DE102005021332A1 - Kompositmaterialien mit geringer Schrumpfkraft - Google Patents
Kompositmaterialien mit geringer Schrumpfkraft Download PDFInfo
- Publication number
- DE102005021332A1 DE102005021332A1 DE102005021332A DE102005021332A DE102005021332A1 DE 102005021332 A1 DE102005021332 A1 DE 102005021332A1 DE 102005021332 A DE102005021332 A DE 102005021332A DE 102005021332 A DE102005021332 A DE 102005021332A DE 102005021332 A1 DE102005021332 A1 DE 102005021332A1
- Authority
- DE
- Germany
- Prior art keywords
- composite material
- material according
- dollar
- dental
- coarse
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K6/00—Preparations for dentistry
- A61K6/70—Preparations for dentistry comprising inorganic additives
- A61K6/71—Fillers
- A61K6/77—Glass
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K6/00—Preparations for dentistry
- A61K6/80—Preparations for artificial teeth, for filling teeth or for capping teeth
- A61K6/884—Preparations for artificial teeth, for filling teeth or for capping teeth comprising natural or synthetic resins
- A61K6/887—Compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K6/00—Preparations for dentistry
- A61K6/80—Preparations for artificial teeth, for filling teeth or for capping teeth
- A61K6/884—Preparations for artificial teeth, for filling teeth or for capping teeth comprising natural or synthetic resins
- A61K6/891—Compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- A61K6/893—Polyurethanes
Landscapes
- Health & Medical Sciences (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Plastic & Reconstructive Surgery (AREA)
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Dental Preparations (AREA)
Abstract
Mit Kompositmaterialien mit einem Gesamtfüllstoffgehalt von 80 bis 90 Gew.-%, enthaltend DOLLAR A A) in der Füllstoffkomponente 0,5 bis 10 Gew.-% nicht-agglomerierte Nanofüller mit Partikelgrößen von 1 bis 50 nm, DOLLAR A B) in der Füllstoffkomponente mindestens 60 Gew.-% eines Füllstoffgemischs aus 50 bis 90% grob- und 10 bis 50% feinteiligen Dentalgläsern, welche ein Größenverhältnis, bezogen auf die mittlere Partikelgröße (d¶50¶-Wert), von DOLLAR A grobteilig zu feinteilig = > 1 : 4 bis 1 : 30 DOLLAR A aufweisen, DOLLAR A C) als Monomerkomponente eine Monomermischung aus DOLLAR A i. 60 bis 80% Bis-GMA oder TCD-di-HEMA oder TCD-di-HEA, DOLLAR A ii. 10 bis 18% UDMA, DOLLAR A iii. Rest TEDMA und/oder multifunktionelle Vernetzer, DOLLAR A D) bis 1 Gew.-% Photoinitiator(en), DOLLAR A E) optional in der Füllstoffkomponente mindestens ein weiteres Dentalglas mit sich von den grob- und feinteiligen Dentalgläsern unterscheidender Partikelgröße, DOLLAR A können der Polymerisationsschrumpf bis auf < 1,6 Vol.-% (gemessen nach der Bonded-Disc-Methode - Dental Materials (2004) 20, 88-95) und DOLLAR A die Schrumpfkraft (gemessen nach der photoelastischen Methode; Dental Materials (2004) 20, 313-321) bis auf < 3,5 MPa (gemessen 24 h nach Polymerisation) DOLLAR A gesenkt werden.
Description
- Die Erfindung betrifft Kompositmaterialien mit geringer Schrumpfkraft.
- Lichthärtende Werkstoffe auf Acrylat-/Methacrylatbasis erfahren bei radikalischer Polymerisation aufgrund des sich bei der Polymerisation reduzierenden Molekülabstandes und der damit einhergehenden Dichteerhöhung einen Volumenschrumpf. Dieser kann durch Zugabe von anorganischen Füllstoffen wie z.B. Dentalgläsern oder pyrogenen Kieselsäuren deutlich reduziert werden, da sich ein reduzierter Monomeranteil pro Volumeneinheit ergibt und die Füllstoffe während der Polymerisation nicht schrumpfen.
- Bei Dentalanwendungen ist der Volumenschrumpf von großer klinischer Bedeutung, da durch die Materialschrumpfung Zugkräfte auf die Kavitätenwand übertragen werden. Bei Überschreitung einer Maximalkraft kann diese Schrumpfkraft im Extremfall zur Ablösung von der Kavitätenwand führen. In den dadurch entstandenen Randspalt können Bakterien eindringen und in der Folge Sekundärkaries entstehen.
- Betrachtet man den zeitlichen Verlauf der Schrumpfkraft, zeigt sich folgender typischer Befund:
Direkt nach der Polymerisation ergibt sich durch die Volumenschrumpfung ein Initialwert für die Schrumpfkraft, der dann durch Nachpolymerisation innerhalb von ca. 24 h auf einen Maximalwert ansteigt. Anschließend kommt es durch Wasseraufnahme (im Labor bei einer Lagerung in Wasser bzw. im Mund aus dem Speichel) nach einigen Tagen bis Wochen zu einer leichten Volumenexpansion des Komposits; hierdurch können die Spannungskräfte wieder relaxieren und werden auf ein niedrigeres Niveau zurückgeführt. - Hieraus ergibt sich, dass die entscheidende Einflussgröße der maximale Schrumpfspannungswert nach ca. 24 h ist, da dieser die maximale Kraftbelastung des Verbundsystems Komposit/Adhäsiv/Zahn darstellt.
- Es hat nicht an Versuchen gefehlt, schrumpfungsarme Dentalmaterialien zur Verfügung zu stellen:
DE 199 05 093 A1 empfiehlt den Einsatz via ringöffnende Metathesepolymerisation (ROMP) härtender, bicyclischer Monomere. LautDE 198 51 038 A1 ist die Schrumpfung durch Zugabe von Acryloylmorpholin, Cumaronharz, Vinylstearat, Polyvinylacetat oder Alkoholtensiden vor der Polymerisation zu bekämpfen. GemäßUS 5,750,590 schrumpfen kationisch polymerisierbare "Oxetane" (Trimethylenoxide) nur in geringem Maß und eignen sich daher ebenfalls für schrumpfreduzierte Dentalmaterialien.US 6,855,197 B2 beschreibt schrumpfreduzierte Füllungswerkstoffe auf Epoxidharzbasis, die nanoskalige anorganische Oxide als Füllstoffe enthalten. GemäßUS 6,709,271 B2 führt die Verwendung einer Füllstoffmischung mit kugelförmigem Füller der Teilchengröße 200–500 nm und Submikron-Füller der Teilchengröße 20–80 nm zu Schrumpf von bis 1,8% nach der Polymerisation. - Der Gegenstand der vorliegenden Anmeldung bezieht sich in erster Linie auf die Schrumpfkraft und deren Reduktion: Neben den oben beispielhaft erörterten werkstofflichen Eigenschaften beeinflussen auch Verarbeitungsparameter die Schrumpfkraft:
- Lichtleistung
- In
DE 199 13 890 A1 wurde ein Lichthärtegerät mit Pulsbetrieb zur Behebung von Schrumpfungskraftproblemen vorgeschlagen. - Polymerisationskinetik: Bei identischem Kompositmaterial können geringere Schrumpfkräfte durch eine anfänglich langsamere Polymerisation bei geringerer Lichtleistung und späterer Anhebung der Lichtleistung auf den Maximalwert erzielt werden (Soft-Start Polymerisation). Durch die geringere Lichtleistung zu Beginn bleibt das Komposit-Material länger fließfähig und kann damit Spannungen besser kompensieren und abbauen (J. Esthet. Restor. Dent. (2003) 15, 93–104). In
US 20050065227 A1 wird vermutet, dass bei Verwendung mulitfunktioneller Photoinitiatoren die frühen Stufen des Schrumpfs stattfinden, solange das Material noch elastisch ist. Das soll schließlich zu geringeren Schrumpfspannungen führen. - Geometrie der Versorgung: Schrumpfkräfte können durch die Anwendung einer Inkrementaltechnik beim Aufbau der Versorgung minimiert werden (
US 6,783,810 B2 ). Je mehr Schichten allerdings einzeln gehärtet werden müssen, desto mehr Zeit benötigt der behandelnde Zahnarzt. - Ziel der vorliegenden Erfindung ist die Bereitstellung eines Kompositmaterials für Dentalanwendungen, welches aufgrund seiner werkstofflichen Eigenschaften die Gefahr der Ablösung der Versorgung von der Kavitätenwand durch Verminderung der Maximalkraft der Schrumpfspannung deutlich reduziert.
- Erfindungsgemäß wird diese Aufgabe durch folgende Maßnahmen gelöst:
- – Durch nicht-agglomerierte Nanofüller (z.B. SiO2, ZrO2, TiO2, Al2O3) mit Partikelgrößen < 50 nm als Füllstoffkomponente kann im Vergleich zu herkömmlichen Produkten wie z.B. Aerosilen ein deutlich höherer Gesamtfüllstoffgehalt (> 80 Gew.% bis zu 95 Gew.%) erreicht werden, damit sinkt der Anteil an schrumpffähiger Monomermatrix.
- – Durch ein Füllstoffgemisch aus grob- und feinteiligen Dentalgläsern, welche ein Größenverhältnis von > 1:4 bis 1:30, vorzugsweise > 1:4 bis 1:20, besonders ca. 1:5 bis 1:10 aufweisen, lässt sich eine bessere Packung der Füllstoffpartikel und damit ein höherer Füllstoffanteil erzielen. Der höhere Füllstoffanteil ergibt einen geringeren Anteil an schrumpfungsfähiger Monomermatrix (s.o.). Der Anteil an feinteiligen Dentalgläsern darf dabei max. 40 % an der Füllstoffmischung betragen.
- – In Dentalanwendungen wird üblicherweise eine Monomermischung bestehend aus Bis-GMA und TEDMA verwendet. Bis-GMA wird in einem Anteil von 60–80 % und TEDMA in einem Anteil von 20–40 % verwendet. Hierbei stellt das Bis-GMA die niedrigschrumpfende Hauptkomponente dar, welche allerdings aufgrund der sehr hohen Viskosität mit einem hochschrumpfenden Verdünner (TEDMA) versetzt werden muss. Durch die überwiegende Substitution des hochschrumpfenden Verdünners TEDMA durch UD-MA (Urethandimethacrylat), welches deutlich unreaktiver ist, wird der Volumenschrumpf reduziert. Überraschenderweise steigt trotz der verminderten Reaktivität des UDMA und der als Folge anzunehmenden verminderten Einbindung in das Polymernetzwerk die Löslichkeit nicht an.
- – Durch die Verwendung von Tricyclodecar-Derivaten wie z.B. SR 833S (Sartomer), Plex 6759-O (Röhm) CD-di-HEMA (Bis(methacryloyloxymethyl)tricyclo[5.2.1.02,6]decan) oder TCD-di-HEA(Bis(acryloyloxymethyl)tricyclo[5.2.1.02,6]decan)2-Propenoicacid, (octahydro-4,7-methane-1H-indene-5-diyl)bis(methyleneiminocarbonyloxy-2,1-ethanediyl)ester oder das analoge HEMA-Derivat(TCD-di-HEMA) als Hauptkomponente(n) anstelle von Bis-GMA lassen sich ebenfalls die erfindungsgemäßen schrumpf- und schrumpfkraftreduzierten Dentalmaterialien herstellen.
- – Zusätzlich zu diesen Maßnahmen kann optional noch der Gehalt an Photoinitiatoren reduziert werden z.B. auf 0,3 oder 0,1 Gew.%. Dadurch verringert sich der Anteil an umgesetzten Monomeren weiter und damit auch der Polymerisationsschrumpf.
- Die Erfindung betrifft demgemäß Kompositmaterialien mit einer Schrumpfkraft von < 4,0, vorzugsweise < 3,75, besonders < 3.5 MPa, gemessen 24 h nach der Polymerisation nach der photoelastischen Methode gemäß Dental Materials 20, 313-321(2004), besonders Kompositmaterialien mit einem Gesamtfüllstoffgehalt von 80 bis 95 Gew.% enthaltend
- A) in der Füllstoffkomponente 0,5 bis 10 Gew % nicht-agglomerierte Nanofüller mit Partikelgrößen von 1 bis 50 nm;
- B) in der Füllstoffkomponente mindestens 60 Gew.% eines Füllstoffgemischs aus 50 bis 90 grob- und 10 bis 50 % feinteiligen Dentalgläsern, welche ein Größenverhältnis, bezogen auf die mittlere Partikelgröße (d50-Wert), von grobteilig zu feinteilig = > 1:4 bis 1:30 aufweisen;
- C) als Monomerkomponente eine Monomermischung aus i. 60–80 % Bis-GMA oder TCD-di-HEMA oder TCD-di-HEA ii. 10 bis 18 % UDMA iii. Rest TEDMA und/oder multifunktionelle Vernetzer
- D) bis 1 % Initiator(en) und
- E) optional in der Füllstoffkomponente mindestens ein weiteres Dentalglas mit sich von den grob- und feinteiligen Dentalgläsern unterscheidender Partikelgröße.
- Nicht agglomerierte Nanofüller sind an sich bekannt und z.B. in WO 0130305 A1 oder am Beispiel von SiO2 in
DE 196 17 931 A1 beschrieben. Sie gehören erfindungsgemäß vorzugsweise der Gruppe bestehend aus: SiO2, ZrO2, TiO2, Al2O3 sowie Mischungen aus mindestens zwei dieser Stoffe an. - Sie können – wie in
DE 196 17 931 A1 beschrieben – in organischen Lösungsmitteln dispergiert sein, aber auch in Wasser oder Wasser enthaltenden Lösungsmittelmischungen. - Als Dentalgläser eignen sich besonders Bariumglaspulver und/oder Strontiumglaspulver. Die mittlere Partikelgröße der grobteiligen Dentalgläser beträt vorzugsweise 5–10 μm, insbesondere um 7 μm und die der feinteiligen 0,5 bis 2, insbesondere 1 μm. Optional vorhandene weitere Dentalgläser haben z.B. mittlere Korngrößen von 2–5 oder 10–50 μm.
- Die Füllstoffkomponente kann demnach Dentalgläser mit insgesamt drei oder mehr Kornfraktionen aufweisen. Sie kann auch weitere, herkömmliche, auf dem Dentalgebiet übliche Füllstoffe enthalten, wie etwa Quarz-, Glaskeramik- oder Mischungen davon. Darüber hinaus können die Komposite Füllstoffe zur Erzielung einer erhöhten Röntgenopazität enthalten. Die mittlere Partikelgröße des röntgenopaken Füllstoffs liegt vorzugsweise im Bereich von 100 bis 300 nm, ins besondere 180 bis 300 nm. Als röntgenopake Füllstoffe eignen sich z.B. die in der
DE 35 02 594 A1 beschriebenen Fluoride der Seltenen Erdmetalle, d.h. die Trifluoride der Elemente 57 bis 71. Ein besonders bevorzugt verwendeter Füllstoff ist Ytterbiumfluorid, insbesondere Ytterbiumtrifluorid mit einer mittleren Partikelgröße von etwa 300 nm. Die Menge des röntgenopaken Füllstoffs beträgt vorzugsweise 10 bis 50 Gew.-%, besonders bevorzugt 20 bis 30 Gew.-%, bezogen auf den Gesamtfüllstoffgehalt. - Außerdem können gefällte Mischoxide, wie beispielsweise ZrO2/SiO2, als Füllstoffe eingesetzt werden. Bevorzugt sind Mischoxide mit einer Partikelgröße von 200 bis 300 nm und insbesondere etwa 200 nm. Die Mischoxidpartikel sind vorzugsweise kugelförmig und weisen eine einheitliche Größe auf. Die Mischoxide haben vorzugsweise einen Brechungsindex von 1,52 bis 1,55. Gefällte Mischoxide werden vorzugsweise in Mengen 25 bis 75 Gew.-% und besonders 40 bis 75 Gew.-% verwendet.
- Die Füllstoffe sind zur Verbesserung der Haftung zwischen Füllstoff und organischer Matrix bevorzugt silanisiert. Als Haftvermittler eignet sich besonders alpha – Methacryloxypropyltrimethoxysilan. Die Menge des eingesetzten Haftvermittlers richtet sich nach der Art und BET-Oberfläche des Füllstoffs.
- Als multifunktionelle Vernetzen kommen außer TEDMA und UDMA in Frage: Diethylenglycoldi(meth)acrylat, Decandioldi(meth)acrylat, Trimethylolpropantri(meth)acrylat, Pentaerythrittetra(meth)acrylat, sowie Butandioldi(meth)acrylat, 1,10-Decandioldi(meth)acrylat, 1,12-Dodecandioldi(meth)acrylat.
- Zur Initiierung der Polymerisation enthalten die Komposite einen Polymerisationsinitiator, beispielsweise einen Initiator für die radikalische Polymerisation. Je nach Art des verwendeten Initiators können die Mischungen kalt, durch Licht oder heiß polymerisierbar sein.
- Als Initiatoren für die Heißpolymerisation können die bekannten Peroxide wie Dibenzoylperoxid, Dilauroylperoxid, tert.-Butylperoctoat oder tert.-Butylperbenzoat eingesetzt werden, aber auch alpha, alpha'-Azo-bis(isobutyroethylester), Benzpinakol und 2,2'-Dimethylbenzpinakol sind geeignet.
- Als Photoinitatoren kommen z.B. Benzoinalkylether oder -ester, Benzilmonoketale, Acylphosphinoxide oder aliphatische und aromatische 1.2-Diketoverbindungen, wie beispielsweise 2,2-Diethoxyacetophenon 9,10-Phenanthrenchinon, Diacetyl, Furil, Anisil, 4,4'-Dichlorbenzil und 4,4'-Dialkoxybenzil oder Campherchinon, in Frage. Photoinitiatoren werden vorzugsweise zusammen mit einem Reduktionsmittel verwendet. Beispiele für Reduktionsmittel sind Amine wie aliphatische oder aromatische tertiäre Amine, beispielsweise N,N-Dimethyl-p-toluidin oder Triethanolamin, Cyanethylmethylanilin, Triethylamin, N,N-Dimethylanilin, N-Methyldiphenylamin, N,N-Dimethyl-sym.-xylidin, N,N-3,5-Tetramethylanilin und 4-Dimethylaminobenzoesäureethylester, oder organische Phosphite. Gängige Photoinitiatorsysteme sind z.B. Campherchinon plus Ethyl-4-(N,N-dimethylamino)benzoat, 2-(Ethylhexyl)-4-(N,N-dimethylamino)benzoat oder N,N-Dimethylaminoethylmethacrylat.
- Als Initiator für die durch UV-Licht initiierte Polymerisation eignet sich besonders 2,4,6-Trimethylbenzoyldiphenylphosphinoxid. UV-Photoinitiatoren können allein, in Kombination mit einem Initiator für sichtbares Licht, einem Initiator für die Kalthärtung und/oder einem Initiator für die Heißhärtung eingesetzt werden.
- Als Initiatoren für die Kaltpolymerisation werden Radikale liefernde Systeme, z.B. Benzoyl- bzw. Lauroylperoxid zusammen mit Aminen wie N,N-Dimethyl-sym.-xylidin oder N,N-Dimethyl-p-toluidin verwendet.
- Es können auch dual härtende Systeme verwendet werden, z.B. Photoinitiatoren mit Aminen und Peroxiden.
- Die Initiatoren werden vorzugsweise in Mengen von 0,01 bis 1 Gew.-% bezogen auf die Gesamtmasse der Mischung verwendet.
- Bei der Kaltpolymerisation kann es zweckmäßig sein, wenn das Kompositmaterial aufgeteilt in zwei Komponenten vorliegt, die zur Aushärtung durch Vermischen vorgesehen sind. Es ist auch möglich, das Material so bereitzustellen, dass es sowohl durch Licht als auch durch Vermischen zweier Komponenten zu härten ist.
- Die erfindungsgemäßen Kompositmaterialien weisen bevorzugt einen Polymerisationsschrumpf < 2,0 Vol. %, insbesondere < 1,8 Vol. %, ganz besonders < 1,6 Vol. % (gemessen nach der Bonded-Disc-Methode – Dental Materials (2004) 20, 88–95) auf.
- Erfndungsgemäße Kompositmaterialien zeigen als Dentalmaterialien eine Schrumpfkraft (gemessen nach der photoelastischen Methode; Dental Materials (2004) 20, 313–321) von < 4,0, insbesondere < 3,75, ganz besonders < 3,5 MPa (gemessen 24 h nach Polymerisation).
- Bisherige klassische Dentalmaterialien weisen folgende Schrumpfkräfte auf (gemessen 24 h nach Polymerisation):
Filtek® Supreme (Fa. 3M Espe) 4,23 MPa Grandio® (Fa. Voco) 5,68 MPa Venus® (Fa. Heraeus Kulzer) 5,55 MPa Tetric® Ceram (Fa. Ivoclar Vivadent) 4,35 MPa - Beispiel
-
- Nach 60 sec. Polymerisation unter Licht einer Trans Lux Energy Lampe (Lichtleistung ca. 800 mW/cm2 und Einlagerung 1 h nach Polymerisation in dest. Wasser bei 37 °C) ergeben sich die folgenden Werte:
Schrumpfkraft (24 h): 3,74 MPa - Das Material ist mit diesen Werten den oben erwähnten klassischen Dentalmaterialien überlegen.
Claims (18)
- Kompositmaterial mit einer Schrumpfkraft von < 4,0 MPa, gemessen 24 h nach der Polymerisation nach der photoelastischen Methode gemäß Dental Materials 20, 313–321(2004).
- Kompositmaterial nach Anspruch 1 mit einer Schrumpfkraft < 3,75 MPa.
- Kompositmaterial nach Anspruch 1 mit einer Schrumpfkraft < 3,5 MPa.
- Kompositmaterial mit einem Gesamtfüllstoffgehalt von 80 bis 95 Gew.% enthaltend A) in der Füllstoffkomponente 0,5 bis 10 Gew % nicht-agglomerierte Nanofüller mit Partikelgrößen von 1 bis 50 nm, B) in der Füllstoffkomponente mindestens 60 Gew % eines Füllstoffgemischs aus 50 bis 90 % grob- und 10 bis 50 % feinteiligen Dentalgläsern, welche ein Größenverhältnis, bezogen auf die mittlere Partikelgröße (d50-Wert), von grobteilig zu feinteilig von > 1:4 bis 1:30 aufweisen, C) als Monomerkomponente eine Monomermischung aus i. 60–80 % Bis-GMA oder TCD-di-HEMA oder TCD-di-HEA, ii. 10 bis 18 % UDMA, iii. Rest TEDMA und/oder multifunktionelle Vernetzer, D) bis 1 Gew. % Initiator(en).
- Kompositmaterial nach Anspruch 4, enthaltend D) bis 1 Gew. % Photoinitiator(en) zur Aushärtung mit Licht.
- Kompositmaterial nach Anspruch 4, aufgeteilt in zwei Komponenten, enthaltend D) Initiatoren für die Kalt- oder Heißhärtung zur Aushärtung durch Vermischen.
- Kompositmaterial nach Anspruch 4, enthaltend D) Initiatoren für die Kalt- oder Heißhärtung und zusätzlich Photoinitiatoren zur Aushärtung durch Vermischen in Kombination mit Lichthärtung.
- Kompositmaterial nach Anspruch 4, bei dem das Größenverhältnis grobteilig zu feinteilig von > 1:4 bis 1:20 beträgt.
- Kompositmaterial nach Anspruch 4, bei dem das Größenverhältnis grobteilig zu feinteilig 1:5 bis 1: 10 beträgt.
- Kompositmaterial nach einem der vorstehenden Ansprüche ab Anspruch 4, enthaltend zusätzlich E) in der Füllstoffkomponente mindestens ein weiteres Dentalglas mit sich von den grob- und feinteiligen Dentalgläsern unterscheidender Partikelgröße.
- Kompositmaterial nach Anspruch 4, bei dem die Komponente D zu bis 0,3 Gew.% vorliegt.
- Kompositmaterial nach Anspruch 4, bei dem die Komponente D zu bis 0,1 Gew.% vorliegt.
- Kompositmaterial nach Anspruch 4, bei dem die mittlere Partikelgröße der grobteiligen Dentalgläser 7 μm und der feinteiligen 1 μm beträgt.
- Kompositmaterial nach Anspruch 4, bei dem die Nanofüller der Gruppe bestehend aus SiO2, ZrO2, TiO2, Al2O3 sowie Mischungen aus mindestens zwei dieser Stoffe angehören.
- Kompositmaterial nach einem der vorstehenden Ansprüche, mit einem Polymerisationsschrumpf von < 2,0 Vol. %, gemessen nach der Bonded-Disc-Methode [Dental Materials 20, 88–95 (2004)].
- Kompositmaterial nach Anspruch 15, mit einem Polymerisationsschrumpf von < 1,8 Vol. %.
- Kompositmaterial nach Anspruch 15, mit einem Polymerisationsschrumpf von < 1,6 Vol. %.
- Verwendung eines Kompositmaterials nach einem der vorstehenden Ansprüche als Dentalmaterial.
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102005021332A DE102005021332B4 (de) | 2005-05-04 | 2005-05-04 | Kompositmaterialien mit geringer Schrumpfkraft |
EP06007641A EP1719497B1 (de) | 2005-05-04 | 2006-04-12 | Kompositmaterialien mit geringer Schrumpfkraft |
CNA2006100793920A CN1875909A (zh) | 2005-05-04 | 2006-04-19 | 收缩力微小的复合材料 |
US11/408,534 US7601767B2 (en) | 2005-05-04 | 2006-04-21 | Composite materials having a low shrinkage force |
CA002544991A CA2544991A1 (en) | 2005-05-04 | 2006-04-27 | Composite materials having a low shrinkage force |
JP2006128433A JP5361118B2 (ja) | 2005-05-04 | 2006-05-02 | 少ない収縮力を有する複合材料およびその使用 |
BRPI0601611-1A BRPI0601611A (pt) | 2005-05-04 | 2006-05-04 | materiais compostos com força de contração reduzida |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102005021332A DE102005021332B4 (de) | 2005-05-04 | 2005-05-04 | Kompositmaterialien mit geringer Schrumpfkraft |
Publications (2)
Publication Number | Publication Date |
---|---|
DE102005021332A1 true DE102005021332A1 (de) | 2006-11-09 |
DE102005021332B4 DE102005021332B4 (de) | 2008-02-28 |
Family
ID=36764683
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE102005021332A Active DE102005021332B4 (de) | 2005-05-04 | 2005-05-04 | Kompositmaterialien mit geringer Schrumpfkraft |
Country Status (7)
Country | Link |
---|---|
US (1) | US7601767B2 (de) |
EP (1) | EP1719497B1 (de) |
JP (1) | JP5361118B2 (de) |
CN (1) | CN1875909A (de) |
BR (1) | BRPI0601611A (de) |
CA (1) | CA2544991A1 (de) |
DE (1) | DE102005021332B4 (de) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2016931A2 (de) | 2007-07-20 | 2009-01-21 | Heraeus Kulzer GmbH | Dentalkomposite mit niedriger Schrumpfspannung und hoher Biegefestigkeit |
DE102009016025A1 (de) | 2009-04-02 | 2010-10-07 | Voco Gmbh | Kunststoffmodifizierter Glasionomerzement |
EP2374444A2 (de) | 2010-04-12 | 2011-10-12 | VOCO GmbH | Dentale Abdeckmasse |
EP2374445A2 (de) | 2010-04-12 | 2011-10-12 | VOCO GmbH | Dualhärtende, mehrkomponentige dentale Zusammensetzung |
DE102010003883A1 (de) | 2010-04-12 | 2011-10-13 | Voco Gmbh | Lichthärtbares Kompositmaterial |
EP2436365A2 (de) | 2010-09-30 | 2012-04-04 | VOCO GmbH | Kompositmaterial umfassend ein Monomer mit einem polyalicyclischen Strukturelement |
EP2436366A2 (de) | 2010-09-30 | 2012-04-04 | VOCO GmbH | Kompositmaterial umfassend ein Monomer mit einem polyalicyclischen Strukturelement als Versiegelungsmaterial |
EP3011949A1 (de) | 2014-10-23 | 2016-04-27 | VOCO GmbH | Härtbares dentalmaterial |
EP2716276A3 (de) * | 2012-10-05 | 2017-01-18 | VOCO GmbH | Kit und Verfahren zur indirekten chairside Herstellung von Kompositinlays |
DE102017105841A1 (de) | 2017-03-17 | 2018-09-20 | Voco Gmbh | Fräsrohling zur Herstellung einer indirekten dentalen Restauration, entsprechende Verwendungen und Verfahren |
DE102018103415A1 (de) | 2018-02-15 | 2019-08-22 | Voco Gmbh | Dentale Formkörper mit kontinuierlichem Farbverlauf |
DE102018114690A1 (de) | 2018-06-19 | 2019-12-19 | Voco Gmbh | Thermowirksame dentale Kompositzusammensetzung |
EP3760181A1 (de) | 2017-02-15 | 2021-01-06 | VOCO GmbH | Dentaler kompositblock zur herstellung permanenter indirekter restaurationen im cad/cam verfahren |
DE102021134260A1 (de) | 2021-12-22 | 2023-06-22 | Voco Gmbh | Dentale lichthärtbare Zusammensetzung sowie entsprechende Restaurationen, Herstellverfahren und Verwendungen |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007019461A2 (en) * | 2005-08-08 | 2007-02-15 | Angstrom Medica, Inc. | Cement products and methods of making and using the same |
US20100076115A1 (en) * | 2006-12-20 | 2010-03-25 | Heraeus Kulzer Gmbh | Compositions For Dental Composites With Tricyclo[5.2.1.02.6]decane Derivatives |
DE102006060983B4 (de) | 2006-12-20 | 2024-09-05 | Kulzer Gmbh | Verwendung des Tricyclo[5.2.1.02.6]decan-Derivats TCD-di-HEA und entsprechendes Verfahren |
EP2085069A1 (de) | 2008-01-29 | 2009-08-05 | Coltene Whaledent AG | Zahnverbundmaterial |
EP2401998A1 (de) | 2010-07-02 | 2012-01-04 | 3M Innovative Properties Company | Dentale Zusammensetzung, Satz aus Teilen und Verwendung davon |
EP2436363B1 (de) * | 2010-09-30 | 2017-01-18 | VOCO GmbH | Zusammensetzung umfassend ein Monomer mit einem polyalicyclischen Strukturelement zum Füllen und/oder Versiegeln eines Wurzelkanals |
WO2012112321A2 (en) | 2011-02-15 | 2012-08-23 | 3M Innovative Properties Company | Dental compositions comprising mixture of isocyanurate monomer and tricyclodecane monomer |
US9173820B2 (en) | 2011-08-11 | 2015-11-03 | 3M Innovative Properties Company | Dental composition, method of producing and use thereof |
EP2578200B1 (de) * | 2011-10-04 | 2018-03-28 | VOCO GmbH | Zusammensetzungen zum Infiltrieren und/oder Versiegeln von Zahnhartsubstanz und entsprechende Verfahren |
DE102012001978A1 (de) * | 2012-02-02 | 2013-08-08 | Voco Gmbh | Dentale Kompositmaterialien enthaltend tricyclische Weichmacher |
DE102012006152A1 (de) | 2012-03-28 | 2013-10-02 | Heraeus Kulzer Gmbh | Polymerisierbare Dentalkomposite mit verbesserten Gebrauchseigenschaften, Verfahren zur Einstellung der Gebrauchseigenschaften polymerisierbarer Dentalkompositen, und nach diesen Verfahren optimierte Dentalkomposite |
WO2014033280A2 (de) | 2012-08-31 | 2014-03-06 | Kettenbach Gmbh & Co. Kg | Radikalisch polymerisierbares dentalmaterial, gehärtetes produkt und verwendung |
TWI499429B (zh) | 2012-11-26 | 2015-09-11 | Univ Nat Taiwan | 牙齒黏合劑及塗層劑 |
US11452675B2 (en) * | 2017-09-14 | 2022-09-27 | Tokuyama Dental Corporation | Dental curable composition |
US11261267B1 (en) | 2020-12-17 | 2022-03-01 | Canon Kabushiki Kaisha | Photocurable composition |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3403040C2 (de) * | 1984-01-30 | 1988-03-31 | Blendax-Werke R. Schneider Gmbh & Co, 6500 Mainz, De | |
EP1029880A1 (de) * | 1999-02-17 | 2000-08-23 | LSP Dental Chemistry AG | Epoxidverbindungen enthaltende Zusammensetzung für zahnmedizinische und/oder zahntechnische Anwendungen |
WO2001030304A1 (en) * | 1999-10-28 | 2001-05-03 | 3M Innovative Properties Company | Aesthetic dental materials |
US6709271B2 (en) * | 2001-11-20 | 2004-03-23 | Bisco, Inc. | Low shrinkage dental composite |
EP1387658B1 (de) * | 2001-05-16 | 2005-07-06 | Kerr Corporation | Dentalkomposite mit vereinzelten nanopartikeln |
DE102004017124A1 (de) * | 2004-04-07 | 2005-11-03 | Ivoclar Vivadent Ag | Härtbare Dentalmaterialien mit einer einstellbaren Transluzenz und hohen Opaleszenz |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3502594A1 (de) | 1985-01-26 | 1986-07-31 | Etablissement Dentaire Ivoclar, Schaan | Roentgenopaker dentalwerkstoff |
EP0486775B1 (de) * | 1990-11-17 | 1994-11-23 | Heraeus Kulzer Gmbh | Polymerisierbares Dentalmaterial |
US5750590A (en) | 1995-02-22 | 1998-05-12 | Heraeus Kulzer Gmbh | Polymerizable material |
DE19617931C5 (de) | 1996-04-26 | 2010-07-22 | Ivoclar Vivadent Ag | Verwendung eines gefüllten und polymerisierbaren Materials als Dentalmaterial |
JP3043692B2 (ja) | 1997-11-07 | 2000-05-22 | 大成歯科工業株式会社 | 歯科用アクリル樹脂組成物の加工方法 |
US6353039B1 (en) * | 1997-12-15 | 2002-03-05 | Ivoclar Ag | Polymerizable composite material |
JP2000080013A (ja) * | 1998-09-02 | 2000-03-21 | Gc Corp | 歯科用修復材組成物 |
DE19846556A1 (de) * | 1998-10-09 | 2000-04-13 | Degussa | Dentalwerkstoff aufweisend poröse Glaskeramiken, poröse Glaskeramiken, Verfahren und Verwendung |
DE19905093A1 (de) | 1999-02-01 | 2000-08-03 | Ivoclar Ag Schaan | Schrumpfungsarme Dentalmaterialien |
US6482004B1 (en) | 1999-03-26 | 2002-11-19 | Ivoclar Ag | Light curing device and method for curing light-polymerizable dental material |
DE19913890B4 (de) | 1999-03-26 | 2004-08-12 | Ivoclar Vivadent Ag | Lichtpolymerisationsgerät mit Pulsbetrieb |
US6387981B1 (en) | 1999-10-28 | 2002-05-14 | 3M Innovative Properties Company | Radiopaque dental materials with nano-sized particles |
US6572693B1 (en) | 1999-10-28 | 2003-06-03 | 3M Innovative Properties Company | Aesthetic dental materials |
AU4574701A (en) | 2000-03-15 | 2001-09-24 | Dentsply Int Inc | Reducing polymerization stress by controlled segmental curing |
CA2460691C (en) * | 2001-10-05 | 2008-12-23 | Avery Dennison Corporation | High solids content, low-viscosity emulsion polymers |
DE10163681A1 (de) * | 2001-12-21 | 2003-07-10 | Roehm Gmbh | Verfahren zur Herstellung von Beschichtungen |
US20040032656A1 (en) | 2002-08-15 | 2004-02-19 | Valter Drazic | Polarization conversion system and method of calibrating same |
JP4184939B2 (ja) * | 2002-12-09 | 2008-11-19 | ヘレーウス クルツァー ゲゼルシャフト ミット ベシュレンクテル ハフツング | シェード調整用光硬化型ペイントレジン |
TWI236374B (en) | 2003-02-13 | 2005-07-21 | Univ Nat Taiwan | Light curable epoxy nano composite for dental restorative material |
US20050065227A1 (en) | 2003-09-22 | 2005-03-24 | Condon John R. | Visible-light sensitive macro-initiator |
US7541392B2 (en) * | 2004-09-14 | 2009-06-02 | E.I. Du Pont De Nemours And Company | Materials leading to improved dental composites and dental composites made therefrom |
-
2005
- 2005-05-04 DE DE102005021332A patent/DE102005021332B4/de active Active
-
2006
- 2006-04-12 EP EP06007641A patent/EP1719497B1/de active Active
- 2006-04-19 CN CNA2006100793920A patent/CN1875909A/zh active Pending
- 2006-04-21 US US11/408,534 patent/US7601767B2/en active Active
- 2006-04-27 CA CA002544991A patent/CA2544991A1/en not_active Abandoned
- 2006-05-02 JP JP2006128433A patent/JP5361118B2/ja active Active
- 2006-05-04 BR BRPI0601611-1A patent/BRPI0601611A/pt not_active Application Discontinuation
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3403040C2 (de) * | 1984-01-30 | 1988-03-31 | Blendax-Werke R. Schneider Gmbh & Co, 6500 Mainz, De | |
EP1029880A1 (de) * | 1999-02-17 | 2000-08-23 | LSP Dental Chemistry AG | Epoxidverbindungen enthaltende Zusammensetzung für zahnmedizinische und/oder zahntechnische Anwendungen |
WO2001030304A1 (en) * | 1999-10-28 | 2001-05-03 | 3M Innovative Properties Company | Aesthetic dental materials |
EP1387658B1 (de) * | 2001-05-16 | 2005-07-06 | Kerr Corporation | Dentalkomposite mit vereinzelten nanopartikeln |
US6709271B2 (en) * | 2001-11-20 | 2004-03-23 | Bisco, Inc. | Low shrinkage dental composite |
DE102004017124A1 (de) * | 2004-04-07 | 2005-11-03 | Ivoclar Vivadent Ag | Härtbare Dentalmaterialien mit einer einstellbaren Transluzenz und hohen Opaleszenz |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2016931A2 (de) | 2007-07-20 | 2009-01-21 | Heraeus Kulzer GmbH | Dentalkomposite mit niedriger Schrumpfspannung und hoher Biegefestigkeit |
DE102007034457A1 (de) | 2007-07-20 | 2009-01-22 | Heraeus Kulzer Gmbh | Dentalkomposite mit niedriger Schrumpfspannung und hoher Biegefestigkeit |
EP2016931A3 (de) * | 2007-07-20 | 2009-09-23 | Heraeus Kulzer GmbH | Dentalkomposite mit niedriger Schrumpfspannung und hoher Biegefestigkeit |
EP2193776A2 (de) | 2007-07-20 | 2010-06-09 | Heraeus Kulzer GmbH | Dentalkomposite mit niedriger Schrumpfspannung und hoher Biegefestigkeit |
EP2193776A3 (de) * | 2007-07-20 | 2010-06-16 | Heraeus Kulzer GmbH | Dentalkomposite mit niedriger Schrumpfspannung und hoher Biegefestigkeit |
DE102009016025A1 (de) | 2009-04-02 | 2010-10-07 | Voco Gmbh | Kunststoffmodifizierter Glasionomerzement |
EP2374444A2 (de) | 2010-04-12 | 2011-10-12 | VOCO GmbH | Dentale Abdeckmasse |
EP2374445A2 (de) | 2010-04-12 | 2011-10-12 | VOCO GmbH | Dualhärtende, mehrkomponentige dentale Zusammensetzung |
DE102010003883A1 (de) | 2010-04-12 | 2011-10-13 | Voco Gmbh | Lichthärtbares Kompositmaterial |
DE102010003881A1 (de) | 2010-04-12 | 2011-10-13 | Voco Gmbh | Dentale Abdeckmasse |
DE102010003884A1 (de) | 2010-04-12 | 2011-10-13 | Voco Gmbh | Dualhärtende, mehrkomponentige dentale Zusammensetzung |
EP2436366A2 (de) | 2010-09-30 | 2012-04-04 | VOCO GmbH | Kompositmaterial umfassend ein Monomer mit einem polyalicyclischen Strukturelement als Versiegelungsmaterial |
EP2436365A2 (de) | 2010-09-30 | 2012-04-04 | VOCO GmbH | Kompositmaterial umfassend ein Monomer mit einem polyalicyclischen Strukturelement |
EP2716276A3 (de) * | 2012-10-05 | 2017-01-18 | VOCO GmbH | Kit und Verfahren zur indirekten chairside Herstellung von Kompositinlays |
EP3011949A1 (de) | 2014-10-23 | 2016-04-27 | VOCO GmbH | Härtbares dentalmaterial |
DE102015220373A1 (de) | 2014-10-23 | 2016-04-28 | Voco Gmbh | Härtbares Dentalmaterial |
EP3760181A1 (de) | 2017-02-15 | 2021-01-06 | VOCO GmbH | Dentaler kompositblock zur herstellung permanenter indirekter restaurationen im cad/cam verfahren |
EP3685798A1 (de) | 2017-03-17 | 2020-07-29 | VOCO GmbH | Fräsrohling zur herstellung einer indirekten dentalen restauration, entsprechende verwendungen und verfahren |
DE102017105841A1 (de) | 2017-03-17 | 2018-09-20 | Voco Gmbh | Fräsrohling zur Herstellung einer indirekten dentalen Restauration, entsprechende Verwendungen und Verfahren |
DE102018103415A1 (de) | 2018-02-15 | 2019-08-22 | Voco Gmbh | Dentale Formkörper mit kontinuierlichem Farbverlauf |
DE102018114690A1 (de) | 2018-06-19 | 2019-12-19 | Voco Gmbh | Thermowirksame dentale Kompositzusammensetzung |
WO2019243339A1 (de) | 2018-06-19 | 2019-12-26 | Voco Gmbh | Thermowirksame dentale kompositzusammensetzung |
US11944692B2 (en) | 2018-06-19 | 2024-04-02 | Voco Gmbh | Thermoactive dental composite composition |
EP4417180A2 (de) | 2018-06-19 | 2024-08-21 | VOCO GmbH | Thermowirksame dentale kompositzusammensetzung |
DE102021134260A1 (de) | 2021-12-22 | 2023-06-22 | Voco Gmbh | Dentale lichthärtbare Zusammensetzung sowie entsprechende Restaurationen, Herstellverfahren und Verwendungen |
EP4226907A2 (de) | 2021-12-22 | 2023-08-16 | VOCO GmbH | Dentale lichthärtbare zusammensetzung sowie entsprechende restaurationen, herstellverfahren und verwendungen |
Also Published As
Publication number | Publication date |
---|---|
JP5361118B2 (ja) | 2013-12-04 |
EP1719497A1 (de) | 2006-11-08 |
JP2006312634A (ja) | 2006-11-16 |
CN1875909A (zh) | 2006-12-13 |
BRPI0601611A (pt) | 2006-12-26 |
EP1719497B1 (de) | 2013-01-09 |
US20060252845A1 (en) | 2006-11-09 |
US7601767B2 (en) | 2009-10-13 |
CA2544991A1 (en) | 2006-11-04 |
DE102005021332B4 (de) | 2008-02-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102005021332B4 (de) | Kompositmaterialien mit geringer Schrumpfkraft | |
EP2016931B1 (de) | Dentalkomposite mit niedriger Schrumpfspannung und hoher Biegefestigkeit | |
DE10108261B4 (de) | Polymerisierbare Zusammensetzung mit Füllstoff auf der Basis von partikulärem Komposit | |
DE19617931C5 (de) | Verwendung eines gefüllten und polymerisierbaren Materials als Dentalmaterial | |
EP1732499B1 (de) | Härtbare dentalmaterialien mit einer einstellbaren transluzenz | |
EP0449399B1 (de) | Polymerisierbare Dentalmasse | |
DE3342601C1 (de) | Verwendung von bromierten aromatischen Diacrylsaeure- bzw. Dimethacrylsaeureestern in dentalen Fuellungsmaterialien | |
DE102005053775A1 (de) | Reduktion der Schrumpfkraft bei Zahnfüllungen | |
EP3164097B1 (de) | Fräsrohlinge basierend auf einem auspolymerisierten, bruchzähen prothesenmaterial | |
EP0475239A2 (de) | Polymerisierbarer Dentalwerkstoff | |
DE3403040A1 (de) | Dentales fuellungsmaterial | |
EP3760181B1 (de) | Dentaler kompositblock zur herstellung permanenter indirekter restaurationen im cad/cam verfahren | |
DE102013007894A1 (de) | Langlebiges Dentalmaterial mit verbesserten transparenten Eigenschaften | |
DE19757645B4 (de) | Polymerisierbares Kompositmaterial und dessen Verwendung | |
EP3278786A1 (de) | Dentalmaterialien auf der basis von urethangruppenhaltigen vinylcyclopropan-derivaten | |
EP3590489A1 (de) | Dentalwerkstoffe auf basis von monofunktionellen biphenylmethacrylaten | |
EP3427715B1 (de) | Dentalwerkstoffe auf basis dünnflüssiger radikalisch polymerisierbarer monomere mit hohem brechungsindex | |
DE102010034194A1 (de) | Verwendung von Kleselsäure(n) zur Eigenschaftsverbesserung von Dentalmaterial und entsprechende Verfahren | |
WO2021083992A1 (de) | Dentales kompositmaterial | |
DE102010035856A1 (de) | Molkekulardispers verteilter Octenidinwirkstoff in Dentalmaterial | |
DD245814A1 (de) | Lichthaertbare dentalkomposite |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
OP8 | Request for examination as to paragraph 44 patent law | ||
8364 | No opposition during term of opposition | ||
R082 | Change of representative |
Representative=s name: BENDELE, TANJA, DIPL.-CHEM. DR. RER. NAT., DE |
|
R081 | Change of applicant/patentee |
Owner name: KULZER GMBH, DE Free format text: FORMER OWNER: HERAEUS KULZER GMBH, 63450 HANAU, DE |
|
R082 | Change of representative |
Representative=s name: BENDELE, TANJA, DIPL.-CHEM. DR. RER. NAT., DE |
|
R079 | Amendment of ipc main class |
Free format text: PREVIOUS MAIN CLASS: A61K0006083000 Ipc: A61K0006887000 |