegrenzende Eigenschaften aufweist.
  • In vorteilhafter Weise ist eine ein weiteres spannungsbegrenzendes Element aufweisende weitere zusätzliche Schaltungskom ponente zur Spannungsbegrenzung zwischen dem Gate und einem Emitter des IGBT zwischen einen Anschluss eines Schaltungselements innerhalb der parallel geschalteten Schaltungskomponente und den Emitter geschaltet. Mit Hilfe der weiteren zusätzlichen Schaltereinrichtung der parallel geschalteten Schaltungskomponente kann das weitere spannungsbegrenzende Element am Gate zugeschaltet werden. Jedoch bietet sich die Möglichkeit, die Entsättigungsschaltung im Fehlerfall eines Kurzschlusses zum abgestuften Abschalten des IGBT zu nutzen.
  • Das weitere spannungsbegrenzende Element ist in vorteilhafter Weise eine Diode mit einer Durchbruchsspannung im Bereich von 10 bis 14 V. Nimmt man an, dass der IGBT bei einer Gatespannung von 15 V im eingeschalteten Zustand betrieben wird, führt ein Zuschalten des weiteren spannungsbegrenzenden Elements durch die zusätzliche Schaltereinrichtung im Kurzschlussfall bei Kombination von Kurzschlussüberwachungsschaltung und Entsättigungsschaltung zu keinem abrupten, sondern abgestuften Abschalten des IGBT.
  • Eine weitere vorteilhafte Ausführungsform einer erfindungsgemäßen Entsättigungsschaltung für einen IGBT umfasst eine PID-Regelschaltung zum Regeln einer Spannung zwischen einem Kollektor und einem Emitter des IGBT auf einen bestimmten Sollwert, wobei ein Ausgang der PID-Regelschaltung mit einer Gatetreiberschaltung zum Ansteuern des Gates verbunden ist und ein Eingang der PID-Regelschaltung mit einem Ausgang einer Vergleichsschaltung verbunden ist, wobei die Vergleichsschaltung an einem ersten ihrer Eingänge mit einem Ausgang einer Spannungsmesseinrichtung zum Messen einer Spannung am Kollektor und an einem zweiten ihrer Eingänge mit einer den bestimmten Sollwert ausgebenden Referenzspannungsquelle verbunden ist. Die PID-Regelschaltung dient somit der Einstellung der Kollektorspannung zur Entsättigung durch Regeln der Gatespannung. Eine Abweichung zwischen einer mit Hilfe der Spannungsmesseinrichtung gemessenen Kollektorspannung zum Spannungs-Sollwert wird der PID-Regelschaltung zugeführt und dient der Regelung der Gatespannung. Sowohl die gemessene Kollektorspannung als auch der Spannungs-Sollwert können als geteilte Spannungswerte zugeführt werden.
  • In vorteilhafter Weise weist die Entsättigungsschaltung eine Schaltereinrichtung zum Kurzschließen der Referenzspannungsquelle auf. Wird der IGBT im eingeschalteten Zustand betrieben, so ist die Referenzspannungsquelle über die Schaltereinrichtung kurzgeschlossen und die PID-Regelschaltung regelt die Gatespannung auf einen bestimmten Maximalwert, der entsprechend einer Soll-Gatespannung im eingeschalteten Zustand eingestellt ist. Die Schaltereinrichtung schaltet die Referenzspannungsquelle zu Beginn einer Entsättigung zu und am Ende der Entsättigung, wenn der IGBT sperren soll auf eine maximale Referenzspannung, die weit über den möglichen IST-Werten liegt. Dadurch wird das Gate auf eine minimale (negative) Gatespannung für den AUS-Zustand des IGBT geschaltet.
  • In vorteilhafter Weise ist die Entsättigungsschaltung auf einer integrierten Schaltung untergebracht, die zwei über einen kernlosen Transformator gekoppelte Halbleiterchips aufweist. Zeitsteuerungen und Schaltervorrichtungen für Entsättigung, Kurzschlussüberwachung sowie mehrstufiges Ein- oder Ausschalten werden in der integrierten Schaltung untergebracht. Als Endstufe werden Gegentakt-Emitterfolger mit komplementären Bipolar-Transistoren, gegebenenfalls in Darlington-Schaltung bzw. Gegentakt-Sourcefolger mit komplementären Leistungs-MOSFETs eingesetzt. Bei Verwendung von MOSFETs sind Transistortypen mit geringer Schwellspannung (logic-level-MOSFETs) bevorzugt. Auch die Endstufen sind in einer integrierten Schaltung untergebracht. Die integrierten Schaltungen sind derart ausgelegt, dass kein Gatewiderstand zwischen dem IGBT und der Gatetreiberschaltung benötigt wird.
  • Bei einer vorteilhaften Ausführungsform eines Verfahrens zur Entsättigung wird die Schaltereinrichtung zur Entsättigung eingeschaltet und bleibt außerhalb einer Entsättigungszeitdauer ausgeschaltet.
  • Hierbei ist es vorteilhaft, erste Energieverluste durch eine erhöhte Kollektorspannung während der Entsättigung vor dem Abschalten in Abhängigkeit von der Entsättigungszeitdauer als auch zweite Energieverluste während des Abschaltens in Abhängigkeit von der Entsättigungsdauer einer vorangegangenen Entsättigung zu ermitteln und die Entsättigungszeitdauer für die Entsättigung während des Betriebs des IGBT auf einen Wert festzulegen, bei dem eine Summe aus ersten und zweiten Energieverlusten minimal ist. Die Ermittlung der ersten und zweiten Energieverluste erfolgt vorzugsweise experimentell, diese können jedoch auch per Simulation ermittelt werden. Basierend auf den ersten und zweiten Energieverlusten lässt sich somit die Entsättigungsdauer hinsichtlich minimaler Ausschaltverluste optimieren.
  • Vorteilhaft ist es, falls eine Vorsättigung mit einer Spannung zwischen Kollektor und Emitter im Bereich von 5V bis 8V für eine Dauer im Bereich von 2 bis 15μs durch Einschalten der zusätzlichen Schaltereinrichtung und Ausschalten der Schaltereinrichtung durchgeführt wird, wonach die zusätzliche Schaltereinrichtung ausgeschaltet wird und die Schaltereinrichtung für eine Dauer im Bereich von 0.1 bis 10μs eingeschaltet wird. Hierbei lassen sich die Abschaltverluste durch eine 3-stufige Entsättigung weiter optimieren. Die der Entsättigung bei geringen Spannungen zwischen Kollektor und Emitter im Bereich von 5 bis 8V folgende Entsättigungsstufe kann Spannungen zwischen Kollektor und Emitter im Bereich von ungefähr 10 bis 100V aufweisen.
  • Weiterhin vorteilhaft ist es, die Entsättigungsschaltung während einer gesamten Leitphase des IGBT aktiv zu halten. Somit ist im eingeschalteten Zustand des IGBTs beispielsweise die Schaltereinrichtung der ersten Schaltungskomponente eingeschaltet. Eine Entsättigung während der gesamten Leitphase des IGBTs bietet sich insbesondere im Falle von hochfrequentem Schalten bei 20kHz und höher an, bzw. ebenso bei kurzen Pulsbreiten der PWM. Damit wird ein Betrieb erreicht, der den IGBT dabei von vorn herein aus der Sättigung heraushält und die Schaltverluste werden minimiert.
  • Bevorzugt wird mit zunehmendem Laststrom des IGBT eine Höhe der Kollektorspannung während der Entsättigung und/oder die Entsättigungszeitdauer verringert. Im Falle eines Umrichters heißt das, dass beispielsweise der bestimmte Sollwert der Referenzspannungsquelle einer PID-Regelschaltung cosinusförmig variiert wird, falls ein Ausgangsstrom des Umrichters sinusförmig ist. Eine Anpassung an eine Stromhöhe ermöglicht dadurch eine Optimierung des IGBT in seinen Abschaltverlusten hinsichtlich jeder Stromhöhe.
  • Vorteilhaft ist es bei Detektion eines Kurzschlusses beim Abschalten des IGBT eine Spannung am Gate für eine Dauer im Bereich von 100 ns bis 10 μs mit einem Wert im Bereich von 10 bis 14 V anzulegen bevor die Entsättigung durchgeführt wird. Somit wird ein verzögertes Abschalten des IGBT bei Auftreten eines Kurzschlusses bewirkt. Hierzu wird ein Potential eines Elements innerhalb der ersten Schaltungskomponente zur Detektion eines Kurzschlusses einem Eingang einer Kurzschlussüberwachungsschaltung zugeführt.
  • In vorteilhafter Weise wird bei Detektion eines Kurzschlusses zum Abschalten des IGBT die Schaltereinrichtung der ersten Schaltungskomponente eingeschaltet. Hierbei kann die Gatespannung über das spannungsbegrenzende Element begrenzt werden und gegenüber einer Gatespannung im eingeschalteten Zustand des IGBT zum stufenweisen Abschalten reduziert werden.
  • Vorteilhaft ist es, die bei Detektion eines Kurzschlusses in den beiden obigen Abschnitten eingeleiteten Schritte bei jedem Abschaltvorgang durchzuführen. Dies ist möglich, da eine Reduzierung der Gatespannung während des Abschaltvorgangs in einen Bereich von 10 bis 14 V mit Hilfe von z.B. eines spannungsbegrenzenden Elements keine wesentliche Erhöhung der Verluste beim Abschaltvorgang mit sich bringt.
  • In vorteilhafter Weise wird die Referenzspannungsquelle für die PID-Regelschaltung während einer Leitphase des IGBT außerhalb einer Entsättigungszeitdauer in der Leitphase des IGBT durch die Schaltereinrichtung kurzgeschlossen und während einer Sperrphase des IGBT auf einen oberhalb möglicher IST-Werte der Spannung zwischen Kollektor und Emitter liegenden Maximalwert geschaltet.
  • Die Erfindung und insbesondere bestimmte Merkmale, Aspekte und Vorteile der Erfindung werden anhand der folgenden detaillierten Beschreibung in Verbindung mit den beigefügten Zeichnungen verdeutlicht.
  • 1 zeigt Signalverläufe während eines Abschaltvorgangs eines IGBT mit planarer Zellengeometrie;
  • 2 zeigt Signalverläufe während eines Abschaltvorgangs eines IGBT neuester Generation mit Trench-Zellen und Feldstop;
  • 3 zeigt einen zeitlichen Verlauf eines Laststroms beim Ausschalten in Abhängigkeit vom Spannungsniveau der Entsättigung;
  • 4 zeigt ein stationäres Ausgangskennlinienfeld eines IGBT neuester Generation;
  • 5 zeigt eine erste Ausführungsform einer Entsättigungsschaltung für einen IGBT;
  • 6 zeigt eine zweite Ausführungsform einer Entsättigungsschaltung für einen IGBT;
  • 7 zeigt eine dritte Ausführungsform einer Entsättigungsschaltung für einen IGBT;
  • 8 zeigt eine vierte Ausführungsform einer Entsättigungsschaltung für einen IGBT;
  • 9 zeigt eine fünfte Ausführungsform einer Entsättigungsschaltung für einen IGBT;
  • 10 zeigt eine sechste Ausführungsform einer Entsättigungsschaltung für einen IGBT;
  • 11 zeigt eine siebente Ausführungsform einer Entsättigungsschaltung für einen IGBT;
  • 12 zeigt eine achte Ausführungsform einer Entsättigungsschaltung für einen IGBT;
  • 13 zeigt eine neunte Ausführungsform einer Entsättigungsschaltung für einen IGBT;
  • 14 zeigt ein beispielhaftes Ersatzschaltbild einer Ausführungsform einer Entsättigungsschaltung für einen IGBT;
  • 15 zeigt Signalverläufe während der Entsättigung und des Abschaltens eines IGBT neuester Generation; und
  • 16 zeigt eine Bilanz von Ausschaltverlusten eines IGBT in Abhängigkeit von einer Entsättigungszeit;
  • 17 zeigt eine zehnte Ausführungsform einer Entsättigungsschaltung für einen IGBT; und
  • 18 zeigt eine elfte Ausführungsform einer Entsättigungsschaltung für einen IGBT.
  • 1 dient dem allgemeinen Verständnis der Erfindung und zeigt einen zeitlichen Verlauf von Signalen während eines Abschaltvorgangs eines IBGT2 bekannter IGBT-Generation mit planarer Zellengeometrie. Im Zeitbereich „A" wird eine Spannung am Treiberausgang von +15 V auf –15 V zum Einleiten des Ausschaltvorgangs geändert (nicht dargestellt). Dargestellt ist eine intern im Modul am IGBT anliegende Gatespannung VGE. Aus einer Potentialdifferenz zum Gate des IGBT resultierend ergibt sich ein Stromfluss aus dem Gate heraus, der eine Eingangskapazität, d.h. die sogenannte Miller-Kapazität zwischen Gate und Kollektor und die Gate-Emitter-Kapazität, zu entladen beginnt (siehe „B" im Kurvenverlauf der Gate-Emitter-Spannung VGE). Abhängig von der Größe dieses Gatestroms geht der IGBT von einer Sättigung an einen Rand des aktiven Bereichs im Kennlinienfeld über. Während dieser Phase sinkt die Gatespannung auf den Wert des Miller-Plateaus VMiller = IC/gfs + Vth, wobei IC ein Laststrom zwischen Kollektor und Emitter des IGBT und gfs eine Übertragungssteilheit definieren (siehe „C"). Während dieses Vorgangs steigt die Kollek torspannung minimal an und nimmt den Wert an, der sich unter Berücksichtigung des fließenden Laststroms und des Wertes des Miller-Plateaus aus dem Ausgangskennlinienfeld ergibt. Diese liegt nur unwesentlich oberhalb der Sättigungsspannung zwischen Kollektor und Emitter. Befindet sich die Gatespannung VGE auf dem Miller-Plateau (siehe „D"), steigt die Kollektorspannung soweit an, dass sich eine Polarität zwischen Gate und Kollektor umpolt. Die Spannung zwischen Emitter und Kollektor VCE steigt hierbei auf Werte im Bereich von ungefähr 10 bis 15 V an. Während dieses Vorgangs fließt ein konstanter Gatestrom IG = dVCE/dt·CGC (VGC). Definiert man den Startpunkt des Spannungsanstiegs dVCE/dt zu Beginn des Miller-Plateaus zu VGC = 0V so zeigt die Miller-Kapazität CGC ein stark nichtlineare Abhängigkeit von der Spannung VGC der Form CGC~1/VGC. Die stark nicht-lineare Abhängigkeit der Miller-Kapazität von der Spannung VGC rührt von einer spannungsabhängigen Aufweitung der Raumladungszone zwischen Gate und Kollektor her. Da die Spannung über die Miller Kapazität CGC im eingeschalteten Zustand jedoch gering ist, muss ihr eine große Ladung entnommen werden, um einen kleinen Spannungshub zu erzielen. Während des Miller-Plateaus ist VGE in erster Näherung konstant. Somit spielt in diesem Zeitbereich die Kapazität zwischen Gate und Emitter keine Rolle, da dieser Kapazität aufgrund der konstanten Gatespannung während des Miller-Plateaus kein Strom entnommen wird. Im mit „E" gekennzeichneten Bereich befindet sich die Gatespannung weiterhin auf dem Millerplateau, mit fortschreitendem Entladezustand der Miller-Kapazität verringert sich diese jedoch stark und die Spannung zwischen Kollektor und Emitter VCE kann umso schneller ansteigen. Der IGBT befindet sich nun vollständig im aktiven Bereich. Die Spannung zwischen Gate und Emitter VGE verringert sich minimal auf die Spannung, die sich bei momentaner Spannung zwischen Kollektor und Emitter VCE und Laststrom IC im Ausgangskennlinienfeld ergibt. Die zeitliche Änderung der Spannung zwischen Kollektor und Emitter dVCE/dt ist hierbei lediglich durch die Geschwindigkeit begrenzt mit der die Parallelschaltung aus den Kapazitäten zwischen Gate und Kollektor CGC sowie zwischen Gate und Emitter CGE entladen wird, was durch die Höhe des Gateentladestroms IG und damit indirekt durch eine negative Treiberspannung und einen Gatewiderstand RG bestimmt ist. Da der IGBT eine induktive Last abschaltet, kann der Laststrom IC am IGBT erst dann absinken, wenn ein anderer Strompfad zur Verfügung steht. Ein derartiger weiterer Strompfad wird durch eine Freilaufdiode bereit gestellt. Der weitere Strompfad durch die Diode erfordert jedoch ein Anstieg der Kollektorspannung VCE bis die Freilaufdiode in Flussrichtung gepolt ist. Eine derartige Überspannung wird durch den IGBT dadurch erzeugt, dass dieser beginnt den Laststrom IC abzuschalten. Der Kollektorstrom IC ist proportional zur Spannung zwischen Gate und Emitter VGE. An unvermeidlichen, parasitären Induktivitäten erzeugt die Stromänderung dIC/dt eine entsprechend große Überspannung, die am IGBT anliegt. Dabei kommutiert der Laststrom Ic auf die Diode. Eine Stromänderung am IGBT wird von der Freilaufdiode übernommen. Das Absinken des Laststroms IC in Verbindung mit der Überspannung am Kollektor ist im Abschnitt „F" dargestellt. Der Vorgang des Absinkens des Laststroms IC im IGBT ist begrenzt durch die Geschwindigkeit mit der die Eingangskapazität zwischen Gate und Emitter CGE + CGC entladen wird und mit der die Spannung zwischen Gate und Emitter VGE oder die Schwellspannung sinkt. Somit liegt wiederum eine Abhängigkeit vom Entladestrom IG des Gates vor. Da IG jedoch durch die Spannungsdifferenz zwischen dem Treiberausgang und dem Gate des IGBT sowie der Impedanz dazwischen bestimmt ist und diese Spannungsdifferenz mit zunehmendem Entladezustand abnimmt, ist hierfür eine nicht verringerbare, minimale Zeit erforderlich. Dies begrenzt die zeitliche Änderung des Laststroms im IGBT. Somit ist der Verlauf der Gatespannung VGE als auch der Verlauf der Kollektorspannung VCE dieses IGBT bekannter Generation von der Impedanz des Gatekreises und parasitärer Kapazitäten im IGBT bestimmt. Das Abschaltverhalten eines derartigen IGBT lässt sich somit durch Veränderung der Impedanz des Gatekreises in weiten Bereichen variieren. Abgesehen davon fließt danach noch ein Tailstrom weiter, der durch die im IGBT gespeicherte Restladung verursacht ist und zeitlich abklingt, was im mit „G" gekennzeichneten Bereich dargestellt ist.
  • 2 zeigt ebenso wie 1 Signalverläufe beim Abschalten eines IGBTs. Das Abschaltverhalten ist jedoch hier im Gegensatz zur 1 für einen IGBT der neuesten IGBT-Generation mit Trench-Zellen und Feldstop dargestellt. Im folgenden werden wesentliche Unterschiede im Schaltverhalten dieses neuartigen IGBTs im Vergleich zum Abschaltverhalten eines bekannten IGBTs dargelegt. Am Ende des mit „D" gekennzeichneten Miller-Plateaus ist ein Abfall der Gatespannung VGE im mit "Delle" gekennzeichneten Bereich zu beobachten, obwohl der Laststrom IC mit unverminderter Größe weiterfließt. Das Abfallen der Gatespannung VGE unter das Miller-Plateau kann dadurch erklärt werden, dass bei kleiner werdender Gateimpedanz neuester IGBT-Generationen der Spannungsanstieg am Kollektor VCE beim Abschalten nicht mehr der Entladung der Kapazitäten CGC sowie CGE folgen kann. Da der Laststrom IC während der Zeit der sogenannten Delle am Ende des Miller-Plateaus jedoch unvermindert weiter fließt, wird dieser vom im IGBT gespeicherten Ladungsträgern gespeist. Der Anstieg der Kollektorspannung VCE ist ebenfalls durch Abbau gespeicherter Ladungsträger innerhalb des IGBT bestimmt und kann nicht durch eine verstärkte Entladung des Gates mit z.B. verringerter Gateimpedanz beschleunigt werden. Hieraus resultieren die im einleitenden Teil dieser Anmeldung erläuterten Nachteile wie etwa verzögerungsfreie Rückkopplung von di/dt des Laststroms IC oder von Überspannungen am Kollektor. Somit lässt sich das Abschaltverhalten von IGBTs neuester Generation nicht mehr alleine durch parasitäre Kapazitäten und Impedanzen im Gatekreis erklären.
  • In 3 sind Laststromverläufe beim Abschalten des IGBT mit der Gatespannung während der Entsättigung als Scharparameter dargestellt. Die Entsättigung bewirkt eine Reduzierung der Ladungsträgerkonzentrationen von Elektronen und Löchern innerhalb des IGBT. Die Ausprägung des als Tailstrom bezeichneten Stromausläufers (vgl. hierzu auch den Bereich „G" in 1 und 2) beim Abfall des dargestellten Laststroms IC lässt sich im dargestellten Spannungsbereich für die Gatespannung mit abnehmenden Werten verringern. Eine Reduzierung des Tailstroms bewirkt eine Reduzierung der Abschaltverluste des IGBT.
  • In 4 ist ein stationäres Ausgangskennlinienfeld eines IGBT3 der neuesten IGBT-Generation mit Trench-Zellen und Feldstop dargestellt. Aufgetragen ist ein Strom zwischen Kollektor und Emitter IC über einer Spannung zwischen Kollektor und Emitter VCE. Als Scharparameter dient die Spannung zwischen Gate und Emitter VGE. Im Bereich der Sättigung ändert sich der Kollektorstrom IC näherungsweise linear mit Zunahme mit der Kollektorspannung VCE. Für Kollektorspannungen VCE > 3V geht der IGBT vor der Sättigung über in die Entsättigung bzw. in den sogenannten aktiven Bereich. In diesem Bereich ist der Kollektorstrom IC nahezu konstant. Lediglich eine geringfügige Vergrößerung des Kollektorstroms IC mit Zunahme von VCE tritt auf.
  • In 5 ist ein schematisches Ersatzschaltbild einer ersten Ausführungsform einer Entsättigungsschaltung für einen IGBT dargestellt. Der IGBT weist einen Emitter 1, ein Gate 2 sowie einen Kollektor 3 auf. Zwischen Gate 2 und Kollektor 3 des IGBT ist in Serie eine schematisch dargestellte Schaltereinrichtung 4 sowie eine Diode 5 geschaltet. Die Diode 5 ist mit ihrer Kathode mit dem Kollektor 3 verbunden. Die vereinfacht dargestellte Schaltereinrichtung 4 kann beispielsweise als MOSFET oder Bipolartransistor realisiert sein. Diode 5 und Schaltereinrichtung 4 bilden Elemente einer ersten Schaltungskomponente 6. Befindet sich der IGBT im eingeschalteten Zustand vor der Entsättigung, so ist der Schalter 4 geöffnet. Zur Entsättigung wird der Schalter 4 geschlossen und eine zwischen Gate 2 und Kollektor 3 ausgebildete Miller-Kapazität entlädt sich über die Diode 5. Bei diesem Vorgang steigt die am Kollektor 3 anliegende Kollektorspannung VCE an, bis die Gatespannung um eine Durchlassspannung der Diode 5 höher liegt als die Kollektorspannung VCE. Typische Werte der sich hierbei einstellenden Kollektorspannung VCE ergeben sich gemäß dem Ausgangskennlinienfeld des IGBT bei Nennstrom zu etwa 8 V (vgl. hierzu auch 4). Diese erste Ausführungsform stellt eine sehr einfach realisierbare Entsättigungsschaltung dar.
  • In 6 ist ein schematisches Ersatzschaltbild einer zweiten Ausführungsform einer Entsättigungsschaltung für einen IGBT dargestellt. Zusätzlich zur in 1 gezeigten ersten Schaltungskomponente 6 ist in dieser zweiten Ausführungsform in Serie zur ersten Schaltungskomponente 6 eine stromverstärkende Gatetreiberschaltung 7 geschaltet, die eine weitere Schaltungskomponente 8 ausbildet. Somit fließt ein Entladestrom beim Entladen der Millerkapazität zwischen Gate 2 und Kollektor 3 beim Schließen der Schaltereinrichtung 4 nicht ausschließlich über die Diode 5 und die Schaltereinrichtung 4, sondern zusätzlich über die stromverstärkende Gatetreiberschaltung 7. Da diese jedoch eine im Vergleich zur Diode 5 hohe innere Impedanz aufweist, sinkt die maximale Strombelastung der Schaltereinrichtung 4 als auch der Diode 5. Als weiteres Element einer Gateansteuerschaltung ist ein Gatewiderstand 9 dargestellt.
  • In 7 ist ein schematisches Ersatzschaltbild einer dritten Ausführungsform einer Entsättigungsschaltung für einen IGBT dargestellt. Neben der wie schon in den beiden ersten Ausführungsformen beschriebenen ersten Schaltungskomponente 6 weist diese Ausführungsform in Serie zur ersten Schaltungskomponente eine Zenerdiode 10 als weitere Schaltungskomponente 8 zwischen der ersten Schaltungskomponente 6 und dem Gate 2 auf. Die Zenerdiode 10 ist mit ihrer Anode zum Gate 2 und mit ihrer Kathode zum Kollektor 3 gerichtet. Die Zenerdiode erhöht das Spannungsniveau der Entsättigung um eine Zenerspannung gegenüber dem Spannungsniveau der Entsättigung durch die in 5 und 6 dargestellten ersten und zweiten Ausführungsformen. Zu beachten ist, dass eine Gatetreiberspannung eine um die Zenerspannung gegenüber einer gängigen Treiberspannung von z.B. 15 V höhere Spannung bereitzustellen hat. Somit dient diese dritte Ausführungsform der Erhöhung des Spannungsniveaus während der Entsättigung, d.h. der Erhöhung der Kollektorspannung VCE während der Entsättigung.
  • In 8 ist ein schematisches Ersatzschaltbild einer vierten Ausführungsform einer Entsättigungsschaltung für einen IGBT dargestellt. Diese vierte Ausführungsform vereint die in der in 7 dargestellten dritten Ausführungsform ausgebildete Zenerdiode 10 und die in der in 6 dargestellten zweiten Ausführungsform ausgebildete stromverstärkende Gatetreiberschaltung 7 in einer weiteren Schaltungskomponente 8, d.h. die stromverstärkende Gatetreiberschaltung 7 als auch die Zenerdiode 10 werden in Serie zur ersten Schaltungskomponente 6 geschaltet. Somit bietet diese Ausführungsform die Möglichkeit einerseits bei Entsättigung durch Schließen der Schaltereinrichtung 4 die Diode 5, die Schaltereinrichtung 4 als auch die Zenerdiode 10 aufgrund der Impedanz der stromverstärkenden Gatetreiberschaltung 7 nicht zu stark mit Strom zu belasten als auch das Spannungsniveau der Entsättigung über die Zenerdiode 10 anzuheben.
  • In 9 ist ein schematisches Ersatzschaltbild einer fünften Ausführungsform einer Entsättigungsschaltung für einen IGBT dargestellt. Diese Ausführungsform stimmt hinsichtlich der ersten Schaltungskomponente 6 sowie der weiteren Schaltungskomponente 8 mit der in 8 dargestellten vierten Ausführungsform überein. Ergänzend zur vierten Ausführungsform weist die fünfte Ausführungsform der Entsättigungsschaltung jedoch eine weitere Schaltereinrichtung 11 zwischen einem zweiten Versorgungsspannungsanschluss V_ der stromverstärkenden Gatetreiberschaltung 7 und einem zwischen erster und weiterer Schaltungseinrichtung 6, 8 liegenden Bezugspunkt auf. Die weitere Schaltereinrichtung 11 dient insbesondere dazu, dass Gate 2 kurzzeitig auf den negativen Pol des Versorgungsspannungsanschlusses V_ der stromverstärkenden Gatetreiberschaltung 7 zu schalten. Dadurch wird das Spannungsniveau zur Entsättigung am Kollektor beschleunigt erreicht. Die weitere Schaltereinrichtung 11 ist als Bipolartransistor mit ansteuerbarem Basissignal ausgeführt. Hierbei handelt es sich jedoch um eine von vielen Möglichkeiten zur Realisierung der weiteren Schaltereinrichtung 11. Diese kann beispielsweise auch als MOSFET ausgeführt sein.
  • In 10 ist ein schematisches Ersatzschaltbild einer sechsten Ausführungsform einer Entsättigungsschaltung für einen IGBT dargestellt. Die Entsättigungsschaltung weist entsprechend zur in 9 dargestellten fünften Ausführungsform die erste Schaltungskomponente 6, die zweite Schaltungskomponente 8 als auch die weitere Schaltereinrichtung 11 auf. Lediglich innerhalb der ersten Schaltungskomponente 6 weist die sechste Ausführungsform eine zusätzliche in Serie zur Diode 5 in gleiche Richtung geschaltete weitere Diode 12 auf. Zusätzlich ist die Entsättigungsschaltung an eine Kurzschlussüberwachungsschaltung 13 gekoppelt. Ein Potential der Kathode der Diode 5 wird auf einen Eingang eines Komparators 14 der Kurzschlussüberwachungsschaltung 13 als Ist-Spannungssignal ge führt. Zur Bewertung ob ein Kurzschluss der Last vorliegt oder nicht wird das Ist-Spannungssignal mit einer Referenzspannung Vref im Komparator 14 verglichen und ein Ausgangssignal des Komparators 14 dient beispielsweise zum Abschalten des IGBT. Somit lässt sich die Entsättigungsschaltung der sechsten Ausführungsform zur Kurzschlussüberwachung heranziehen.
  • In 11 ist ein schematisches Ersatzschaltbild einer siebenten Ausführungsform einer Entsättigungsschaltung für einen IGBT dargestellt. Entsprechend zur in 6 dargestellten zweiten Ausführungsform weist die siebente Ausführungsform in Serie geschaltet vom Gate 2 zum Kollektor 3 die stromverstärkende Gatetreiberschaltung 7, die Schaltereinrichtung 4, die Diode 5 und darüber hinausgehend die weitere Diode 12 auf. Zusätzlich zeichnet sich diese Entsättigungsschaltung durch eine zusätzliche Schaltungskomponente 15 zur Spannungsbegrenzung zwischen dem Gate 2 und dem Emitter 1 aus. Die zusätzliche Schaltungskomponente 15 ist zwischen den Emitter 1 sowie die Anode der Diode 5 geschaltet. Als spannungsbegrenzendes Element 16 innerhalb der zusätzlichen Schaltungskomponente 15 dient eine Zenerdiode. Die Schaltereinrichtung 4 lässt sich nun zum Abschalten des IGBT bei Detektion eines Kurzschlusses heranziehen. Wird ein Kurzschluss detektiert, schließt die Schaltereinrichtung 4 und die Spannung am Gate 2 wird über das spannungsbegrenzende Element 16 begrenzt. Dieses begrenzt die Spannung wie dargestellt auf 13 V, so dass bei Detektion eines Kurzschlusses eine üblicherweise im Bereich von 15 V am Gate anliegende Spannung auf 13 V entsprechend dem spannungsbegrenzenden Element 16 reduziert wird. Die siebente Ausführungsform ermöglicht somit einen äußerst flexiblen Einsatz der Entsättigungsschaltung sowohl zum Entsättigen vor Abschalten des IGBT als auch zur Erniedrigung der Spannung am Gate 2 bei Detektion eines Kurzschlusses.
  • In 12 ist ein schematisches Ersatzschaltbild einer achten Ausführungsform einer Entsättigungsschaltung für einen IBGT dargestellt. Diese Ausführungsform unterscheidet sich von der in 11 dargestellten siebenten Ausführungsform lediglich dadurch, dass die weitere Schaltungskomponente 8 neben der stromverstärkenden Gatetreiberschaltung 7 zusätzlich die Zenerdiode 10 in Serie geschaltet aufweist. Um weiterhin die Spannung am Gate 2 im Falle eines Kurzschlusses auf 13 V zu begrenzen, weist das spannungsbegrenzende Element 16 eine Spannungsbegrenzung auf Vz = 13V + VzG auf, wobei die Spannung VzG eine Durchbruchsspannung der Zenerdiode 10 angibt.
  • In 13 ist ein schematisches Ersatzschaltbild einer neunten Ausführungsform einer Entsättigungsschaltung für einen IGBT dargestellt. Hierbei dient eine PID-Regelschaltung 17 zur Regelung einer Spannung am Gate 2 des IGBT bis ein bestimmter Sollwert einer Entsättigungsspannung am Kollektor 3 erzielt ist. Zur Regelung der Spannung am Gate 2 dient der PID-Regelschaltung 17 ein Signal einer Vergleichsschaltung 18, der über eine Messspannungseinrichtung 19 ein Spannungswert der Kollektorspannung und andererseits der von einer Referenzspannungsquelle 20 bereit gestellte Sollwert zur Ermittlung des Signals zugeführt wird. Ist die Spannung am Kollektor während der Entsättigung zu niedrig, verringert die PID-Regelschaltung 17 die Spannung am Gate 2, indem diese über einen Ausgang eine vereinfacht als steuerbare Spannungsquelle dargestellte Treiberschaltung 21 ansteuert. Durch Erniedrigen der Spannung am Gate 2 steigt die Spannung am Kollektor 3 an, bis diese den Sollwert erreicht. Befindet sich der IGBT im eingeschaltetem Betriebszustand, so ist die Referenzspannungsquelle 20 kurzgeschlossen und liefert somit am Eingang der Vergleichsschaltung 18 einen Sollwert von 0 V. In diesem Falle erhöht die PID-Regelschaltung die Spannung am Gate 2 bis auf einen Maximalwert, der üblicherweise einer be kannten Gatespannung während des Betriebs von etwa 15 V entspricht. Mit dieser Ausführungsform lassen sich insbesondere auf vorteilhafte Weise Entsättigungsspannungen oberhalb von 30 V einstellen, ohne dass eine Versorgungsspannung der Treiberschaltung 21 auf unvorteilhaft hohe Werte erhöht werden muss.
  • In 14 ist ein Beispiel einer Ausführungsform einer Entsättigungsschaltung als Ersatzschaltbild dargestellt. Die erste Schaltungskomponente 6 weist neben den Dioden D3 und D6 einen Bipolartransistor Q4 als Schaltereinrichtung auf, der über eine Ansteuerschaltung (U9A) kurz vor Abschalten des IGBT ein Einschaltsignal zum Einleiten der Entsättigung erhält. Die Kathode der Diode D6 ist an den Kollektor 3 des IGBT angeschlossen (der Kollektor ist schematisch mit dem Referenzzeichen 3 gekennzeichnet). In Serie zur ersten Schaltungskomponente 6 liegt die weitere Schaltungskomponente 8, die einerseites die Zenerdiode D1 zur Erhöhung des Spannungsniveaus der Entsättigung und andererseits die stromverstärkende Gatetreiberschaltung 7 zur Erniedrigung der Strombelastung der Schaltereinrichtung Q4 sowie der Dioden D3, D6 und D1 aufweist. Weiterhin liegt ein Gatewiderstand R14 in Serie zur stromverstärkenden Gatetreiberschaltung 7. Der Gatewiderstand R14 ist mit dem Gate 2 des IGBT (ebenso wie der Kollektor lediglich mit dem Referenzzeichen 2 gekennzeichnet) leitend verbunden.
  • In 15 sind zeitliche Signalverläufe von Laststrom IC, Kollektor-Emitter-Spannung VCE, Gate-Emitter-Spannung VGE sowie Gatestrom IG eines IGBT neuester Generation während der Entsättigung und des Abschaltens einer induktiven Last mit Hilfe der in 14 gezeigten Ausführungsform einer Entsättigungsschaltung dargestellt. Hierbei wird das Gate mit hohem Strom IG entladen, wobei sich in dem in 14 gezeigten Ersatzschaltbild vorzugsweise kein Gatewiderstand R14 im Ga tekreis befindet. Die Gatespannung VGE sinkt dabei zunächst unter das Millerplateau ab, was aufgrund der im IGBT gespeicherten Ladungsträger zur Aufrechterhaltung eines konstanten Laststromflusses IC möglich ist. Eine hierbei kurzzeitig abgeschaltete Injektion von Ladungsträgern über den MOSFET im IGBT führt zu einer schnellen Entsättigung auf ein Entsättigungsniveau von etwa 20V. Nach Ablauf der Entsättigungszeit fällt der Laststrom IC ab, indem der Laststrom nach und nach von einer in 14 nicht dargestellten Freilaufdiode übernommen wird. Vergleicht man den Verlauf der Gatespannung VGE mit dem in 2 gezeigten Gatespannungsverlauf eines IGBT neuester Generation bei bekannter Abschaltweise, so wird ersichtlich, dass die Delle während des Miller-Plateaus verschwunden ist, die Kollektorspannung VCE schneller (eine Skaleneinheit in 15 entspricht 400ns) und insbesondere steuerbar ansteigt und der Tailstrom reduziert ist.
  • 16 zeigt eine Bilanz von Energieverlusten während des Abschaltvorgangs in Abhängigkeit von der Entsättigungszeit bei einem Entsättigungsniveau von 20V unter Berücksichtigung von Leitverlusten. Als Referenz für die Entsättigungsverluste ist als Standard ein Abschaltvorgang ohne Entsättigung dargestellt. Hierbei treten lediglich Kommutierungsverluste bei abfallendem Laststromfluss und ansteigender Kollektorspannung auf. Führt man eine Entsättigung durch und erhöht die Entsättigungszeit, so treten neben den abnehmenden Kommutierungsverlusten aufgrund optimiertem Tailstromverlauf Entsättigungsverluste durch Anstieg der Kollektorspannung während der Entsättigung auf. Summiert man die beiden Anteile, erkennt man in 16 ein Minimum der Abschaltverluste bei einer Entsättigungszeit von 2μs. Der Wert der Entsättigungszeit für miminale Abschaltverluste verschiebt sich je nach Entsättigungsniveau, Gateimpedanz und weiterer Parameter zu hiervon verschiedenen Werten. Gegenüber dem Standard ohne Entsättigung lässt sich jedoch eine Abnahme der Verluste beim Ab schaltvorgang erzielen. Der Vollständigkeit halber sei erwähnt, dass der Messung des Standards eine Gateimpedanz von 3.6Ω und den weiteren Messwerten eine Gateimpedanz von 0Ω zugrunde liegt.
  • In 17 ist ein schematisches Ersatzschaltbild einer zehnten Ausführungsform einer Entsättigungsschaltung für einen IGBT dargestellt. Zusätzlich zur in 6 gezeigten zweiten Ausführungsform ist in dieser zehnten Ausführungsform parallel zur Schaltereinrichtung 4 der ersten Schaltungskomponente 6 eine parallel geschaltete Schaltungskomponente 22 bestehend aus einer zusätzlichen Schaltereinrichtung 23 sowie einer zusätzlichen Zenerdiode 24 geschaltet. Die zusätzliche Zenerdiode 24 ist mit ihrer Anode zum Kollektor 3 gerichtet. Die parallel geschaltete Schaltungskomponente 22 dient zur mehrstufigen Entsättigung des IGBTs bei unterschiedlichen Spannungen zwischen Kollektor 3 und Emitter 1. Ist beispielsweise die zusätzliche Schaltereinrichtung 23 geschlossen und die Schaltereinrichtung 4 geöffnet, so entsättigt der IGBT aufgrund der Verpolrichtung der zusätzlichen Zenerdiode 24 bei geringerer Spannung als im umgekehrten Fall bei geöffneter zusätzlicher Schaltereinrichtung 23 und geschlossener Schaltereinrichtung 4.
  • In 18 ist ein schematisches Ersatzschaltbild einer elften Ausführungsform einer Entsättigungsschaltung für einen IGBT dargestellt. Zusätzlich zur in 12 gezeigten achten Ausführungsform weist diese Ausführungsform eine parallel geschaltete Schaltungskomponente 22 auf, die parallel zur Diode 5 und der Schaltereinrichtung 4 geschaltet ist. Ebenso wie bei der in 17 dargestellten zehnten Ausführungsform besteht die parallel geschaltete Schaltungskomponente 22 aus einer zusätzlichen Schaltereinrichtung 23 sowie einer zusätzlichen Zenerdiode 24. Die zusätzliche Zenerdiode 24 ist mit ihrer Anode zum Kollektor 3 gerichtet. Die parallel geschal tete Schaltungskomponente 22 dient analog zur entsprechenden Komponente der zehnten Ausführungsform der mehrstufigen Entsättigung des IGBTs bei unterschiedlichen Spannungen zwischen Kollektor 3 und Emitter 1. Weiterhin zeichnet sich diese Entsättigungsschaltung durch eine weitere zusätzliche Schaltungskomponente 26 zur Spannungsbegrenzung zwischen dem Gate 2 und dem Emitter 1 aus. Die weitere zusätzliche Schaltungskomponente 26 ist zwischen den Emitter 1 sowie die Kathode der zusätzlichen Zenerdiode 24 geschaltet. Als weiters spannungsbegrenzendes Element 25 innerhalb der weiteren zusätzlichen Schaltungskomponente 26 dient eine Zenerdiode. Die zusätzliche Schaltereinrichtung 23 lässt sich nun ebenso wie die Schaltereinrichtung 4 der ersten Schaltungskomponente 6 zum Abschalten des IGBT bei Detektion eines Kurzschlusses heranziehen (vgl. hierzu auch 12 mit zugehöriger Figurenbeschreibung).
  • 1
    Emitter des IGBT
    2
    Gate des IGBT
    3
    Kollektor des IGBT
    4
    Schaltereinrichtung
    5
    Diode
    6
    erste Schaltungskomponente
    7
    stromverstärkende Gatetreiberschaltung
    8
    weitere Schaltungskomponente
    9
    Gatewiderstand
    10
    Zenerdiode
    11
    weitere Schaltereinrichtung
    12
    weitere Diode
    13
    Kurzschlussüberwachungsschaltung
    14
    Komparator
    15
    zusätzliche Schaltungskomponente
    16
    spannungsbegrenzendes Element
    17
    PID-Regelschaltung
    18
    Vergleichsschaltung
    19
    Spannungsmesseinrichtung
    20
    Referenzspannungsquelle
    21
    Treiberschaltung
    22
    parallel geschaltete Schaltungskomponente
    23
    zusätzliche Schaltereinrichtung
    24
    zusätzliche Zenerdiode
    25
    weiteres spannungsbegrenzendes Element
    26
    weitere zusätzliche Schaltungskomponente
    A, B, C,
    Zeitbereiche während des Abschaltens eines IGBT
    D, E, F,
    G

Claims (27)

  1. Entsättigungsschaltung für einen IGBT, umfassend: – eine Diode (5); – eine Schaltereinrichtung (4) mit einem ersten und einem zweiten Ein-/Ausgang sowie einem Steuersignaleingang zum Ein- und Ausschalten einer elektrisch leitenden Verbindung zwischen dem ersten und dem zweiten Ein-/Ausgang, wobei – die Diode (5) und die Schaltereinrichtung (4) in Serie liegen und Elemente einer ersten Schaltungskomponente (6) ausbilden, die zwischen ein Gate (2) und einen Kollektor (3) des IGBT geschaltet ist und eine Kathode der Diode (5) zum Kollektor (3) und eine Anode der Diode (5) zum Gate (2) gerichtet sind.
  2. Entsättigungsschaltung für einen IGBT nach Anspruch 1, dadurch gekennzeichnet, dass die Diode (5) ein als Diode verschaltetes aktives Halbleiterbauelement ist.
  3. Entsättigungsschaltung für einen IGBT nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass in Serie zur ersten Schaltungskomponente (6) eine stromverstärkende Gatetreiberschaltung (7) als weitere Schaltungskomponente (8) zwischen die erste Schaltungskomponente (6) und das Gate (2) geschaltet ist.
  4. Entsättigungsschaltung für einen IGBT nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass in Serie zur ersten Schaltungskomponente (6) eine Zenerdiode (10) als weitere Schaltungskomponente (8) zwischen die erste Schaltungskomponente (6) und das Gate (2) geschaltet ist, wobei die Zenerdiode (10) mit ihrer Anode zum Gate (2) und mit ihrer Kathode zum Kollektor (3) gerichtet ist.
  5. Entsättigungsschaltung für einen IGBT nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass – in Serie zur ersten Schaltungskomponente (6) eine weitere Schaltungskomponente (8) zwischen das Gate (2) und die erste Schaltungskomponente (6) geschaltet ist, wobei die weitere Schaltungskomponente (8) eine Serienschaltung aus einer stromverstärkenden Gatetreiberschaltung (7) und einer Zenerdiode aufweist (10); und – eine Anode der Zenerdiode (10) zum Gate (2) und eine Kathode der Zenerdiode (10) zum Kollektor (3) gerichtet sind.
  6. Entsättigungsschaltung für einen IGBT nach einem der Ansprüche 3 oder 5, dadurch gekennzeichnet, dass – die stromverstärkende Gatetreiberschaltung (7) einen ersten Versorgungsspannungsanschluss für einen positiven Pol einer Versorgungsspannungsquelle und einen zweiten Versorgungsspannungsanschluss für einen negativen Pol der Versorgungsspannungsquelle aufweist; und – eine weitere Schaltereinrichtung (11) zwischen dem zweiten Versorgungsspannungsanschluss und einem zwischen erster und weiterer Schaltungseinrichtung (6, 8) liegenden Bezugspunkt geschaltet ist.
  7. Entsättigungsschaltung für einen IGBT nach einem der vorangehenden Ansprüche, gekennzeichnet durch eine Verzögerungsschaltungseinrichtung zum Verzögern des Einschaltens des IGBT um eine Verzögerungszeit sowie zum Verzögern des Ausschaltens des IGBT um die Verzögerungszeit.
  8. Entsättigungsschaltung für einen IGBT nach Anspruch 7, dadurch gekennzeichnet, dass die Verzögerungsschaltungseinrichtung ein Monoflop zur Erzeugung der Verzögerung beim Ein- und Ausschalten des IGBT aufweist.
  9. Entsättigungsschaltung für einen IGBT nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass ein Anschluss eines Elements innerhalb der ersten Schaltungskomponente (6) mit einem Eingangsanschluss einer Kurzschlussüberwachungsschaltung (13) leitend verbunden ist.
  10. Entsättigungsschaltung für einen IGBT nach Anspruch 9, dadurch gekennzeichnet, dass der Anschluss die Kathode der Diode (5) ist.
  11. Entsättigungsschaltung für einen IGBT nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass eine ein spannungsbegrenzendes Element (16) aufweisende zusätzliche Schaltungskomponente (15) zur Spannungsbegrenzung zwischen dem Gate (2) und einem Emitter (1) des IGBT zwischen einen Anschluss eines Elements innerhalb der ersten Schaltungskomponente (6) und den Emitter (1) geschaltet ist.
  12. Entsättigungsschaltung für einen IGBT nach Anspruch 11, dadurch gekennzeichnet, dass das spannungsbegrenzende Element (16) eine Diode mit einer Durchbruchsspannung im Bereich von 10 bis 14V ist.
  13. Entsättigungsschaltung für einen IGBT nach einem der vorangehenden Ansprüche, gekennzeichnet durch eine wenigstens zur ersten Schaltereinrichtung (4) parallel geschaltete Schaltungskomponente (22), wobei die parallel geschaltete Schaltungskomponente (22) eine Serienschaltung aus einer zusätzlichen Schaltereinrichtung (23) und einer zusätzlichen Zenerdiode (24) als Schaltungselemente aufweist und die zusätzliche Zenerdiode mit ihrer Anode zum Kollektor (3) und mit ihrer Kathode zum Gate (2) gerichtet ist.
  14. Entsättigungsschaltung für einen IGBT nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass eine ein weiteres spannungsbegrenzendes Element (25) aufweisende weitere zusätzliche Schaltungskomponente (26) zur Spannungsbegrenzung zwischen dem Gate (2) und einem Emitter (1) des IGBT zwischen einen Anschluss eines Schaltungselements innerhalb der parallel geschalteten Schaltungskomponente (22) und den Emitter (1) geschaltet ist.
  15. Entsättigungsschaltung für einen IGBT umfassend: eine PID-Regelschaltung (17) zum Regeln einer Spannung zwischen einem Kollektor (3) und einem Emitter (1) des IGBT auf einen bestimmten Sollwert, wobei ein Ausgang der PID-Regelschaltung (17) mit einer Gatetreiberschaltung (21) zum Ansteuern des Gates verbunden ist und ein Eingang der PID-Regelschaltung (17) mit einem Ausgang einer Vergleichsschaltung (18) verbunden ist, wobei die Vergleichsschaltung (18) an einem ersten ihrer Eingänge mit einem Ausgang einer Spannungsmesseinrichtung (19) zum Messen einer Spannung am Kollektor (3) und an einem zweiten ihrer Eingänge mit einer den bestimmten Sollwert ausgebenden Referenzspannungsquelle (20) verbunden ist
  16. Entsättigungsschaltung für einen IGBT nach Anspruch 15, gekennzeichnet durch eine Schaltereinrichtung zum Kurzschließen der Referenzspannungsquelle (20).
  17. Integrierte Schaltung mit einer Entsättigungsschaltung nach einem der vorangehenden Ansprüche, gekennzeichnet durch zwei über einen kernlosen Transformator gekoppelte Halbleiterchips.
  18. Verfahren zur Entsättigung eines IGBT mit einer Entsättigungsschaltung nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass die Schaltereinrichtung (4) zur Entsättigung eingeschaltet wird und außerhalb einer Entsättigungszeitdauer ausgeschaltet bleibt.
  19. Verfahren nach Anspruch 18, dadurch gekennzeichnet, dass – erste Energieverluste durch eine erhöhte Kollektorspannung während der Entsättigung vor dem Abschalten in Abhängigkeit von der Entsättigungszeitdauer ermittelt werden; – zweite Energieverluste während des Abschaltens in Abhängigkeit von der Entsättigungszeitdauer einer vorangegangenen Entsättigung ermittelt werden; und – die Entsättigungszeitdauer für die Entsättigung während eines Betriebs des IGBT auf einen Wert festgelegt wird, bei dem eine Summe aus ersten und zweiten Energieverlusten minimal ist.
  20. Verfahren zur Entsättigung eines IGBT mit einer Entsättigungsschaltung nach einem der Ansprüche 13 oder 14, dadurch gekennzeichnet, dass eine Vorentsättigung mit einer Spannung zwischen Kollektor und Emitter im Bereich von 5V bis 8V für eine Dauer im Bereich von 2 bis 15μs durch Einschalten der zusätzlichen Schaltereinrichtung (23) und Ausschalten der Schaltereinrichtung (4) durchgeführt wird, wonach die zusätzliche Schaltereinrichtung (23) ausgeschaltet wird und die Schaltereinrichtung (4) für eine Dauer im Bereich von 0.1 bis 10μs eingeschaltet wird.
  21. Verfahren zur Entsättigung eines IGBT mit einer Entsättigungsschaltung nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass die Entsättigungsschaltung während einer gesamten Leitphase des IGBT aktiviert bleibt.
  22. Verfahren zur Entsättigung eines IGBT mit einer Entsättigungsschaltung nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, dass mit zunehmendem Laststrom des IGBT eine Höhe der Kollektorspannung während der Entsättigung und/oder die Entsättigungszeitdauer verringertt wird.
  23. Verfahren zur Entsättigung eines IGBT mit einer Entsättigungsschaltung nach Anspruch 6, dadurch gekennzeichnet, dass die weitere Schaltereinrichtung (11) zu Beginn der Entsättigung für eine im Vergleich zu einer Entsättigungszeitdauer kleineren Dauer angeschaltet wird und außerhalb dieser ausgeschaltet bleibt.
  24. Verfahren zur Entsättigung eines IGBT mit einer Entsättigungsschaltung nach einem der Ansprüche 9 oder 10, dadurch gekennzeichnet, dass bei Detektion eines Kurzschlusses zum Abschalten des IGBT eine Spannung am Gate (2) für eine Dauer im Bereich von 100ns bis 10 μs mit einem Wert im Bereich von 10 bis 14V angelegt wird bevor die Entsättigung durchgeführt wird.
  25. Verfahren zur Entsättigung eines IGBT mit einer Entsättigungsschaltung nach einem der Ansprüche 11 oder 12, dadurch gekennzeichnet, dass bei Detektion eines Kurzschlusses zum Abschalten des IGBT die Schaltereinrichtung (4) der ersten Schaltungskomponente (6) eingeschaltet wird.
  26. Verfahren nach einem der Ansprüche 24 oder 25, dadurch gekennzeichnet, dass die bei Detektion eines Kurzschlusses eingeleiteten Verfahrensschritte bei jedem Abschaltvorgang durchgeführt werden.
  27. Verfahren zur Entsättigung eines IGBT mit einer Entsättigungsschaltung nach Anspruch 16, dadurch gekennzeichnet, dass die Referenzspannungsquelle (20) während einer Leitphase des IGBT außerhalb einer Entsättigungszeitdauer durch die Schaltereinrichtung kurzgeschlossen bleibt und während einer Sperrphase des IGBT auf einen oberhalb möglicher IST-Werte der Spannung zwischen Kollektor und Emitter liegenden Maximalwert geschaltet wird.
DE102005045099A 2005-09-21 2005-09-21 Entsättigungsschaltung mit einem IGBT Expired - Fee Related DE102005045099B4 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE102005045099A DE102005045099B4 (de) 2005-09-21 2005-09-21 Entsättigungsschaltung mit einem IGBT
US11/534,045 US7724065B2 (en) 2005-09-21 2006-09-21 Desaturation circuit for an IGBT

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102005045099A DE102005045099B4 (de) 2005-09-21 2005-09-21 Entsättigungsschaltung mit einem IGBT

Publications (2)

Publication Number Publication Date
DE102005045099A1 true DE102005045099A1 (de) 2006-08-10
DE102005045099B4 DE102005045099B4 (de) 2011-05-05

Family

ID=36709846

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102005045099A Expired - Fee Related DE102005045099B4 (de) 2005-09-21 2005-09-21 Entsättigungsschaltung mit einem IGBT

Country Status (2)

Country Link
US (1) US7724065B2 (de)
DE (1) DE102005045099B4 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7466185B2 (en) 2006-10-23 2008-12-16 Infineon Technologies Ag IGBT-Driver circuit for desaturated turn-off with high desaturation level
DE102009034777A1 (de) * 2009-07-25 2011-01-27 Semikron Elektronik Gmbh & Co. Kg Verfahren zu Herstellung und Ansteuerung eines regelbaren Widerstandsbauelement und dessen Verwendung
WO2011026772A3 (de) * 2009-09-02 2011-11-24 Robert Bosch Gmbh Vorrichtung zum ansteuern eines elektromotors mit einem gepulsten ansteuersignal
EP2562918A1 (de) * 2011-08-23 2013-02-27 Bombardier Transportation GmbH Schaltungsanordnung mit elektronischem Schalter
WO2015024885A2 (de) * 2013-08-22 2015-02-26 Siemens Aktiengesellschaft Elektronischer schalter mit einem igbt
CN106645900A (zh) * 2017-01-06 2017-05-10 四川埃姆克伺服科技有限公司 一种igbt饱和压降检测电路
DE102021112066A1 (de) 2021-05-10 2022-11-10 Bayerische Motoren Werke Aktiengesellschaft Wandlervorrichtung und Verfahren zum Betreiben eines Wechselrichters sowie Kraftfahrzeug mit einer Wandlervorrichtung

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8503146B1 (en) * 2007-10-16 2013-08-06 Fairchild Semiconductor Corporation Gate driver with short-circuit protection
US7969701B1 (en) * 2009-10-02 2011-06-28 Rockwell Collins, Inc. Fast react protection circuit for switched mode power amplifiers
US20120248864A1 (en) * 2011-02-28 2012-10-04 General Electric Company, A New York Corporation System and Method for Operating Inverters
US8760218B2 (en) 2012-05-07 2014-06-24 General Electric Company System and method for operating an electric power converter
US9595889B2 (en) 2013-02-15 2017-03-14 Eaton Corporation System and method for single-phase and three-phase current determination in power converters and inverters
DK177863B1 (en) * 2013-03-27 2014-10-13 Electronic As Kk Intelligent gate drive unit
US11641162B2 (en) * 2013-04-09 2023-05-02 Texas Instruments Incorporated Circuits and methods for generating a supply voltage for a switching regulator
US9368958B2 (en) * 2013-10-03 2016-06-14 Nxp B.V. Sensor controlled transistor protection
EP2887546B1 (de) * 2013-12-23 2018-11-07 ABB Schweiz AG Überwachungsverfahren und Vorrichtung für Leistungshalbleiterschalter
JP6610154B2 (ja) * 2015-10-15 2019-11-27 Tdk株式会社 スイッチ駆動装置およびスイッチ駆動方法
US9634657B1 (en) 2015-12-01 2017-04-25 General Electric Company System and method for overcurrent protection for a field controlled switch
EP3206286A1 (de) 2016-02-10 2017-08-16 GE Energy Power Conversion Technology Ltd Gate voltage overdrive for short term peak current control of igbt switches
ES2916215T3 (es) 2016-08-01 2022-06-29 Ge Energy Power Conversion Technology Ltd Procedimiento y dispositivo para excitar un interruptor de semiconductor de potencia reconectable, controlado por tensión
EP3503365B1 (de) 2017-12-22 2020-06-10 GE Energy Power Conversion Technology Limited Verfahren und einrichtung zur ansteuerung von mosfet-schaltmodulen
CN113691246A (zh) * 2020-05-18 2021-11-23 宁波奥克斯电气股份有限公司 一种功率开关管的过流保护电路和过流保护方法
JP2023042412A (ja) 2021-09-14 2023-03-27 株式会社東芝 電子回路、方法、電子システム及びコンピュータプログラム
WO2024009133A1 (en) * 2022-07-07 2024-01-11 Power Integrations, Inc. Short circuit protection of power switches
US11876509B1 (en) * 2022-07-28 2024-01-16 Infineon Technologies Ag Gate control method of MOS-gated power device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6395726A (ja) * 1986-10-13 1988-04-26 Fuji Electric Co Ltd Igbtの駆動回路
JPH09102735A (ja) * 1995-10-05 1997-04-15 Hitachi Ltd Igbtの保護回路
EP0898811B1 (de) * 1996-05-15 2001-09-26 Cambridge University Technical Services Limited Ansteuerschaltung für einen bipolartransistor mit isoliertem gate
DE10206392A1 (de) * 2002-02-15 2003-09-04 Siemens Ag Verfahren und Vorrichtung zur Optimierung des Abschaltvorgangs eines nichteinrastenden, abschaltbaren Leistungs-Halbleiterschalters
DE4401123B4 (de) * 1993-01-15 2005-02-03 Legrand (S.A.), Limoges Integrierter statischer Schutzschalter zur Kopplung einer Last an eine elektrische Quelle mit einem bipolaren Transistor mit isoliertem Gate

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4246501A (en) * 1978-09-21 1981-01-20 Exxon Research & Engineering Co. Gated back-clamped transistor switching circuit
EP0354435B1 (de) * 1988-08-12 1995-12-20 Hitachi, Ltd. Treiberschaltung für Transistor mit isoliertem Gate; und deren Verwendung in einem Schalterkreis, einer Stromschalteinrichtung, und einem Induktionsmotorsystem
US4949213A (en) * 1988-11-16 1990-08-14 Fuji Electric Co., Ltd. Drive circuit for use with voltage-drive semiconductor device
JP3084982B2 (ja) * 1992-11-25 2000-09-04 富士電機株式会社 半導体装置
DE19838389C1 (de) * 1998-08-24 2000-03-09 Siemens Ag Verfahren und Vorrichtung zur Steuerung eines abschaltbaren Stromrichterventils mit der Reihenschaltzahl Zwei oder größer
DE10215363A1 (de) * 2002-04-08 2003-10-30 Eupec Gmbh & Co Kg Schaltungsanordnung zum Ansteuern eines Halbleiterschalters
US6882196B2 (en) * 2002-07-18 2005-04-19 Sun Microsystems, Inc. Duty cycle corrector
JP4455972B2 (ja) * 2004-10-08 2010-04-21 三菱電機株式会社 半導体装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6395726A (ja) * 1986-10-13 1988-04-26 Fuji Electric Co Ltd Igbtの駆動回路
DE4401123B4 (de) * 1993-01-15 2005-02-03 Legrand (S.A.), Limoges Integrierter statischer Schutzschalter zur Kopplung einer Last an eine elektrische Quelle mit einem bipolaren Transistor mit isoliertem Gate
JPH09102735A (ja) * 1995-10-05 1997-04-15 Hitachi Ltd Igbtの保護回路
EP0898811B1 (de) * 1996-05-15 2001-09-26 Cambridge University Technical Services Limited Ansteuerschaltung für einen bipolartransistor mit isoliertem gate
DE10206392A1 (de) * 2002-02-15 2003-09-04 Siemens Ag Verfahren und Vorrichtung zur Optimierung des Abschaltvorgangs eines nichteinrastenden, abschaltbaren Leistungs-Halbleiterschalters

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Patent Abstracts of Japan & JP 63095726 A, 26.04.88 *
Patent Abstracts of Japan, 63095726 A, 26.04.88

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7466185B2 (en) 2006-10-23 2008-12-16 Infineon Technologies Ag IGBT-Driver circuit for desaturated turn-off with high desaturation level
US7768337B2 (en) 2006-10-23 2010-08-03 Infineon Technologies Ag IGBT-driver circuit for desaturated turn-off with high desaturation level
DE102009034777A1 (de) * 2009-07-25 2011-01-27 Semikron Elektronik Gmbh & Co. Kg Verfahren zu Herstellung und Ansteuerung eines regelbaren Widerstandsbauelement und dessen Verwendung
DE102009034777B4 (de) * 2009-07-25 2015-12-10 Semikron Elektronik Gmbh & Co. Kg Verfahren zu Herstellung eines regelbaren Widerstandsbauelements und dessen Verwendung
WO2011026772A3 (de) * 2009-09-02 2011-11-24 Robert Bosch Gmbh Vorrichtung zum ansteuern eines elektromotors mit einem gepulsten ansteuersignal
EP2562918A1 (de) * 2011-08-23 2013-02-27 Bombardier Transportation GmbH Schaltungsanordnung mit elektronischem Schalter
WO2015024885A2 (de) * 2013-08-22 2015-02-26 Siemens Aktiengesellschaft Elektronischer schalter mit einem igbt
WO2015024885A3 (de) * 2013-08-22 2016-05-26 Siemens Aktiengesellschaft Elektronischer schalter mit einem igbt
CN106645900A (zh) * 2017-01-06 2017-05-10 四川埃姆克伺服科技有限公司 一种igbt饱和压降检测电路
DE102021112066A1 (de) 2021-05-10 2022-11-10 Bayerische Motoren Werke Aktiengesellschaft Wandlervorrichtung und Verfahren zum Betreiben eines Wechselrichters sowie Kraftfahrzeug mit einer Wandlervorrichtung

Also Published As

Publication number Publication date
US20070070567A1 (en) 2007-03-29
US7724065B2 (en) 2010-05-25
DE102005045099B4 (de) 2011-05-05

Similar Documents

Publication Publication Date Title
DE102005045099B4 (de) Entsättigungsschaltung mit einem IGBT
DE102007027505B3 (de) Ansteuerschaltkreis für einen High-Side-Halbleiterschalter zum Schalten einer Versorgungsspannung
EP2412096B1 (de) Jfet-mosfet kaskodeschaltung
DE69011189T2 (de) Treiber für Hochvolt-Halbbrücken-Schaltkreise.
EP1728324B1 (de) Ansteuerschaltung zum ansteuern einer leistungselektronischen schaltung sowie verfahren hierzu
DE102012207155B4 (de) Schaltungsanordnung zum Ansteuern eines Halbleiter-Schaltelements
DE102014108451B3 (de) Schaltung und Verfahren zum Ansteuern eines Leistungshalbleiterschalters
EP3057231A1 (de) Steuerschaltung und Steuerverfahren zum Anschalten eines Leistungshalbleiterschalters
WO2006134009A1 (de) Schaltungsanordnung zum schalten einer last
EP0756782B1 (de) Gleichstrom-steuerschaltung
DE102016122003A1 (de) Ansteuerschaltung
EP2501042A1 (de) Ansteurschaltung und Verfahren zur Ansteuerung eines Leistungshalbleiterschalters
DE102005012151B3 (de) Verfahren und Schaltungsanordnung zur Ein- und Ausschaltsteuerung von Leistungshalbleiterschaltern
EP3317967B1 (de) Schaltungsanordnung zur ansteuerung eines transistors
EP3552310B1 (de) Steuereinrichtung zum ansteuern eines bipolaren schaltbaren leistungshalbleiterbauelements, halbleitermodul sowie verfahren
EP1063772A1 (de) Treiberschaltung zum Ansteuern einer Halbbrücke
DE60005758T2 (de) Ansteuerschaltung für einen Leistungshalbleiterschalter
DE10143432C1 (de) Treiberschaltung und Ansteuerverfahren für einen feldgesteuerten Leistungsschalter
WO2015039733A1 (de) Verbesserte ansteuerung zum einschalten von igbt
DE102007036728B3 (de) Treiberschaltung zur Ansteuerung eines Leistungshalbleiterschalters
DE10323445B4 (de) Direkte Umkommutierung zwischen Leistungsbauteilen
DE10206392A1 (de) Verfahren und Vorrichtung zur Optimierung des Abschaltvorgangs eines nichteinrastenden, abschaltbaren Leistungs-Halbleiterschalters
DE102015114284B3 (de) Verfahren und ansteuerschaltung zum ansteuern eines transistors
EP3939162B1 (de) Adaptive schaltgeschwindigkeitssteuerung von leistungshalbleitern
DE10035387B4 (de) Stromschaltanordnung

Legal Events

Date Code Title Description
OAV Publication of unexamined application with consent of applicant
OP8 Request for examination as to paragraph 44 patent law
8127 New person/name/address of the applicant

Owner name: INFINEON TECHNOLOGIES AG, 81669 MUENCHEN, DE

R082 Change of representative
R020 Patent grant now final

Effective date: 20110806

R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee