DE102004010892B3 - Chemically stable solid Li ion conductor of garnet-like crystal structure and high Li ion conductivity useful for batteries, accumulators, supercaps, fuel cells, sensors, windows displays - Google Patents

Chemically stable solid Li ion conductor of garnet-like crystal structure and high Li ion conductivity useful for batteries, accumulators, supercaps, fuel cells, sensors, windows displays Download PDF

Info

Publication number
DE102004010892B3
DE102004010892B3 DE102004010892A DE102004010892A DE102004010892B3 DE 102004010892 B3 DE102004010892 B3 DE 102004010892B3 DE 102004010892 A DE102004010892 A DE 102004010892A DE 102004010892 A DE102004010892 A DE 102004010892A DE 102004010892 B3 DE102004010892 B3 DE 102004010892B3
Authority
DE
Germany
Prior art keywords
garnet
batteries
ion conductor
ion
crystal structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
DE102004010892A
Other languages
German (de)
Inventor
Werner Prof. Dr. Weppner
Venkataraman Dr. Thangadurai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Christian Albrechts Universitaet Kiel
Original Assignee
Christian Albrechts Universitaet Kiel
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to DE102004010892A priority Critical patent/DE102004010892B3/en
Application filed by Christian Albrechts Universitaet Kiel filed Critical Christian Albrechts Universitaet Kiel
Priority to EP14164076.3A priority patent/EP2767512B1/en
Priority to KR1020067020655A priority patent/KR101168253B1/en
Priority to PCT/EP2005/002255 priority patent/WO2005085138A1/en
Priority to CN2005800117495A priority patent/CN101014540B/en
Priority to JP2007502240A priority patent/JP5204478B2/en
Priority to SI200531864T priority patent/SI1723080T1/en
Priority to US10/591,714 priority patent/US7901658B2/en
Priority to EP05715707.5A priority patent/EP1723080B1/en
Priority to TW094106655A priority patent/TWI436949B/en
Priority to ARP050100838A priority patent/AR050401A1/en
Application granted granted Critical
Publication of DE102004010892B3 publication Critical patent/DE102004010892B3/en
Priority to US13/007,773 priority patent/US8092941B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G33/00Compounds of niobium
    • C01G33/006Compounds containing, besides niobium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G35/00Compounds of tantalum
    • C01G35/006Compounds containing, besides tantalum, two or more other elements, with the exception of oxygen or hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/56Solid electrolytes, e.g. gels; Additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • H01M6/185Cells with non-aqueous electrolyte with solid electrolyte with oxides, hydroxides or oxysalts as solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/77Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by unit-cell parameters, atom positions or structure diagrams
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Conductive Materials (AREA)
  • Secondary Cells (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

Chemically stable solid Li ion conductor of garnet-like crystal structure and Li ion conductivity greater than 3.4.10 ->6 S/cm and stoichiometric composition L(5+x)AxG(3-x)M2O12, where L = Li ion, M = Nb or Ta. An independent claim is included for a method of preparing the Li ion conductor by reaction of salts and/or oxides of L, A, G, and M, where L = Li, A = monovalent metal cation, G = trivalent metal cation, M= pentavalent metal cation.

Description

Die Erfindung betrifft einen chemisch stabilen, festen Lithiumionenleiter.The The invention relates to a chemically stable, solid lithium ion conductor.

Mobile Energiespeicher mit hohen Energiedichten (und hohen Leistungsdichten) werden für eine Vielzahl technischer Geräte benötigt, allen voran für Mobiltelefone und tragbare Computer (z.B. Notebooks). Von herausragender Bedeutung sind dabei wieder aufladbare chemische Energiespeicher, insbesondere Sekundärbatterien und Superkondensatoren.mobile Energy storage with high energy densities (and high power densities) be for one Variety of technical devices needed especially for Mobile phones and portable computers (e.g., notebooks). Of outstanding Significance are rechargeable chemical energy storage, in particular secondary batteries and supercapacitors.

Die bislang höchsten Energiedichten im Bereich 0,2 bis 0,4 Wh/cm3 werden heute kommerziell mit so genannten Lithiumionenbatterien realisiert. Diese bestehen meist aus einem flüssigen organischen Lösungsmittel (z.B. EC/DEC) mit Lithium-Salz, einer Anode aus Graphit mit interkaliertem Lithium und einer Kathode aus Lithiumkobaltoxid, wobei das Kobalt auch teilweise oder vollständig durch Nickel oder Mangan ersetzt sein kann.The hitherto highest energy densities in the range of 0.2 to 0.4 Wh / cm 3 are today commercially realized with so-called lithium-ion batteries. These usually consist of a liquid organic solvent (eg EC / DEC) with lithium salt, an anode of graphite with intercalated lithium and a cathode of lithium cobalt oxide, wherein the cobalt may also be partially or completely replaced by nickel or manganese.

Bekanntlich ist die Lebensdauer solcher Lithiumionenbatterien recht begrenzt, so dass sie oft noch während der Lebensdauer des zu versorgenden Gerätes ersetzt werden müssen. Zudem ist die Ersatzbeschaffung gemeinhin teuer und die Entsorgung der Altbatterien problematisch, da einige der Inhaltsstoffe nicht umweltverträglich sind.generally known the lifetime of such lithium ion batteries is quite limited, so they often still while the life of the device to be supplied must be replaced. moreover the replacement is commonly expensive and the disposal of the Old batteries problematic because some of the ingredients are not environmentally friendly.

Im Betrieb erweisen sich die Batterien nach dem Stand der Technik in vielen Anwendungen als nicht ausreichend leistungsfähig (z.B. Offline-Betrieb eines Notebooks max. für wenige Stunden). Für den Einsatz von Elektroden, die höhere Spannungen ermöglichen, beispielsweise 5 V oder mehr, sind die Batterien chemisch instabil; die organischen Elektrolytbestandteile beginnen sich bei Spannungen über 2,5 V zu zersetzen. Der flüssige Elektrolyt stellt ohnehin ein Sicherheitsproblem dar: neben Auslauf-, Brand- und Explosionsgefahr ist auch das Wachstum von Dendriten möglich, was zu einer hohen Selbstentladung und Erhitzung führen kann.in the Operation, the batteries prove in the prior art in many applications as insufficiently powerful (e.g. Offline operation of a notebook max. for a few hours). For use of electrodes, the higher Allow for tensions for example 5 V or more, the batteries are chemically unstable; the organic electrolyte constituents begin at voltages above 2.5 V to decompose. The liquid Electrolyte is a safety problem anyway: in addition to spill, fire and explosion hazard is also possible the growth of dendrites can lead to high self-discharge and heating.

Für einige technische Zielsetzungen sind Flüssigelektrolytbatterien grundsätzlich nachteilig, weil sie stets eine Mindestdicke besitzen müssen und somit als dünne Energiespeicher, z.B. auf Chipkarten, nicht einsetzbar sind.For some technical objectives are liquid electrolyte batteries in principle disadvantageous because they always have to have a minimum thickness and thus as a thin one Energy storage, e.g. on smart cards, are not usable.

Auch feste Lithiumionenleiter wie etwa Li2,9PO3,3N0,46 (LIPON) sind bekannt und im Labormaßstab in Dünnschichtbatterien verwendet worden. Allerdings besitzen diese Materialien allgemein eine deutlich geringere Lithiumleitfähigkeit als Flüssigelektrolyte. Feste Lithiumionenleiter mit den besten Ionenleitfähigkeiten sind Li3N und Li-β-alumina. Beide Verbindungen sind sehr empfindlich gegenüber Wasser (Feuchte). Li3N zersetzt sich schon bei einer Spannung von 0,445 V; Li-β-alumina ist chemisch nicht stabil.Also solid lithium ion conductor, such as Li 2.9 PO 3.3 N 0.46 (LIPON) are known and have been used on a laboratory scale in thin film batteries. However, these materials generally have a much lower lithium conductivity than liquid electrolytes. Solid lithium ion conductors with the best ionic conductivities are Li 3 N and Li-β-alumina. Both compounds are very sensitive to water (moisture). Li 3 N already decomposes at a voltage of 0.445 V; Li-β-alumina is not chemically stable.

In der Arbeit von Thangadurai et al. „Novel fast lithium ion conduction in garnet-type Li5La3M2O12 (M=Nb, Ta)" (J. Am. Ceram. Soc. 86, 437-440, 2003) wurde die Granatstruktur erstmals als für die Lithiumionenleitung geeignet erkannt. Insbesondere an der Tantal-haltigen Verbindung wurde gezeigt, dass Volumen- und Korngrößenleitfähigkeit bei der Granatstruktur dazu tendieren, in vergleichbarer Größenordnung zu liegen. Die totale Leitfähigkeit liegt damit außerordentlich hoch, sogar über der von Li-β-alumina oder von Li9AlSiO8, jedoch immer noch deutlich unter den Leitfähigkeiten von LISICON oder Li3N.In the work of Thangadurai et al. "Novel almost lithium ion conduction in garnet-type Li 5 La 3 M 2 O 12 (M = Nb, Ta)" (J. Am. Ceram. Soc., 86, 437-440, 2003) was first reported as the garnet for the In particular, the tantalum-containing compound has been shown to have a volume and grain size conductivity in the garnet structure that tends to be on a comparable scale, with total conductivity even exceeding that of Li-β-alumina or Li 9 AlSiO 8 , but still well below the conductivities of LISICON or Li 3 N.

Es ist die Aufgabe der Erfindung, einen Festelektrolyten, insbesondere einen festen Lithiumionenleiter, anzugeben, der eine hohe Lithiumleitfähigkeit, eine geringe elektronische Leitfähigkeit und eine hohe chemische Stabilität hinsichtlich der Lithiumaktivität aufweist.It The object of the invention is a solid electrolyte, in particular to provide a solid lithium ion conductor having a high lithium conductivity, a low electronic conductivity and a high chemical stability in terms of lithium activity having.

Die Aufgabe wird gelöst durch einen Festelektrolyten gemäß Anspruch 1. Die Unteransprüche geben vorteilhafte Ausgestaltungen an.The Task is solved by a solid electrolyte according to claim 1. Give the dependent claims advantageous embodiments.

Folgende Abbildungen dienen der Erläuterung der Erfindung:The following Illustrations are for explanation the invention:

1 zeigt eine Einheitszelle der Kristallstruktur von Li5La3M2O12 (M=Nb, Ta); 1 shows a unit cell of the crystal structure of Li 5 La 3 M 2 O 12 (M = Nb, Ta);

2 zeigt die gemessene Leitfähigkeit von Li6BaLa2Ta2O12 im Vergleich mit anderen festen Lithiumionenleitern. 2 shows the measured conductivity of Li 6 BaLa 2 Ta 2 O 12 in comparison with other solid lithium ion conductors.

Im bereits bekannten granatartigen Lithiumionenleiter nach Thangadurai et al. sind die NbO6 bzw. TaO6 Oktaeder von sechs Li+-Ionen und zwei Leerstellen umgeben. In 1 sind die Oktaeder grafisch dargestellt zusammen mit Lanthanatomen (große Kugeln) und Lithiumionen (kleine Kugeln). Die Leerstellen lassen sich ebenfalls besetzen, wenn man pro Einheitszelle ein Lanthan-Atom durch ein Erdalkalimetall, insbesondere Kalzium, Strontium oder Barium, ersetzt und bei der Herstellung des Materials für Lithiumüberschuss sorgt. Hierdurch ist eine höhere Lithiumleitfähigkeit zu erreichen.In the already known garnet-type lithium ion conductor according to Thangadurai et al. For example, the NbO 6 and TaO 6 octahedra are surrounded by six Li + ions and two vacancies. In 1 The octahedra are graphically represented together with lanthanum atoms (large spheres) and lithium ions (small spheres). The vacancies can also be occupied by replacing a lanthanum atom per unit cell with an alkaline earth metal, in particular calcium, strontium or barium, and producing lithium excess in the preparation of the material. As a result, a higher lithium conductivity is achieved.

Bei der systematischen Untersuchung aller Materialien der Stöchiometrie Li6 ALa2B2O12 (A= Ca, Sr, Ba / B= Nb, Ta) zeigt sich, dass besonders die Tantal-haltigen Strukturen vorteilhafte Eigenschaften besitzen, insbesondere jene mit Sr oder Ba auf A-Plätzen.The systematic investigation of all materials of the stoichiometry Li 6 ALa 2 B 2 O 12 (A = Ca, Sr, Ba / B = Nb, Ta) shows that especially the tantalum-containing structures have advantageous properties, in particular those with Sr or Ba up A sites.

Die Lithiumleitfähigkeit von Li6ALa2Ta2O12 (A=Sr, Ba) liegt mit 10–5 S/cm bei 20 °C um eine Größenordnung höher als die von LIPON. Die elektronische Leitfähigkeit ist hingegen vernachlässigbar gering. Die polykristallinen Proben zeigen keinen großen Korngrenzenwiderstand, was darauf hindeutet, dass Ladungstransport durch das Volumen den Widerstand bestimmt. Dies ist ein weiterer wesentlicher Unterschied zu vielen anderen bekannten festen Lithiumionenleitern. Da der Granat eine 3D-isotrope Struktur besitzt, ist die Lithiumleitung dann ebenfalls dreidimensional, d.h. ohne Vorzugsrichtung möglich.The lithium conductivity of Li 6 ALa 2 Ta 2 O 12 (A = Sr, Ba) is an order of magnitude higher than that of LIPON at 10 -5 S / cm at 20 ° C. The electronic conductivity, however, is negligible. The polycrystalline samples show no large grain boundary resistance, suggesting that charge transport through the bulk determines the resistance. This is another significant difference from many other known solid lithium ion conductors. Since the garnet has a 3D isotropic structure, the lithium line is then also three-dimensional, that is possible without preferential direction.

2 zeigt die gemessene Leitfähigkeit von Li6BaLa2Ta2O12 im Vergleich mit verschiedenen bisher bekannten, festen Lithiumionenleitern. Das erfindungsgemäße Material besitzt sehr hohe ionische Leitfähigkeiten, die sich mit denen von Li2,5P0,5Si0,5O4 oder sogar Li3N vergleichen lassen. 2 shows the measured conductivity of Li 6 BaLa 2 Ta 2 O 12 in comparison with various previously known solid lithium ion conductors. The material according to the invention has very high ionic conductivities, which can be compared with those of Li 2.5 P 0.5 Si 0.5 O 4 or even Li 3 N.

Li6ALa2Ta2O12 (A=Sr, Ba) erweist sich darüber hinaus überraschend als chemisch sehr stabil. Das Material zeigt insbesondere keine erkennbaren Veränderungen unter Erwärmung im Kontakt mit geschmolzenem Lithium, was es erlaubt, Elektroden selbst aus elementarem Lithium zu verwenden. Bei Temperaturen bis 350 °C und Gleichspannungen bis 6 V zeigen sich keine chemischen Zersetzungen, wodurch der Elektrolyt in Sekundärbatterien mit Spannungen oberhalb 5 V eingesetzt werden kann.Moreover, Li 6 ALa 2 Ta 2 O 12 (A = Sr, Ba) surprisingly proves to be chemically very stable. In particular, the material shows no discernible changes under heating in contact with molten lithium, which allows to use electrodes even of elemental lithium. At temperatures up to 350 ° C and DC voltages up to 6 V, there are no chemical decompositions, whereby the electrolyte can be used in secondary batteries with voltages above 5 V.

Beispiel: Herstellung von Pellets aus Li6ALa2Ta2O12 (A=Sr, Ba)Example: Preparation of pellets of Li 6 ALa 2 Ta 2 O 12 (A = Sr, Ba)

Für die Herstellung der Proben, die den Festkörperelektrolyten bilden, wird ein Oxid der ungefähren Zusammensetzung Li6ALa2Ta2O12 (A = Sr, Ba) benötigt, das aus Nitraten, Nitratoxiden oder Lithiumhydroxiden durch Mahl- und Temperprozesse gewonnen wird. Das La2O3 wird bei 900 °C vierundzwanzig Stunden getrocknet. Der Gewichtsverlust des Lithiums beim Tempern der Proben wird durch eine Überschusseinwaage von 10 % des Lithiumsalzes aus geglichen. Sr(NO3)2, Ba(NO3)2 und Ta2O5 können zugegeben werden, die sich beim Tempern in Oxide umwandeln.For the preparation of the samples which form the solid electrolyte, an oxide of the approximate composition Li 6 ALa 2 Ta 2 O 12 (A = Sr, Ba) is required, which is obtained from nitrates, nitrate oxides or lithium hydroxides by grinding and annealing processes. The La 2 O 3 is dried at 900 ° C for twenty-four hours. The weight loss of the lithium during the annealing of the samples is compensated by an excess of 10% of the lithium salt. Sr (NO 3 ) 2 , Ba (NO 3 ) 2 and Ta 2 O 5 may be added, which convert to oxides upon annealing.

Das Pulver wird in Kugelmühlen mit Zirkonoxidkugeln mehr als zwölf Stunden in 2-Propanol gemahlen und sechs Stunden bei 700 °C getempert. Das Reaktionsprodukt wird bei isostatischem Druck in Pellets oder andere Formstücke gepresst, bei 900 °C vierundzwanzig Stunden gesintert, und dabei werden die Proben mit dem Pulver der gleichen Zusammensetzung abgedeckt, um übermäßige Verluste des Lithiumoxids zu vermeiden. Der so entstandene Festkörperelektrolyt bildet den Ausgangsstoff für Lithiumionenbatterien.The Powder is in ball mills with zirconia balls more than twelve Milled in 2-propanol and annealed at 700 ° C for six hours. The Reaction product is at isostatic pressure in pellets or others fittings pressed, at 900 ° C Sintered for twenty-four hours and the samples are taken with it the powder of the same composition covered to excessive losses of Lithium oxide to avoid. The resulting solid electrolyte forms the starting material for Lithium ion batteries.

Für die Herstellung der Festkörperelektrolytproben ist es auch möglich, ein Oxid der Zusammensetzung Li6ALa2Ta2O12 (A = Sr, Ba) zu benutzen, das höchste stöchiometrische Reinheit (> 99 %) aufweist. Dieses Material ist ebenfalls chemisch stabil gegenüber Reaktionen mit reinem Lithium. Es wird ein 10 %-iger Gewichtsüberschuss von LiOH·H2O hinzugefigt, um den Verlust von Lithium während des Temperns, das wie oben beschrieben ausgeführt wird, auszugleichen. Der Mahlvorgang des Pulvers wird ebenfalls wie oben ausgeführt.For the preparation of the solid electrolyte samples, it is also possible to use an oxide of the composition Li 6 ALa 2 Ta 2 O 12 (A = Sr, Ba), which has the highest stoichiometric purity (> 99%). This material is also chemically stable to reactions with pure lithium. A 10% weight excess of LiOH.H 2 O is added to compensate for the loss of lithium during the annealing performed as described above. The grinding of the powder is also carried out as above.

Claims (4)

Fester Lithiumionenleiter, gekennzeichnet durch die stöchiometrische Zusammensetzung Li6ALa2B2O12, wobei A = Ca, Sr, Ba und B = Nb, Ta ist.Solid lithium ion conductor, characterized by the stoichiometric composition Li 6 ALa 2 B 2 O 12 , where A = Ca, Sr, Ba and B = Nb, Ta. Fester Lithiumionenleiter nach Anspruch 1, gekennzeichnet durch die stöchiometrische Zusammensetzung Li6ALa2Ta2O12, wobei A = Sr, Ba ist.A solid lithium ion conductor according to claim 1, characterized by the stoichiometric composition Li 6 ALa 2 Ta 2 O 12 , wherein A = Sr, Ba. Fester Lithiumionenleiter nach Anspruch 1 oder 2, gekennzeichnet durch eine granatartige Kristallstruktur.Solid lithium-ion conductor according to claim 1 or 2, characterized by a garnet-like crystal structure. Fester Lithiumionenleiter nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass er bei Lithium-Aktivitäten entsprechend einer Spannung bis 5 V gegenüber elementarem Lithium stabil ist.Solid lithium ion conductor according to one of the preceding Claims, characterized in that it corresponds to lithium activities a voltage of up to 5V elemental lithium is stable.
DE102004010892A 2004-03-06 2004-03-06 Chemically stable solid Li ion conductor of garnet-like crystal structure and high Li ion conductivity useful for batteries, accumulators, supercaps, fuel cells, sensors, windows displays Expired - Fee Related DE102004010892B3 (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
DE102004010892A DE102004010892B3 (en) 2004-03-06 2004-03-06 Chemically stable solid Li ion conductor of garnet-like crystal structure and high Li ion conductivity useful for batteries, accumulators, supercaps, fuel cells, sensors, windows displays
EP05715707.5A EP1723080B1 (en) 2004-03-06 2005-03-03 Chemically stable solid lithium ion conductors
PCT/EP2005/002255 WO2005085138A1 (en) 2004-03-06 2005-03-03 Chemically stable solid lithium ion conductors
CN2005800117495A CN101014540B (en) 2004-03-06 2005-03-03 Chemically stable solid lithium ion conductors
JP2007502240A JP5204478B2 (en) 2004-03-06 2005-03-03 Chemically stable solid lithium ion conductor
SI200531864T SI1723080T1 (en) 2004-03-06 2005-03-03 Chemically stable solid lithium ion conductors
EP14164076.3A EP2767512B1 (en) 2004-03-06 2005-03-03 Chemically stable solid lithium ion conductors
KR1020067020655A KR101168253B1 (en) 2004-03-06 2005-03-03 Chemically stable solid lithium ion conductors
US10/591,714 US7901658B2 (en) 2004-03-06 2005-03-03 Chemically stable solid lithium ion conductor
TW094106655A TWI436949B (en) 2004-03-06 2005-03-04 Chemically stable solid lithium ion conductor
ARP050100838A AR050401A1 (en) 2004-03-06 2005-03-04 SOLID, CHEMICALLY STABLE ION DRIVER
US13/007,773 US8092941B2 (en) 2004-03-06 2011-01-17 Chemically stable solid lithium ion conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102004010892A DE102004010892B3 (en) 2004-03-06 2004-03-06 Chemically stable solid Li ion conductor of garnet-like crystal structure and high Li ion conductivity useful for batteries, accumulators, supercaps, fuel cells, sensors, windows displays

Publications (1)

Publication Number Publication Date
DE102004010892B3 true DE102004010892B3 (en) 2005-11-24

Family

ID=35220150

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102004010892A Expired - Fee Related DE102004010892B3 (en) 2004-03-06 2004-03-06 Chemically stable solid Li ion conductor of garnet-like crystal structure and high Li ion conductivity useful for batteries, accumulators, supercaps, fuel cells, sensors, windows displays

Country Status (4)

Country Link
US (2) US7901658B2 (en)
JP (1) JP5204478B2 (en)
CN (1) CN101014540B (en)
DE (1) DE102004010892B3 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013010692A1 (en) * 2011-07-19 2013-01-24 Robert Bosch Gmbh Lithium ion conducting, garnet-like compounds
DE102013222784A1 (en) 2013-11-08 2015-05-13 Robert Bosch Gmbh Electrochemical cell and process for its preparation
DE102014205945A1 (en) 2014-03-31 2015-10-01 Bayerische Motoren Werke Aktiengesellschaft Active cathode material for secondary lithium cells and batteries
US9793525B2 (en) 2012-10-09 2017-10-17 Johnson Battery Technologies, Inc. Solid-state battery electrodes
US10333123B2 (en) 2012-03-01 2019-06-25 Johnson Ip Holding, Llc High capacity solid state composite cathode, solid state composite separator, solid-state rechargeable lithium battery and methods of making same
US10566611B2 (en) 2015-12-21 2020-02-18 Johnson Ip Holding, Llc Solid-state batteries, separators, electrodes, and methods of fabrication
USRE49205E1 (en) 2016-01-22 2022-09-06 Johnson Ip Holding, Llc Johnson lithium oxygen electrochemical engine
WO2023222326A1 (en) 2022-05-20 2023-11-23 Bayerische Motoren Werke Aktiengesellschaft Lithium battery comprising a lithium metal anode with a porous current conductor

Families Citing this family (129)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8236443B2 (en) 2002-08-09 2012-08-07 Infinite Power Solutions, Inc. Metal film encapsulation
US8021778B2 (en) 2002-08-09 2011-09-20 Infinite Power Solutions, Inc. Electrochemical apparatus with barrier layer protected substrate
US8445130B2 (en) 2002-08-09 2013-05-21 Infinite Power Solutions, Inc. Hybrid thin-film battery
US8404376B2 (en) 2002-08-09 2013-03-26 Infinite Power Solutions, Inc. Metal film encapsulation
US8431264B2 (en) 2002-08-09 2013-04-30 Infinite Power Solutions, Inc. Hybrid thin-film battery
US8394522B2 (en) 2002-08-09 2013-03-12 Infinite Power Solutions, Inc. Robust metal film encapsulation
US20070264564A1 (en) 2006-03-16 2007-11-15 Infinite Power Solutions, Inc. Thin film battery on an integrated circuit or circuit board and method thereof
US7993773B2 (en) 2002-08-09 2011-08-09 Infinite Power Solutions, Inc. Electrochemical apparatus with barrier layer protected substrate
US8728285B2 (en) 2003-05-23 2014-05-20 Demaray, Llc Transparent conductive oxides
US7959769B2 (en) 2004-12-08 2011-06-14 Infinite Power Solutions, Inc. Deposition of LiCoO2
JP5095412B2 (en) 2004-12-08 2012-12-12 シモーフィックス,インコーポレーテッド LiCoO2 deposition
KR20090069323A (en) 2006-09-29 2009-06-30 인피니트 파워 솔루션스, 인크. Masking of and material constraint for depositing battery layers on flexible substrates
US8197781B2 (en) 2006-11-07 2012-06-12 Infinite Power Solutions, Inc. Sputtering target of Li3PO4 and method for producing same
US20120196189A1 (en) 2007-06-29 2012-08-02 Johnson Ip Holding, Llc Amorphous ionically conductive metal oxides and sol gel method of preparation
US8211496B2 (en) * 2007-06-29 2012-07-03 Johnson Ip Holding, Llc Amorphous lithium lanthanum titanate thin films manufacturing method
US9034525B2 (en) * 2008-06-27 2015-05-19 Johnson Ip Holding, Llc Ionically-conductive amorphous lithium lanthanum zirconium oxide
DE102007030604A1 (en) * 2007-07-02 2009-01-08 Weppner, Werner, Prof. Dr. Ion conductor with garnet structure
US20090092903A1 (en) * 2007-08-29 2009-04-09 Johnson Lonnie G Low Cost Solid State Rechargeable Battery and Method of Manufacturing Same
US8268488B2 (en) * 2007-12-21 2012-09-18 Infinite Power Solutions, Inc. Thin film electrolyte for thin film batteries
KR20100102180A (en) 2007-12-21 2010-09-20 인피니트 파워 솔루션스, 인크. Method for sputter targets for electrolyte films
KR101606183B1 (en) 2008-01-11 2016-03-25 사푸라스트 리써치 엘엘씨 Thin film encapsulation for thin film batteries and other devices
JP5816434B2 (en) * 2008-01-23 2015-11-18 インフィニット パワー ソリューションズ, インコーポレイテッド Thin film electrolytes for thin film batteries
US8350519B2 (en) 2008-04-02 2013-01-08 Infinite Power Solutions, Inc Passive over/under voltage control and protection for energy storage devices associated with energy harvesting
JP2010045019A (en) * 2008-07-16 2010-02-25 Tokyo Metropolitan Univ All-solid lithium secondary battery, and method of manufacturing the same
US8906523B2 (en) 2008-08-11 2014-12-09 Infinite Power Solutions, Inc. Energy device with integral collector surface for electromagnetic energy harvesting and method thereof
JP5132639B2 (en) 2008-08-21 2013-01-30 日本碍子株式会社 Ceramic material and manufacturing method thereof
JP5650646B2 (en) 2008-09-12 2015-01-07 インフィニット パワー ソリューションズ, インコーポレイテッド Energy device with integral conductive surface for data communication via electromagnetic energy and method for data communication via electromagnetic energy
WO2010042594A1 (en) * 2008-10-08 2010-04-15 Infinite Power Solutions, Inc. Environmentally-powered wireless sensor module
JP5262572B2 (en) * 2008-10-23 2013-08-14 株式会社豊田中央研究所 Lithium-containing garnet-type oxide, lithium secondary battery, and method for producing solid electrolyte
JP5083336B2 (en) * 2009-02-04 2012-11-28 株式会社豊田中央研究所 Garnet-type lithium ion conductive oxide
WO2011007445A1 (en) * 2009-07-17 2011-01-20 トヨタ自動車株式会社 Solid electrolyte, solid electrolyte sheet and method for producing solid electrolyte
CN102576828B (en) 2009-09-01 2016-04-20 萨普拉斯特研究有限责任公司 There is the printed circuit board (PCB) of integrated thin film battery
JP5525388B2 (en) * 2009-09-03 2014-06-18 日本碍子株式会社 Ceramic material and manufacturing method thereof
JP5376252B2 (en) * 2009-09-03 2013-12-25 日本碍子株式会社 Ceramic materials and their use
JP5283188B2 (en) * 2009-09-03 2013-09-04 日本碍子株式会社 All-solid secondary battery and manufacturing method thereof
US8877388B1 (en) 2010-01-20 2014-11-04 Sandia Corporation Solid-state lithium battery
JP5540179B2 (en) * 2010-03-26 2014-07-02 国立大学法人東京工業大学 Hydride ion conductor and method for producing the same
WO2011128979A1 (en) * 2010-04-13 2011-10-20 トヨタ自動車株式会社 Solid electrolyte material, lithium battery, and manufacturing method for solid electrolyte material
WO2011128977A1 (en) * 2010-04-13 2011-10-20 トヨタ自動車株式会社 Solid electrolyte material, lithium battery, and manufacturing method for solid electrolyte material
JP5392402B2 (en) * 2010-04-13 2014-01-22 トヨタ自動車株式会社 Solid electrolyte material, lithium battery and method for producing solid electrolyte material
JP2013528912A (en) 2010-06-07 2013-07-11 インフィニット パワー ソリューションズ, インコーポレイテッド Rechargeable high density electrochemical device
US8449790B2 (en) * 2010-06-28 2013-05-28 Ut-Battelle, Llc Solid lithium ion conducting electrolytes and methods of preparation
JP5358522B2 (en) * 2010-07-07 2013-12-04 国立大学法人静岡大学 Solid electrolyte material and lithium battery
US9246188B2 (en) * 2011-02-14 2016-01-26 Los Alamos National Security, Llc Anti-perovskite solid electrolyte compositions
WO2012112229A2 (en) * 2011-02-14 2012-08-23 Los Alamos National Security, Llc Anti-perovskite solid electrolyte compositions
JP5290337B2 (en) 2011-02-24 2013-09-18 国立大学法人信州大学 Garnet-type solid electrolyte, secondary battery containing the garnet-type solid electrolyte, and method for producing the garnet-type solid electrolyte
KR101312275B1 (en) 2011-03-30 2013-09-25 삼성에스디아이 주식회사 Composite, electrode active material for lithium secondary battery including the composite, preparing method thereof, electrode for lithium secondary battery using the same, and lithium secondary battery employing the same
JP5760638B2 (en) * 2011-04-21 2015-08-12 株式会社豊田中央研究所 Method for producing garnet-type lithium ion conductive oxide
US9660311B2 (en) 2011-08-19 2017-05-23 Polyplus Battery Company Aqueous lithium air batteries
US20150180001A1 (en) * 2011-12-05 2015-06-25 Johnson Ip Holding, Llc Amorphous ionically-conductive metal oxides, method of preparation, and battery
WO2013100000A1 (en) * 2011-12-28 2013-07-04 株式会社 村田製作所 All-solid-state battery, and manufacturing method therefor
EP2683005B1 (en) * 2012-07-06 2016-06-01 Samsung Electronics Co., Ltd Solid ionic conductor, solid electrolyte including the same, lithium battery including said solid electrolyte, and method of manufacturing said lithium battery
CN102780029B (en) * 2012-07-18 2015-09-02 宁波大学 A kind of three component cation codope carbuncle type solid lithium-ion electrolytes
CN102769147B (en) * 2012-07-18 2015-07-15 宁波大学 Mg<2+>, Al<3+>, Zr<4+> and S<2-> ion co-doped garnet type solid electrolyte
CN102780031B (en) * 2012-07-18 2016-03-30 宁波大学 A kind of Mg 2+, Al 3+, Zr 4+, F -ion co-doped garnet-type solid electrolyte
CN104604012B (en) 2012-09-13 2017-03-08 富士通株式会社 Ionic conductor and secondary cell
US9362546B1 (en) * 2013-01-07 2016-06-07 Quantumscape Corporation Thin film lithium conducting powder material deposition from flux
US11888149B2 (en) 2013-03-21 2024-01-30 University Of Maryland Solid state battery system usable at high temperatures and methods of use and manufacture thereof
EP2976798B1 (en) * 2013-03-21 2018-11-07 University of Maryland, College Park Ion-conducting batteries with solid state electrolyte materials
JP5741653B2 (en) 2013-09-02 2015-07-01 トヨタ自動車株式会社 Method for producing sulfide solid electrolyte
CN105683127B (en) 2013-10-07 2020-08-28 昆腾斯科普公司 Garnet materials for lithium secondary batteries and methods of making and using garnet materials
CN103746141B (en) * 2014-01-02 2016-08-17 东南大学 A kind of Li-B-N-H compound fast-ion conductor and preparation method thereof
PT3103157T (en) 2014-02-07 2020-10-26 Basf Se Electrode unit for an electrochemical device
CA2940598C (en) 2014-02-26 2023-08-01 Universidade Do Porto A solid electrolyte glass for lithium or sodium ions conduction
JP5828992B1 (en) 2014-04-24 2015-12-09 第一稀元素化学工業株式会社 Method for producing garnet-type compound, garnet-type compound, and all-solid lithium secondary battery containing this garnet-type compound
KR101600476B1 (en) * 2014-06-16 2016-03-08 한국과학기술연구원 Solid electrolyte coated cathode materials for lithium ion battery
FR3023417B1 (en) * 2014-07-01 2016-07-15 I-Ten COMPLETELY SOLID BATTERY COMPRISING SOLID ELECTROLYTE AND LAYER OF SOLID POLYMERIC MATERIAL
JP6296263B2 (en) 2014-10-31 2018-03-20 国立研究開発法人産業技術総合研究所 Lithium ion conductive crystal and all solid lithium ion secondary battery
US10211481B2 (en) 2014-11-26 2019-02-19 Corning Incorporated Stabilized solid garnet electrolyte and methods thereof
US10593998B2 (en) 2014-11-26 2020-03-17 Corning Incorporated Phosphate-garnet solid electrolyte structure
US11984553B2 (en) 2014-12-02 2024-05-14 Polyplus Battery Company Lithium ion conducting sulfide glass fabrication
US11749834B2 (en) 2014-12-02 2023-09-05 Polyplus Battery Company Methods of making lithium ion conducting sulfide glass
US10147968B2 (en) 2014-12-02 2018-12-04 Polyplus Battery Company Standalone sulfide based lithium ion-conducting glass solid electrolyte and associated structures, cells and methods
US10164289B2 (en) 2014-12-02 2018-12-25 Polyplus Battery Company Vitreous solid electrolyte sheets of Li ion conducting sulfur-based glass and associated structures, cells and methods
CN114163219A (en) 2015-04-16 2022-03-11 昆腾斯科普电池公司 Setter plate for solid electrolyte manufacture and method for preparing dense solid electrolyte by using setter plate
JP2018530100A (en) 2015-06-18 2018-10-11 ボード・オブ・リージエンツ,ザ・ユニバーシテイ・オブ・テキサス・システム Water solvated glass / amorphous solid ionic conductor
WO2016210371A1 (en) 2015-06-24 2016-12-29 Quantumscape Corporation Composite electrolytes
CN105336980A (en) * 2015-10-21 2016-02-17 上海动力储能电池系统工程技术有限公司 Tantalum-doped cubic garnet structured Li7La3Zr<2-x>TaxO12 material synthesized via intermediate phase, and synthesis method thereof
US10987735B2 (en) 2015-12-16 2021-04-27 6K Inc. Spheroidal titanium metallic powders with custom microstructures
PL3389862T3 (en) 2015-12-16 2024-03-04 6K Inc. Method of producing spheroidal dehydrogenated titanium alloy particles
US9966630B2 (en) 2016-01-27 2018-05-08 Quantumscape Corporation Annealed garnet electrolyte separators
US20170331092A1 (en) 2016-05-13 2017-11-16 Quantumscape Corporation Solid electrolyte separator bonding agent
CN105811000A (en) * 2016-06-12 2016-07-27 上海空间电源研究所 Microwave assisted technical method for preparing lithium-lanthanum-zirconium-oxygen solid electrolyte
CN109845020A (en) 2016-07-11 2019-06-04 得克萨斯州大学系统董事会 Power storaging unit based on metal deposition
KR102444090B1 (en) 2016-07-11 2022-09-15 더 리젠츠 오브 더 유니버시티 오브 미시건 Ceramic Garnet-Based Ion Conductive Material
EP3494613A4 (en) 2016-08-05 2020-03-11 QuantumScape Corporation Translucent and transparent separators
KR101886003B1 (en) * 2016-09-30 2018-08-07 주식회사 엘지화학 Lithium rich antiperovskite compound, electrolyte for lithium secondary battery comprising the same and lithium secondary battery comprising the same
CN110036504A (en) 2016-10-07 2019-07-19 密执安州立大学董事会 The stabilisation coating of solid state battery
WO2018075972A1 (en) 2016-10-21 2018-04-26 Quantumscape Corporation Electrolyte separators including lithium borohydride and composite electrolyte separators of lithium-stuffed garnet and lithium borohydride
EP3529839A1 (en) 2016-10-21 2019-08-28 QuantumScape Corporation Lithium-stuffed garnet electrolytes with a reduced surface defect density and methods of making and using the same
WO2018081224A1 (en) 2016-10-26 2018-05-03 The Regents Of The University Of Michigan Metal infiltrated electrodes for solid state batteries
US10347937B2 (en) 2017-06-23 2019-07-09 Quantumscape Corporation Lithium-stuffed garnet electrolytes with secondary phase inclusions
EP3642899B1 (en) 2017-06-23 2024-02-21 QuantumScape Battery, Inc. Lithium-stuffed garnet electrolytes with secondary phase inclusions
US10868293B2 (en) 2017-07-07 2020-12-15 Polyplus Battery Company Treating sulfide glass surfaces and making solid state laminate electrode assemblies
US10490360B2 (en) 2017-10-12 2019-11-26 Board Of Regents, The University Of Texas System Heat energy-powered electrochemical cells
US20210202982A1 (en) 2017-10-20 2021-07-01 Quantumscape Corporation Borohydride-sulfide interfacial layer in all solid-state battery
US11600850B2 (en) 2017-11-06 2023-03-07 Quantumscape Battery, Inc. Lithium-stuffed garnet thin films and pellets having an oxyfluorinated and/or fluorinated surface and methods of making and using the thin films and pellets
CN116895830A (en) 2018-02-15 2023-10-17 马里兰大学派克分院 Ordered porous solid electrolyte structure, method for manufacturing same, and electrochemical device
CN110247105A (en) * 2018-03-07 2019-09-17 重庆市科学技术研究院 A kind of preparation method improving solid electrolyte consistency
US10673064B2 (en) * 2018-05-17 2020-06-02 Vissers Battery Corporation Molten fluid electrode apparatus with solid lithium iodide electrolyte having improved lithium ion transport characteristics
EP3810358A1 (en) 2018-06-19 2021-04-28 6K Inc. Process for producing spheroidized powder from feedstock materials
US11223066B2 (en) 2018-08-01 2022-01-11 Samsung Electronics Co., Ltd. Solid-state electrolyte and method of manufacture thereof
US11251460B2 (en) 2018-08-01 2022-02-15 Samsung Electronics Co., Ltd. Solution-processed solid-state electrolyte and method of manufacture thereof
US11959166B2 (en) 2018-08-14 2024-04-16 Massachusetts Institute Of Technology Methods of fabricating thin films comprising lithium-containing materials
KR102101271B1 (en) * 2018-08-16 2020-04-16 아주대학교산학협력단 Ion conductive solid electrolyte compound, method of manufacturing the ion conductive solid electrolyte compound, and electrochemical apparatus having the electrolyte compound
JP2022505069A (en) 2018-11-06 2022-01-14 クアンタムスケープ バッテリー,インコーポレイテッド Electrochemical cell with casolite additive and lithium-filled garnet separator
US11569527B2 (en) 2019-03-26 2023-01-31 University Of Maryland, College Park Lithium battery
SG11202111576QA (en) 2019-04-30 2021-11-29 6K Inc Mechanically alloyed powder feedstock
CA3134579A1 (en) 2019-04-30 2020-11-05 Gregory Wrobel Lithium lanthanum zirconium oxide (llzo) powder
US11728510B2 (en) 2019-05-24 2023-08-15 Samsung Electronics Co., Ltd. Solid conductor, preparation method thereof, solid electrolyte including the solid conductor, and electrochemical device including the solid conductor
US11757127B2 (en) 2019-06-18 2023-09-12 Samsung Electronics Co., Ltd. Lithium solid electrolyte and method of manufacture thereof
US11837695B2 (en) 2019-08-05 2023-12-05 Samsung Electronics Co., Ltd. Oxide, method of preparing the same, solid electrolyte including the oxide, and electrochemical device including the oxide
US11018375B2 (en) 2019-09-13 2021-05-25 University Of Maryland, College Park Lithium potassium element oxide compounds as Li super-ionic conductor, solid electrolyte and coating layer for lithium metal battery and lithium-ion battery
US11145896B2 (en) 2019-09-13 2021-10-12 University Of Maryland, College Park Lithium potassium tantalate compounds as Li super-ionic conductor, solid electrolyte and coating layer for lithium metal battery and lithium-ion battery
CN114641462A (en) 2019-11-18 2022-06-17 6K有限公司 Unique raw material for spherical powder and manufacturing method
US11590568B2 (en) 2019-12-19 2023-02-28 6K Inc. Process for producing spheroidized powder from feedstock materials
US11631889B2 (en) 2020-01-15 2023-04-18 Polyplus Battery Company Methods and materials for protection of sulfide glass solid electrolytes
US11677097B2 (en) 2020-06-02 2023-06-13 Samsung Electronics Co., Ltd. Solid electrolyte, method of preparing the same, and electrochemical device including the same
CA3180426A1 (en) 2020-06-25 2021-12-30 Richard K. Holman Microcomposite alloy structure
US11575152B2 (en) 2020-06-29 2023-02-07 Samsung Electronics Co., Ltd. Oxide, preparation method thereof, solid electrolyte including the oxide, and electrochemical device including the oxide
KR20220003882A (en) 2020-07-02 2022-01-11 삼성전자주식회사 Solid ion conductor compound, solid electrolyte comprising the same, electrochemical cell comprising the same, and preparation method thereof
US11963287B2 (en) 2020-09-24 2024-04-16 6K Inc. Systems, devices, and methods for starting plasma
CN112186242B (en) * 2020-09-29 2022-04-15 清华大学深圳国际研究生院 Inorganic oxide solid electrolyte material, preparation method, lithium ion battery and electronic device
KR20230095080A (en) 2020-10-30 2023-06-28 6케이 인크. Systems and methods for synthesizing spheroidized metal powders
EP4001213A1 (en) 2020-11-13 2022-05-25 Samsung Electronics Co., Ltd. Oxide, method of preparing the same, solid electrolyte including the oxide, and electrochemical device including the oxide
KR20220100297A (en) 2021-01-08 2022-07-15 삼성전자주식회사 Solid ion conductor, solid electrolyte and electrochemical device including the same, and method of preparing the solid ion conductor
US11868657B2 (en) 2021-02-08 2024-01-09 Samsung Electronics Co., Ltd. Memory controller, method of operating the memory controller, and electronic device including the memory controller
US11893278B2 (en) 2021-02-08 2024-02-06 Samsung Electronics Co., Ltd. Memory controller and memory control method for generating commands based on a memory request
CN115950941B (en) * 2023-03-13 2023-06-20 华北理工大学 Lithium ion conductor solid electrolyte type low-temperature sensor and preparation method and application thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Thangadurai, V. et al.: "Novel Fast Lithiumion Conduction in Garnet-Type Li¶5¶La¶3¶M¶2¶O¶12¶ (M=Nb, Ta)" in J. Am. Ceram. Soc. 86[3] 437-40 (2003) *
Thangadurai, V. et al.: "Novel Fast Lithiumion Conduction in Garnet-Type Li5La3M2O12 (M=Nb, Ta)" in J. Am. Ceram. Soc. 86[3] 437-40 (2003)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013010692A1 (en) * 2011-07-19 2013-01-24 Robert Bosch Gmbh Lithium ion conducting, garnet-like compounds
US9761905B2 (en) 2011-07-19 2017-09-12 Robert Bosch Gmbh Lithium ion-conducting garnet-like compounds
US10333123B2 (en) 2012-03-01 2019-06-25 Johnson Ip Holding, Llc High capacity solid state composite cathode, solid state composite separator, solid-state rechargeable lithium battery and methods of making same
US10084168B2 (en) 2012-10-09 2018-09-25 Johnson Battery Technologies, Inc. Solid-state battery separators and methods of fabrication
US9793525B2 (en) 2012-10-09 2017-10-17 Johnson Battery Technologies, Inc. Solid-state battery electrodes
DE102013222784A1 (en) 2013-11-08 2015-05-13 Robert Bosch Gmbh Electrochemical cell and process for its preparation
WO2015067474A2 (en) 2013-11-08 2015-05-14 Robert Bosch Gmbh Electrochemical cell and method for the production thereof
DE102014205945A1 (en) 2014-03-31 2015-10-01 Bayerische Motoren Werke Aktiengesellschaft Active cathode material for secondary lithium cells and batteries
WO2015150167A1 (en) 2014-03-31 2015-10-08 Bayerische Motoren Werke Aktiengesellschaft Active cathode material for secondary lithium cells and batteries
US10566611B2 (en) 2015-12-21 2020-02-18 Johnson Ip Holding, Llc Solid-state batteries, separators, electrodes, and methods of fabrication
US11417873B2 (en) 2015-12-21 2022-08-16 Johnson Ip Holding, Llc Solid-state batteries, separators, electrodes, and methods of fabrication
USRE49205E1 (en) 2016-01-22 2022-09-06 Johnson Ip Holding, Llc Johnson lithium oxygen electrochemical engine
WO2023222326A1 (en) 2022-05-20 2023-11-23 Bayerische Motoren Werke Aktiengesellschaft Lithium battery comprising a lithium metal anode with a porous current conductor
DE102022112792A1 (en) 2022-05-20 2023-11-23 Bayerische Motoren Werke Aktiengesellschaft Lithium battery comprising a lithium metal anode with a porous current collector

Also Published As

Publication number Publication date
JP5204478B2 (en) 2013-06-05
CN101014540A (en) 2007-08-08
CN101014540B (en) 2012-04-04
US20070148553A1 (en) 2007-06-28
US20110133136A1 (en) 2011-06-09
US7901658B2 (en) 2011-03-08
US8092941B2 (en) 2012-01-10
JP2007528108A (en) 2007-10-04

Similar Documents

Publication Publication Date Title
DE102004010892B3 (en) Chemically stable solid Li ion conductor of garnet-like crystal structure and high Li ion conductivity useful for batteries, accumulators, supercaps, fuel cells, sensors, windows displays
EP1723080B1 (en) Chemically stable solid lithium ion conductors
KR101378303B1 (en) Bismuth fluoride based nanocomposites as electrode materials
EP2176190B1 (en) Ion conductor having a garnet structure
DE102012203139A1 (en) Solid cell
DE112007001382T5 (en) Alkali metal titanates and process for their synthesis
EP3069399B1 (en) Rechargeable electrochemical lithium cell with sulphur-dioxide containing electrolytes
EP3659972A2 (en) Perovskite material, method of preparing the same, and secondary battery including the perovskite material
EP4049974A1 (en) Lithium ion conductive solid electrolyte and production method for lithium ion conductive solid electrolyte
EP3771011A2 (en) So2-based electrolyte for a rechargeable battery and rechargeable battery therewith
WO2019051305A1 (en) Ceramic material with high lithium ion conductivity and high electrochemical stability for use as solid-state electrolyte and electrode additive
DE102014223147A1 (en) Chromium-doped lithium titanate as cathode material
EP3905276A1 (en) Solid electrolyte material and battery using same
Maier Battery materials: why defect chemistry?
DE112021007772T5 (en) ION CONDUCTING SOLID AND SOLID BATTERY
US10403933B2 (en) Solid electrolyte material and method for producing the same
CH637789A5 (en) Electrochemical solid cell
DE102015112479B4 (en) Total Solid State Battery System
EP3311440B1 (en) Sodium-sulfur battery, method for its operation, and use of phosphorus polysulfide as electrolyte additive in sodium-sulfur batteries
DE102004008397B4 (en) Positive active electrode material, process for producing a positive electrode active material and lithium secondary cell
DE102018105271A1 (en) Fixed ion conductor for rechargeable electrochemical battery cells
DE102020123735A1 (en) LITHIUM POTASSIUM TANTALATE COMPOUNDS AS LI SUPERION CONDUCTORS, SOLID ELECTROLYTE AND OVERLAY FOR LITHIUM METAL BATTERIES AND LITHIUM ION BATTERIES
EP2767512B1 (en) Chemically stable solid lithium ion conductors
EP2744020A1 (en) Complex oxide of alkali metal and tetravalent metal
DE102022205467B3 (en) Process for producing a solid electrolyte for a solid battery

Legal Events

Date Code Title Description
8100 Publication of patent without earlier publication of application
8364 No opposition during term of opposition
8339 Ceased/non-payment of the annual fee