DE102005012408A1 - Verfahren zur Herstellung von optisch aktiven 3-Phenylpropionsäurederivaten und Folgeprodukten davon - Google Patents

Verfahren zur Herstellung von optisch aktiven 3-Phenylpropionsäurederivaten und Folgeprodukten davon Download PDF

Info

Publication number
DE102005012408A1
DE102005012408A1 DE200510012408 DE102005012408A DE102005012408A1 DE 102005012408 A1 DE102005012408 A1 DE 102005012408A1 DE 200510012408 DE200510012408 DE 200510012408 DE 102005012408 A DE102005012408 A DE 102005012408A DE 102005012408 A1 DE102005012408 A1 DE 102005012408A1
Authority
DE
Germany
Prior art keywords
alkyl
alkoxy
formula
optically active
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE200510012408
Other languages
English (en)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Priority to DE200510012408 priority Critical patent/DE102005012408A1/de
Priority to ES06723479T priority patent/ES2337826T3/es
Priority to US11/908,808 priority patent/US20080171892A1/en
Priority to PL06723479T priority patent/PL1861352T3/pl
Priority to DE502006005580T priority patent/DE502006005580D1/de
Priority to EP06723479A priority patent/EP1861352B1/de
Priority to PT06723479T priority patent/PT1861352E/pt
Priority to AT06723479T priority patent/ATE451345T1/de
Priority to JP2008501231A priority patent/JP4763771B2/ja
Priority to CN2006800085785A priority patent/CN101142164B/zh
Priority to PCT/EP2006/002435 priority patent/WO2006097314A1/de
Publication of DE102005012408A1 publication Critical patent/DE102005012408A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/09Preparation of carboxylic acids or their salts, halides or anhydrides from carboxylic acid esters or lactones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/347Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups
    • C07C51/36Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups by hydrogenation of carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C59/00Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C59/40Unsaturated compounds
    • C07C59/58Unsaturated compounds containing ether groups, groups, groups, or groups
    • C07C59/64Unsaturated compounds containing ether groups, groups, groups, or groups containing six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/30Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/317Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by splitting-off hydrogen or functional groups; by hydrogenolysis of functional groups
    • C07C67/327Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by splitting-off hydrogen or functional groups; by hydrogenolysis of functional groups by elimination of functional groups containing oxygen only in singly bound form
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/30Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/333Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by isomerisation; by change of size of the carbon skeleton
    • C07C67/343Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von optisch aktiven 3-Phenylpropionsäurederivaten, daraus erhältliche optisch aktive 1-Chlor-3-phenylpropanderivate und dabei erhältliche optisch aktive Zwischenprodukte.

Description

  • Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von optisch aktiven 3-Phenylpropionsäurederivaten, daraus erhältliche optisch aktive 1-Chlor-3-phenylpropanderivate und dabei erhältliche optisch aktive Zwischenprodukte.
  • Die asymmetrische Synthese, d. h. Reaktionen, bei denen aus einer prochiralen eine chirale Gruppierung erzeugt wird, so dass die stereoisomeren Produkte (Enantiomere oder Diastereomere) in ungleichen Mengen entstehen, hat vor allem im Bereich der pharmazeutischen Industrie immense Bedeutung gewonnen, da häufig nur ein bestimmtes optisch aktives Isomer therapeutisch aktiv ist. Das gilt auch für die folgende als Synthon A bezeichnete Verbindung
    Figure 00010001
    die ein wichtiges Zwischenprodukt bei der Herstellung des Renin-Inhibitors Aliskiren (SPP100) darstellt. Aliskiren ist ein hochwirksamer und selektiver Renin-Inhibitor und als solcher ein wichtiger potentieller Pharmawirkstoff zur Behandlung von Bluthochdruck und verwandten cardiovasculären Erkrankungen (J. M. Wood et al., Biochemical and Biophysical Research Communications 308 (2003) 698–705). Es besteht somit ein großer Bedarf an effektiven Synthesewegen zu Systemen vom Typ des Synthon A bzw. seiner optischen Antipoden.
  • In der WO 02/02500 sowie Adv. Synth. Catal. 2003, 345, 160–164 ist die Synthese von (R)-2-Alkyl-3-phenylpropionsäuren als Zwischenprodukte bei der Synthon A-Herstellung durch asymmetrische Hydrierung der entsprechenden trans-Acrylsäuren nach folgendem Schema beschrieben
    Figure 00020001
  • Nachteilig an diesem Verfahren ist die aufwendige Herstellung des trans-Isomers durch wiederholte Extraktion und Kristallisation. Des Weiteren ermöglicht der zur enantioselektiven Hydrierung eingesetzte Katalysator auf Basis eines Phosphinliganden mit Phenylferrocenyl-Rückgrat nur ein niedriges Substrat/Katalysator-Verhältnis (s/c = 5700) bei lediglich 95 % ee, so dass entsprechend hohe Katalysatormengen eingesetzt werden müssen, wodurch das Verfahren wirtschaftlich benachteiligt wird.
  • Der vorliegenden Erfindung liegt daher die Aufgabe zu Grunde, ein neues Verfahren zur Herstellung von optisch aktiven 3-Phenylpropionsäurederivaten und deren Folgeprodukten, insbesondere von Synthon A, bereitzustellen, welches eine effiziente und kostengünstige technische Synthese erlaubt. Dabei soll es insbesondere möglich sein, ein cis/trans-Isomerengemisch von 3-Phenylacrylsäurederivaten als Zwischenprodukte einzusetzen. Des Weiteren soll bei möglichst hohen Substrat/Katalysator-Verhältnissen, d. h. niedrigen Katalysatormengen (s/c ≥ 10000/1) eine hohe optische Ausbeute (≥ 98 % ee) erzielt werden.
  • Gelöst wird diese Aufgabe durch ein Verfahren zur Herstellung von optisch aktiven Verbindungen der allgemeinen Formel I
    Figure 00020002
    worin
    R1, R2, R3 und R4 unabhängig voneinander für Wasserstoff, C1-C6-Alkyl, Halogen-C1-C6-alkyl, Hydroxy-C1-C6-alkyl, C1-C6-Alkoxy, Hydroxy-C1-C6-alkoxy, C1-C6-Alkoxy-C1-C6-alkyl, Hydroxy-C1-C6-alkoxy-C1-C6-alkyl, C1-C6-Alkoxy-C1-C6-alkoxy oder Hydroxy-C1-C6-alkoxy-C1-C6-alkoxy stehen,
    R5 für C1-C6-Alkyl, C5-C8-Cycloalkyl, Phenyl oder Benzyl steht, und
    A für Wasserstoff oder ein Kationäquivalent steht, bei dem man
    • – das cis-Isomer oder ein cis/trans-Isomerengemisch von Verbindungen der allgemeinen Formel II
      Figure 00030001
      worin R1 bis R5 die zuvor angegebenen Bedeutungen besitzen, einer enantioselektiven Hydrierung in Gegenwart eines chiralen Hydrierungskatalysators unter Erhalt eines an einem Enantiomeren angereicherten Enantiomerengemischs unterzieht,
    • – das bei der Hydrierung erhaltene Enantiomerengemisch zur weiteren Enantiomerenanreicherung einer Kristallisation durch Zugabe eines basischen Salzbildners in einem Lösungsmittel unterzieht und den dabei gebildeten, bezüglich eines Stereoisomers angereicherten Feststoff isoliert, und
    • – gegebenenfalls das isolierte Isomer einer Protonierung oder einem Kationenaustausch unter Erhalt der optisch aktiven Verbindung der Formel I unterzieht.
  • "Chirale Verbindungen" sind im Rahmen der vorliegenden Erfindung Verbindungen mit wenigstens einem Chiralitätszentrum (d. h. wenigstens einem asymmetrischen Atom, insbesondere wenigstens einem asymmetrischen C-Atom oder P-Atom), mit Chiralitätsachse, Chiralitätsebene oder Schraubenwindung. Der Begriff "chiraler Katalysator" umfasst Katalysatoren, die wenigstens einen chiralen Liganden aufweisen.
  • "Achirale Verbindungen" sind Verbindungen, die nicht chiral sind.
  • Unter einer "prochiralen Verbindung" wird eine Verbindung mit wenigstens einem prochiralen Zentrum verstanden. "Asymmetrische Synthese" bezeichnet eine Reaktion, bei der aus einer Verbindung mit wenigstens einem prochiralen Zentrum eine Verbin dung mit wenigstens einem Chiralitätszentrum, einer Chiralitätsachse, Chiralitätsebene oder Schraubenwindung erzeugt wird, wobei die stereoisomeren Produkte in ungleichen Mengen entstehen.
  • "Stereoisomere" sind Verbindungen gleicher Konstitution aber unterschiedlicher Atomanordnung im dreidimensionalen Raum.
  • "Enantiomere" sind Stereoisomere, die sich zueinander wie Bild zu Spiegelbild verhalten. Der bei einer asymmetrischen Synthese erzielte "Enantiomeren-Überschuss" (enantiomeric excess, ee) ergibt sich dabei nach folgender Formel: ee[%] = (R – S)/(R + S) × 100. R und S sind die Deskriptoren des CIP-Systems für die beiden Enantiomeren und geben die absolute Konfiguration am asymmetrischen Atom wieder. Die enantiomerenreine Verbindung (ee = 100 %) wird auch als "homochirale Verbindung" bezeichnet.
  • Das erfindungsgemäße Verfahren führt zu Produkten, die bezüglich eines bestimmten Stereoisomers angereichert sind. Der erzielte "Enantiomeren-Überschuss" (ee) beträgt in der Regel wenigstens 98 %.
  • "Diastereomere" sind Stereoisomere, die nicht enantiomer zueinander sind.
  • Im Folgenden umfasst der Ausdruck "Alkyl" geradkettige und verzweigte Alkylgruppen. Vorzugsweise handelt es sich dabei um geradkettige oder verzweigte C1-C20-Alkyl, bevorzugterweise C1-C12-Alkyl-, besonders bevorzugt C1-C8-Alkyl- und ganz besonders bevorzugt C1-C6-Alkylgruppen. Beispiele für Alkylgruppen sind insbesondere Methyl, Ethyl, Propyl, Isopropyl, n-Butyl, 2-Butyl, sec.-Butyl, tert.-Butyl, n-Pentyl, 2-Pentyl, 2-Methylbutyl, 3-Methylbutyl, 1,2-Dimethylpropyl, 1,1-Dimethylpropyl, 2,2-Dimethylpropyl, 1-Ethylpropyl, n-Hexyl, 2-Hexyl, 2-Methylpentyl, 3-Methylpentyl, 4-Methylpentyl, 1,2-Dimethylbutyl, 1,3-Dimethylbutyl, 2,3-Dimethylbutyl, 1,1-Dimethylbutyl, 2,2-Dimethylbutyl, 3,3-Dimethylbutyl, 1,1,2-Trimethylpropyl, 1,2,2-Trimethylpropyl, 1-Ethylbutyl, 2-Ethylbutyl, 1-Ethyl- 2-methylpropyl, n-Heptyl, 2-Heptyl, 3-Heptyl, 2-Ethylpentyl, 1-Propylbutyl, n-Octyl, 2-Ethylhexyl, 2-Propylheptyl, Nonyl, Decyl.
  • Der Ausdruck "Alkyl" umfasst auch substituierte Alkylgruppen, welche im Allgemeinen 1, 2, 3, 4 oder 5, bevorzugt 1, 2 oder 3 und besonders bevorzugt 1 Substituenten, ausgewählt aus den Gruppen Cycloalkyl, Aryl, Hetaryl, Halogen, NE1E2, NE1E2E3+, COOH, Carboxylat, -SO3H und Sulfonat, tragen können.
  • Der Ausdruck "Alkylen" im Sinne der vorliegenden Erfindung steht für geradkettige oder verzweigte Alkandiyl-Gruppen mit vorzugsweise 1 bis 6, insbesondere 1 bis 4 Kohlenstoffatomen. Dazu zählen Methylen (-CH2-), Ethylen (-CH2-CH2-), n-Propylen (-CH2-CH2-CH2-), Isopropylen (-CH2-CH(CH3)-) etc.
  • Der Ausdruck "Cycloalkyl" umfasst im Sinne der vorliegenden Erfindung unsubstituierte als auch substituierte Cycloalkylgruppen, vorzugsweise C3-C8-Cycloalkylgruppen, wie Cyclopentyl, Cyclohexyl oder Cycloheptyl, die im Falle einer Substitution, im Allgemeinen 1, 2, 3, 4 oder 5, bevorzugt 1, 2 oder 3 und besonders bevorzugt 1 Substituenten, vorzugsweise ausgewählt aus den für Alkyl genannten Substituenten, tragen können.
  • Der Ausdruck "Heterocycloalkyl" im Sinne der vorliegenden Erfindung umfasst gesättigte, cycloaliphatische Gruppen mit im Allgemeinen 4 bis 7, vorzugsweise 5 oder 6 Ringatomen, in denen 1 oder 2 der Ringkohlenstoffatome durch Heteroatome, vorzugsweise ausgewählt aus den Elementen Sauerstoff, Stickstoff und Schwefel, ersetzt sind und die gegebenenfalls substituiert sein können, wobei im Falle einer Substitution, diese heterocycloaliphatischen Gruppen 1, 2 oder 3, vorzugsweise 1 oder 2, besonders bevorzugt 1 Substituenten, ausgewählt aus Alkyl, Aryl, COORf, COOM+ und NE1E2, bevorzugt Alkyl, tragen können. Beispielhaft für solche heterocycloaliphatischen Gruppen seien Pyrrolidinyl, Piperidinyl, 2,2,6,6-Tetramethylpiperidinyl, Imidazolidinyl, Pyrazolidinyl, Oxazolidinyl, Morpholidinyl, Thiazolidinyl, Isothiazolidinyl, Isoxazolidinyl, Piperazinyl-, Tetrahydrothiophenyl, Tetrahydrofuranyl, Tetrahydropyranyl, Dioxanyl genannt.
  • Der Ausdruck "Aryl" umfasst im Sinne der vorliegenden Erfindung unsubstituierte als auch substituierte Arylgruppen, und steht vorzugsweise für Phenyl, Tolyl, Xylyl, Mesityl, Naphthyl, Fluorenyl, Anthracenyl, Phenanthrenyl oder Naphthacenyl, besonders bevorzugt für Phenyl oder Naphthyl, wobei diese Arylgruppen im Falle einer Substitution im Allgemeinen 1, 2, 3, 4 oder 5, vorzugsweise 1, 2 oder 3 und besonders bevorzugt 1 Substituenten, ausgewählt aus den Gruppen Alkyl, Alkoxy, Carboxyl, Carboxylat, -SO3H, Sulfonat, NE1E2, Alkylen-NE1E2, Nitro, Cyano oder Halogen, tragen können.
  • Der Ausdruck "Hetaryl" umfasst im Sinne der vorliegenden Erfindung unsubstituierte oder substituierte, heterocycloaromatische Gruppen, vorzugsweise die Gruppen Pyridyl, Chinolinyl, Acridinyl, Pyridazinyl, Pyrimidinyl, Pyrazinyl, Pyrrolyl, Imidazolyl, Pyrazolyl, Indolyl, Purinyl, Indazolyl, Benzotriazolyl, 1,2,3-Triazolyl, 1,3,4-Triazolyl und Carbazolyl, wobei diese heterocycloaromatischen Gruppen im Falle einer Substitution im Allgemeinen 1, 2 oder 3 Substituenten, ausgewählt aus den Gruppen Alkyl, Alkoxy, Acyl, Carboxyl, Carboxylat, -SO3H, Sulfonat, NE1E2, Alkylen-NE1E2 oder Halogen, tragen können.
  • Die obigen Erläuterungen zu den Ausdrücken "Alkyl", "Cycloalkyl", "Aryl", "Heterocycloalkyl" und "Hetaryl" gelten entsprechend für die Ausdrücke "Alkoxy", "Cycloalkoxy", "Aryloxy", "Heterocycloalkoxy" und "Hetaryloxy".
  • Der Ausdruck "Acyl" steht im Sinne der vorliegenden Erfindung für Alkanoyl- oder Aroylgruppen mit im Allgemeinen 2 bis 11, vorzugsweise 2 bis 8 Kohlenstoffatomen, beispielsweise für die Acetyl-, Propanoyl-, Butanoyl-, Pentanoyl-, Hexanoyl-, Heptanoyl-, 2-Ethylhexanoyl-, 2-Propylheptanoyl-, Benzoyl- oder Naphthoyl-Gruppe.
  • Die Gruppen NE1E2 stehen vorzugsweise für N,N-Dimethylamino, N-Ethyl-N-methylamino, N,N-Diethylamino, N,N-Dipropylamino, N,N-Diisopropylamino, N,N-Di-n-butylamino, N,N-Di-t.-butylamino, N,N-Dicyclohexylamino oder N,N-Diphenylamino.
  • Halogen steht für Fluor, Chlor, Brom und Iod, bevorzugt für Fluor, Chlor und Brom.
  • Unter einem Kationäquivalent wird ein einwertiges Kation oder der einer positiven Einfachladung entsprechende Anteil eines mehrwertigen Kations verstanden. Vorzugsweise werden Alkalimetall-, insbesondere Na+, K+-, Li+-Ionen oder Onium-Ionen, wie Ammonium-, Mono-, Di-, Tri-, Tetraalkylammonium-, Phosphonium-, Tetraalkylphosphonium- oder Tetraarylphosphonium-Ionen verwendet.
  • Vorzugsweise stehen die Reste R1, R2, R3 und R4 unabhängig voneinander für Wasserstoff, C1-C4-Alkyl, wie Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl und tert.-Butyl, C1-C4-Alkoxy, wie Methoxy, Ethoxy, n-Propyloxy oder Isopropyloxy, oder C1-C4-Alkoxy-C1-C4-alkoxy, wie Methoxyethoxy, Ethoxyethoxy, Methoxy-n-propyloxy, Ethoxy-n-propyloxy.
  • Bevorzugt stehen R1 und R4 für Wasserstoff und sind R2 und R3 unabhängig voneinander ausgewählt unter den zuvor genannten geeigneten und bevorzugten, von Wasserstoff verschiedenen Resten.
  • Bevorzugt steht R2 für Methoxy-n-propyloxy und R3 für Methoxy.
  • Der Rest R5 steht vorzugsweise für C1-C6-Alkyl, bevorzugt verzweigtes C3-C6-Alkyl und insbesondere für Isopropyl.
  • Besonders bevorzugt steht A für Wasserstoff oder ein von Ammoniak, primären Aminen, Alkalimetallen und Erdalkalimetallen abgeleitetes Kation. Insbesondere steht A für H+, NH4 + oder Li+.
  • Das erfindungsgemäße Verfahren dient in einer speziellen Ausführung zur Herstellung von „Synthon A-Säure" der folgenden Formel
    Figure 00070001
    in hoher optischer Reinheit, insbesondere mit einem ee-Wert von wenigstens 98 (* = Stereozentrum).
  • Das erfindungsgemäße Verfahren ermöglicht die Herstellung von optisch aktiven Verbindungen der allgemeinen Formel I, wie zuvor beschrieben, ausgehend von dem cis-Isomer oder vorzugsweise einem cis/trans-Isomerengemisch von Verbindungen der allgemeinen Formel II. Vorzugsweise wird ein cis/trans-Isomerengemisch von Verbindungen der allgemeinen Formel II eingesetzt, welches das cis-Isomer im Überschuss enthält. Vorzugsweise enthält das zur Hydrierung eingesetzte Isomerengemisch dann das cis-Isomer in einer Menge von wenigstens 50 Gew.-%, besonders bevorzugt wenigstens 60 Gew.-% und insbesondere wenigstens 70 Gew.-%, bezogen auf das Gesamtgewicht von cis- und trans-Isomer.
  • Es ist ein charakteristisches Merkmal des erfindungsgemäßen Verfahrens, dass in dem zur enantioselektiven Hydrierung eingesetzten Isomerengemisch von Verbindungen der allgemeinen Formel II auch das trans-Isomer in nicht vernachlässigbaren Mengen enthalten ist. Vorteilhafterweise ermöglicht das Verfahren somit die Herstellung von optisch aktiven Verbindungen der allgemeinen Formel I, ausgehend von cis/trans-Isomerengemischen von Verbindungen der allgemeinen Formel II, wie sie beispielsweise aus Vorläuferverbindungen durch übliche 1,2-Eliminierung, vorzugsweise mit einer gewissen cis-Stereoselektivität, erhältlich sind. Vorzugsweise enthält das zur Hydrierung eingesetzte cis/trans-Isomerengemisch von Verbindungen der allgemeinen Formel II das trans-Isomer in einer Menge von wenigstens 1 Gew.-%, besonders bevorzugt wenigstens 5 Gew.-% und insbesondere wenigstens 10 Gew.-%, bezogen auf das Gesamtgewicht von cis- und trans-Isomer.
  • Vorteilhafterweise ermöglicht das erfindungsgemäße Verfahren die Herstellung der Verbindungen der Formel I ausgehend von cis/trans-Isomerengemischen in techni schen Reinheitsqualitäten. Somit kann auf aufwendige Reinigungsschritte vor der Hydrierung im Allgemeinen verzichtet werden. Vorzugsweise enthalten die eingesetzten cis/trans-Isomerengemisch-Zusammensetzungen wenigstens 80 Gew.-%, besonders bevorzugt wenigstens 85 Gew.-%, an cis- und trans-Isomeren, bezogen auf das Gesamtgewicht der Zusammensetzungen. Weitere enthaltene Komponenten sind z. B. Lösungsmittel sowie Edukte, Zwischenprodukte und Nebenprodukte aus vorhergehenden Reaktionsstufen.
  • Zur Hydrierung wird vorzugsweise ein chiraler Hydrierungskatalysator eingesetzt, der befähigt ist, das eingesetzte cis/trans-Isomerengemisch unter Bevorzugung des Isomers zu hydrieren, dessen absolute Konfiguration dem (R)-Isomer der Synthon A-Säure entspricht. Ein besonders hoher ee-Wert auf der Stufe der asymmetrischen Hydrierung ist bevorzugt, jedoch nicht allein ausschlaggebend, da nach dem erfindungsgemäßen Verfahren eine weitere Enantiomerenanreicherung im anschließenden Kristallisationsschritt erfolgt. Überraschenderweise wurde jedoch gefunden, dass mit den im Folgenden beschriebenen chiralen Hydrierungskatalysatoren auf Basis planarchiraler Bisphosphane mit Cyclophan-Rückgrat sowohl das cis-Isomer als auch das trans-Isomer in hoher optischer Reinheit zu dem gewünschten Enantiomer, d. h. mit ee-Werten von jeweils mindestens 70 %, hydriert werden können. Beim Einsatz von cis/trans-Isomerengemischen mit einem cis-Gehalt von wenigstens 70 Gew.-% (bezogen auf das Gesamtgewicht von cis- und trans-Isomer) werden in der Regel ee-Werte von wenigstens 80 % erzielt, bei einem cis-Gehalt von 100 % werden in der Regel ee-Werte von wenigstens 90 % erzielt.
  • Vorzugsweise wird zur Hydrierung daher ein Übergangsmetallkomplex als Katalysator eingesetzt, der als Liganden wenigstens eine Verbindung der Formel
    Figure 00080001
    umfasst, worin
    RI, RII, RIII und RIV unabhängig voneinander für Alkyl, Cycloalkyl, Heterocycloalkyl, Aryl oder Hetaryl stehen, und
    RV, RVI, RVII RVIII, RIX und RX unabhängig voneinander für Wasserstoff, Alkyl, Alkylen-OH, Alkylen-NE1E2, Alkylen-SH, Alkylen-OSiE3E4, Cycloalkyl, Heterocycloalkyl, Aryl, Hetaryl, OH, SH, Polyalkylenoxid, Polyalkylenimin, Alkoxy, Halogen, COOH, Carboxylat, SO3H, Sulfonat, NE1E2, Nitro, Alkoxycarbonyl, Acyl oder Cyano stehen, worin E1, E2, E3 und E4 jeweils gleiche oder verschiedene Reste, ausgewählt unter Wasserstoff, Alkyl, Cycloalkyl, Aryl und Alkylaryl bedeuten.
  • Vorzugsweise sind die an die Phosphoratome gebundenen Reste RI, RII, RIII und RIV unabhängig voneinander ausgewählt unter unsubstituierten und substituierten Arylresten. Bevorzugt sind Phenylreste, die 1, 2, 3 oder 4, vorzugsweise 1, 2, oder 3, insbesondere 1 oder 2 Substituenten aufweisen können, die vorzugsweise ausgewählt sind unter Alkyl, Alkoxy, Halogen, SO3H, Sulfonat, NE1E2, Alkylen-NE1E2, Trifluormethyl, Nitro, Carboxyl, Alkoxycarbonyl, Acyl und Cyano. Bei den Substituenten der Phenyle steht Alkyl vorzugsweise für C1-C4-Alkyl und insbesondere für Methyl, Ethyl, Isopropyl und tert.-Butyl, Alkoxy steht vorzugsweise für C1-C4-Alkoxy und insbesondere für Methoxy, Alkoxycarbonyl steht vorzugsweise für C1-C4-Alkoxycarbonyl. Besonders bevorzugt sind die Reste RI, RII, RIII und RIV ausgewählt unter Phenyl oder Xylyl. Bevorzugt stehen RI bis RIV alle für Phenyl oder alle für Xylyl. Die Xylylreste weisen die Methylgruppen vorzugsweise in 3- und 5-Position zum Phosphoratom auf.
  • Vorzugsweise steht wenigstens einer der Reste RV, RVI und RVII und/oder einer der Reste RVIII, RIX und RX für einen Wasserstoff verschiedenen Rest und die übrigen Reste für Wasserstoff. Vorzugsweise ist/sind der/die von Wasserstoff verschiedene(n) Reste) ausgewählt unter C1-C6-Alkyl, C1-C4-Alkylen-OH, C1-C4-Alkylen-OSi(C1-C4-Alkyl)2, C1-C4-Alkoxy und C1-C4-Alklen-OC(Aryl)3.
  • In einer bevorzugten Ausführungsform stehen die Reste RV bis RX alle für Wasserstoff. In einer weiteren bevorzugten Ausführungsform ist einer der Reste RV, RVI und RVII und/oder einer der Reste RVIII, RIX und RX ausgewählt unter den Resten der Formeln CH2OSi(CH(CH3)2)3, CH2OH, OCH3 und CH2OC(C6H5)3.
  • Besonders bevorzugt als planar-chirale Bisphosphanliganden mit Cyclophan-Rückgrat sind die Liganden der folgenden Formeln
    Figure 00100001
  • Geeignete chirale Paracyclophanphosphine sind dem Fachmann bekannt und beispielsweise von Johnson Matthey Catalysts kommerziell erhältlich.
  • Bevorzugt wird zur enantioselektiven Hydrierung ein Komplex eines Metalls der VIII. Nebengruppe des Periodensystems mit wenigstens einer der zuvor genannten planarchiralen Bisphosphanverbindungen mit Cyclophan-Rückgrat als Liganden eingesetzt. Vorzugsweise ist das Übergangsmetall ausgewählt unter Pd, Pt, Ru, Rh, Ni und Ir. Besonders bevorzugt sind Katalysatoren auf Basis von Rh, Ru und Ir. Insbesondere bevorzugt sind Rh-Katalysatoren.
  • Phosphin-Metall-Komplexe lassen sich in dem Fachmann bekannter Weise (z. B. Uson, Inorg. Chim. Acta 73, 275 1983, EP-A-0 158 875, EP-A-437 690) durch Umsetzung der Phosphine mit Komplexen der Metalle, die labile oder hemilabile Liganden enthalten, erhalten. Hierbei können als Metallquellen Komplexe wie etwa Pd2(dibenzylidenaceton)3, Pd(Oac)2, [Rh(COD)Cl]2, [Rh(COD)2)]X, Rh(acac)(CO)2, RuCl2(COD), Ru(COD)(methallyl)2, Ru(Ar)Cl2, Ar = Aryl, sowohl unsubstituiert als auch substituiert, [Ir(COD)Cl]2, [Ir(COD)2]X, Ni(allyl)X verwendet werden. Anstatt COD (= 1,5-Cyclooctadien) kann auch NBD (= Norbornadien) verwendet werden. Bevorzugt sind [Rh(COD)Cl]2, [Rh(COD)2)]X, Rh(acac)(CO)2, RuCl2(COD), Ru(COD)(methallyl)2, Ru(Ar)Cl2, Ar = Aryl, sowohl unsubstituiert als auch substituiert, [Ir(COD)Cl]2 und [Ir(COD)2]X sowie die entsprechenden Systeme mit NBD als Ersatz von COD. Besonders bevorzugt sind [Rh(COD)2)]X und [Rh(NBD)2)]X.
  • X kann jedes dem Fachmann bekannte generell nutzbare Anion in der asymmetrischen Synthese sein. Beispiele für X sind Halogene wie Cl, Br, I, BF4-, CIO4-, SbF6-, PF6-, CF3SO3-, BAr4-. Bevorzugt für X sind BF4 , CF3SO3-, SbF6-, CIO4-, insbesondere BF4- und CF3SO3-.
  • Die Phosphin-Metall-Komplexe können, wie dem Fachmann bekannt ist, entweder vor der eigentlichen Hydrierreaktion im Reaktionsgefäß in situ erzeugt werden oder aber separat erzeugt, isoliert und anschließend eingesetzt werden. Dabei kann es vorkommen, dass sich wenigstens ein Lösungsmittelmolekül an den Phosphin-Metall-Komplex anlagert. Die gängigen Lösungsmittel (z. B. Methanol, Diethylether, Dichlormethan) für die Komplexherstellung sind dem Fachmann bekannt.
  • Wie dem Fachmann bekannt ist, stellen die Phosphin-Metall- bzw. Phosphin-Metall-LM-Komplexe Präkatalysatoren mit noch mindestens einem labilen oder hemilabilen Liganden dar, aus denen unter den Bedingungen der Hydrierung der eigentliche Katalysator generiert wird.
  • Als Lösungsmittel für die Hydrierreaktion sind alle dem Fachmann für asymmetrische Hydrierung bekannten Lösungsmittel geeignet. Bevorzugte Lösungsmittel sind niedrige Alkylalkohole wie Methanol, Ethanol, Isopropanol, sowie Toluol, THF, Essigester. Besonders bevorzugt wird in dem erfindungsgemäßen Verfahren Methanol als Lösungsmittel eingesetzt.
  • Die erfindungsgemäße Hydrierung wird in der Regel bei einer Temperatur von -20 bis 200 °C, bevorzugt bei 0 bis 150 °C und besonders bevorzugt bei 20 bis 120 °C durchgeführt.
  • Der Wasserstoffdruck kann in einem großen Bereich zwischen 0,1 bar und 325 bar für das erfindungsgemäße Hydrierverfahren variiert werden. Sehr gute Ergebnisse erhält man in einem Druckbereich von 1 bis 300 bar, bevorzugt 5 bis 250 bar.
  • Vorzugsweise ermöglicht das erfindungsgemäße Verfahren die enantioselektive Hydrierung bei Substrat/Katalysator-Verhältnissen (s/c) von wenigstens 1000 : 1, besonders bevorzugt wenigstens 10000 : 1 und insbesondere wenigstens 30000 : 1. Dabei werden vorteilhafterweise selbst bei Substrat/Katalysator-Verhältnissen von 30000 : 1 noch ee-Werte von wenigstens 80 % erzielt (beim Einsatz eines cis/trans-Isomerengemischs, das wenigstens 70 % cis-Isomer, bezogen auf das Gesamtgewicht von cis- und trans-Isomer, enthält). Dies ist ein entscheidender Vorteil gegenüber den in den bekannten Verfahren eingesetzten Hydrierkatalysatoren.
  • Die zuvor beschriebenen Hydrierungskatalysatoren (bzw. -präkatalysatoren) können auch in geeigneter Weise, z. B. durch Anbindung über als Ankergruppen geeignete funktionelle Gruppen, Adsorption, Pfropfung, etc. an einen geeigneten Träger, z. B. aus Glas, Kieselgel, Kunstharzen, Polymerträger, etc., immobilisiert werden. Sie eignen sich dann auch für einen Einsatz als Festphasenkatalysatoren. Vorteilhafterweise lässt sich nach diesen Verfahren der Katalysatorverbrauch weiter senken. Die zuvor beschriebenen Katalysatoren eignen sich auch für eine kontinuierliche Reaktionsführung, z. B. nach Immobilisierung, wie zuvor beschrieben, in Form von Festphasenkatalysatoren.
  • Zur weiteren Aufarbeitung wird das bei der Hydrierung erhaltene Enantiomerengemisch einer Enantiomeren-anreichernden Kristallisation unter Zugabe eines basischen Salzbildners unterzogen. Geeignete basische Salzbildner sind übliche, dem Fachmann bekannte asymmetrische Amine, wie z. B. (R)-Phenethylamin. Beim Einsatz solcher asymmetrischen Amine werden in der Regel ee-Werte von etwa 99,5 % erzielt. Überraschenderweise wurde gefunden, dass zur Enantiomeren-anreichernden Kristallisation auch achirale basische Verbindungen als Salzbildner eingesetzt werden können. Vorzugsweise sind diese ausgewählt unter Ammoniak, primären Aminen, wie Methylamin, Ethylamin, n-Propylamin, Isopropylamin, n-Butylamin, n-Pentylamin, n-Hexylamin, Cyclohexylamin, Alkalihydroxiden, wie KOH, NaOH, LiOH, und Erdalkalihydroxiden, wie Ca(OH)2 und Mg(OH)2.
  • Vorzugsweise erfolgt die Enantiomeren-anreichernde Kristallisation aus einem Lösungsmittel, das ausgewählt ist unter organischen Lösungsmitteln, vorzugsweise wassermischbaren organischen Lösungsmitteln, Lösungsmittelgemischen sowie Gemischen aus wassermischbaren organischen Lösungsmitteln und Wasser. Geeignete organische Lösungsmittel sind einwertige Alkohole, wie Methanol, Ethanol, n-Propanol, Isopropanol, n-Butanol, Cyclohexanol; Polyole, wie Ethylenglycol und Glycerin; Ether und Glycolether, wie Dieethylether, Dibutylether, Anisol, Dioxan, Tetrahydrofuran, Mono-, Di-, Tri- und Polyalkylenglycolether; Ketone, wie Aceton, Butanon, Cyclohexanon; Gemische der zuvor genannten Lösungsmittel sowie Gemische aus einzelnen oder mehreren der zuvor genannten Lösungsmittel mit Wasser. Besonders bevorzugt werden als Lösungsmittel Alkanole und Alkanol-Wasser-Gemische und speziell Isopropanol und Isopropanol-Wasser-Gemische eingesetzt.
  • In einer geeigneten Vorgehensweise kann das Produkt der Enantiomeren-anreichernden Hydrierung in dem Lösungsmittel gelöst oder suspendiert und anschließend der Salzbildner als Lösung in dem gleichen oder einem verschiedenen Lösungsmittel oder in fester Form zugegeben werden. So ist es beispielsweise möglich, das Produkt der Hydrierung in einer zur vollständigen Lösung ausreichenden Lösungsmittelmenge zu lösen und anschließend eine wässrige Lösung des Salzbildners zuzusetzen. In einer bevorzugten Ausführung wird das Hydrierungsprodukt in Isopropanol gelöst und anschließend mit einer wässrigen Ammoniaklösung versetzt. Geeignet ist beispielsweise eine 20 bis 30%ige wässrige Ammoniaklösung. In einer weiteren bevorzugten Ausführung wird das Hydrierungsprodukt in Isopropanol gelöst und mit festem LiOH versetzt und die resultierende Suspension anschließend gerührt. Eine ausreichende Rührzeit liegt beispielsweise im Bereich von etwa 10 Minuten bis 12 Stunden, vorzugsweise 20 Minuten bis 6 Stunden, insbesondere 30 Minuten bis 3 Stunden.
  • Die Temperatur bei der Enantiomeren-anreichernden Kristallisation liegt im Allgemeinen im Bereich zwischen Schmelzpunkt und Siedepunkt des eingesetzten Lösungsmittels bzw. Lösungsmittelgemischs. In einer geeigneten Ausführungsform kann die Temperatur im Verlauf der Kristallisation ein- oder mehrfach erhöht und/oder abgesenkt werden, um die Kristallbildung zu initiieren und/oder die Fällung des gewünschten Enantiomers zu vervollständigen.
  • Vorteilhafterweise weist der nach der Enantiomeren-anreichernden Kristallisation isolierte Feststoff einen ee-Wert von mindestens 98 %, besonders bevorzugt mindestens 99 % und insbesondere größer 99,5 % auf.
  • Gewünschtenfalls können die bei der Enantiomeren-anreichernden Kristallisation isolierten Verbindungen einer Protonierung oder einem Kationenaustausch unterzogen werden. So ist es beispielsweise möglich, zur Protonierung unter Erhalt einer optisch aktiven Verbindung der Formel I, worin A für Wasserstoff steht, das Produkt der Kristallisation mit einer geeigneten Säure, vorzugsweise einer Mineralsäure, wie HCl, H2SO4, H3PO4 in Kontakt zu bringen. In einer geeigneten Vorgehensweise wird das Produkt der Kristallisation in Wasser gelöst oder suspendiert und anschließend der pH-Wert durch Säurezugabe auf etwa 0 bis 4, vorzugsweise etwa 1, eingestellt. Zur Isolierung der freien Säure ist es möglich, die angesäuerte Lösung oder Suspension mit einem geeigneten organischen Lösungsmittel, z. B. einem Ether, wie Methylbutylether, einem Kohlenwasserstoff oder Kohlenwasserstoffgemisch, z. B. einem Alkan, wie Pentan, Hexan, Heptan, oder einem Alkangemisch, Ligroin oder Petrolether, oder Aromaten, wie Toluol, zu extrahieren. Ein bevorzugtes Extraktionsmittel ist Toluol. Bei dieser Vorgehensweise kann die Säure nahezu quantitativ erhalten werden, wobei auch der ee-Wert erhalten bleibt.
  • In einer bevorzugten Ausführung ermöglicht das erfindungsgemäße Verfahren die Herstellung von optisch aktiven Verbindungen der Formel I mit der folgenden absoluten Konfiguration
    Figure 00140001
    wobei R1 bis R5 und A die zuvor angegebenen Bedeutungen besitzen. Das erfindungsgemäße Verfahren eignet sich somit in besonders vorteilhafter Weise zur Herstellung von Zwischenprodukten, die sich zur Weiterverarbeitung zu Synthon A und Synthon A-Derivaten eignen.
  • Ein weiterer Gegenstand der Erfindung ist daher ein Verfahren zur Herstellung von optisch aktiven Verbindungen der allgemeinen Formel III
    Figure 00140002
    worin R1 bis R5 die zuvor angegebenen Bedeutungen besitzen und Hal für Cl, Br oder I steht, bei dem man
    • – eine Verbindung der allgemeinen Formel I, wie zuvor definiert, für den Fall, dass A nicht für ein Metallkation oder Proton steht, durch Protonierung in die Säure überführt,
    • – die, gegebenenfalls nach Protonierung erhaltene, Säure oder ein Metallsalz davon einer Reduktion unter Erhalt eines Alkohols der allgemeinen Formel IV
      Figure 00150001
      unterzieht, worin R1 bis R5 die zuvor angegebenen Bedeutungen besitzen und
    • – den Alkohol der Formel IV einer Halodehydroxylierung unter Erhalt der optisch aktiven Verbindung der Formel III unterzieht.
  • Zur Reduktion wird die Verbindung der Formel I vorzugsweise in Form der freien Säure eingesetzt. Um Verbindungen der Formel I, worin A für ein von Protonen verschiedenes Kationäquivalent steht, in die freie Säure zu überführen, kann wie zuvor beschrieben verfahren werden. Vorzugsweise wird dazu die Verbindung der Formel I mit einer Mineralsäure, wie HCl, H2SO4 oder H3PO4 in Kontakt gebracht. Vorzugsweise erfolgt die Protonierung der Verbindung der Formel I in einem wässrigen Medium. Die Isolierung der freien Säure erfolgt vorzugsweise mit einem geeigneten organischen Lösungsmittel, vorzugsweise durch Extraktion mit einem nicht wassermischbaren oder nur gering wassermischbaren Lösungsmittel. Geeignete Lösungsmittel sind z. B. Ether, wie Diethylether, Methylbutylether und Methyl-tert.-butylether, die zuvor genannten Kohlenwasserstoffe oder Kohlenwasserstoffgemische, Aromaten, wie Toluol, sowie halogenierte Aromaten, wie Dichlormethan, Chloroform, Tetrachlorkohlenstoff und 1,2-Dichlorethan. Vorzugsweise erfolgt die Isolierung und/oder Reinigung der Säure durch Extraktion einer die Säure enthaltenden organischen Phase mit einer wässrigen Phase. Bei einer solchen Vorgehensweise kann die Säure, wie zuvor beschrieben, nahezu quantitativ erhalten werden, wobei der ee-Wert ebenfalls erhalten bleibt.
  • Zur Reduktion der Verbindungen der Formel I, worin A für ein Proton oder ein Metallkation steht, eignen sich prinzipiell die zur Reduktion von Carbonsäuren zu Alkoholen üblichen Reagenzien, wie komplexe Hydride, sowie katalytische Hydrierungsverfahren mit molekularem Wasserstoff. Geeignete Verfahren und Reaktionsbedingungen sind in J. March, Advanced Organic Chemistry, 4. Auflage, Verlag John Wiley & Sons (1992), S. 1212 sowie Tabelle 19.5, S. 1208, beschrieben, worauf hier Bezug genommen wird. Bevorzugt werden komplexe Hydride, wie LiAlN4, AlH3, LiAlH(OCH3)3, LiAlH(O-t.-C4H9)3, (i.-C4H9)2AlH (= DIBALH), NaAl(C2H5)2H2, NaAl(CH3OC2H4O)2H2 (= Vitride), etc., eingesetzt.
  • Die Umwandlung des bei der Reduktion erhaltenen Alkohols der allgemeinen Formel IV in ein Alkylhalogenid kann nach üblichen, dem Fachmann bekannten Verfahren erfolgen. Geeignete Verfahren sind in J. March, Advanced Organic Chemistry, 4. Auflage, Verlag John Wiley & Sons (1992), S. 431–433 beschrieben, worauf hier Bezug genommen wird. Vorzugsweise wird zur Halodehydroxylierung eine Halogenwasserstoffsäure, wie HCl, HBr, Hl, oder ein anorganisches Säurehalogenid, wie SOCl2, PCl5, PCl3, POCl3, etc., eingesetzt. Vorzugsweise wird der Alkohol in das entsprechende Alkylchlorid (Hal = Cl) umgesetzt. Dabei handelt es sich in einer besonders bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens um das Synthon A.
  • Die Verbindung der Formel III kann gewünschtenfalls einer abschließenden Reinigung nach üblichen, dem Fachmann bekannten Verfahren, z. B. durch Umkristallisation aus einem geeigneten Lösungsmittel, unterzogen werden.
  • Das erfindungsgemäße Verfahren kann vorteilhaft als Teil einer Gesamtsynthese zur Herstellung von Synthon A und Synthon A-Derivaten eingesetzt werden. Gegenstand der Erfindung ist daher auch ein Verfahren, wie zuvor definiert, bei dem man
    • a) einen aromatischen Aldehyd der allgemeinen Formel V
      Figure 00160001
      worin R' bis R4 die zuvor angegebenen Bedeutungen besitzen, mit einem Carbonsäureester der allgemeinen Formel VI R5-CH2-COOR7 (VI)worin R5 die in Anspruch 1 angegebenen Bedeutungen besitzt und R7 für Alkyl, Cycloalkyl, Aryl oder Alkylaryl steht, unter Erhalt von Verbindungen der allgemeinen Formel VII
      Figure 00170001
      umsetzt,
    • b) in den Verbindungen der Formel VII die Hydroxylgruppe in eine bessere Abgangsgruppe überführt und einer Eliminierung unter Erhalt von Verbindungen der allgemeinen Formel VIII
      Figure 00170002
      unterzieht,
    • c) die Verbindungen der Formel VIII einer Esterhydrolyse unter Erhalt von Verbindungen der allgemeinen Formel II
      Figure 00170003
      unterzieht,
    • d) die Verbindungen der Formel II einer enantioselektiven Hydrierung in Gegenwart eines chiralen Hydrierungskatalysators unterzieht, unter Erhalt eines an einem Enantiomeren angereicherten Enantiomerengemischs,
    • e) das bei der Hydrierung in Schritt d) erhaltene Enantiomerengemisch zur weiteren Enantiomerenanreicherung einer Kristallisation durch Zugabe eines basischen Salzbildners in einem Lösungsmittel unterzieht und den dabei gebildeten, bezüglich eines Stereoisomers angereicherten Feststoff isoliert,
    • f) gegebenenfalls das in Schritt e) isolierte Isomer einer Protonierung oder einem Kationenaustausch unter Erhalt der optisch aktiven Verbindung der Formel I unterzieht,
    • g) für den Fall, dass in der Verbindung der Formel I der Rest A für ein von Wasserstoff und Metallkationen verschiedenes Kationäquivalent steht, diesen einer Protonierung unterzieht,
    • h) die Säure oder das Metallsalz davon einer Reduktion unter Erhalt eines Alkohols der allgemeinen Formel IV
      Figure 00180001
      unterzieht, und
    • i) den Alkohol der Formel IV einer Halodehydroxylierung unter Erhalt der optisch aktiven Verbindung der Formel III
      Figure 00180002
      unterzieht.
  • Die nach dem erfindungsgemäßen Verfahren als Zwischenprodukte erhaltenen optisch aktiven Verbindungen der allgemeinen Formel I
    Figure 00190001
    worin R1 bis R5 die zuvor angegebene Bedeutung besitzen und A für ein von Ammoniak, primären Aminen, Alkalimetallen und Erdalkalimetallen abgeleitetes Kation stehen, sind neu und ebenfalls Gegenstand der Erfindung. Bevorzugt steht in den Verbindungen der Formel I der Rest R5 für einen verzweigten C3-C8-Alkylrest und insbesondere für Isopropyl. Die erfindungsgemäßen Verbindungen weisen vorzugsweise die folgende Formel auf:
    Figure 00190002
  • Insbesondere handelt es sich um Verbindungen, wobei A für NH4 + oder Li+ steht.
  • Die als Edukt in Schritt a) eingesetzten aromatischen Aldehyde der Formel V sind kommerziell erhältlich oder können nach üblichen, dem Fachmann bekannten Verfahren hergestellt werden. In einer geeigneten Ausführung zur Herstellung von „Synthon A" kann man beispielsweise ausgehend von 3-Hydroxy-4-methoxybenzaldehyd (Isovanillin) die Hydroxyfunktion einer Veretherung unter Erhalt von 3-(3-Methoxypropoxy)-4-methoxybenzaldehyd als Verbindung der Formel V unterziehen.
  • Geeignete Verfahrensbedingungen zur Umsetzung aromatischer Aldehyde mit Carbonsäureestern, welche über acide Wasserstoffatome verfügen im Sinne einer Aldolreaktion, sind z. B. in J. March, Advanced Organic Chemistry, 4. Auflage, Verlag John Wiley & Sons (1992), S. 944–951 beschrieben, worauf hier Bezug genommen wird. Die Reaktion erfolgt in der Regel in Gegenwart einer starken Base, die vorzugsweise ausgewählt ist unter Alkalimetallalkoholaten, wie Natriummethanolat, Kaliummethano lat, Kalium-tert.-butanolat, Alkalimetallhydriden, wie Natriumhydrid, sekundären Amiden, wie Lithiumamid, Lithiumdiisopropylamid, etc. Die Reaktion erfolgt vorzugsweise bei einer Temperatur im Bereich von –80 bis +30 °C, insbesondere von -60 bis +20 °C. Geeignete Lösungsmittel sind z. B. Ether, wie Diethylether, Tetrahydrofuran und Dioxan, Aromaten, wie Benzol, Toluol und Xylol, etc.
  • Die Dehydratisierung in Reaktionsschritt b) ist ebenfalls prinzipiell bekannt. Vorzugsweise erfolgt die Überführung der Hydroxylgruppe in eine bessere Abgangsgruppe durch Umsetzung mit einer Sulfonsäure oder einem Derivat davon, wie Benzolsulfonsäure, Toluolsulfonsäure, Methylsulfonsäure, Trifluormethylsulfonsäure oder einem Derivat, z. B. einem Halogenid, davon. In einer bevorzugten Ausführung erfolgt die Dehydratisierung in einem zur Bildung niedrig siedender Azeotrope mit Wasser befähigtem Lösungsmittel, wie Benzol oder vorzugsweise Toluol. Die Entfernung des bei der Reaktion gebildeten Wassers kann dann durch azeotrope Destillation (Auskreisen) nach üblichen, dem Fachmann bekannten Verfahren erfolgen. Bei dieser Vorgehensweise ist es möglich, die zur Bildung der Abgangsgruppe befähigte Säure lediglich in katalytischen Mengen einzusetzen. Es wurde gefunden, dass bei dieser Vorgehensweise vorteilhafterweise cis/trans-Isomerengemische von Verbindungen der Formel VIII erhalten werden, welche das cis-Isomer im Überschuss enthalten.
  • Verfahren zur Hydrolyse von Carbonsäureestern (Schritt c)) zu den entsprechenden Carbonsäuren oder zu Salzen davon sind ebenfalls prinzipiell bekannt und z. B. in J. March, Advanced Organic Chemistry, 4. Auflage, Verlag John Wiley & Sons (1992), S. 378–383 beschrieben, worauf hier Bezug genommen wird. Die Esterhydrolyse kann prinzipiell sauer oder basisch erfolgen.
  • Bezüglich der Verfahrensschritte d) bis i) wird auf die vorherigen Ausführungen zu geeigneten und bevorzugten Verfahrensbedingungen in vollem Umfang Bezug genommen.
  • Die Erfindung wird anhand der folgenden nicht einschränkenden Beispiele erläutert.
  • Beispiel 1:
  • Herstellung von
    Figure 00210001
  • Zu einer Lösung von 88,5 g Diisopropylamin in 300 ml Tetrahydrofuran wurden bei –50 °C 544 ml einer 15%igen Lösung von n-Butyllithium in Hexan, 98,2 g Methylisovalerat in 45 ml Tetrahydrofuran und 170 g 4-Methoxy-3-(3-methoxypropyloxy)benzaldehyd in 75 ml Tetrahydrofuran zugetropft. Die resultierende Lösung ließ man innerhalb von 2 h auf Raumtemperatur erwärmen und rührte noch 1 h bei dieser Temperatur nach. Anschließend wurden tropfenweise 300 ml Wasser zu der Reaktionslösung gegeben, der pH-Wert mit konzentrierter HCl auf 1 eingestellt, die Phasen separiert und die wässrige Phase anschließend zweimal mit 300 ml Toluol extrahiert. Die organischen Phasen wurden vereinigt und das Lösungsmittel am Rotationsverdampfer abgedampft. Der Rückstand wurde in 500 ml Toluol aufgenommen, mit 6 g p-Toluolsulfonsäure versetzt und anschließend 3,5 h am Wasserabscheider unter Rückfluss erhitzt. Das Reaktionsgemisch wurde mit 150 ml gesättigter NaHCO3-Lösung und 300 ml Wasser gewaschen, über Natriumsulfat getrocknet und das Lösungsmittel am Rotationsverdampfer abgezogen. Man erhielt 242 g Produkt.
  • Die Analyse des Reaktionsprodukts erfolgte mittels HPLC nach folgender Methode:
    Säule: Waters Symmetry C18 5 μm, 250 × 4,6 mm
    Eluent: A) 0,1 Vol% H3PO4 in Wasser, B) 0,1 Vol-% H3PO4 in CH3CN
    Gradient (bezogen auf Eluent B): 0 min (35 %) 20 min (100 %) 30 min (100 %) 32 min (35 %)
    Fluss: 1 ml/min, Temperatur: 20 °C, Injektionsvolumen: 5 μl
    Detektion: UV-Detektor bei 205 nm, BW = 4 nm
  • Bei dieser Methode eluierte der cis-Ester bei 15,7 min, der trans-Ester bei 16,2 min, die cis-Säure bei 10,6 min, die trans-Säure bei 10,9 min und der als Edukt eingesetzte aromatische Aldehyd bei 7,9 min.
  • Das erhaltene Produkt enthielt 69,1 % cis-Ester, 21,0 % trans-Ester, 0,8 % Aldehyd, restliche Komponenten nicht zugeordnet (Flächen-% der HPLC-Peaks).
  • Die Hydrolyse des erhaltenen Estergemischs kann nach üblichen Verfahren, beispielsweise mit KOH in einem Ethanol/Wasser-Gemisch erfolgen.
  • Beispiel 2:
  • Herstellung von
    Figure 00220001
  • In einem 300 ml Stahlautoklaven wurden 30,1 g des nach Esterhydrolyse erhaltenen cis/trans-Säuregemischs in 55,4 g Methanol unter Schutzgasatmosphäre vorgelegt. Nach Zugabe von 2,05 mg (R)-Phanephos-Rh-(COD)BF4 × 1 (C2H5)2O wurde 12 h bei einem Wasserstoffdruck von 200 bar und einer Temperatur von 100 °C hydriert. Nach 12 h war die Hydrierung quantitativ. Der Enantiomerenüberschuss des Produkts betrug 83 %.
  • Die Analytik sowohl des Produkts der Hydrierung als auch der anschließenden Kristallisation (Beispiele 3 und 4) erfolgte mittels HPLC nach der folgenden Methode:
    Säule: CHIRALPAK AD-H (250 × 4,6 mm)
    Eluent: Gemisch aus 950 ml n-Heptan, 50 ml Ethanol und 2 ml Trifluoressigsäure
    Fluss: 1,0 ml/min, Säulentemperatur 25 °C, Injektionsvolumen 25 μl
    Detektion: UV-Detektor bei 225 nm
  • Bei dieser Methode eluierte das cis-Isomer (Edukt) bei 22,3 min, das trans-Isomer (Edukt) bei 30,7 min, das (S)-Enantiomer (Produkt) bei 11,7 min und das (R)-Enantiomer (Produkt) bei 14,0 min.
  • Beispiel 3:
  • Enantiomerenanreicherung durch Kristallisation mit Ammoniak
  • 95,6 g eines nach Beispiel 2 erhaltenen rohen Hydrierungsprodukts wurden in 750 ml Isopropanol gelöst und mit 44,2 ml 25%iger Ammoniaklösung unter Rühren versetzt. Nach 10 min konnte eine Kristallbildung beobachtet werden. Anschließend ließ man noch 3 h bei Raumtemperatur nachrühren, kühlte die Kristalllösung auf -10 °C und isolierte die Kristalle durch Filtration. Der erhaltene Feststoff wurde zweimal mit 100 ml kaltem Petrolether gewaschen und über Nacht bei 30 °C im Trockenschrank getrocknet.
  • Man erhielt das Ammoniumsalz mit einer Ausbeute von 78 % bezogen auf das eingesetzte Rohprodukt mit einem ee-Wert von 98,9 %.
  • Beispiel 4:
  • Enantiomerenanreicherung durch Kristallisation mit LiOH
  • 0,5 g eines nach Beispiel 2 erhaltenen rohen Hydrierungsprodukts wurden in 5 ml Isopropanol gelöst, mit 40 mg LiOH versetzt und die resultierende Suspension 1 h bei Raumtemperatur nachgerührt. Die resultierenden Kristalle wurden durch Filtration isoliert und der Feststoff zweimal mit 2 ml kaltem Petrolether gewaschen und über Nacht bei 30 °C im Trockenschrank getrocknet. Es wurden 0,3 g Kristalle (60 %) mit einem ee-Wert von 97,5 % erhalten.
  • Beispiel 5:
  • Herstellung von Synthon A-Säure
  • Das in Beispiel 3 erhaltene Ammoniumsalz wurde in 500 ml Wasser gelöst und der pH-Wert durch Zugabe von 30 ml konz. HCl auf einen Wert von 1 eingestellt. Die wässrige Phase wurde zweimal mit je 250 ml Toluol extrahiert, die vereinigten organischen Phasen mit vollentsalztem Wasser gewaschen und anschließend das Lösungsmittel am Rotationsverdampfer auf 150 ml eingeengt. Nach 10-minütigem Rühren bei Raumtemperatur wurde Kristallbildung beobachtet. Anschließend ließ man noch 3 h bei Raumtemperatur nachrühren, kühlte die Kristalllösung auf -10 °C ab und isolierte die Kristalle durch Filtration. Der resultierende Feststoff wurde zweimal mit je 100 ml kaltem Petrolether gewaschen und über Nacht bei 30 °C im Trockenschrank getrocknet. Man erhielt 69,3 g Synthon A-Säure als weißen Feststoff in einer Ausbeute von 99 % und mit einem ee-Wert von 98,9 %.

Claims (18)

  1. Verfahren zur Herstellung von optisch aktiven Verbindungen der allgemeinen Formel I
    Figure 00240001
    worin R1, R2, R3 und R4 unabhängig voneinander für Wasserstoff, C1-C6-Alkyl, Halogen-C1-C6-alkyl, Hydroxy-C1-C6-alkyl, C1-C6-Alkoxy, Hydroxy-C1-C6-alkoxy, C1-C6-Alkoxy-C1-C6-alkyl, Hydroxy-C1-C6-alkoxy-C1-C6-alkyl, C1-C6-Alkoxy-C1-C6-alkoxy oder Hydroxy-C1-C6-alkoxy-C1-C6-alkoxy stehen, R5 für C1-C6-Alkyl, C5-C8-Cycloalkyl, Phenyl oder Benzyl steht, und A für Wasserstoff oder ein Kationäquivalent steht, bei dem man – das cis-Isomer oder ein cis/trans-Isomerengemisch von Verbindungen der allgemeinen Formel II
    Figure 00240002
    worin R1 bis R5 die zuvor angegebenen Bedeutungen besitzen, einer enantioselektiven Hydrierung in Gegenwart eines chiralen Hydrierungskatalysators unterzieht, unter Erhalt eines an einem Enantiomeren angereicherten Enantiomerengemischs, – das bei der Hydrierung erhaltene Enantiomerengemisch zur weiteren Enantiomerenanreicherung einer Kristallisation durch Zugabe eines basischen Salzbildners in einem Lösungsmittel unterzieht und den dabei gebildeten, bezüglich eines Stereoisomers angereicherten Feststoff isoliert, und – gegebenenfalls das isolierte Isomer einer Protonierung oder einem Kationenaustausch unter Erhalt der optisch aktiven Verbindung der Formel I unterzieht.
  2. Verfahren nach Anspruch 1, wobei zur Hydrierung ein cis/trans-Isomerengemisch eingesetzt wird, das wenigstens 50 Gew.-%, bevorzugt wenigstens 60 Gew.-%, insbesondere wenigstens 70 Gew.-% des cis-Isomers enthält.
  3. Verfahren nach einem der vorhergehenden Ansprüche, wobei zur Hydrierung ein cis/trans-Isomerengemisch eingesetzt wird, das wenigstens 1 Gew.-%, bevorzugt wenigstens 5 Gew.-%, insbesondere wenigstens 10 Gew.-% des trans-Isomers enthält.
  4. Verfahren nach einem der vorhergehenden Ansprüche, wobei zur Hydrierung ein Übergangsmetallkomplex als Katalysator eingesetzt wird, der als Liganden wenigstens eine Verbindung der Formel
    Figure 00250001
    umfasst, worin RI, RII, RIII und RIV unabhängig voneinander für Alkyl, Cycloalkyl, Heterocycloalkyl, Aryl oder Hetaryl stehen, und RV, RVI, RVII, RVIII, RIX und RX unabhängig voneinander für Wasserstoff, Alkyl, Alkylen-OH, Alkylen-NE1E2, Alkylen-SH, Alkylen-OSiE3E4, Cycloalkyl, Heterocycloalkyl, Aryl, Hetaryl, OH, SH, Polyalkylenoxid, Polyalkylenimin, Alkoxy, Halogen, COOH, Carboxylat, SO3H, Sulfonat, NE1E2, Nitro, Alkoxycarbonyl, Acyl oder Cyano stehen, worin E1, E2, E3 und E4 jeweils gleiche oder verschiedene Reste, ausgewählt unter Wasserstoff, Alkyl, Cycloalkyl, Aryl und Alkylaryl bedeuten.
  5. Verfahren nach Anspruch 4, wobei RI, RII, RIII und RIV unabhängig voneinander für Phenyl oder Xylyl stehen.
  6. Verfahren nach einem der Ansprüche 4 oder 5, wobei einer der Reste RV, RVI und RVII und/oder einer der Reste RVIII, RIX und RX für einen von Wasserstoff verschiedenen Rest stehen und der/die von Wasserstoff verschiedene(n) Reste) ausgewählt ist/sind unter C1-C6-Alkyl, C1-C4-Alkylen-OH, C1-C4-Alkylen-OSi(C1-C4-Alkyl)2, C1-C4-Alkoxy und C1-C4-Alklen-OC(Aryl)3.
  7. Verfahren nach einem der Ansprüche 4 bis 6, wobei der Katalysator wenigstens einen Liganden aufweist, der ausgewählt ist unter Verbindungen der Formeln
    Figure 00260001
  8. Verfahren nach einem der vorhergehenden Ansprüche, wobei der zur Kristallisation eingesetzte Salzbildner ausgewählt ist unter achiralen basischen Verbindungen.
  9. Verfahren nach Anspruch 8, wobei der Salzbildner ausgewählt ist unter Ammoniak, primären Aminen, Alkalihydroxiden und Erdalkalihydroxiden.
  10. Verfahren nach einem der Ansprüche 8 oder 9, wobei zur Kristallisation Ammoniak oder LiOH als Salzbildner und Isopropanol als Lösungsmittel eingesetzt wird.
  11. Verfahren nach einem der vorhergehenden Ansprüche, wobei der nach der Kristallisation isolierte Feststoff einen ee-Wert von mindestens 98 % aufweist.
  12. Verfahren nach einem der vorhergehenden Ansprüche, wobei man eine optisch aktive Verbindung der Formel Imit folgender absoluter Konfiguration erhält
    Figure 00270001
    wobei R1 bis R5 und A die in Anspruch 1 angegebenen Bedeutungen besitzen.
  13. Verfahren zur Herstellung von optisch aktiven Verbindungen der allgemeinen Formel III
    Figure 00270002
    worin R1 bis R5 die in Anspruch 1 angegebenen Bedeutungen besitzen und Hal für Cl, Br oder l steht, bei dem man – eine Verbindung der allgemeinen Formel I, wie in Anspruch 1 definiert, für den Fall, dass A für ein von Wasserstoff und Metallkationen verschiedenes Kationäquivalent steht, durch Protonierung in die Säure überführt, – die Säure oder das Metallsalz davon einer Reduktion unter Erhalt eines Alkohols der allgemeinen Formel IV
    Figure 00280001
    unterzieht, worin R1 bis R5 die zuvor angegebenen Bedeutungen besitzen und – den Alkohol der Formel IV einer Halodehydroxylierung unter Erhalt der optisch aktiven Verbindung der Formel III unterzieht.
  14. Verfahren nach Anspruch 13, bei dem man a) einen aromatischen Aldehyd der allgemeinen Formel V
    Figure 00280002
    worin R1 bis R4 die in Anspruch 1 angegebenen Bedeutungen besitzen, mit einem Carbonsäureester der allgemeinen Formel VI R5-CH2-COOR7 (VI)worin R5 die in Anspruch 1 angegebenen Bedeutungen besitzt und R7 für Alkyl, Cycloalkyl, Aryl oder Alkylanl steht, unter Erhalt von Verbindungen der allgemeinen Formel VII
    Figure 00290001
    umsetzt, b) in den Verbindungen der Formel VII die Hydroxylgruppe in eine bessere Abgangsgruppe überführt und einer Eliminierung unter Erhalt von Verbindungen der allgemeinen Formel VIII
    Figure 00290002
    unterzieht, c) die Verbindungen der Formel VIII einer Esterhydrolyse unter Erhalt von Verbindungen der allgemeinen Formel II
    Figure 00290003
    unterzieht, d) die Verbindungen der Formel II einer enantioselektiven Hydrierung in Gegenwart eines chiralen Hydrierungskatalysators unterzieht, unter Erhalt eines an einem Enantiomeren angereicherten Enantiomerengemischs, e) das bei der Hydrierung in Schritt d) erhaltene Enantiomerengemisch zur weiteren Enantiomerenanreicherung einer Kristallisation durch Zugabe eines basischen Salzbildners in einem Lösungsmittel unterzieht und den dabei gebildeten, bezüglich eines Stereoisomers angereicherten Feststoff isoliert, f) gegebenenfalls das in Schritt e) isolierte Isomer einer Protonierung oder einem Kationenaustausch unter Erhalt der optisch aktiven Verbindung der Formel I unterzieht, g) für den Fall, dass in der Verbindung der Formel I der Rest A für ein von Wasserstoff und Metallkationen verschiedenes Kationäquivalent steht, diesen einer Protonierung unterzieht, h) die Säure oder das Metallsalz davon einer Reduktion unter Erhalt eines Alkohols der allgemeinen Formel IV
    Figure 00300001
    unterzieht, und i) den Alkohol der Formel IV einer Halodehydroxylierung unter Erhalt der optisch aktiven Verbindung der Formel III
    Figure 00300002
    unterzieht.
  15. Optisch aktive Verbindung der allgemeinen Formel I
    Figure 00310001
    worin R1 bis R5 die in Anspruch 1 angegebene Bedeutung besitzen und A für ein von Ammoniak, primären Aminen, Alkalimetallen und Erdalkalimetallen abgeleitetes Kation stehen.
  16. Verbindung nach Anspruch 15, wobei R5 für einen verzweigten C3-C8-Alkylrest, insbesondere Isopropyl, steht.
  17. Verbindung nach einem der Ansprüche 15 oder 16 der Formel
    Figure 00310002
  18. Verbindung nach einem der Ansprüche 15 bis 17, wobei A für NH4 + oder Li+ steht.
DE200510012408 2005-03-17 2005-03-17 Verfahren zur Herstellung von optisch aktiven 3-Phenylpropionsäurederivaten und Folgeprodukten davon Withdrawn DE102005012408A1 (de)

Priority Applications (11)

Application Number Priority Date Filing Date Title
DE200510012408 DE102005012408A1 (de) 2005-03-17 2005-03-17 Verfahren zur Herstellung von optisch aktiven 3-Phenylpropionsäurederivaten und Folgeprodukten davon
ES06723479T ES2337826T3 (es) 2005-03-17 2006-03-16 Metodo para la produccion de derivados opticamente activos de acido 3-fenilpropionico y productos de reaccion del mismo.
US11/908,808 US20080171892A1 (en) 2005-03-17 2006-03-16 Method for Producing Optically Active 3-Phenylpropionic Acid Derivatives and Follow-On Products of the Latter
PL06723479T PL1861352T3 (pl) 2005-03-17 2006-03-16 Sposób wytwarzania optycznie czynnych pochodnych kwasu 3-fenylopropionowego i otrzymywane z nich produkty
DE502006005580T DE502006005580D1 (de) 2005-03-17 2006-03-16 Verfahren zur herstellung von optisch aktiven 3-phenylpropionsäurederivaten und folgeprodukte davon
EP06723479A EP1861352B1 (de) 2005-03-17 2006-03-16 Verfahren zur herstellung von optisch aktiven 3-phenylpropionsäurederivaten und folgeprodukte davon
PT06723479T PT1861352E (pt) 2005-03-17 2006-03-16 Processo para a preparação de derivados de ácido 3- fenilpropiónico opticamente activos e respectivos produtos secundários
AT06723479T ATE451345T1 (de) 2005-03-17 2006-03-16 Verfahren zur herstellung von optisch aktiven 3- phenylpropionsäurederivaten und folgeprodukte davon
JP2008501231A JP4763771B2 (ja) 2005-03-17 2006-03-16 光学活性3−フェニルプロピオン酸誘導体を生成する方法、およびその誘導体の後続生成物
CN2006800085785A CN101142164B (zh) 2005-03-17 2006-03-16 生产光学活性3-苯基丙酸衍生物以及后者的后续产物的生产方法
PCT/EP2006/002435 WO2006097314A1 (de) 2005-03-17 2006-03-16 Verfahren zur herstellung von optisch aktiven 3-phenylpropionsäurederivaten und folgeprodukte davon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE200510012408 DE102005012408A1 (de) 2005-03-17 2005-03-17 Verfahren zur Herstellung von optisch aktiven 3-Phenylpropionsäurederivaten und Folgeprodukten davon

Publications (1)

Publication Number Publication Date
DE102005012408A1 true DE102005012408A1 (de) 2006-09-21

Family

ID=36933856

Family Applications (1)

Application Number Title Priority Date Filing Date
DE200510012408 Withdrawn DE102005012408A1 (de) 2005-03-17 2005-03-17 Verfahren zur Herstellung von optisch aktiven 3-Phenylpropionsäurederivaten und Folgeprodukten davon

Country Status (2)

Country Link
CN (1) CN101142164B (de)
DE (1) DE102005012408A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102212012A (zh) * 2010-04-12 2011-10-12 上海源力生物技术有限公司 一种合成阿利克伦的中间体及其制备方法
CN109232220B (zh) * 2017-09-15 2021-09-10 上海健康医学院 一种3-羟基-3-苯基丙酸类化合物的化学拆分方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002002500A1 (en) * 2000-07-03 2002-01-10 Speedel Pharma Ag Preparation of (r)-2-alkyl-3-phenylpropionic acids

Also Published As

Publication number Publication date
CN101142164B (zh) 2012-03-21
CN101142164A (zh) 2008-03-12

Similar Documents

Publication Publication Date Title
DE2161200C3 (de) Optisch aktive, zweibindige Liganden, katalytische Komposition, die diese Liganden enthält, sowie Verfahren zur asymetrischen Hydrierung von Kohlenstoff-Kohlenstoff-Doppelbindungen unter Anwendung dieser katalytischen Komposition
DE60102356T2 (de) Asymmetrische synthese von pregabalin
DE60015799T2 (de) Verfahren für die herstellung von tolterodine und deren analoga sowie im verfahren hergestellte zwischenprodukte
EP1801093B1 (de) Verfahren zur Herstellung von enantiomerenangereicherten 2-Alkoxy-3-Phenyl-Propion-Säuren
EP3452488A1 (de) P-chirale phosphinliganden und deren verwendung zur asymmetrischen synthese
EP2139835A1 (de) Verfahren zur herstellung optisch aktiver carbonylverbindungen
EP0104375A1 (de) Neue, phosphorhaltige Biphenylderivate und deren Verwendung für asymmetrische Hydrierungen und enantioselektive Wasserstoffverschiebungen
DD206372A5 (de) Verfahren zur herstellung von alpha-arylalkansaeuren
DE69721257T2 (de) Neue chirale bisphosphine
WO2007147897A1 (de) Verfahren zur herstellung von optisch aktiven 2-halogen-1-phenylethanol-derivaten und folgeprodukten davon
AT390253B (de) Verfahren zur herstellung der d-2-(6-methoxy-2naphthyl)-propionsaeure
DE602004010830T2 (de) Verfahren zur herstellung von chiralen propionsäurederivaten
DE102005012408A1 (de) Verfahren zur Herstellung von optisch aktiven 3-Phenylpropionsäurederivaten und Folgeprodukten davon
EP1861352B1 (de) Verfahren zur herstellung von optisch aktiven 3-phenylpropionsäurederivaten und folgeprodukte davon
JP3032447B2 (ja) 光学活性な2−プロピルオクタン酸の製造方法
DE3935910A1 (de) Verfahren zur herstellung von optisch reinen 1,2,3,4-tetrahydro-3-carboxyisochinolinen
DE3382618T2 (de) Verfahren zur herstellung von(d)2-(6-methoxy-2-naphthyl)propionsaeure und pharmazeutisch verwendbaren salzen davon und neue zwischenprodukte.
DE60226074T2 (de) Enantioseletive umwandlung von alpha,beta-ungesättigten ketonen unter verwendung chiraler organischer katalysatoren
EP2041070A1 (de) Verfahren zur herstellung von optisch aktiven 3-aminocarbonsäureestern
DE69008653T2 (de) Verfahren zur Racemisierung von optisch aktiven 4-Phenylbuttersäureestern.
EP2480664A1 (de) Amidase und ihre verwendung zur herstellung von 3-aminocarbonsäureestern
DE102005029228A1 (de) Verfahren zur Herstellung von optisch aktiven 3-Phenylpropionsäurederivaten und Folgeprodukten davon
DE69932269T2 (de) Herstellung optisch aktiver Cyclohexylphenylglykolsäureester
DE102006000839A1 (de) Verfahren zur Herstellung von optisch aktiven 3-Phenylpropionsäurederivaten und Folgeprodukten davon
EP0512415B1 (de) Verfahren zur enantioselektiven Synthese von 2(R)-Benzylbernsteinsäuremonoamid-Derivaten

Legal Events

Date Code Title Description
8139 Disposal/non-payment of the annual fee